行列式按行(列)展开定理共45页

合集下载

线性代数1.5行列式按行展开定理

线性代数1.5行列式按行展开定理

(i, j)元 aij外都为零,那么这行列式等于aij与它的代
数余子数的乘积,即 D aij Aij . a11 0 0

先证(i,
j)

(1,1)的情形,此时
D

a21
a22

a2n
,
即有D a11M11.
an1 an2 ann

A11 (1)11 M11 M11 , a11 a1 j a1n
从而
D a11A11 .
再证一般情形,此时



D 0 aij 0 .



an1 anj ann
把D的行列作如下调换: 把D的第i行依次与第i 1行、第i 2行、 、第1行对 调,这样数aij就调成(1, j)元,调换的次数为i 1. 再把第j列依次与第j 1列、第j 2列、 、第1列调换, 这样数aij就调换成(1,1)元,调换的次数为 j 1 .
1 3
0 1
5 3
,
2 4 1 3
D的(i, j)元的余子式和代数余子式依次记作Mij和Aij,
求 A11 A12 A13 A14及M11 M21 M31 M41.
解:
因为A11 A12 A13 A14等于用1, 1, 1, 1代替
D的第1 行所得的行列式,即
1 a2
1 1 , ai 0
1
1 1 an
10 0 0
1 1 a1 1 1 解:Dn Dn1 1 1 1 a2 1

11
1 1 an
1 1 1
1 a1 0
c c c c a (1) , , (1)

线性代数03-行列式按行(列)展开

线性代数03-行列式按行(列)展开

1
3 4 c1 2c3 11
1
3 1
2 0 1 1 c4 c3
0010
1 5 3 3
5 5 3 0
511 (1)33 11 1 1
5 5 0
r2 r1
5 11 6 2 0 5 5 0
(1)13 6 2 40. 5 5
说明
定理3叫做行列式按行(列)展开法则, 利用这个法则降阶并结合行列式的性质, 可以简化行列式的计算.
思考 任意一个行列式是否都可以用较低阶的行列式表示?
在n 阶行列式中,把元素 aij 所在的第 i 行和第 j 列划去后,
留下来的n-1阶行列式叫做元素 aij 的余子式,记作Mij .
把 Aij 1 i j Mij 元素 aij 的代数余子式.
例如
a11 a12 a13 a14
D a21 a22 a23 a24 a31 a32 a33 a34
a41 a42 a43 a44
a11 a12 a14 M23 a31 a32 a34
a41 a42 a44
A23 1 23 M23 M23
结论 行标和列标是行列式中元素的唯一标识,有且仅有一 个余子式和一个代数余子式与行列式中每一个元素对应.
说明
(1)对于给定的 n 阶行列式 D det(aij ) ,元素
证明 我们以3阶行列式为例.
a11 a12 a13 a11 A11 a12 A12 a13 A13 a21 a22 a23
a31 a32 a33
把第1行的元素换成第2行的对应元素,则
a21 a22 a23
a21 A11 a22 A12 a23 A13 a21 a22 a23 0.

行列式按行(列)展开

行列式按行(列)展开


a a a a a a a a a
D
xa
xa
c1 c2 cn
[ x ( n 2)a ] 1 x a 1 a
1 a
xa
xa
20
r2 r1 r3 r1 rn r1
1 [ x ( n 2)a ]0 0 0
ak 1 ak 2 akn an 2 ann
右端的行列式含有两个相同的行,值为 0 。
11
综上,得公式
D, (当k i) ak 1 Ai 1 ak 2 Ai 2 akn Ain 0,(当k i) D, (当l j) a1l A1 j a2 l A2 j anl Anj 0,(当l j)
a11 a12 a1n ai 1 0 0
a11 0
a12 a1n ai 2
a11 a12 a1n 0 ain
0 0
an1 an 2 ann
an1 an 2 ann
3 11
7 17 8
按第二列展开
7 25 8 0 3 0 11 5 2
1 ( 1)
2 2
0 3
5 9
5 2
按第二行展开
5 ( 1)
2 3
7 25 3 11
5(77 75) 10
19
例2:
xa a a a
a xa a a 1
a a a a
a a a
( xi a , i 1,2,3,4)
(可以化为箭形行列式)
r2 r1 r3 r1 r3 r1 r4 r1

行列式按行展开

行列式按行展开
当系数行列式D等于0时,克莱姆法则 失效,无法判断方程组是否有解以及 解的个数。
利用矩阵的秩
通过分析系数矩阵的秩和常数项矩阵的秩, 判断方程组的解的情况。当系数矩阵的秩等 于常数项矩阵的秩时,方程组有解;否则无 解。
引入参数法
通过引入参数将原方程组转化为参数方 程组,利用克莱姆法则求解参数方程组 的解,再回代求解原方程组的解。
• 适用性广:该方法适用于任何阶数的行列式,具有普适性。
行列式按行展开的优点与不足
要点一
计算量较大
要点二
难以直接观察行列式性质
对于高阶行列式,按行展开可能涉及大量的计算,导致计 算效率低下。
按行展开后,原行列式的结构和性质可能被掩盖,不利于 进一步分析和研究。
对未来研究的展望
探索更高效的计算方法
利用高斯消元法
通过高斯消元法将原方程组化简为阶 梯形方程组或最简形方程组,从而直 接求解方程组的解。
06 总结与展望
行列式按行展开的优点与不足
简化计算
通过按行展开,可以将一个高阶行列式转化为多个低阶行列式的和,从而简化计算过程。
直观性
按行展开的方法较为直观,易于理解和掌握。
行列式按行展开的优点与不足
行列式按行展开有助于理解行列式的本质和性质,加深对线性代数相关概 念的理解。
02 行列式按行展开的基本原 理
代数余子式的概念
代数余子式定义
在n阶行列式中,把元素$a_{ij}$所在的第i行和第j列划去后,留下来的n-1阶行 列式叫做元素$a_{ij}$的余子式,记作$M_{ij}$;记$A_{ij}=(-1)^{i+j}M_{ij}$, $A_{ij}$叫做元素$a_{ij}$的代数余子式。
行列式按行展开的公式为:$D = a_{i1}A_{i1} + a_{i2}A_{i2} + ldots + a_{in}A_{in}$,其中$a_{ij}$是所选行中的元素,$A_{ij}$ 是对应的代数余子式。

行列式按行(列)展开

行列式按行(列)展开
11
a21 a22 a2 n 证 当 aij 位于首位时,即 D 即有 D a11 M11 . an1 an 2 ann

A11 1
11
M 11 M 11 ,
从而
D a11 A11 .
命题得证
a11 a1 j a1n
下证一般情形, 此时 D 0
aij
0

an1 anj ann
把 D 的第i 行依次与第 i 1 行,第 i 2行,…第1行对调 0 aij 0

得 D 1
i 1
anj
ann
ai 1,1 ai 1, j ai 1,n a n1
D 0
aij
0
中的余子式 M ij .
an1 anj ann
aij anj aij
故 D 1
i j

0

0
于是有 ai 1, j ai 1, j 1 ai 1,n aij Mij ,
a n , j 1 0
D ai 1 Ai 1 ai 2 Ai 2 ain Ain
i 1,2,, n
D a1 j A1 j a2 j A2 j anj Anj
j 1, 2, , n
证 利用行列式的性质四--拆分原理有 a11 a12 a1n D ai 1 0 0 0 ai 2 0 0 0 ain a n1 an 2 ann
课前复习 性质1 行列式与它的转置行列式相等.即 DT D . 性质2 互换行列式的两行(列),行列式变号. 推论 如果行列式有两行(列)的对应元素完全相 同,则此行列式为零. 性质3 行列式的某一行(列)中所有的元素都乘以 同一数 k ,等于用数 k 乘此行列式. 推论2 行列式中如果有两行(列)元素成比例,则 此行列式为零. 性质4 若行列式的某一列(行)的元素都是两数之 和,则这个行列式等于两个行列式之和. 性质5 把行列式的某一列(行)的各元素乘以同一 数然后加到另一列(行)对应的元素上去,行列式不 变.

3.行列式按行按列展开解读

3.行列式按行按列展开解读
a11 A11 a12 A12 a13 A13 ai 1 Ai 1 ai 2 Ai 2 ai 3 Ai 3 ,
( i 1, 2,3).
二、行列式按行(列)展开法则
定理 行列式等于它的任一行(列)的各元素与 它对应的代数余子式乘积之和,即
det(aij ) ai 1 Ai 1 ai 2 Ai 2
a12 ai2 an2

a1n a11 ain bi1 ann an1
a12 bi2 an2

a1n bin ann
性质5引申若行列式的某一行(列)的元素都是n个数之和 则行列式等于n个行列式之和
同理
ain Asn 0, i s .
a1 j A1t a2 j A2t
anj Ant 0,
j t.
二、行列式按行(列)展开法则
定理 行列式等于它的任一行(列)的各元素与 它对应的代数余子式乘积之和,即 或 det(aij ) ai 1 Ai 1 ai 2 Ai 2
a11 a21 D a31 a41
a12 a13 a14 a22 a23 a24 , a32 a33 a34 a42 a43 a44
a11 a12 a13 M 44 a21 a22 a23 , a31 a32 a33
A44 1
4 4
M 44 M 44 .
注1: 行列式的每个元素分别对应着一个余子式 与一个代数余子式. 注2: 行列式的某个元素的余子式与代数余子式, 只与该元素的位置有关,与该元素的大小无关.
a11 a22a33 a23a32 a12 a23a31 a21a33 a13 a21a32 a22a31

线性代数-行列式按行(列)展开

线性代数-行列式按行(列)展开

2
证明 用数学归纳法
x n1 n
11
D2 x1
x2
x2 x1
( xi x j )
2i j1
所以n=2时(1)式成立.
假设(1)对于n-1阶范德蒙行列式成立,从第n行开始,后行
减去前行的 x1倍:
1 0 Dn 0
1 x2 x1 x2 ( x2 x1 )
1 x3 x1 x3 ( x3 x1 )
行列式按行(列)展开
•对角线法则只适用于二阶与三阶行列式. •本节主要考虑如何用低阶行列式来表示高 阶行列式.
一、引言
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a31 a32 a33 a11a23a32 a12a21a33 a13a22a31
2 35
02 35
2 r2 (2)r110 0
3 7
1
7
2 10 (2)
2
r3 r1
66
0 66
20 (42 12) 1080.
3 5 2 1 例 设 D 1 1 0 5 , D的(i, j) 元的余子式和
1 3 1 3 2 4 1 3
10 0
M11 M21 M34 M41 A11 A21 A31 A41
1 5 2 1
1 5 2 1
1
1
0 5 r4 r3 1
1 0 5
1313
1 31 3
1 4 1 3
0 1 0 0
1 1
2 0
1 5
1 r1 2r3 1
x3
xn
n−1阶范德蒙德行列式

行列式按行(列)展开定理

行列式按行(列)展开定理



M11 2 2 4 A11 (1)11 M11 4
1 0 M23 3 2 2
A23 (1)23 M 23 2
行列式的每个元素分别对应着一个余子式和一个
代数余子式。
4
(二)行列式展开定理
引理 若在n阶行列式D第i行中有一个元素 aij 0,其 余元素全为零,则
D aij Aij
an1
an2
ann
由行列式的性质4及引理,得
11
a11
a12
a1n
D ai1 0 0 0 ai2 0 0 0 0 ain
an1
an2
ann
a11 a12 a1n
a11 a12 a1n
a11 a12 a1n
ai1
0 0 0
ai2 0 0
0 ain
an1 an2 ann
1 0 0 an

n 1
a0 i1 ai
0
原式
0
1 11
a1
0
0 a2
0 0
a1a2 an (a0
n i 1
1 ai
)
.
0
0 0 an
31
a1 a1 0 0
0
例14 计算
a2 a2
0
0
0
“全加法”
0 0 0 an an 1 1 1 1 1
n1
解 0 a1 0 0 0
1 1 2
1 1 2
D 1 (1)21 4 3 1 1 (1)23 2 4 1
1 2 2
1 1 2
1 1 1
(1) (1)24 2 4 3
1 1 2
7 2418 1 ,
15

行列式按行展开

行列式按行展开

a11(a22a33 a23a32 )a12 (a23a31 a21a33 ) a13 (a21a32 a22a31)

a11
a22 a32
a23 a33
a12
a21 a31
a23 a33
a13
a21 a31
a22 a32
可见一个三阶行列式可以转化成三个二阶行列式的计
算。 问题:一个n 阶行列式是否可以转化为若干个 n-1 阶 行列式来计算?
D 1 (1)11 1 3 0 (1)12 1 3 (2) (1)13 1 1
31
2 1
2 1
1 (8) 0 (2)5 18
(2)按第三列展开.
D (2) (1)13 1 1 3 (1)23 1 0 1 (1)33 1 0
a11 a12 a14
a11 a12 a14

1
a 3 3 33
a21
a22
a24 a33 a21
a22
a24
a41 a42 a44
a41 a42 a44
分析
当 aij 位于第1行第1列时,
a11 0
0
D a21 a22
a2n
an1 an2
ann
即有 D a11M11 .(根据P.16例8的结论)
3 1 1 2
例2
计算行列式
5 D
1
3 4
2 0 1 1
1 5 3 3
解 由于D中第三行有一个零元素,并且非零元素中有1, 所以利用行列式的性质,把该行除元素“1”外其余 的非零元素全化为0,然后按第三行展开.
或 D a1 j A1 j a2 j A2 j anj Anj ( j 1, 2, , n)

行列式按行列展开定理

行列式按行列展开定理

一、 余子式的定义:在n 阶行列式中,把()元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M二、 代数余子式:在n 阶行列式的ij a 余子式ij M 加上符号(1)i j +-,称作ij a 的代数余子式ij A : (1)i j ij ij A M +=-三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ij a 外都为0,则这个行列式等于ij a 与它的代数余子式乘积: ij ij D a A =⋅四、 行列式按行(列)展开法则:定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和:1122i i i i in in D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122j j j j nj nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0:1122i j i j in jn D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122i j i j ni nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)五、 克拉默法则:如果含有n 个未知数的n 个线性方程组:11112211n n a x a x a x b ++⋅⋅⋅+=21122222n n a x a x a x b ++⋅⋅⋅+=31132233n n a x a x a x b ++⋅⋅⋅+=………………………………………………………………………………………………………1122n n nn n n a x a x a x b ++⋅⋅⋅+=其系数行列式不等于0,即:1111............0...nn nna a D a a =≠ 那么,方程组有惟一解:11D x D=,22D x D =,…n N D x D = 1111,1122,11,1......................j n j j n n n j nn a b a a b a D a b a a +++=① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。

行列式按行(列)展开定理

行列式按行(列)展开定理

a1l A1 j a2l A2 j L
anl Anj
D, 0,
(当l j) (当l j)
注 在计算数字行列式时,直接应用行列式展开公式
并不一定简化计算, 因为把一个n阶行列式换成n个( n
-1)阶行列式的计算并不减少计算量, 只是在行列式中
某一行或某一列含有较多的零时, 应用展开定理才有
a31 a32 a33 a34
a41 a42 a43 a44
3
a21 a23 a24 M12 a31 a33 a34
a41 a43 a44
A12 1 12 M12 M12
a11 a12 a13
M44 a21 a22 a23 A44 1 44 M44 M44
证 由定理1,行列式等于某一行的元素分别与它们 代数余子式的乘积之和.
9
a11
a12
L
a1n
M MMM
ai1
ai2 L
a in
在行列式 D M M M M
ak1 M
ak 2 M
L
a kn
MM
an1
an2
L
ann
中, 如果令第 i 行的元素等则
ak1 Ai1 ak 2 Ai2 L akn Ain
1
定义1.5 在 n 阶行列式中,把元素 aij 所在的第i行和
第 j 列划去后, 余下的 n -1 阶行列式叫做元素 aij的
余子式. 记为 Mij . 称 Aij 1i j Mij 为元素 aij
的代数余子式.
a11 a12 a13 a14
例如
a21 a22 a23 a24 D
意义,但展开定理在理论上是重要的.

第四节行列式按一行(列)展开

第四节行列式按一行(列)展开

第四节行列式按一行(列)展开将高阶行列式化为低阶行列式是计算行列式的又一途径,为此先引进余子式和代数余子式的概念.在n 阶行列式中,划去元素aij 所在的行和列,余下的n-1阶行列式(依原来的排法),称为元素aij 的余子式,记为Mij.余子式前面冠以符号(-1)i+j ,称为元素aij 的代数余子式,记为Aij =(-1)i+j Mij.例如四阶行列式11121314212223243132333441424344a a a a a a a a a a a a a a a a 中,元素23a 的余子式和代数余子式分别为11121423313234414244;a a a M a a a a a a =23232323(1)A M M +=-=-引理一个n 阶行列式D ,如果第i 行所有元素除ij a 外全为零,则行列式.ij ij D a A =证先证ij a 位于第1行第1列的情形,此时11212221200,nn n nna a a a D a a a = 这时第三节例4中当k=1时的特殊情形,按第三节例4的结论有11111111D a M a A ==.再证一般情形,此时1111100.j n ij n nj nna a a a D a a a = 我们将D 作如下的调换:把D 的第i 行依次与第i-1行,第i-2行,…,第1行对调,这样数ij a 就调到了第1行第j 列的位置,调换次数为i-1次;再把第j 列依次与第j-1列,第j-2列,…,第1列对调,数ij a 就调到了第1行第1列的位置,调换次数为j-1,总共经过(i-1)+(j-1)次对调,将数ij a 调到第1行第1列的位置,第1行其他元素为零,所得的行列式记为D 1,则,而ij a 在D 1中的余子式仍然是ij a 在D 中的余子式Mij ,利用前面的结果,有1ij ijD a M =于是1(1)(1)i j i j ij ij ij ijD D a M a A ++=-=-=定理4.1行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即D=ai 1Ai 1+ai2Ai2+…+ainAin(i=1,2,…,n),或D=a 1jA 1j +a2jA2j +…+anjAnj(j=1,2,…,n).证1112112120000000n i i inn n nn a a a D a a a a a a =++++++++++11121111211112112121212000000,n n n i i in n n nn n n nnn n nna a a a a a a a a a a a a a a a a a a a a =+++根据引理有D=ai1Ai1+ai2Ai2+…+ainAin =∑nk=1aikAik(k=1,2,…,n).类似地,我们可得到列的结论,即D=a1jA1j +a2jA2j +…+anjAnj =∑nk=1akjAkj(j=1,2,…,n).这个定理称为行列式按行(列)展开法则,利用这一法则并结合行列式的性质,可将行列式降阶,从而达到简化计算的目的.例1再解第三节中例1.解25120010371412165927112346122110D -----==---1311126300(1)11311321021013(1)(3)10++--=-=--=-⨯--=-3×(-1)×(-1)×3=-9.例2计算行列式11211nnn nna b a b D c d c d =解按第1行展开有111121111000000n n n nn n na b a b D a c d c d d ----=11111211110(1)00000n n nn n n na b a b b c d c d c --+--+⨯-2(1)2(1)2(1)(),n n n n n n n n n n n a d D b c D a d b c D ---=-=-,以此作递推公式,得22(1)11112(2)111111222211111111111()()()()()()()()()(),n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n ni i i i i D a d b c D a d b c a d b c D a b a d b c a d b c a d b c c d a d b c a d b c a d b c a d b c --------------==-=--==---=---=-其中记号“∏”表示所有同类型因子的连乘积.例3证明范德蒙(Vandermonde)行列式1222212111112111()nn n i j n i j n n n nx x x D x x x x x x x x ≥≥---==-∏(4.1)证用数学归纳法证明.当n=2时,211211()i j n i j D x x x x ≥≥==-∏ (4.1)式成立.假设(4.1)式对n-1阶范德蒙行列式成立,要证(4.1)式对n 阶范德蒙行列式成立.为此,将Dn 降阶,从第n 行开始,后一行减前一行的1x 倍得2131122133112222213311111100()()()0()()()n n n n n n n n n x x x x x x D x x x x x x x x x x x x x x x x x x ------=------按第1列展开,并提取每一列的公因子,有232131122223111()()()n n n n n n n x x x D x x x x x x x x x ---=---上式右端行列式是n-1阶范德蒙行列式,由归纳假设它等于∏n ≥i >j ≥2(xi -xj ),故2131121()()()()().n n i j n i j i j n i j D x x x x x x x x x x ≥≥≥≥=----=-∏∏显然,范德蒙行列式不为零的充要条件是x 1,x 2,…,xn 互不相等.由定理4.1还可以得到下述推论.推论行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即ai 1Aj 1+ai 2Aj 2+…+ainAjn=0,i ≠j ,或a1iA1j+a2iA2j +…+aniAnj=0,i ≠j .证作行列式(i ≠j)11121121212ni i ini i in n n nna a a a a a a a a a a a 则除其第j 行与行列式D 的第j 行不相同外,其余各行均与行列式D 的对应行相同.但因该行列式第i 行与第j 行相同,故行列式为零.将其按第j 行展开,便得ai 1Aj 1+ai 2Aj 2+…+ainAjn=0.同理可证a1iA1j+a2iA2j +…+aniAnj=0.将定理4.1与推论综合起来得∑nk=1aikAjk =D,i =j,0,i ≠j,或∑nk=1akiAkj =D,i =j,0,i ≠j.下面介绍更一般的拉普拉斯(Laplace)展开定理.先推广余子式的概念.定义4.1在一个n 阶行列式D 中,任意取定k 行k 列(k ≤n),位于这些行与列的交点处的k 2个元素,按原来的顺序构成的k 阶行列式M ,称为行列式D 的一个k 阶子式;而在D 中划去这k 行k 列后余下的元素,按原来的顺序构成的n-k 阶行列式N ,称为k 阶子式M 的余子式.若k 阶子式M 在D 中所在的行、列指标分别为i 1,i 2,…,ik 及j 1,j 2,…,jk ,则(-1)(i 1+i 2+…+ik )+(j 1+j 2+…+jk )N称为k 阶子式M 的代数余子式.如在五阶行列式111213141521222324255152535455a a a a a a a a a a a a a a a 中选定第2、第5行,第1、第4列,则二阶子式21245154a a M a a =的余子式121315323335424345a a a N a a a a a a =而代数余子式为2514(1).N N +++-=*定理4.2(拉普拉斯定理)设在行列式D 中任意选定k(1≤k ≤n-1)行(或列),则行列式D 等于由这k 行(列)元素组成的一切k 阶子式与它们对应的代数余子式的乘积之和.(不证)例4用拉普拉斯定理计算行列式12140121.10130131D -=解若取第1、第2行,则由这两行组成的一切二阶子式共有246C =个123456121114,,,010*********,,.121121M M M M M M ===-===--其对应的代数余子式为123456130301,,,311113131110,,.010301A A A A A A ==-===-=则由拉普拉斯定理得D=M1A1+M2A2+…+M6A6=(-1)×(-8)-2×(-3)+1×(-1)+5×1-6×3+(-7)×1=-7.注当取定一行(列)即k=1时,就是按一行(列)展开.从以上计算看到,采用拉普拉斯定理计算行列式一般并不简便,其主要是在理论上的应用.。

第六节 行列式按行(列)展开

第六节  行列式按行(列)展开

依次代替 ai1 , ai2 , ···, ain ,可得
a11 a1n


ai1,1 b1 ai1,1
ai 1, n bn b1 Ai1 b2 Ai2 bn Ain . ai 1,1
an1 ann
类似地,用 b1 , b2 , ···, bn 代替 det(aij)ቤተ መጻሕፍቲ ባይዱ中的 第 j 列,可得
第六节 行列式按行(列)展开
主要内容
余子式和代数余子式 引理 行列式按行(列)展开法则 三阶行列式的几何意义 行列式的计算方法
一般来说,低阶行列式的计算比高阶行列式 的计算要简便,于是,自然地考虑用低阶行列式来 表示高阶行列式的问题. 本节我们要解决的问题 是, 如何把高阶行列式降为低阶行列式,从而把高 阶行列式的计算转化为低阶行列式的计算.为了解 决这个问题,先学习余子式和代数余子式的概念.
于用 1 , 1 , 1 , 1 代替a11D 的第 1a1n行所得的行列式,即
五、行列式的计算方法
到现在为止,我们已能计算任意阶的行列式. 行列式的计算是我们这一章的重点,也是同学们必 须掌握的基本技能.
行列式有以下三种计算方法: 1. 直接用定义公式计算; 2. 利用性质化为三角行列式; 3. 利用展开式定理降阶.
在这三种方法中,方法1 主要用于理论分析,
很少用来计算具体的行列式,但对于低阶行列式 (如二阶、三阶)或有很多零元素的高阶行列式,
有时也可用此方法来计算; 方法2 适用于行列式 的阶不确定的高阶行列式的计算; 方法3 主要用
于阶为已知的高阶行列式的计算. 当然在计算一个 行列式时,应根据实际情况灵活选择计算方法.
或 D = a1jA1j + a2jA2j + ···+ anjAnj (j = 1,2, ···,n).

行列式按行展开公式

行列式按行展开公式

行列式按行展开公式
行列式的展开公式是在线性代数的范围内,行列式的值代表由它的列向量张成的“立体”的“体积”。

行列式按行展开的定理是拉普拉斯定理的一种简单情况,该行各元素分别乘以相应代数余子式求和,就等于行列式的值。

如果行列式D的第i行各元素与第j行各元素的代数余子式对应相乘后再相加,则当i≠j时,其和为零,行列式依行或依列展开,不仅对行列式计算有重要作用,且在行列式理论中也有重要的应用。

比如:行列式
D=|a11 a12 a13 a14|
|a21 a22 a23 a24|
|a31 a32 a33 a34|
|a41 a42 a43 a44|
a23处在二行三列,从原行列式中划去它所在的行和列各元素,剩下的元素按原位排列构成的新行列式,称为它的余子式。

(是一个比原来行列式低一阶的行列式)
性质:
1、行列互换,行列式不变。

2、把行列式中某一行(列)的所有元素都乘以一个数K,等于用数K乘以行列式。

3、如果行列式的某行(列)的各元素是两个元素之和,那么这个行列式等于两个行列式的和。

4、如果行列式中有两行(列)相同,那么行列式为零。

5、如果行列式中两行(列)成比例,那么行列式为零。

6、把一行(列)的倍数加到另一行(列),行列式不变。

7、对换行列式中两行(列)的位置,行列式反号。

行列式按行列展开定理

行列式按行列展开定理

1a
a
a
1 xa a
a
D [ x (n 2)a] 1 a x a
a
1a
a
xa
第48页,共48页
26
r2 r1 r3 r1 rn r1
1
0
[ x (n 2)a] 0
a x 2a
0
a 0 x 2a
00
0
[ x (n 2)a]( x 2a)n1
第48页,共48页
a 0 0 x 2a
D 2 (1)11 0 1 0 4 (1)14 5 0 1
232
023
2 2 4 (6 15) 88
9
第48页,共48页
推论 n 阶行列式 D 的任意一行(列)的元素与另一行(列 )对应元素的代数余子式乘积的和等于零. 即
ak1 Ai1 ak 2 Ai2 akn Ain 0, k i. a1k A1i a2k A2i ank Ani 0, k i.
09 2
A2 (1)(134)(234) 2 2
第48页,共48页
39
显然, n 阶行列式D位于某k行的k阶子式有
C
k n
个,
从而D共有
(C
k n
0
a x2 a
1
a x3 a
0
0
0
1
0
0
0
(
x1 x1 a
4 i2
a
4
)
xi a i1
( xi
a)
a x4 a
0 0 1
第48页,共48页
35
二.行列式按某k行(列)展开
定义1.6 在n阶行列式D中任取k行k列(1≤k ≤n),称 位于这些行与列的交叉点处的k2个元素按照其在D 中的 相对位置所组成的k阶行列式N为D的一个k阶子式.

第三节 行列式按行(列)展开

第三节  行列式按行(列)展开

−2 2 −3 −1 4 − 5 c2 − c1 = −4 × 1 1 −1 (−4) × 1 0 0 c3 + c1 8 −2 7 8 − 10 15 = (−4) × (−1)
2 +1
4 −5 = 4 × (60 − 50) = 40 − 10 15
三、行列式按行(列)展开定理 行列式等于它的任意一行(列)的各元素与其对 应的代数余子式的乘积之和,即
0
a ⋱ a c ⋰ b d ⋱ ⋰
b
要特别注意按照第一 行展开后剩余的2n-1 阶行列式的写法,并 注意其特点。
+ b ( − 1)1+ 2 n 0 c c 0
d 0
a ⋱ a b D = a × ( −1)1+1 ⋰ c 0 c d ⋱ ⋰
b
0
d 0 0 d
0
a ⋱ a c ⋰ b d ⋱ ⋰
1 2 3 D= 2 0 7 2 3 1
解:第二行(列)有一个零元,可以利用展开定理, 化三阶行列式为2个二阶行列式的计算(这里按照第 2列展开):
1 2 3 7 3 1+ 2 2 3+ 2 1 D = 2 0 7 = 2 × (−1) + 3 × (−1) 2 1 2 7 2 3 1
= − 2 ( 2 − 14 ) − 3( 7 − 6 ) = 24 − 3 = 21
第三节 行列式按行(列)展开
本节介绍的主要内容 余子式和代数余子式 行(列)只有一个非零元的展开引理 按行(列)展开定理 利用展开定理求范德蒙德行列式 利用展开定理求行列式
一、余子式和代数余子式 余子式 在n阶行列式中,把(i,j)元aij所在的第i行和第j 列划去后,留下的元素按照原来的位置构成的n-1 阶行列式叫做(i,j)元aij的余子式,即作Mij.

行列式性质,按行展开

行列式性质,按行展开

a11 L = bi 1 L an1
a12 L a1n L L L
a11
a12 L a1n L ci 2 L an 2 L L L L L cin L ann
L bi 2 L bin + ci 1 L L L L an1 an 2 L ann
性质5 将行列式的某一行 列)的所有元素乘以数 后 将行列式的某一行(列 的所有元素乘以数 的所有元素乘以数k后
1
2 0
3 1
4 2 .
【例1】 计算 D = 】
1
3 −1 −1 0 1 2 0 −5
【解】 D = a14 A14 + a24 A24 + a34 A34 + a44 A44
1 2 3 1 0 1 1+ 4 + 2 × ( −1) 2 + 4 3 − 1 − 1 = 4 × ( −1) 3 − 1 − 1 1 2 0 1 2 0 1 2 3 + ( −5) × ( −1)4 + 4 1 0 1 3 −1 −1
【解】
1 −1 0
2
1
1
0
(1) + (3) 0 −1 −1 2 0 −1 −1 2 − D=− − 2×(1) + (4) 0 1 −1 2 −1 2 −1 0 0 3 1 −4
2 1 1 0
1 0
0 0
2
1
−1
0
2
( 2) + ( 3 ) 3 × ( 2) + ( 4) −
−1 −1
0 0
0 −1
加到另一行( 加到另一行(列)的相应元素上,行列式的值不变. 的相应元素上,行列式的值不变
1 a 1

2.3-行列式的展开定理

2.3-行列式的展开定理

1
2 = −10 (− 2) − 7
6
6
2 6
= 20(− 42 − 12) = −1080.
17
评注 本题是利用行列式的性质将所给行列 式的某行(列)化成只含有一个非零元素,然后 按此行(列)展开,每展开一次,行列式的阶数 可降低 1阶,如此继续进行,直到行列式能直接 计算出来为止(一般展开成二阶行列式).这种 方法对阶数不高的数字行列式比较适用.
n12..每i幂j列次1 (从行0)为递某增个到数(nx-1的3 −不x同2 )(方x幂4 − x2 )( xn − x2 ) 3. 结果为后列元素( x减n 去− 前xn列−1 )元素的乘积
23
证明范德蒙德(Vandermonde)行列式
11
x1 x2 Vn ( x1 , x2 , xn ) = x12 x22
n−2
2
3
xn−2 n
( xn − x1 ) ( xi − x j ) n i j 2
n-1阶范德蒙 行列式
27
例4:计算n阶行列式
a1 b b b a2 b Dn = b b a3
b b b , b≠ai, i=1, …,n.
bbb
an
28
解:用加边法,构造行列式, 使得按第一行(列)展开后,等于原行列式
xn−2 n
(
xn

x1
)
26
将Vn按第一列展开,并把每列的公因子(xi-x1)提出来,
11
1
Vn = ( x2 − x1 )( x3 − x1 ) ( xn − x1 ) x2
x3
xn
Vn = ( x2 − x1 )( x3 − x1 )
= ( xi − x j ).

行列式按一行列展开

行列式按一行列展开

A44 1
4 4
M 44 M 44
注意:行列式的每个元素都分别对应着一个余子式 和一个代数余子式.
2.行列式按一行(列)展开法则
定理1.3.1 行列式等于它的任一行(列)的各元素与 其对应的代数余子式乘积之和,即 D ai 1 Ai 1 ai 2 Ai 2 ain Ain i 1,2,, n 证明 (先特殊,再一般) 分三种情况讨论,我们只对行来证明此定理. (1) 假定行列式D的第一行除 a11 外都是 0. a11 0 0
a11 a12 a1n
an1 an 2 ann
an1 an 2
0 0 0 ain an1 an 2 ann ann
ai 1 Ai 1 ai 2 Ai 2 ain Ain
i 1,2,, n 证毕.
3 5 3
证明 由定理1.3.1,行列式等于某一行的元素分别与 它们代数余子式的乘积之和.
a11 ai 1 在 D ak 1 an1 a12 ai 2 a1 n ain 中,如果令第 i 行的元素 等于另外一行,譬如第 k
ak 2 akn 行的元素 an 2 ann
由性质2,行列式互换两行(列)行列式变号,

aij 0 0 D ( 1)i j 2 ai 1, j ai 1, j 1 ai 1,n anj an , j 1 ann
(1) aij Mij
i j
aij Aij
(3) 一般情形 a11 a12 a1n D ai 1 ai 2 ain an1 an 2 ann
可见一个三阶行列式可以转化成三个二阶行列式 的计算. 问题:一个n 阶行列式是否可以转化为若干个 n-1 阶行列式来计算?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档