行列式按行列展开定理
3 行列式行列式的按行(列)展开
则根据归纳假设得证: Dn ( x 2 x1 )( x 3 x1 )( x n x1 ) ( x i x j )
( x i x j ).
n i j 1
n i j 2
作
业
P26 4(4), 9 补充: 利用范德蒙德行列式计算4阶行列式
1 1 1 1 16 8 2 4 D 81 27 3 9 256 64 4 16
D = ai 1 Ai 1 + ai 2 Ai 2 + = a1 j A1 j + a2 j A2 j + + ain Ain + anj Anj .
i , j 1,2,
, n
推论 行列式中任一行或列的元素与另一行对应元 素的代数余子式乘积之和为零。 ai 1 Aj 1 ai 2 Aj 2 ain Ajn 0, i j
1 1
例2 求解方程
1 x 0. x2
2 3 4 9
解
方程左端
D 3 x 2 4 x 18 9 x 2 x 2 12
x 2 5 x 6,
由 x 2 5 x 6 0 解得
x 2 或 x 3.
推论
行列式中任一行或列的元素与另一行 或列对应元素的代数余子式乘积之和 为零。即
a11 A11 a12 A12 a13 A13 a1 j A1 j
j 1
3
定理4 三阶行列式等于它的任一行或列的各元素 与其代数余子式乘积之和,即
D ai 1 Ai 1 ai 2 Ai 2 ai 3 Ai 3
a1 j A1 j a2 j A2 j a3 j A3 j ( j 1,2, 3)
§3 行列式的展开定理
§1 行列式的定义 §2 行列式的性质与计算 §3 行列式展开定理、克拉默法则
一、余子式、代数余子式 二、行列式按一行(列)展开法则 三、克拉默法则
§3 行列式展开定理、克拉默法则
引例
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a31 a32 a33 a11a23a32 a12a21a33 a13a22a31,
3.推论
行列式任一行(列)的元素与另一行(列)的 对应元素的代数余子式乘积之和等于零,即
ai1 Aj1 ai2 Aj2 ain Ajn 0, i j a1i A1 j a2i A2 j ani Anj 0, i j
a11 A21 a12 A22 a1n A2n 0
§3 行列式的展开定理
( xn xn1 )
( x2 x1 ) ( x3 x1 )( x3 x2 ) ( xn x1 )( xn x2 ) ( xn xn1 )
§3 行列式的展开定理
先证明3阶范德蒙行列式
111
D3 x1 x2 x3
( xi x j )
x12 x22 x32 1 ji3
( x2 x1 )( x3 x1 )( x3 x2 ).
ai1 , n ai1 ,n
an1
an, j1 an , j1
ann
称之为元素 aij 的余子式,记作 Mij .
§3 行列式的展开定理
令
Aij (1)i j Mij
称 Aij之为元素 aij 的代数余子式.
注:
① 行列式中每一个元素分别对应着一个余子式
和一个代数余子式.
② 元素 aij 的余子式和代数余子式与 aij 的大小 无关,只与该元素所在行列式中的位置有关.
行列式依行(列)展开
适用于小规模行列
式
行列式依行(列)展开适用于小规模 的行列式计算,对于大规模的行 列式计算可能效率较低。
不适用于特殊行列
式
对于一些特殊类型的行列式,如 奇异值分解的行列式,行列式依 行(列)展开可能不适用。
注意计算复杂度
行列式依行(列)展开的计算复杂度 较高,对于大规模的行列式计算 需要采用更高效的算法。
05
行列式依行(列)展开的注 意事项
计算精度问题
保持计算精度
在行列式展开过程中,需要注 意保持计算精度,避免因为舍
入误差导致结果不准确。
选择合适的数学软件
使用数学软件进行行列式展开 时,应选择具有高精度运算能
力的软件,如Matlab、 Python的NumPy库等。
避免大数运算
在行列式展开过程中,尽量避 免大数运算,以免造成精度损
在矩阵运算中的应用
矩阵的逆运算
行列式依行(列)展开可以用于计算矩阵的逆,通过求行列式和代 数余子式来计算逆矩阵。
矩阵的行列式
行列式依行(列)展开是计算矩阵行列式的基础,通过展开可以求 得矩阵的行列式值。
矩阵的秩
行列式依行(列)展开可以用于计算矩阵的秩,通过展开可以判断 矩阵是否可逆,从而确定其秩。
其中,$A_{11}$是第一行第一列元素的代数余子 式,$A_{21}$是第二行第一列元素的代数余子式 ,$A_{31}$是第三行第一列元素的代数余子式。
其中,$A_{11}$是第一行第一列元素的代数余子 式,$A_{21}$是第二行第一列元素的代数余子式 ,$A_{31}$是第三行第一列元素的代数余子式, $A_{41}$是第四行第一列元素的代数余子式。
失。
符号使用规范
统一符号体系
(简)1.5行列式按行展开定理
1 −1 0 例 2: D = ⋮ 0 0
a 1− a
1
0
1
⋯
2
0 0 0 ⋮
0 0 0 ⋮
−1 ⋮ 0 0
a 1− a
⋮ 0 0
⋯
2
⋯ ⋱
求D=?
⋯ 1 − a n−2 a n −1 −1 1 − a n −1 ⋯
0 0 0
分析:特点是 行作和为 分析:特点是n行作和为 0,0,0……1,再展开 , , , 即可降阶! 即可降阶!
或 D , 当i = j , ∑ aik Ajk = Dδ ij = 0, 当i ≠ j; k =1 1, 当i = j , δ ij = 其中 0, 当 i ≠ j ;
n
例1
设
3 −5 2 1 1 1 0 −5 D= , −1 3 1 3 2 −4 −1 − 3
D的( i , j )元的余子式和代数余子 式依次记作 M ij 和Aij, 求
调,这样数 aij 就调成(1, j )元,调换的次数为 i − 1. ⋯ 列调换, 再把第 j列依次与第 j − 1列、第 j − 2列、 、第1列调换, 这样数 aij 就调换成(1,1)元,调换的次数为 j − 1 .
总 , i + j − 2次 换 把 aij调 (11)元 所 之 经 调 , 数 成 , , 得 的 列 D = (−1)i+ j−2 D1 = (−1)i+ j D1, D中1,1)元 行 式 而 1 ( 的 余 式 是 中 i, j)元 余 式 ij . 子 就 D ( 的 子 M
⋯
0 0 0
1 0 0
解:D
1 × r 2 + r 1 , ⋯ ,1 × r n + r 1
行列式的展开法则
03. 行列式的展开法则 一、按一行(列)展开法则定义3.1 (,)i j 元素或(,)i j 位置的余子式ij M 、代数余子式(1)i j ij ij A M +=- 例3.1 3111112121313111112121313||ij a a M a M a M a A a A a A =-+=++. 定理3.1 1)按一行展开法则 1122||(1,2,,)A i i i i in in a A a A a A i n =+++= ; 2)按一列展开法则 1122||(1,2,,)A j j j j nj nj a A a A a A j n =+++= . 按第一行的展开公式就是n 阶行列式(2)n ≥的降阶定义. 例3.2 计算下列n 阶行列式1)xy x yyx; 2)111111121n n----; 3)121111n n na a xD a xa x---=-.解 1)按1c 展开得原式1111111(1)(1)n n n n n n n xA yA xxy y x y -+-+=+=+-=+-. 2)原式121(1)(12)2n n nn n c c c c n n n A c -++++++++=按展开. 3)法1 按1r 展开得()112112121223121211(,,,)(,,)(,,).()n n n n n n n n n n n n n n n D a a a a x D a a a x a x D a a a x a x a x a D a a --------=+=++==++++=法2 在n D 中,元素(21)i a i n ≤≤-的余子式为11111(1)11i n i i x x M x x x x-----==---.将n D 按1c 展开得11211211(1)ni n n n i i n n i D a M a x a x a x a +---==-=++++∑ .法3 1121212112121101,1,,210i i nn n n n n n na a x a r xr D i n n a x a x a a x a x a x a --------+-+=-+++-++++12121n n n n a x a x a x a ---=++++ . ()11111(1)(1)(1)1n n n n n A M ++-=-=--=法4 按n r 展开得111212121.n n n nn n n n n n n n n n D a A xA a xD a a x xD a x a x a x a ------=+=+=++==++++定理3.2 当i j ≠时, 11220i j i j in jn a A a A a A +++= ;11220i j i j ni nj a A a A a A +++= . 注 1122||A i j i j in jn ij a A a A a A +++= δ, 1122||A i j i j ni nj ij a A a A a A +++= δ,其中1,;0,ij i j i j=⎧=⎨≠⎩当当δ为克罗内克(Kronecker )符号.例3.3 1)二元(实)函数1,;(,)0,.x y f x y x y =⎧=⎨≠⎩当当 显然(,)xy f x y =δ.2)diag(1,1,,1)[]ij n n ⨯= δ.例3.4 设四阶行列式1212211220211234D =. 1)求代数余子式12A ; 2)求1121314123A A A A +++; 3)求41424344A A A A +++.行列式的完全展开定义、公理化定义、降阶定义可以互相推证. 以降阶定义为原始定义做理论推导时,可以引入仿克罗内克符号1,;0,.ij i j i j <⎧=⎨>⎩当当ρ 例3.5 1)若正整数i j ≠,则1.ij ji +=ρρ2)仿克罗内克符号有缺项定位功能. 在序列124567,,,,,a a a a a a 中,(17,3)i a i i ≤≤≠位于第3i i -ρ位. 在序列12467,,,,a a a a a中,(17,3,5)i a i i ≤≤≠位于第35i i i --ρρ位.3)仿克罗内克符号有描述逆序功能.s t j j 构成逆序01s t t s j j j j ⇔=⇔=ρρ,121()t sn j j s t nj j j ≤<≤=∑τρ.例3.6 n 阶范德蒙(Vandermonde )矩阵1[]i j n n a -⨯的行列式122131121(,,,)()()()(,,)().n n n j i i j nV a a a a a a a a a V a a a a ≤<≤=---=-∏例3.7 填空11112345_____49162582764125----=----.例3.8 设0abcd ≠,求证222211(,,,)11a a bcd b b acdV a b c d c c abd d d abc=-.例3.9 计算n 阶三对角行列式111n a b ab a b ab D a b aba b++=++ .二、按多行(列)展开法则定义3.2 矩阵A m n ⨯的k l ⨯子矩阵1212A k l i i i j j j ⎛⎫ ⎪⎝⎭ 及其余子阵,k 阶子方阵、k 阶子式;n 阶方阵或其行列式中k 阶子式的n k -阶余子式M 、代数余子式1212()()(1)k k i i i j j j A M +++++++=- ,k 阶(顺序)主子阵、k 阶(顺序)主子式. 主子式的代数余子式就是余子式.例3.10 设55[]A ij a ⨯=.1)25135A ⎛⎫⎪⎝⎭是A 的一个23⨯子矩阵,13424A ⎛⎫⎪⎝⎭为其余子阵;2)1325A ⎛⎫⎪⎝⎭是A 的一个2阶子方阵,1325A ⎛⎫ ⎪⎝⎭是A 的一个2阶子式,245134A ⎛⎫⎪⎝⎭为对应余子式,而对应代数余子式为(13)(25)245245(1)134134A A +++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭;3)235235A ⎛⎫ ⎪⎝⎭是A 的一个3阶主子阵,235235A ⎛⎫⎪⎝⎭是A 的一个3阶主子式,其代数余子式就是余子式1414A ⎛⎫⎪⎝⎭,是A 的一个2阶主子式;4)A 共有五个顺序主子阵(式).定理3.3 按多行(列)展开法则——拉普拉斯(Laplace )定理1122C C ||A k k nnN A N A N A =+++ .例3.11 计算四阶行列式1234500112365112D -=--.例3.12 计算六阶行列式111000234000310161111101112411243161139D =---.例3.13 计算六阶行列式120000350000635475124583240064270034D -=-.例3.14 计算叉形行列式1)11211n n n nna b a b D c d c d =;2)112111nn n nna b a b D e c d c d +=.。
行列式的展开法则
03. 行列式的展开法则 一、按一行(列)展开法则定义3.1 (,)i j 元素或(,)i j 位置的余子式ij M 、代数余子式(1)i j ij ij A M +=- 例3.1 3111112121313111112121313||ij a a M a M a M a A a A a A =-+=++. 定理3.1 1)按一行展开法则1122||(1,2,,)A i i i i in in a A a A a A i n =+++=L L ; 2)按一列展开法则1122||(1,2,,)A j j j j nj nj a A a A a A j n =+++=L L . 按第一行的展开公式就是n 阶行列式(2)n ≥的降阶定义. 例3.2 计算下列n 阶行列式1)xy x y yxO O; 2)111111121n n----O OL ; 3)121111n n n a a x D a x a x---=-M O O .解 1)按1c 展开得原式1111111(1)(1)n n n n n nn xA yA xx y y x y -+-+=+=+-=+-.2)原式121(1)(12)2n n nn n c c c c n n n A c -++++++++=L L 按展开. 3)法1 按1r 展开得法2 在n D 中,元素(21)i a i n ≤≤-的余子式为11111(1)11i n i i x xM x x xx-----==---O OO O. 将n D 按1c 展开得11211211(1)ni n n n i i n n i D a M a x a x a x a +---==-=++++∑L .法3 1121212112121101,1,,210i i nn n n n n n na a x a r xr D i n n a x a x a a x a x a x a --------+-+=-+++-++++M O OL L L12121n n n n a x a x a x a ---=++++L . ()11111(1)(1)(1)1n n n n n A M ++-=-=--=法4 按n r 展开得 定理3.2 当i j ≠时,11220i j i j in jn a A a A a A +++=L ;11220i j i j ni nj a A a A a A +++=L . 注 1122||A i j i j in jn ij a A a A a A +++=L δ, 1122||A i j i j ni nj ij a A a A a A +++=L δ,其中为克罗内克(Kronecker )符号.例3.3 1)二元(实)函数显然(,)xy f x y =δ. 2)diag(1,1,,1)[]ij n n ⨯=L δ.例3.4 设四阶行列式1212211220211234D =.1)求代数余子式12A ; 2)求1121314123A A A A +++; 3)求41424344A A A A +++.行列式的完全展开定义、公理化定义、降阶定义可以互相推证. 以降阶定义为原始定义做理论推导时,可以引入仿克罗内克符号例3.5 1)若正整数i j ≠,则2)仿克罗内克符号有缺项定位功能. 在序列 中,(17,3)i a i i ≤≤≠位于第3i i -ρ位. 在序列 中,(17,3,5)i a i i ≤≤≠位于第35i i i --ρρ位.3)仿克罗内克符号有描述逆序功能.s t j j 构成逆序01s t t s j j j j ⇔=⇔=ρρ,121()t sn j j s t nj j j ≤<≤=∑L τρ.例3.6 n 阶范德蒙(Vandermonde )矩阵1[]i j n n a -⨯的行列式例3.7 填空11112345_____49162582764125----=----.例3.8 设0abcd ≠,求证222211(,,,)11a a bcdbb acdV a b c d c c abd d d abc=-.例3.9 计算n 阶三对角行列式111n a b ab a b ab D a b aba b++=++O OO .二、按多行(列)展开法则定义3.2 矩阵A m n ⨯的k l ⨯子矩阵1212A k l i i i j j j ⎛⎫⎪⎝⎭L L 及其余子阵,k 阶子方阵、k 阶子式;n 阶方阵或其行列式中k 阶子式的n k -阶余子式M 、代数余子式1212()()(1)k k i i i j j j A M +++++++=-L L ,k 阶(顺序)主子阵、k 阶(顺序)主子式. 主子式的代数余子式就是余子式.例3.10 设55[]A ij a ⨯=.1)25135A ⎛⎫⎪⎝⎭是A 的一个23⨯子矩阵,13424A ⎛⎫⎪⎝⎭为其余子阵; 2)1325A ⎛⎫⎪⎝⎭是A 的一个2阶子方阵,1325A ⎛⎫ ⎪⎝⎭是A 的一个2阶子式,245134A ⎛⎫ ⎪⎝⎭为对应余子式,而对应代数余子式为(13)(25)245245(1)134134A A +++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭;3)235235A ⎛⎫⎪⎝⎭是A 的一个3阶主子阵,235235A ⎛⎫ ⎪⎝⎭是A 的一个3阶主子式,其代数余子式就是余子式1414A ⎛⎫⎪⎝⎭,是A 的一个2阶主子式;4)A 共有五个顺序主子阵(式).定理3.3 按多行(列)展开法则——拉普拉斯(Laplace )定理1122C C ||A k k nnN A N A N A =+++L .例3.11 计算四阶行列式1234500112365112D -=--.例3.12 计算六阶行列式111000234000310161111101112411243161139D =---.例3.13 计算六阶行列式120000350000635475124583240064270034D -=-.例3.14 计算叉形行列式1)11211n n n nna b a b D c d c d =ONN O;2)112111nn n nna b a b D e c d c d +=ONN O.。
行列式展开定理
a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43 a44
a11 a13 a14ຫໍສະໝຸດ M32= a21 a23 a24
a41 a43 a44
A32=(-1)3+2M32 =-M32
下页
一、余子式与代数余子式
定义1 在n阶行列式D=|aij|中去掉元素a i j 所在的第i行和第j列后,
= (3n-1 + 3n-2 + + 32 + 3) + 2
3 3n-1 - 1
3n + 1
=
+2=
2
2
下页
例5. 证明范得蒙(Vandermonde)行列式
1 1 1 1
a1 a12 Dn = a1n-3
a2 a22 a2n-3
a3 a32 a3n-3
an an2 = (ai - a j ) ann-3 1 j i n
下页
1 2 34
例2.计算行列式 D = 1 0 1 2 3 -1 -1 0 1 2 0 -5
解: 将某行(列)化为一个非零元后展开
1 2 34 D= 1 0 1 2
3 -1 -1 0 1 2 0 -5
r1 + 2r3 r4 + 2r3
7 0 14 1 0 12 3 -1 -1 0 7 0 -2 -5
余下的n-1阶行列式,称为D中元素aij 的余子式,记作Mij.
令Aij=(-1)i+jMij, Aij称为元素aij的代数余子式.
再如,求4阶行列式中a13的代数余子式
a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43 a44
行列式按行列展开定理讲解学习
行列式按行列展开定理行列式按行列展开定理一、 余子式的定义:在n 阶行列式中,把(i.j )元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M二、 代数余子式:在n 阶行列式的ij a 余子式ij M 加上符号(1)i j +-,称作ij a 的代数余子式ij A : (1)i j ij ij A M +=-三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ija 外都为0,则这个行列式等于ij a 与它的代数余子式乘积:ij ij D a A =⋅四、 行列式按行(列)展开法则:定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和:1122i i i i in in D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122j j j j nj nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0:1122i j i j in jn D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122i j i j ni nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)五、 克拉默法则:如果含有n 个未知数的n 个线性方程组:11112211n n a x a x a x b ++⋅⋅⋅+=21122222n n a x a x a x b ++⋅⋅⋅+=31132233n n a x a x a x b ++⋅⋅⋅+=………………………………………………………………………………………………………1122n n nn n n a x a x a x b ++⋅⋅⋅+=其系数行列式不等于0,即:1111............0...nn nna a D a a =≠ 那么,方程组有惟一解:11D x D =,22D x D =,…n N D x D= 1111,1122,11,1......................j nj j n n n j nn a b a a b a D a b a a +++=① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。
线性代数03-行列式按行(列)展开
1
3 4 c1 2c3 11
1
3 1
2 0 1 1 c4 c3
0010
1 5 3 3
5 5 3 0
511 (1)33 11 1 1
5 5 0
r2 r1
5 11 6 2 0 5 5 0
(1)13 6 2 40. 5 5
说明
定理3叫做行列式按行(列)展开法则, 利用这个法则降阶并结合行列式的性质, 可以简化行列式的计算.
思考 任意一个行列式是否都可以用较低阶的行列式表示?
在n 阶行列式中,把元素 aij 所在的第 i 行和第 j 列划去后,
留下来的n-1阶行列式叫做元素 aij 的余子式,记作Mij .
把 Aij 1 i j Mij 元素 aij 的代数余子式.
例如
a11 a12 a13 a14
D a21 a22 a23 a24 a31 a32 a33 a34
a41 a42 a43 a44
a11 a12 a14 M23 a31 a32 a34
a41 a42 a44
A23 1 23 M23 M23
结论 行标和列标是行列式中元素的唯一标识,有且仅有一 个余子式和一个代数余子式与行列式中每一个元素对应.
说明
(1)对于给定的 n 阶行列式 D det(aij ) ,元素
证明 我们以3阶行列式为例.
a11 a12 a13 a11 A11 a12 A12 a13 A13 a21 a22 a23
a31 a32 a33
把第1行的元素换成第2行的对应元素,则
a21 a22 a23
a21 A11 a22 A12 a23 A13 a21 a22 a23 0.
行列式的行(列)展开定理
行列式的行(列)展开定理
行(列)展开定理用于分析行列式的结构,它表明行列式的值可以从各行(列)中求出。
行展开定理的证明以行列式的一行为基础,将该行中的元素看作常数,把它们乘以该行中的未知数,然后做加法运算,得出了行列式的值。
公式表示为a(1,1)x(1)+a(1,2)x(2)+...+a(1,n)x(n)=|A|,其中a(1,1)~a(1,n)表示第一行的元素,x(1)~x(n)表示第一行未知数,|A|表示行列式A的值。
同样,列展开定理用列来求出行列式的值,其公式为
a(1,1)x(1)+a(2,1)x(2)+...+a(n,1)x(n)=|A|,其中a(1,1)~a(n,1)表示第一列的元素,x(1)~x(n)表示第一列未知数,|A|表示行列式A的值。
相比于行展开定理,列展开定理更容易理解,理论上它们是均有用的,但由于行列式结构的不规则性,有时列展开定理比行展开定理更加有效,避免了因展开完毕后加法操作量过大而需要累加回路的结果。
总之,行(列)展开定理是一种分析行列式结构的基本方法,它既可以用来求出行列式的值,也可以用来求出未知数。
它丰富了行列式计算的方法,被广泛用于各种电子计算机的程序设计和机器算法中,为工程实际应用和科学研究提供了有力帮助。
行列式按行(列)展开定理
证 由定理1,行列式等于某一行的元素分别与它们 代数余子式的乘积之和.
10
a11
a12
a1n
ai1
ai2
a in
在行列式 D
ak1
ak 2
a kn
an1
3 1 1 2
5 1
例2 计算行列式 D
20
3 4 .
1 1
1 5 3 3 14
3 1 1 2
解
5 D
1
20
3 4 1 1
1 5 3 3
c1 2 c3 c4 c3
5 1 1 1 11 1 3 1
0 010 5 5 3 0
15
5 11
5 11
(1)33 11
1
1 r2 r1 6
2
0
5 5 0
的代数余子式.
a11 a12 a13 a14
例如
a21 a22 a23 a24 D
a31 a32 a33 a34
a41 a42 a43 a44
3
a11 a12 a14
M23 a31 a32 a34 a23 的余子式.
a41 a42 a44
A23
1
M 2 3 23
M23
a23 的代数余子式.
an
0
b 0
0
0
0 b
0
0
00
b
[(a1 a2 an ) b](b)n1
32
例9 x1 a a a
a x2 a a
D a
a
x3
1-6 行列式按行(列)展开
§6 行列式按行(列)展开对于三阶行列式来说,容易验证:333231232221131211a a a a a a a a a 3332232211a a a aa =3331232112a a a a a -2331222113a a a aa + 这样,三阶行列式的计算就归结为二阶行列式的计算。
我们现在要利用行列式的性质来证明:n (1>)阶行列式的计算总可以归结为较低阶的行列式的计算。
我们将要得到的结论,不但能进一步简化行列式的计算,而且也具有重要的理论地位。
首先引入余子式和代数余子式的概念。
定义 在n 阶行列式中,将元素ij a 所在的第i 行与第j 列划去后,余下的1-n 阶行列式称为元素ij a 的余子式,记作ij M . 若记ij ji ij M A +-=)1(,则称ij A 为元素ij a 的代数余子式。
例如,在三阶行列式333231232221131211a a a a a a a a a D = 中,元素23a 的余子式和代数余子式分别为 3231121123a a a a M =23233223)1(M M A -=-=+引理 一个n 阶行列式,若其中第i 行所有元素除ij a 外都是零,则该行列式等于ij a 与它的代数余子式ij A 的乘积,即ij ij A a D =证明 先证ij a 位于第1行第1列的情形,此时nnn n na a a a a a a D2122221110=1111M a =又由于11111111)1(M M A =-=+,于是1111A a D =.下证一般情形,此时nnnj n ijnj a a a a a a a D1111100= 为了利用前面的结果,将D 的行列作如下调换:先将D 的第i 行依次与第1-i 行、第2-i 行、…、第1行对调,这样,ij a 就调到原来j a 1的位置上,调换的次数为1-i ;再将第j 列依次与第1-j 列、第2-j 列、…、第1列对调,这样,ij a 就调到原来11a 的位置上,调换的次数为1-j . 总之,经过2-+j i 次调换,将ij a 调到左上角所得到的新行列式D D j i 21)1(-+-=,而元素ij a 在1D 中的余子式仍然是ij a 在D 中的余子式ij M . 由于ij a 位于1D 的左上角,于是利用前面的结果,应有ij ij M a D =1所以ij ij ij ij j i j i A a M a D D =-=-=++)1()1(1定理3 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即in in i i i i A a A a A a D +++= 2211 (n i ,,2,1 =)或nj nj j j j j A a A a A a D +++= 2211 (n j ,,2,1 =)证明 由行列式的性质5可得nnn n in i i na a a a a a a a a D212111211000000+++++++++=nn n n i n a a a a a a a2111121100=nnn n i na a a a a a a2121121100+nnn n in n a a a a a a a211121100++ 于是由定理1得in in i i i i A a A a A a D +++= 2211 (n i ,,2,1 =)同样可按列证明得nj nj j j j j A a A a A a D +++= 2211 (n j ,,2,1 =)定理3称为行列式按行按列展开法则,利用这一法则并结合行列式的性质,可以简化行列式的计算。
第1章行列式1.4行列式的展开
=
n − 1 ×( −1) n − 2 ×( −1) 2行减去第1行 第 行减去第1 n − 3 ×( −1) 3行减去第2行 第 行减去第2 行减去第3 第4行减去第3行 n−4 ⋯ ×( −1) 第 行减去第n 1 ×( −1) n-1行减去第n-2行 行减去第n 第n行减去第n-1行 0 0 1 2 3 ⋯n− 2 n−1 0 1 2 3 ⋯ n− 2 n−1 1 0 0 0 ⋯ 0 1 −1 −1 −1 ⋯ −1 −1 0 0 1 1 −1 −1 ⋯ −1 −1 第1列加到 1 2 0 0 ⋯ 0 0 1 1 1 −1 ⋯ −1 −1 其他每一列 1 2 2 0 ⋯ 0 ⋯ ⋯ ⋯ ⋯ ⋯ a⋯= 0, a =⋯ ⋯ = 2, ..., a = n − 1 ⋯ ⋯ 1, a13 11 1n 12 0 1 2 2 2⋯ 0 1 a 1 = 1, a1 =⋯ −1 −1 1 0, 22 21 0 1 2 2 2⋯ 2 1 a 1 = n−2 ⋯ 1 1 1 −1 + − n −1,1 = ( n − 1) A1n = ( n − 1)( −1)n+1 2n− 2 最后1 最后1列递减
1 1 0 b −a = 0 b (b−a) b2(b−a) 0
1 c −a c (c−a) 2 c (c −a) 1 1 = (b−a) (c−a) (d −a) b c
1 d −a d (d −a) 2 d (d −a) 1 1 1 1 0 c −b d −b d 2 0 c (c−b) d (d−b) c2 d 2 b = (b−a) (c−a) (d −a) (c−b) (d−b) (d −c)
行列式的每个元素 都有一个余子式 代数余子式. 行列式的每个元素 都有一个余子式 和代数余子式.
范德蒙德行列式——简单明了
j. j
三、小结
1. 行列式按行(列)展开法则是把高阶行列式的计
算化为低阶行列式计算的重要工具.
n
n
2. aki Akj aik Ajk D ij
k 1
k 1
思考题
1 2 3n
1 2 0 0
设 n 阶行列式 Dn 1 0 3 0
1 0 0n
求第一行各元素的代数余子式之和: A11+A12+ ···+A1n .
ai1Aj1 + ai2Aj2 + ···+ ainAjn = 0, i j ; a1iA1j + a2iA2j + ···+ aniAnj = 0, i j .
证: 把行列式D = det(aij) 按第 j 行展开, 得
a11 a1n
ai1 ain
D a j1 Aj1 a jn Ajn
从而 D = a11A11, 即结论成立.
再证一般情形, 此时
a11 a1 j a1n
D 0 aij 0
an1 anj ann
把D的第 i 行依次与第 i –1行,第 i –2行, ···, 第1行
交换, 得
0 aij 0
D 1 i1 ai1,1 ai1, j ai1,n
有:
1 11
Dn ( x2 x1 )( x3 x1 )( xn x1 )
x2
x3 xn
n–1阶范德蒙德行列式
x2n2
x3n2
x
行列式性质,按行展开
a11 L = bi 1 L an1
a12 L a1n L L L
a11
a12 L a1n L ci 2 L an 2 L L L L L cin L ann
L bi 2 L bin + ci 1 L L L L an1 an 2 L ann
性质5 将行列式的某一行 列)的所有元素乘以数 后 将行列式的某一行(列 的所有元素乘以数 的所有元素乘以数k后
1
2 0
3 1
4 2 .
【例1】 计算 D = 】
1
3 −1 −1 0 1 2 0 −5
【解】 D = a14 A14 + a24 A24 + a34 A34 + a44 A44
1 2 3 1 0 1 1+ 4 + 2 × ( −1) 2 + 4 3 − 1 − 1 = 4 × ( −1) 3 − 1 − 1 1 2 0 1 2 0 1 2 3 + ( −5) × ( −1)4 + 4 1 0 1 3 −1 −1
【解】
1 −1 0
2
1
1
0
(1) + (3) 0 −1 −1 2 0 −1 −1 2 − D=− − 2×(1) + (4) 0 1 −1 2 −1 2 −1 0 0 3 1 −4
2 1 1 0
1 0
0 0
2
1
−1
0
2
( 2) + ( 3 ) 3 × ( 2) + ( 4) −
−1 −1
0 0
0 −1
加到另一行( 加到另一行(列)的相应元素上,行列式的值不变. 的相应元素上,行列式的值不变
1 a 1
1.3 行列式按行(列)展开
在余子式前面加上相应的符号,即构成代数余子式。
16:32 4
例如
D=
a11 a21 a31 a41
a12 a22 a32 a42
a13 a23 a33 a43
a14 a24 a34 元素 a23 余子式与代 a44
a11
数余子式为:
a12 a 32 a 42 a14 a 34 a 44
【余子式】
M 23 = a 31 a 41
0
i −1
L
aij M
L
0 M
D = (− 1) ai −1,1 L ai −1, j L ai −1,n M M M an1 L anj L ann
M
16:32
11
第二步:把第 j 列依次与第 j-1列,j-2列, …, 1列对调, 这样数 aij 就调成 (1,1)元,对调次数为 j-1。 总之,经 i+j-2次 调换后,把数 aij调成(1,1) 元。所得的行列式为:
a11 M = ai1 M
a12 L a1n M 0 M L
a11
a12 L a1n M ai 2 M L
a11
a12 L a1n M 0 M M L ain M
M M 0 + 0 M M
M M 0 + ... + 0 M M
an1 an 2 L ann
an1 an 2 L ann
an1 an 2 L ann
(i ≠ j)
19
同样, 把第 j 列换成第 i 列, 按 j 列展开, 有 (i ≠ j) a1i 1 16:32 A j + a2 i A2 j + L + ani Anj = 0
定理3 n 阶行列式的任一行的各元与另一行对应元的 代数余子式乘积之和为零,即:
行列式按行(列)展开定理
解
M11 2 2 4 A11 (1)11 M11 4
1 0 M23 3 2 2
A23 (1)23 M 23 2
行列式的每个元素分别对应着一个余子式和一个
代数余子式。
4
(二)行列式展开定理
引理 若在n阶行列式D第i行中有一个元素 aij 0,其 余元素全为零,则
D aij Aij
an1
an2
ann
由行列式的性质4及引理,得
11
a11
a12
a1n
D ai1 0 0 0 ai2 0 0 0 0 ain
an1
an2
ann
a11 a12 a1n
a11 a12 a1n
a11 a12 a1n
ai1
0 0 0
ai2 0 0
0 ain
an1 an2 ann
1 0 0 an
解
n 1
a0 i1 ai
0
原式
0
1 11
a1
0
0 a2
0 0
a1a2 an (a0
n i 1
1 ai
)
.
0
0 0 an
31
a1 a1 0 0
0
例14 计算
a2 a2
0
0
0
“全加法”
0 0 0 an an 1 1 1 1 1
n1
解 0 a1 0 0 0
1 1 2
1 1 2
D 1 (1)21 4 3 1 1 (1)23 2 4 1
1 2 2
1 1 2
1 1 1
(1) (1)24 2 4 3
1 1 2
7 2418 1 ,
15
行列式的展开定理
证明
11
1
D3
r3
r2 ( x1 )
x1 0
x2 x22 x1 x2
x3 x32 x1 x3
11
1
r2 r1 ( x1 ) 0 x2 x1 x3 x1 0 x22 x1 x2 x32 x1 x3
§3 行列式的展开定理
x2 x1 x22 x1 x2
x3 x1 x32 x1 x3
一、余子式、代数余子式 二、行列式按一行(列)展开法则 三、克拉默法则
§3 行列式展开定理、克拉默法则
引例
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a31 a32 a33 a11a23a32 a12a21a33 a13a22a31,
行列式 D 等于它的任一行(列)的各元素与其 对应的代数余子式乘积之和,即
D ai1 Ai1 ai 2 Ai 2
i 1,2, ,n
或 D a1 j A1 j a2 j A2 j
j 1,2, ,n
n
ain Ain aik Aik
k 1
n
anj Anj akj Akj k 1
1 xn x1 xn2 x1 xn
xnn1 x1 xnn2
§3 行列式的展开定理
x2 x1 x2( x2 x1 )
x3 x1 x3( x3 x1 )
xn x1 xn( xn x1 )
x2n2 ( x2 x1 ) x3n2 ( x3 x1 )
xnn2( xn x1 )
11
1
3.推论
行列式任一行(列)的元素与另一行(列)的 对应元素的代数余子式乘积之和等于零,即
ai1 Aj1 ai2 Aj2 ain Ajn 0, i j a1i A1 j a2i A2 j ani Anj 0, i j
行列式展开定理
行列式展开定理行列式展开定理是线性代数中的一个重要定理,它描述了一个n阶行列式可通过对其中一行(或一列)进行展开,用余子式乘以对应元素的代数余子式构成的和来表示。
这个定理的证明主要基于数学归纳法和代数性质的运用。
首先,我们来介绍一些必要的定义和概念。
行列式是一个有序数表,是一个正方形矩阵中对角线上元素相乘并按照一定规则相加得到的一个数。
例如,对于一个2阶行列式(2x2矩阵):$\begin{vmatrix}a &b \\c & d\\\end{vmatrix}$ = ad - bc行列式的计算可以通过对行或列的操作转化为三角形矩阵,从而简化计算。
对于n阶行列式,可以递归地进行以下展开运算:选择第i行(或第j列)进行展开,将此行的元素乘以对应的代数余子式,并进行符号调整后相加。
具体地,使用数学归纳法,我们可以证明行列式展开定理。
当n=2时,定理显然成立。
假设当n=k时,定理成立,即k阶行列式可以通过任选一行(或一列)展开为余子式乘以对应元素的代数余子式之和,即$\begin{vmatrix}a_{11} & a_{12} & \ldots & a_{1k} \\a_{21} & a_{22} & \ldots & a_{2k}\\\vdots & \vdots & \ldots & \vdots\\a_{k1} & a_{k2} & \ldots & a_{kk}\\\end{vmatrix}$=$a_{i1}\begin{vmatrix}a_{11} & \ldots & a_{1,i-1} & a_{1,i+1} & \ldots &a_{1k} \\\ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ a_{k1} & \ldots & a_{k,i-1} & a_{k,i+1} & \ldots &a_{kk}\\\end{vmatrix}$+(-1)^(i+1)$a_{i2}\begin{vmatrix}a_{11} & \ldots & a_{1,i-1} & a_{1,i+1} & \ldots &a_{1k} \\\ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ a_{k1} & \ldots & a_{k,i-1} & a_{k,i+1} & \ldots &a_{kk}\\\end{vmatrix}$+$\ldots$+(-1)^(i+k)$a_{ik}\begin{vmatrix}a_{11} & \ldots & a_{1,i-1} & a_{1,i+1} & \ldots &a_{1k} \\\ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ a_{k1} & \ldots & a_{k,i-1} & a_{k,i+1} & \ldots &a_{kk}\\\end{vmatrix}$。
第三节 按行(列)展开定理
性质五:行列式某一行 (列)的所有元素的 k 倍加到另一行 (列) 性质五:
的对应元素上, 的值不变。 的对应元素上,行列式 的值不变。
余子式与 余子式与代数余子式
a11 ⋮ a i −11 ∆= a12 ⋮ ⋯ a1 j −1 ⋮
a1 j ⋮
a1 j +1 ⋮
行列式相等。 即:行列式和它的转置 行列式相等。
),行列式的值改变符 性质二: 互换行列式的两行( 性质二: 互换行列式的两行(列 ),行列式的值改变行列式有两行(列) 完全相同,则此行列式 的值为零。 完全相同, 的值为零。
性质三: 性质三:
行列式的某一行( 式的外面。 行列式的某一行(列) 的公因子可以提到行列 式的外面。
b a a a b a a a = b 2a + b a a 2a + b b a 2a + b a b
2a + b a a
2a + b b a 1 0 b−a 0
2a + b a b 0 0 b−a
1 = ( 2a + b ) a a
1 b a
1 a b
= ( 2a + b ) a a
b−a = ( 2a + b ) 0
n
按第一例元素的展开式
= a11 A11 + a 21 A21 + ⋯ + a n1 An1 = ∑ a i 1 Ai 1
i =1
n
b 例题 1:计算行列式 a a
a b a
a a 的值。 的值。 b
分析: 行列式的特点是每列元 素之和都是 2a + b, 分析: 所以将第二行、第三行 都加到第一行上,得 都加到第一行上, 所以将第二行、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行列式按行列展开定理
一、 余子式的定义:
在n 阶行列式中,把(i.j )元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M
二、 代数余子式:
在n 阶行列式的ij a 余子式ij M 加上符号(1)
i j +-,称作ij a 的代数
余子式ij A : (1)i j ij ij A M +=-
三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ij a 外都为0,则这个行列式等于ij a 与它的代数余子式乘积: ij ij D a A =⋅
四、 行列式按行(列)展开法则:
定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和:
1122i i i i in in D a A a A a A =⋅+⋅+⋅⋅⋅+⋅
1122j j j j nj nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)
推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0:
1122i j i j in jn D a A a A a A =⋅+⋅+⋅⋅⋅+⋅
1122i j i j ni nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)
五、 克拉默法则:
如果含有n 个未知数的n 个线性方程组: 11112211n n a x a x a x b ++⋅⋅⋅+=
21122222n n a x a x a x b ++⋅⋅⋅+=
31132233n n a x a x a x b ++⋅⋅⋅+=
…………………………………
…………………………………
…………………………………
1122n n nn n n a x a x a x b ++⋅⋅⋅+=
其系数行列式不等于0,即:1111......
......0...n
n nn
a a D a a =≠ 那么,方程组有惟一解:
11D x D =,22D x D =,…n N D x D
= 1111,1122,1
1,1............
.......
...j n
j j n n n j nn a b a a b a D a b a a +++=
① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。
② 定理4':如果含n 个未知数的n 个线性方程组无解或
者有两个不同的解,则它的系数行列式必然为0 ③ 定理5:上述方程对应的齐次线性方程组:
11112210n n a x a x a x ++⋅⋅⋅+=
21122220n n a x a x a x ++⋅⋅⋅+=
31132230n n a x a x a x ++⋅⋅⋅+=
…………………………………
…………………………………
…………………………………
11220n n nn n a x a x a x ++⋅⋅⋅+=
120n x x x ==⋅⋅⋅==一定是它的解,这个解叫做齐次线性方程组的0解,如果是一组不全为0的数是齐次线性方程组的解,叫做齐次线性方程组的非0解,齐次线性方程组一定有0解,但是不一定有非0解。
定理5:如果齐次线性方程组有非0解,则它的系数行列式必然等于0
定理5':如果齐次线性方程组的系数行列式等于0,则它一定没有非0解
六、 求解行列式的基本方法:
① 利用初等变换
② 利用性质
③特殊规律行列式解法。