七年级上学期数学期末试题

合集下载

人教版七年级上学期数学《期末测试题》含答案解析

人教版七年级上学期数学《期末测试题》含答案解析
8.如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C中的三个数依次是()
A. 1,﹣3,0B. 0,﹣3,1C. ﹣3,0,1D. ﹣3,1,0
[答案]A
[解析]
使得它们折成正方体后相对的面上两个数互为相反数,则A与-1,B与3;C与0互为相反数.
17.计算:
(1)﹣8﹣3×(﹣12)+8;
(2)﹣6× ﹣|(﹣8)÷2|
18.(1)化简:
(2)先化简,再求值: ,其中 , .
19.解方程
(1)
(2)
20.为了某校七年级学生对 《最强大脑》、 《朗读者》、 《中国诗词大会》、 《极限挑战》四个电视节目的喜爱情况,随机抽取了 位学生进行调查统计(要求每位学生选出并且只能选一个自己最喜爱的节目),并将调查结果绘制成如下两幅不完整的统计图(图1,图2)
7.若 的和是单项式,则 的值是()
A.1B.-1C.2D.0
[答案]A
[解析]
[分析]
和是单项式说明两式可以合并,从而可以判断两式为同类项,根据同类项 相同字母的指数相等可得出x、y的值.
[详解]解:由 的和是单项式,
则x+2=1,y=2,
解得x=−1,y=2,
则xy=(−1)2=1,
故选A.
[点睛]本题考查同类项的知识,属于基础题,注意同类项的相同字母的指数相同.
(2)当 _________秒时, ;
(3)若点 、 与线段 同时移动,点 以每秒2个单位长度的速度向数轴的正方向移动,点 以每秒1个单位长度的速度向数轴的负方向移动.在移动过程中,当 时, 的值为__________.

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)(满分:120分考试时间:120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数:0−5−(−7)−|−8|(−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+b<0ab<0则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6m时水位变化记为+6m那么水位下降6m时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1−203中最小的数是()A.−1B.−2C.0D.37. 若A和B都是4次多项式则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段AB则AB盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a b的点在数轴上的位置如图所示下列结论错误的是()A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −11的倒数是________ ________的绝对值是1________的立方是8.212. 在月球表面白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C.则月球表面昼夜的温差为________∘C.13. 若|a|=5b=−2且ab>0则a+b=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负):(+4, −8)(−5, +6)(−3, +2)(+1, −7)则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下:+8−3+12−7−10−3−8+10+10.(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.16.(10分) 某淘宝商家计划平均每天销售某品牌儿童滑板车100辆但由于种种原因实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正不足记为负):(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为:(单位:海里)+80−40+60+75−65−80此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18. (10分)请画一条数轴然后在数轴上把下列各数表示出来:312−4−2120−11并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20. (10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位:元)分别为+2−3+2+1−2−10−2.当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线AB分别交x轴y轴于点A(a,0)和点B(0,b)且a b满足a2+4a+4+|2a+b|=0.(1)a=________ b=________.(2)点P在直线AB的右侧且∠APB=45∘:①若点P在x轴上则点P的坐标为_________②若△ABP为直角三角形求点P的坐标.22. (10分)某个体儿童服装店老板以每件32元的价格购进30件T恤针对不同的顾客30件T恤的售价不完全相同若以47元为标准超出的钱记为正不足的钱记为负则记录的结果如下表所示:问:该服装店在售完这30件T恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解:∵ 0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∵ 负数共有2个.故选B.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据ab<0结合乘法法则易知a b异号而a+b<0根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解:∵ ab<0∵ a b异号又∵ a+b<0∵ 负数的绝对值大于正数的绝对值.故选D.3.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:1958000用科学记数法可表示为1.958×106.故选C.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6m时水位变化记作−6m.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2A正确3的倒数是1B正确3(−3)−(−5)=−3+5=2C正确−1104这三个数中最小的数是−11D错误.故选D.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1|−2|=2根据负数的绝对值越大这个数就越小得到−2<−1而0大于任何负数小于任何正数则有理数−1−203的大小关系为−2<−1<0<3.【解答】解:∵ |−1|=1|−2|=2∵ −2<−1∵ 有理数−1−203的大小关系为−2<−1<0<3.故选B.7.【答案】C【考点】多项式的项与次数【解析】若A和B都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解:若A和B都是4次多项式则A+B的结果的次数一定是次数不高于4次的整式.故选C.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段AB则线段AB盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段AB起点在整点时覆盖16个数②当线段AB起点不在整点即在两个整点之间时覆盖15个数.故选C.9.【答案】C【考点】有理数大小比较数轴【解析】根据a b两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解:∵ a b两点在数轴上的位置可知:−1<a<0b>1|a|<|b|∵ a−b<0a+b>0b−1>0故A B D错误故C正确.故选C.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a−101b的大小关系然后根据正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解:根据实数a b在数轴上的位置可得a<−1<0<1<b∵ 1<|a|<|b|∵ 选项A错误∵ 1<−a<b∵ 选项B正确∵ 1<|a|<b∵ 选项C正确∵ −b<a<−1∵ 选项D正确.故选A.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−23,±1,2【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解.【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解:白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C所以月球表面昼夜的温差为:127∘C−(−183∘C)=310∘C.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5b=−2且ab>0可知a=−5代入原式计算即可.【解答】解:∵ |a|=5b=−2且ab>0∵ a=−5∵ a+b=−5−2=−7.故答案为:−7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解:由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为:12.三解答题(本题共计8 小题共计78分)15.【答案】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.【解答】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:(1)4−3−5+300=296.故答案为:296.(2)21+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法:同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值.相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质:偶次方非负数的性质:绝对值【解析】解:(1)由题意得得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.【解答】解:(1)由题意得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).22.【答案】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。

七年级上学期数学期末试卷及答案-百度文库

七年级上学期数学期末试卷及答案-百度文库

七年级上学期数学期末试卷及答案-百度文库一、选择题1.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是()A.183 B.157 C.133 D.912.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A.87 B.91 C.103 D.1113.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是()A.第80个图形B.第82个图形C.第84个图形D.第86个图形4.下列四个选项中,不是正方体展开图形的是()A.B.C.D .5.计算22221111 (11223320152015)++++++++的结果为( ) A .1B .20142015C .20152016D .201620156. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm7.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -8.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6 C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13x D .由1226x x -+-=2,得3x ﹣3﹣x +2=12 9.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( )A .2B .4C .6D .810.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .9411.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为( ) A .6度 B .7度 C .8度 D .9度 12.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2 B .﹣2 C .8 D .﹣8 13.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°14.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或315.若m 5=,n 3=,且m n 0+<,则m n -的值是( )A.8-或2-B.8±或2±C.8-或2 D.8或216.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<0 17.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n,则n=( )A.9 B.11 C.13 D.1518.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为( ) A.1985 B.-1985 C.2019 D.-201919.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C .D .20.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强21.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .622.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 23.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7- 24.“比a 的3倍大5的数”用代数式表示为( ) A .35a +B .3(5)a +C .35a -D .3(5)a -25.以下问题,不适合抽样调查的是( ) A .了解全市中小学生的每天的零花钱B .旅客上高铁列车前的安检C .调查某批次汽车的抗撞击能力D .调查某池塘中草鱼的数量26.在料幻电影《银河护卫队》中,星球之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成.如图所示:两个星球之间的路径只有1条,三个星球之间的路径有3条,四个星球之间的路径有6条,…,按此规律,则10个星球之间“空间跳跃”的路径有( ).A .45条B .21条C .42条D .38条27.已知如图,数轴上的A 、B 两点分别表示数a 、b ,则下列说法正确的是( ).A .a b >-B .22a b <C .0ab >D .a b b a -=-28.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-<D .a b b a -<-<<29.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >030.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论. 【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.2.D解析:D【解析】【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,故选:D.【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.3.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒, 第2个图形有8根火柴棒, 第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12, 若5+7(n-1)×12=295,没有整数解, 若8+7(n-2)×12=295,解得n=84, 即用295根火柴搭成的图形是第84个图形, 故选:C . 【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.4.A解析:A 【解析】 【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体. 【详解】正方体共有11种表面展开图, B 、C 、D 能围成正方体;A 、不能,折叠后有两个面重合,不能折成正方体. 故选:A . 【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.5.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++=1111111 12233420152016 -+-+-++-=1 12016 -=2015 2016故选:C.【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.6.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.7.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.8.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.9.D解析:D【解析】【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,∵2019÷4=504…3,∴22019的末位数字是8.故选:D【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.10.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx2-2x+8-(3x2-nx)的值与x无关,∴2m-3=0,-2+n=0,解得:m=32,n=2,故m n=(32)2= 94.故选D.【点睛】此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.11.D解析:D【解析】【分析】先求出所抽查的这5天的平均用电量,从而估计他家6月份日用电量为.【详解】解:∵这5天的日用电量的平均数为91171085++++=9(度),∴估计他家6月份日用电量为9度,故选:D.【点睛】本题考查平均数的定义和用样本去估计总体.平均数等于所有数据的和除以数据的个数.12.B解析:B【解析】【分析】把x=1代入方程3x﹣m=5得出3﹣m=5,求出方程的解即可.【详解】把x=1代入方程3x﹣m=5得:3﹣m=5,解得:m=﹣2,故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m的一元一次方程是解此题的关键.13.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B .【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.14.A解析:A【解析】【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得.【详解】∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负∵0a b c ++=∴a ,b ,c 的符号为1负2正令0a <,0b >,0c > ∴a a =-,b b =,c c = ∴a b c a b c ++1111=-++= 故选:A .【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.15.A解析:A【分析】根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.【详解】解:∵|m|=5,|n|=3,且m+n<0,∴m=−5,n=3或m=−5,n=−3,∴m−n=−8或m-n=-2故选A.【点睛】本题考查了有理数的加减法和绝对值的代数意义.16.A解析:A【解析】分析:根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b 小于0,即可得到a与b都为负数.详解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选A.点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.17.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.18.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4,a 2+a 3+a 4=a 3+a 4+a 5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1,∴a 1+a 2+a 3=-2018-1+2020=1;∵100333÷=…1,∴a 100=a 1=-2018;∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=133********⨯-=-;故选择:B.【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.19.D解析:D【解析】【分析】做出点A 关于OB 和OC 的对称点A′和A″,连接A′A″,与OB 、OC 分别交与点M ,N ,则沿AM-MN-NA 的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A 点的对称点A',连接A'N 与河流相交于M 点,再连接AM ,则张大伯可沿着AM 走一条直线去河边M 点挑水,然后再沿MN 走一条直线到菜园去,同理,画出回家的路线图如下:故选D .本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.20.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.21.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.22.A解析:A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.解析:B 【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得.【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94,故选:B.【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式.24.A解析:A【解析】【分析】根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【详解】解:比a的3倍大5的数”用代数式表示为:3a+5,故选A.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.25.B解析:B【解析】A、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B.26.A解析:A【解析】【分析】观察图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,…,按此规律,可得10个星球之间“空间跳跃”的路径的条数.【详解】解:由图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,……,按此规律,10个星球之间“空间跳跃”的路径有9+8+7+6+5+4+3+2+1=45条. 故选:A .【点睛】本题是图形类规律探求问题,探寻规律时要认真观察、仔细思考,善用联想来解决这类问题.27.D解析:D【解析】【分析】根据有理数a 、b 在数轴上的位置可得0,0,a b a b <>>,进一步即可根据绝对值的意义、乘方的意义对各选项进行判断.【详解】解:由题意得:0,0,a b a b <>>,所以a b <-,22a b >,0ab <,a b b a -=-;所以选项A 、B 、C 的说法是错误的,选项D 的说法是正确的;故选:D .【点睛】本题考查了数轴、绝对值以及有理数的乘方等知识,属于基础题型,熟练掌握基本知识是解题的关键.28.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.29.B解析:B【解析】【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.30.D解析:D【解析】分析:根据数轴上a、b的位置,判断出a、b的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选D.点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.。

七年级第一学期期末考试(数学)试题含答案

七年级第一学期期末考试(数学)试题含答案

七年级第一学期期末考试(数学)(考试总分:120 分)一、单选题(本题共计16小题,总分42分)1.(3分)下列运算结果是a2的是( )A.a+aB.a+2C.a•2D.a•a2.(3分)如图,射线OA表示的方向是( )A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°3.(3分)我国渤海、黄海、东海、南海的海水中含有不少化学元素,其中铝、锰元素总量均约为8×106吨.用科学记数法表示铝、锰元素总量的和约是( )A.8×106吨B.1.6×107吨C.16×106吨D.16×1012吨4.(3分)已知x=5是方程2x−3+a=4的解,则a的值是( )A.3B.2C.-3D.-25.(3分)下列说法不正确...的是( )①a3b的系数是3,次数是3;①近似数304.16精确到了十分位;①多项式−5x+6x2−1是二次三项式;①射线AB与射线BA是同一条射线;①一个角的补角不是锐角就是钝角A.①①①①B.①①①C.①①①D.①①①6.(3分)下列变形不正确...的是( )A.如果a=b,那么a+5=b+5B.如果a=b,那么a−c=b−cC.如果ac=bc,那么a=bD.如果ac =bc,那么a=b7.(3分)已知x3-2m y2与2xy n是同类项,则m−n= ( )A.-1B.0C.1D.28.(3分)如图,数轴上三个点所对应的数分别为a,b,c,则下列结论正确的是( )A.a+b > 0B.a-c > 0C.ac > 0D.|a| > |b|x的值为6,则2x2-5x+6的值为( )9.(3分)已知整式x2−52A.9B.12C.18D.2410.(3分)下列图形中,可能..是如图所示的正方体展开图的是( )A.B.C.D.11.(2分)已知|a|=3,|b|=2,|a−b|=a−b,则a+b=( )A.5或−5B.1或5C.5或−1D.−5或112.(2分)互联网"微商"经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为( )A.80元B.100元C.130元D.150元13.(2分)如图,将一副三角板叠在一起使直角顶点重合于点O(两块三角板可以在同一平面内自由转动),下列结论一定..成立的是( )A.①BOA > ①DOCB.①BOA+① DOC=180°C.①BOA−①DOC=90°D.①BOC≠①DOA14.(2分)如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点,若线段MN的长为4,则线段BC的长度是( )A.4B.6C.8D.1015.(2分)在某市奥林匹克联赛中,实验一中学子再创辉煌,竞赛成绩全市领先.某位同学连续答题40道,答对一题得5分,答错一题扣2分(不答同样算作答错),最终该同学获得144分.请问这位同学答对了多少道题?下面共列出4个方程,其中正确的有( )①设答对了x道题,则可列方程:5x−2(40−x)=144;①设答错了y道题,则可列方程:5(40−y)−2y=144;①设答对题目总共得a分,则可列方程:a5+a−1442=40;①设答错题目总共扣b分,则可列方程:144−b5-b2=40.A.4个B.3个C.2个D.1个16.(2分)在学校温暖课程数字兴趣课中,嘉淇同学将一个边长为a的正方形纸片(如图1)剪去两个相同的小长方形,得到一个""的图案(如图2),将剪下的两个小长方形刚好拼成一个"T"字形(如图3),则"T"字形的外围周长(不包括虚线部分)可表示为( )图1 图2图3A.3a−5bB.5a−8bC.5a−7bD.4a−6b二、填空题(本题共计3小题,总分12分)17.(4分)植树时只要定出两棵树的位置,就能确定这一行树所在的直线,原因是__________.18.(4分)对有理数a,b规定运算"①"的意义为a①b=a+2b,比如:5①7=5+2×7,则方程3x①14=2−x的解为__________ .19.(4分)如图,某花园护栏是用直径为80厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加a厘米(相邻两个条钢之间都有交叉,a为正整数),设半圆形条钢的总个数为x(x为正整数).(1).当a=50,x=2时,护栏总长度为__________厘米;(2).当a=60时,护栏总长度为__________厘米(用含x的式子表示,结果要求化简);(3).若护栏的总长度为15米,为尽量减少条钢用量,a的值应为__________厘米.三、解答题(本题共计7小题,总分66分)20.(8分)按要求解答下列各小题.(1).计算:(-1)2021+(-18)×|-29|-4÷(-2);(2).化简:5a2+3b2+2(a2−b2)−(5a2−3b2).21.(8分)嘉淇正在解关于x的方程A:x−2m=−3x+4.(1).用含m的式子表示方程A的解;(2).嘉淇妈妈问:"若方程A与关于x的方程B:m=4-x2的解互为相反数,那么此时方程A的解为多少?"请你帮嘉淇解决妈妈提出的问题.22.(9分)已知A=by2−ay−1,B=2y2+3ay−10y+3.(1).若多项式2A−B的值与字母y的取值无关,求a,b的值;(2).在1的条件下,求(2a2b+2ab2)−[2(a2b−1)+3a2b+2]的值.23.(9分)阅读下列材料:计算:124÷(13−14+112).解法一:原式=124÷13−124÷14+124÷112=124×3−124×4+124×12=1124.解法二:原式=124÷(412−312+112)=124÷212=124×6=14.解法三:原式的倒数=(13−14+112)÷124=(13−14+112)×24=13×24−14×24+112×24=4原式=14 .(1).上述得到的结果不同,你认为解法________是错误的; (2).计算:(12−14+16)×36=________;(3).请你选择合适的解法计算:(−1210)÷(37+215−310−521)24.(10分)已知点O 是直线AB 上一点,①COE=60°,OF 是①AOE 的平分线. (1).如图,当①BOE=80°时,求①COF 的度数;(2).当①COE 和射线OF 在如图所示的位置,且题目条件不变时.①求①COF 与①AOE 之间的数量关系; ①直接写出①BOE-2①COF 的值.25.(10分)甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为a(0<a <100)千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米/小时,设客车行驶时间为t (小时). (1).当t =5时,客车与乙城的距离为______千米(用含a 的式子表示);(2).已知a =70,丙城在甲、乙两城之间,且与甲城相距260千米,当客车和出租车在甲、乙之间的M 处相遇时,出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种返回乙城的方案:方案一:继续乘坐出租车到丙城,加油后立刻返回乙城(出租车加油时间忽略不计); 方案二:在M 处换乘客车返回乙城.假设客车和出租车的行驶速度始终不变,试通过计算,分析小王选择哪种方案能更快返回到乙城?26.(12分)如图,已知点M是线段AB上一定点,AB=12cm,C,D两点分别从M,B出发,以1cm/s,2cm/s的速度沿直线AB向左运动(C在线段AM上,D在线段BM上).(1).若AM=4cm,当点C,D运动了2s时,AC=______.DM=______.(2).若点C,D运动时,总有MD=2AC,求AM的长;的值。

七年级上册数学期末试题及答案解答

七年级上册数学期末试题及答案解答

七年级上册数学期末试题及答案解答一、选择题1.长方形ABCD 中,将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示.设图1中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则C 1 -C 2的值为( )A .0B .a -bC .2a -2bD .2b -2a2.方程114xx --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-13.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块4.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |5.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .86.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A .3mnB .5mnC .7mnD .9mn7.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -8.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形9.在方程3x ﹣y =2,x+1=0,12x =12,x 2﹣2x ﹣3=0中一元一次方程的个数为( ) A .1个B .2个C .3个D .4个10.a ,b 在数轴上位置如图所示,则a ,b ,a -,b -的大小顺序是( )A .a b a b -<<<-B .b a b a <-<-<C .a b b a -<-<<D .b a a b <-<<-11.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( ) ….A .4n+1B .3n+1C .3nD .2n+112.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或3二、填空题13.观察算式:1325+=;23211+=;33229+=;43283+=;532245+=;632731+=;…….则201932019+的个位数字是_____.14.把我国夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,它的每行、每列、每条对角线上三个数之和均相等.则图1的三阶幻方中,字母a 所表示的数是______,根据图2的三阶幻方中的数字规律计算代数式3m n -+的值为______.15.如图,“汉诺塔”是源于印度一个古老传说的益智玩具,这个玩具由A,B,C三根柱子和若干个大小不等的圆盘组成.其游戏规则是:①每次只能移动一个圆盘(称为移动1次);②被移动的圆盘只能放入A,B,C三根柱子之一;③移动过程中,较大的圆盘始终..不能..叠在较小的圆盘上面;④将A柱上的所有圆盘全部移到C柱上.完成上述操作就获得成功.请解答以下问题:(1)当A柱上有2个圆盘时,最少需要移动_____次获得成功;(2)当A柱上有8个圆盘时,最少需要移动_____次获得成功.16.计算(0.04)2018×[(﹣5)]2018的结果是_____.17.某商场2019年1~4月份的投资总额一共是2005万元,商场2019年第一季度每月利润统计图和2019年1~4月份利润率统计图如下(利润率=利润÷投资金额).则商场2019年4月份利润是______万元.18.一个三角形内有n个点,在这些点及三角形顶点之间用线段连接起来,使得这些线段互不相交,且又能把原三角形分割为不重叠的小三角形.如图:若三角形内有1个点时此时有3个小三角形;若三角形内有2个点时,此时有5个小三角形.则当三角形内有99个点时,此时有_____个小三角形.19.观察下列等式:①9011⨯+=;②91211⨯+=;③92321⨯+=;④93431⨯+=;⑤94541⨯+=;……作出猜想,它的第n 个等式可表示为__________(n 为正整数).20.中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.同物几何? 即:一个整数除以3余2,除以5余3,除以7余2,则这个整数为__________________.(写出符合题意且不超过300的3个正整数) 21.观察下列式子:13111414a ==-⨯;23114747a ==-⨯;3311710710a ==-⨯;431110131013a ==-⨯,按此规律,则n a =_____________=______________(用含n的代数式表示,其中n 为正整数),并计算123100a a a a +++⋯+=________________. 22.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.三、解答题23.某学校组织七年级学生参加了“热爱宪法,捍卫宪法”的知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计,绘制统计图如下.请根据所给信息,回答下列问题:某校七年级部分学生成绩频数分布直方图某校七年级部分学生成绩扇形统计图(1)求出A 组、B 组人数分别占总人数的百分比;(2)求本次共抽查了多少名学生的成绩;(3)扇形统计图中,D 组对应的圆心角为a ︒,求a 的值;(4)该区共有1000名七年级学生参加了此次竞赛,若主办方想把一等奖的人数控制在150人,那么请你通过计算估计:一等奖的分值应定在多少分及以上?24.如图,阶梯图的每个台阶都标着一个数,从下到上的第1个至第4个台阶上依次标着5-,2-,1,9,且任意相邻的4个台阶上标着的数的和都相等.尝试:(1)求前4个台阶上标着的数的和; (2)求第5个台阶上标着的数x .应用:(3)求从下到上的前2018个台阶上标着的数的和.发现:(4)试用含k (k 为正整数)的式子表示出“1”所在的台阶数. 25.计算:(1)()()32832245-+÷---⨯.(2)|﹣9|÷3+(1223-)×12+32; 26.(2+3+3分)阅读材料:我们知道,4x ﹣2x+x=(4﹣2+1)x=3x ,类似地,我们把(a+b )看成一个整体,则4(a+b )﹣2(a+b )+(a+b )=(4﹣2+1)(a+b )=3(a+b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把()2a b -看成一个整体,合并()()()222362a b a b a b ---+-.(2)已知224x y -=,求23621x y --的值;(3)已知a ﹣2b=3,2b ﹣c=﹣5,c ﹣d=10,求(a ﹣c )+(2b ﹣d )﹣(2b ﹣c )的值. 27.已知数轴上,点A 和点B 分别位于原点O 两侧,点A 对应的数为a ,点B 对应的数为b ,且|a-b|=15.(1)若b =-6,则a 的值为 ; (2)若OA =2OB ,求a 的值;(3)点C 为数轴上一点,对应的数为c ,若A 点在原点的左侧,O 为AC 的中点,OB =3BC ,请画出图形并求出满足条件的c 的值.28.如图所示,在一张正方形纸片的四个角上各剪去一个同样大小的正方形,然后把剩下的部分折成一个无盖的长方体盒子.请回答下列问题:(1)剪去的小正方形的边长与折成的无盖长方体盒子的高之间的大小关系为;(2)如果设原来这张正方形纸片的边长为acm,所折成的无盖长方体盒子的高为hcm,cm;那么,这个无盖长方体盒子的容积可以表示为3(3)如果原正方形纸片的边长为20cm,剪去的小正方形的边长按整数值依次变化,即分别取cm cm cm cm cm cm cm cm cm cm时,计算折成的无盖长方体盒子的容1,2,3,4,5,6,7,8,9,10积得到下表,由此可以判断,当剪去的小正方形边长为cm时,折成的无盖长方体盒子的容积最大剪去的小正方形的12345678910边长/cm折成的无盖长方体的容324m n576500384252128360积3/cm【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据周长的计算公式,列式子计算解答.【详解】解:由题意知:1C =AD+CD-b+AD-a+a-b+a AB a +-, ∵ 四边形ABCD 是长方形, ∴ AB =CD ,∴1C =AD+CD-b+AD-a+a-b+a AB a=2AD+2AB-2b +-, 同理,2C =AD b+AB-a+a-b+a+BC-a+AB=2AD+2AB-2b -, ∴C 1 -C 2=0. 故选A . 【点睛】本题考查周长的计算,“数形结合”是关键.2.C解析:C 【解析】1144(1)4414xx x x x x --=---=--+=-方程左右两边各项都要乘以4,故选C3.C解析:C 【解析】 【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解. 【详解】解:∵第1个图形有黑色瓷砖5116⨯+=块. 第2个图形有黑色瓷砖52111⨯+=块. 第3个图形有黑色瓷砖53116⨯+=块. …∴第9个图形中有黑色瓷砖59146⨯+=块. 故选:C . 【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.4.D解析:D 【解析】分析:根据数轴上a 、b 的位置,判断出a 、b 的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a <﹣2,1<b <2,∴|a|>|b|,a <﹣b ,b >a ,a <﹣2, 故选D .点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.5.D解析:D 【解析】 【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8. 【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环, ∵2019÷4=504…3, ∴22019的末位数字是8. 故选:D 【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.6.B解析:B 【解析】 【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案. 【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=, 1()2ECH GAF S S m m n mn ∆∆==+=, 又矩形ABCD 的面积为mn ,所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B .此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.7.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.8.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.9.B解析:B【解析】【分析】根据一元一次方程的定义逐个判断即可.【详解】一元一次方程有x+1=0,12x=12,共2个,故选:B.【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.10.D解析:D【解析】【分析】从数轴上a b的位置得出b<0<a,|b|>|a|,推出-a<0,-a>b,-b>0,-b>a,根据以上结论即可得出答案.【详解】从数轴上可以看出b<0<a,|b|>|a |,∴-a<0,-a>b,-b>0,-b>a,即b<-a<a<-b,故选D.【点睛】本题考查了数轴和有理数的大小比较,关键是能根据a、b的值得出结论-a<0,-a>b,-b >0,-b>a,题目比较好,是一道比较容易出错的题目.11.D解析:D【解析】【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果.【详解】第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,依次类推,第n 个图中黑色正方形纸片的张数为2n+1,故选:D .【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.12.A解析:A【解析】【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得.【详解】∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负∵0a b c ++=∴a ,b ,c 的符号为1负2正令0a <,0b >,0c > ∴a a =-,b b =,c c = ∴a b c a b c ++1111=-++= 故选:A .【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.二、填空题13.【解析】【分析】首先找出31,32,33,34,35,36⋯32019的末位数字的规律,再求出32019+2019的末位数字即可.【详解】∵31=3,32=9,33=27,34=81,35解析:【解析】【分析】首先找出31,32,33,34,35,36⋯32019的末位数字的规律,再求出32019+2019的末位数字【详解】∵31=3,32=9,33=27,34=81,35=243,36=729⋯∴末位数字分别是3,9,7,1,每四组一个循环,∵2019÷4=504⋯3,∴32019的末位数字是7,因此,32019+2019的末位数字是6.故答案为6.【点睛】本题考查了数学的变化规律,知道末位数字每四组一循环是解题的关键.14.﹣2【解析】【分析】在图1中,设中心数为x ,根据每行、每列的三个数之和相等可得关于a 、x 的方程,解方程即可求出a ,在图2中,根据每列、每条对角线上三个数之和相等可得关于m 、n 的等式,整解析:﹣2【解析】【分析】在图1中,设中心数为x ,根据每行、每列的三个数之和相等可得关于a 、x 的方程,解方程即可求出a ,在图2中,根据每列、每条对角线上三个数之和相等可得关于m 、n 的等式,整理变形即得答案.【详解】解:在图1中,设中心数为x ,根据题意得:2104x a x ++=++,解得:8a =; 在图2中,根据题意得:2020m n n -+=++,整理得:32m n -+=-;故答案为:8,﹣2.【点睛】本题以三阶幻方为载体,主要考查了一元一次方程的应用和代数式求值,正确理解题意、掌握解答的方法是关键.15.28-1【解析】【分析】(1)先将小圆盘放在B 柱上,大圆盘放在C 柱上,再将B 柱上的小圆盘放在C 柱上即可得出结果;(2)根据题目已知条件分别得出当A 柱上有2个圆盘时最少需要移动的次数, 解析:28-1【解析】【分析】(1)先将小圆盘放在B 柱上,大圆盘放在C 柱上,再将B 柱上的小圆盘放在C 柱上即可得出结果;(2)根据题目已知条件分别得出当A 柱上有2个圆盘时最少需要移动的次数,当A 柱上有3个圆盘时最少移动的次数,从而推出当A 柱上有8个圆盘时需要移动的次数.【详解】解:(1) 先将小圆盘放在B 柱上,大圆盘放在C 柱上,再将B 柱上的小圆盘放在C 柱上, 最少需要:22-1=3次,(2) 当A 柱上有2个圆盘时,最少需要22-1=3次,当A 柱上有3个圆盘时,最少需要23-1=7次,以此类推当A 柱上有8个圆盘时,最少需要28-1次.故答案为:(1)3;(2) 28-1.【点睛】本题主要考查的是归纳推理,根据题目给出的已知信息,得出一般规律是解题的关键.16..【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018.故答案为.【点睛】本题考 解析:201815.【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018201815. 故答案为201815.【点睛】 本题考查了有理数的乘方,解题的关键是掌握有理数的乘方的定义和运算法则. 17.120【解析】【分析】根据条形统计图可以得出一、二、三月份的利润,再根据折线统计图中各月份的利润率,可以求出前三个月的成本,进而求出四月份的成本,再求出四月份的利润.【详解】解:一月份的成解析:120【解析】【分析】根据条形统计图可以得出一、二、三月份的利润,再根据折线统计图中各月份的利润率,可以求出前三个月的成本,进而求出四月份的成本,再求出四月份的利润.【详解】解:一月份的成本:125÷20.0%=625万元,二月份的成本:120÷30.0%=400万元,三月份的成本:130÷26.0%=500万元,四月份的成本:2005−625−400−500=480万元,四月份的利润为:480×25.0%=120万元,故答案为:120.【点睛】考查条形统计图、折线统计图的意义和制作方法,从统计图中获取数据和数据之间的关系式正确解答的关键.18.199【解析】【分析】观察图形,不难发现:内部每多一个点,则多2个三角形,则易写出y=3+2(n-1),从而利用规律解题.【详解】解:观察图形,不难发现:内部每多一个点,则多2个三角形,则解析:199【解析】【分析】观察图形,不难发现:内部每多一个点,则多2个三角形,则易写出y=3+2(n-1),从而利用规律解题.【详解】解:观察图形,不难发现:内部每多一个点,则多2个三角形,则易写出y=3+2(n-1),当n=99时,y=3+2(99-1)=199,故答案为:199;【点睛】本题考查了规律型中的图形变化问题,解题关键是结合图形,从特殊推广到一般,建立函数关系式.19.【解析】【分析】根据所给几个等式可以看出:这几个等式中左边:第几个式子是9乘以(几减1),再加上几;右边:第几个式子即十位是几减1,个位是1.【详解】解:根据分析知:第n 个式子是9(n-1解析:()()911011n n n -+=-+【解析】【分析】根据所给几个等式可以看出:这几个等式中左边:第几个式子是9乘以(几减1),再加上几;右边:第几个式子即十位是几减1,个位是1.【详解】解:根据分析知:第n 个式子是9(n-1)+n=10(n-1)+1=10n-9,即9(n-1)+n=10n-9.故答案为:9(n-1)+n=10n-9.【点睛】找等式的规律时,要分别观察左边和右边的规律,还要注意两边之间的关系. 20.23,128,233.【解析】【分析】根据“一个整数除以3余2,除以5余3,除以7余2”找到三个数,第一个数能同时被3、5整除,第二个数能同时被3、7整除,第三个数能同时被5、7整除等,然后再解析:23,128,233.【解析】【分析】根据“一个整数除以3余2,除以5余3,除以7余2”找到三个数,第一个数能同时被3、5整除,第二个数能同时被3、7整除,第三个数能同时被5、7整除等,然后再将这三个数乘以被7、5、3除的余数再相加,据此进一步求解即可.【详解】根据题意,我们首先求出三个数:第一个数能同时被3、5整除,即15,第二个数能同时被3、7整除,即21,第三个数能同时被5、7整除,但除以3余1,即70,然后将这三个数分别乘以被7、5、3除的余数再相加,即:152213702233⨯+⨯+⨯=,最后再进一步减去3、5、7的最小公倍数的若干倍即可:233105223-⨯=, 综上所述,该数可用10523k +表示,当0k =时,1052323k +=,当1k =时,10523128k +=,当2k =时,10523233k +=,故答案为:23,128,233.【点睛】本题主要考查了有理数与代数式的综合运用,准确找出相应规律是解题关键.21..【解析】【分析】根据已知的式子中的数的特点得到分母是相差3的两个整数相乘,分子为3,结果等于分母中的两个数的倒数相减,由此得到答案.【详解】由,,,可知每个式子等 解析:3(32)(31)n n -+ 113231n n --+ 300301. 【解析】【分析】根据已知的式子中的数的特点得到分母是相差3的两个整数相乘,分子为3,结果等于分母中的两个数的倒数相减,由此得到答案.【详解】 由13111414a ==-⨯,23114747a ==-⨯,3311710710a ==-⨯,可知每个式子等于相差3的两个整数的乘积且第二个整数比序数的3倍大1,此时分子为3,等于相差3的两个整数的倒数的差, ∴311(32)(31)3231n a n n n n ==--+-+, ∴123100a a a a +++⋯+, =11111111114477101013298301-+-+-+-++-, =11301-, =300301, 故答案为:3(32)(31)n n -+, 113231n n --+,300301. 【点睛】此题考查数字的规律探究,根据所给的代数式观察得到规律,并能表示出该规律是解题的关键,由此进行其他的应用计算.22.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.三、解答题23.(1)10%,20%;(2)300;(3)108;(4)90分及其以上【解析】【分析】(1)根据A 组,B 组在扇形统计图中所对应的圆心角度数即可得出结果;(2)根据题(1)A 组所占总人数的百分比以及条形统计图中A 组的具体人数即可得出总人数;(3)根据条形统计图中D 组的具体人数再结合总人数即可;(4)先求出E 组所占的百分比即可得出结果.【详解】解:(1)A 组人数占总人数的:36°÷360°×100%=10%,B 组人数占总人数的72°÷360°×100%=20%,故A 组、B 组分别占总人数的10%、20%;(2)30÷10%=300(人),故本次抽查学生总人数300人;(3)90÷300×360°=108°,D 组对应的圆心角为108°,a=108;(4)(360°-90°-72°-108°-36°)÷360°×1000=150(人),所以一等奖的分值定在90分及其以上即可.【点睛】本题主要考查的是扇形统计图和条形统计图的结合,正确的理解两个统计图是解题的关键.24.(1)3;(2)5-;(3)1505;(4)41k -【解析】【分析】(1)将前4个数字相加可得;(2)根据“相邻四个台阶上数的和都相等”列出方程求解可得;(3)根据(1)中的结果和题目中的数据可以求得从下到上的前2018个台阶上标着的数的和;(4)由循环规律即可知“1”所在的台阶数为41k -.【详解】(1)由题意得前4个台阶上数的和是52193--++=;(2)由题意得2193x -+++=,解得:5x =-,则第5个台阶上的数x 是5-;(3)由题意知台阶上的数字是每4个一循环,∵2018÷4=504…2,∴5043521505⨯--=,即从下到上前2018个台阶上数的和为1505;(4)根据题意可知数“1”所在的台阶数为:41k -.【点睛】本题考查了探索规律-数字的变化类,解题的关键是根据相邻四个台阶上数的和都相等得出台阶上的数字是每4个一循环.25.(1)76;(2)10.【解析】【分析】(1)先乘方,再求绝对值和乘法,最后计算加减即可;(2)先计算括号里的减法和乘方,再求绝对值和乘法,最后计算加减.【详解】(1)()()32832245-+÷---⨯,解:原式=()()8328165-+÷---⨯;=()8480-+--;=76;(2)|﹣9|÷3+(1223-)×12+32; 解:原式=9÷3+(16-)×12+9; =3+(-2)+9;=10.【点睛】本题主要考查有理数的混合运算,解决本题的关键是要熟练掌握有理数运算法则.26.(1)2()a b --;(2)-9;(3)8【解析】【分析】(1)利用整体思想,把2()a b -看成一个整体,进行合并即可得到结果; (2)原式可化为3(x 2-2y )-21,把x 2-2y=4整体代入即可;(3)依据a-2b=3,2b-c=-5,c-d=10,即可得到a-c=-2,2b-d=5,整体代入进行计算即可.【详解】(1)∵()()()()2222236236((2))a b a b a a b a b b ---+-=---=-+; 故答案为:2()a b --;(2)∵224x y -=, ∴原式=3(x 2-2y )-21=12-21= -9;(3)∵a-2b=3,2b-c=-5,c-d=10,∴()()222a b b c a c -+-=-=-,()()225c d b c b d -+-=-=∴原式=-2+5-(-5)=8.故答案为(1)2()a b --;(2)-9;(3)8.【点睛】本题主要考查了整式的加减,解决问题的关键是运用整体思想;给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.27.(1)9;(2)a 的值为10或-10;(3)见解析,c 的值为6或607【解析】【分析】(1)依据|a-b|=15,a ,b 异号,即可得到a 的值;(2)分点A 在原点左、右两侧两种情况讨论,依据OA=2OB ,即可得到a 的值;(3)分点C 在点B 左、右两侧两种情况进行讨论,依据O 为AC 的中点,OB=3BC ,设未知数列方程即可得到所有满足条件的c 的值.【详解】解:(1)∵b=-6,|a-b|=15,∴|a+6|=15,∴a+6=15或-15,∴a=9或-21,∵点A和点B分别位于原点O两侧,b=-6,∴a>0,∴a=9,故答案为:9;(2)当A在原点左侧时,点A表示的数为a,又|a-b|=15,即A,B两点间的距离为15,则可知B点对应的数为a+15,如图,由OA=2OB得,2(a+15-0)=0-a,解得a=-10;当A在原点右侧时,可知B点对应的数为a-15,如图,由OA=2OB得,2[0-(a-15)]=a-0,解得,a=10.综上所得:a=10或-10;(3)满足条件的C有两种情况:①当点C在点B左侧时,如图,设BC=x,由O为AC的中点,OB=3BC,则OC=OA=2x,∴AB=x+2x+2x=15,解得x=3,∴OC=2x=6,故c=6;②当点C在点B右侧时,如图,设BC=x,由O为AC的中点,OB=3BC,则OB=3x,OA=OC=4x,∴AB=3x+4x=15,解得x=157,∴OC=4x=607,则c=60 7,综上所述,c的值为6或607.【点睛】此题考查了线段长度的计算,一元一次方程的应用和数轴上两点间距离的计算,用到的知识点是线段的中点,关键是根据线段的和差关系求出线段的长度.28.(1)相等;(2)h(a-2h)2;(3)3【解析】【分析】(1)根据图形作答即可;(2)根据长方体体积公式即可解答;(3)将h=2,3分别代入体积公式,即可求出m,n的值;再根据材料一定时长方体体积最大与底面积和高都有关,进而得出答案.【详解】解:(1)由折叠可知,剪去的小正方形的边长与折成的无盖长方体盒子的高之间的大小关系为相等,故答案为:相等;(2)这个无盖长方体盒子的容积=h(a-2h)(a-2h)=h(a-2h)2(cm3);故答案为:h(a-2h)2;(3)当剪去的小正方形的边长取2时,m=2×(20-2×2)2=512,当剪去的小正方形的边长取3时,n=3×(20-2×3)2=588,当剪去的小正方形的边长的值逐渐增大时,所得到的无盖长方体纸盒的容积的值先增大后减小,当剪去的小正方形的边长为3cm时,所得到的无盖长方体纸盒的容积最大.故答案为:3.【点睛】此题主要考查了几何体的体积求法以及展开图问题,根据题意表示出长方体体积是解题关键.。

人教版数学七年级上学期《期末考试试题》及答案解析

人教版数学七年级上学期《期末考试试题》及答案解析
请解答上述问题.
21.如图,直线AB、CD相交于点O,OE平分∠AOC,OE⊥OF,∠AOE=32°.
(1)求∠DOB的度数;
(2)OF是∠AOD的角平分线吗?为什么?
22.(1)由大小相同 小立方块搭成的几何体如图1,请在图2的方格中画出该几何体的俯视图和左视图.
(2)用小立方体搭一个几何体,使得它的俯视图和左视图与你在方格中所画的一致,则这样的几何体最少要个小立方块,最多要个小立方块.
人 教 版 数 学 七年 级上学 期
期末测 试 卷
学校________班级________姓名________成绩________
一、选择题(每小题3分,满分24分)
1. 的倒数是()
A. B. C. D.
2.“比 的3倍大5的数”用代数式表示为()
A. B. C. D.
3.下列计算结果正确的是()
[答案]7或-7
[解析]
[分析]
设输入的数为x,根据程序列出方程求解即可.
[详解]解:设输入的数为x,则有:
当y=3时,得:
,
解得
故答案为7或-7
[点睛]本题考查了计算程序和列方程求解,能理解程序图是解题关键.
14.如图,若D是AB的中点,E是BC的中点,若AC=8,BC=5,则AD=______.
[详解]主视图与左视图是长方形,所以该几何体是柱体,
又因为俯视图是圆,
所以该几何体是圆柱,
故选C
[点睛]本题考查了由三视图确定几何体的形状,熟练掌握常见几何体的三视图是解题的关键.
6.下列说法正确的个数是()
①射线MN与射线NM是同一条射线;
②两点确定一条直线;
③两点之间直线最短;
④若2AB=AC,则点B是AC的中点

七年级上册数学期末试题及答案解答

七年级上册数学期末试题及答案解答

七年级上册数学期末试题及答案解答一、选择题1.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间()A.30分钟B.35分钟C.42011分钟D.36011分钟2.一个角是这个角的余角的2倍,则这个角的度数是()A.30B.45︒C.60︒D.75︒3.如图,数轴的单位长度为1,点A、B表示的数互为相反数,若数轴上有一点C到点B 的距离为2个单位,则点C表示的数是()A.-1或2 B.-1或5 C.1或2 D.1或54.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a、b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+55.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为()4a b c﹣23…A.4 B.3 C.0 D.﹣26.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是( )A.(-1)n-1x2n-1B.(-1)n x2n-1C.(-1)n-1x2n+1D.(-1)n x2n+17.方程3x+2=8的解是()A.3 B.103C.2 D.128.方程3x﹣1=0的解是()A.x=﹣3 B.x=3 C.x=﹣13D.x=139.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱10.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥11.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+12.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( ) A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元二、填空题13.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元. 14.写出一个比4大的无理数:____________.15.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.16.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___17.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 18.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______. 19.52.42°=_____°___′___″.20.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 21.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.22.若a 、b 是互为倒数,则2ab ﹣5=_____.23.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 24.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________. 三、压轴题25.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).26.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.27.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.28.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.29.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6 a b x -1 -2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.30.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.31.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)32.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合.设小强做数学作业花了x分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x分钟,由题意得6x-0.5x=180,解之得x= 360 11.故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).3.D解析:D【解析】【分析】如图,根据点A、B表示的数互为相反数可确定原点,即可得出点B表示的数,根据两点间的距离公式即可得答案.【详解】如图,设点C表示的数为m,∵点A、B表示的数互为相反数,∴AB的中点O为原点,∴点B表示的数为3,∵点C到点B的距离为2个单位,=2,∴3m∴3-m=±2,解得:m=1或m=5,∴m的值为1或5,故选:D.【点睛】本题考查了数轴,熟练掌握数轴上两点间的距离公式是解题关键.4.A解析:A【解析】试题分析:设段数为x,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n时,x=4n+1.故选A.考点:探寻规律.5.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,解得c=4,a+b+c=b+c+(-2),所以,数据从左到右依次为4、-2、b 、4、-2、b , 第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环, ∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2. 故选D. 【点睛】此题考查数字的变化规律,仔细观察排列规律求出a 、b 、c 的值,从而得到其规律是解题的关键.6.C解析:C 【解析】 【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负, 指数为从第3开始的奇数,所以指数部分规律为21n , ∴第n 个单项式是 (-1)n -1x 2n +1 , 故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.7.C解析:C 【解析】 【分析】移项、合并后,化系数为1,即可解方程. 【详解】解:移项、合并得,36x =, 化系数为1得:2x =, 故选:C . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.8.D解析:D 【解析】方程移项,把x系数化为1,即可求出解.【详解】解:方程3x﹣1=0,移项得:3x=1,解得:x=13,故选:D.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,故选:C.【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.10.C解析:C【解析】【分析】根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.【详解】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故选:C.【点睛】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.11.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.12.D解析:D【解析】【分析】设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.【详解】解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元..故选:D【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.二、填空题13.33【解析】【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x 元解析:33【解析】【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元).故答案为:33.【点睛】本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 14.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.15.【解析】【分析】根据题意列出含a的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a-【解析】【分析】根据题意列出含a的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a--,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a⎡⎤--+⨯=-⎣⎦故填:60200a-.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键. 16.【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,解析:1214【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据2137SS=,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,∵AB=10,BC=13,∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,AH=13−DH=13−(10−a)=a+3,∵2137SS=,即23(3)7aa a=+,∴4a2−9a=0,解得:a 1=0(舍),a 2=94, 则S 3=(10−2a )2=(10−92)2=1214, 故答案为1214. 【点睛】 本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.17.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大18.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键. 19.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.20.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.21.100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案解析:100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.故答案为100.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.23.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.24.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是解析:18.4C-︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.三、压轴题25.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 26.(1)35°;(2)∠AOE﹣∠BOF的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF=(3t+14)°,故3314202t t+=+,解方程即可求出t的值.【详解】解:(1)∵OE平分∠AOC,OF平分∠BOD,∴11AOE AOC11022︒∠=∠=⨯=55°,11AOF BOD402022︒︒∠=∠=⨯=,∴∠AOE﹣∠BOF=55°﹣20°=35°;(2)∠AOE﹣∠BOF的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.27.(1)﹣14,8﹣5t ;(2)2.5或3秒时P 、Q 之间的距离恰好等于2;(3)点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B 点表示的数为8﹣22;点P 表示的数为8﹣5t ;(2)设t 秒时P 、Q 之间的距离恰好等于2.分①点P 、Q 相遇之前和②点P 、Q 相遇之后两种情况求t 值即可;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,根据AC ﹣BC =AB ,列出方程求解即可;(3)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB =22,∴点B 表示的数是8﹣22=﹣14,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8﹣5t .故答案为:﹣14,8﹣5t ;(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2.分两种情况: ①点P 、Q 相遇之前,由题意得3t +2+5t =22,解得t =2.5;②点P 、Q 相遇之后,由题意得3t ﹣2+5t =22,解得t =3.答:若点P 、Q 同时出发,2.5或3秒时P 、Q 之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.28.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.29.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a+b=a+b+x,解得x=6,a+b+x=b+x-1,∴a=-1,所以数据从左到右依次为6、-1、b、6、-1、b,第9个数与第三个数相同,即b=-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1.故答案为:6,-1.(2)∵6+(-1)+(-2)=3,∴2019÷3=673.∵前k个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k的值为:673×3=2019或671×3+1=2014.故答案为:2019或2014.(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.【点睛】本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.30.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】。

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。

七年级上册数学期末考试试卷及答案

七年级上册数学期末考试试卷及答案

七年级上册数学期末考试试卷及答案七年级上册数学期末考试试卷及答案期末考试对学生一个学期所学知识做全面的检测,下面是店铺为大家整理的七年级数学期末考试卷及答案,希望大家能够认真做题,查漏补缺!更多考试相关内容请及时关注我们店铺!一、选择题(共15小题,每小题3分,满分45分)1. |﹣2|等于( )A.﹣2B.﹣C.2D.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是( )A.1枚B.2枚C.3枚D.任意枚3.下列方程为一元一次方程的是( )A.y+3=0B.x+2y=3C.x2=2xD. +y=24.下列各组数中,互为相反数的是( )A.﹣(﹣1)与1B.(﹣1)2与1C.|﹣1|与1D.﹣12与15.如图,下列图形全部属于柱体的是( )A. B. C. D.6.若关于x的方程mxm﹣2﹣m+3=0是一元一次方程,则这个方程的解是( )A.x=0B.x=3C.x=﹣3D.x=27.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是( )A.8cmB.84mC.8cm或4cmD.无法确定8.一元一次方程﹣ =1,去分母后得( )A.2(2x+1)﹣x﹣3=1B.2(2x+1)﹣x﹣3=6C.2(2x+1)﹣(x﹣3)=1D.2(2x+1)﹣(x﹣3)=69.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本.其中正确的判断有( )A.1个B.2个C.3个D.4个10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于( )A.30°B.45°C.50°D.60°11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB的大小为( )A.69°B.111°C.141°D.159°12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为( )A.5B.4C.3D.213.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元14.下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB= AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB 中点.其中正确的是( )A.①③④B.④C.②③④D.③④15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是( )A. B.C. D.二、填空题(共8小题,每小题3分,满分24分)16.单项式﹣ xy2的系数是.17.若x=2是方程8﹣2x=ax的解,则a= .18.计算:15°37′+42°51′=.19.在半径为6cm的圆中,60°的圆心角所对的扇形面积等于cm2(结果保留π).20.如图,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD= cm.21.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为度.22.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为.23.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为.三、解答题(共7小题,满分51分)24.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)先化简再求值(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.25.解方程:(1)2(3﹣y)=﹣4(y+5);(2) = ;(3) ﹣ =1;(4)x﹣ =1﹣ .26.列方程解应用题:根据图中提供的信息,求出一个杯子的价格是多少元?27.列方程解应用题:已知A、B两地相距48千米,甲骑自行车每小时走18千米,乙步行每小时走6千米,甲乙两人分别A、B两地同时出发.(1)同向而行,开始时乙在前,经过多少小时甲追上乙?(2)相向而行,经过多少小时两人相距40千米?28.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间为2小时的扇形圆心角的度数.29.已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.30.已知关于x的方程的解是x=2,其中a≠0且b≠0,求代数式的值.四、选做题(共3小题,不计入总分)31.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是(请写出盈利或亏损) 元.32.|x+2|+|x﹣2|+|x﹣1|的最小值是.33.一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积.2015-2016学年山东省济南市历下区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.|﹣2|等于( )A.﹣2B.﹣C.2D.【考点】绝对值.【专题】探究型.【分析】根据绝对值的定义,可以得到|﹣2|等于多少,本题得以解决.【解答】解:由于|﹣2|=2,故选C.【点评】本题考查绝对值,解题的关键是明确绝对值的定义.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是( )A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.下列方程为一元一次方程的是( )A.y+3=0B.x+2y=3C.x2=2xD. +y=2【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、正确;B、含有2个未知数,不是一元一次方程,选项错误;C、最高次数是2次,不是一元一次方程,选项错误;D、不是整式方程,不是一元一次方程,选项错误.故选A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.下列各组数中,互为相反数的是( )A.﹣(﹣1)与1B.(﹣1)2与1C.|﹣1|与1D.﹣12与1【考点】相反数;绝对值;有理数的乘方.【专题】计算题.【分析】根据相反数得到﹣(﹣1),根据乘方得意义得到(﹣1)2=1,﹣12=﹣1,根据绝对值得到|﹣1|=1,然后根据相反数的定义分别进行判断.【解答】解:A、﹣(﹣1)=1,所以A选项错误;B、(﹣1)2=1,所以B选项错误;C、|﹣1|=1,所以C选项错误;D、﹣12=﹣1,﹣1与1互为相反数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了绝对值与有理数的乘方.5.如图,下列图形全部属于柱体的是( )A. B. C. D.【考点】认识立体图形.【专题】常规题型.【分析】根据柱体的定义,结合图形即可作出判断.【解答】解:A、左边的图形属于锥体,故本选项错误;B、上面的图形是圆锥,属于锥体,故本选项错误;C、三个图形都属于柱体,故本选项正确;D、上面的图形不属于柱体,故本选项错误.故选C.【点评】此题考查了认识立体图形的知识,属于基础题,解答本题的关键是掌握柱体和锥体的定义和特点,难度一般.6.若关于x的方程mxm﹣2﹣m+3=0是一元一次方程,则这个方程的解是( )A.x=0B.x=3C.x=﹣3D.x=2【考点】一元一次方程的定义.【专题】计算题.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.【解答】解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.7.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是( )A.8cmB.84mC.8cm或4cmD.无法确定【考点】两点间的距离.【分析】根据点B在线段AC上和在线段AC外两种情况进行解答即可.【解答】解:如图1,当点B在线段AC上时,∵AB=6cm,BC=2cm,∴AC=6+2=8cm;如图2,当点CB在线段AC外时,∵AB=6cm,BC=2cm,∴AC=6﹣2=4cm.故选:C.【点评】本题考查的是两点间的距离,正确理解题意、灵活运用分情况讨论思想是解题的关键.8.一元一次方程﹣ =1,去分母后得( )A.2(2x+1)﹣x﹣3=1B.2(2x+1)﹣x﹣3=6C.2(2x+1)﹣(x﹣3)=1D.2(2x+1)﹣(x﹣3)=6【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程两边乘以6去分母得到结果,即可作出判断.【解答】解:去分母得:2(2x+1)﹣(x﹣3)=6,故选D【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.9.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本.其中正确的判断有( )A.1个B.2个C.3个D.4个【考点】总体、个体、样本、样本容量;全面调查与抽样调查.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:①这种调查方式是抽样调查故①正确;②6000名学生的数学成绩是总体,故②错误;③每名学生的数学成绩是个体,故③正确;④500名学生是总体的一个样本,故④正确;故选:C.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于( )A.30°B.45°C.50°D.60°【考点】角的计算.【专题】计算题.【分析】从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.故选A.【点评】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB的大小为( )A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为( )A.5B.4C.3D.2【考点】两点间的距离.【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.【解答】解:∵AB=10,M是AB中点,∴BM= AB=5,又∵NB=2,∴MN=BM﹣BN=5﹣2=3.故选C.【点评】考查了两点间的距离,根据点M是AB中点先求出BM 的长度是解本题的关键.13.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.14.下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB= AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB 中点.其中正确的是( )A.①③④B.④C.②③④D.③④【考点】比较线段的长短.【专题】应用题.【分析】根据线段中点的定义:线段上一点,到线段两端点距离相等的点,可进行判断解答.【解答】解:①如图,AM=BM,但M不是线段AB的中点;故本选项错误;②如图,由AB=2AM,得AM=MB;故本选项正确;③根据线段中点的定义判断,故本选项正确;④根据线段中点的定义判断,故本选项正确;故选C.【点评】本题考查了线段中点的判断,符合线段中点的条件:①在已知线段上②把已知线段分成两条相等线段的点.15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是( )A. B.C. D.【考点】由实际问题抽象出一元一次方程.【分析】轮船沿江从A港顺流行驶到B港,则由B港返回A港就是逆水行驶,由于船速为26千米/时,水速为2千米/时,则其顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26﹣2=24千米/时.根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系:轮船从A港顺流行驶到B港所用的时间=它从B港返回A港的时间﹣3小时,据此列出方程即可.【解答】解:设A港和B港相距x千米,可得方程:= ﹣3.故选A.【点评】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度﹣水流速度.二、填空题(共8小题,每小题3分,满分24分)16.单项式﹣ xy2的系数是﹣.【考点】单项式.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣ xy2的系数是﹣,故答案为:﹣ .【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.17.若x=2是方程8﹣2x=ax的解,则a= 2 .【考点】一元一次方程的解.【分析】把x=2,代入方程得到一个关于a的方程,即可求解.【解答】解:把x=2代入方程,得:8﹣4=2a,解得:a=2.故答案是:2.【点评】本题考查了方程的解的定义,理解定义是关键.18.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.19.在半径为6cm的圆中,60°的圆心角所对的扇形面积等于6πcm2(结果保留π).【考点】扇形面积的计算.【分析】直接利用扇形面积公式计算即可.【解答】解:=6π(cm2).故答案为6π.【点评】此题主要考查了扇形的面积公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形= .熟记公式是解题的关键.20.如图,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD= 15 cm.【考点】比较线段的长短.【专题】计算题.【分析】已知AB和AC的长度,即可求出BC的长度,点D是BC的中点,则可求出CD的长度,AD的长度等于AC的长度加上CD 的长度.【解答】解:因为AB=24cm,AC=6cm,所以BC=18cm,点D是BC中点,所以CD的长度为:9cm,AD=AC+CD=15cm.【点评】本题关键是根据题干中的图形得出各线段之间的关系,然后根据这些关系并结合已知条件即可求出AD的长度.21.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为20 度.【考点】角平分线的定义.【分析】先求出∠BOC=140°,再由OD平分∠BOC,求出∠COD= ∠BOC=70°,即可求出∠DOE=20°.【解答】解:∵∠AOC=40°,∴∠BOC=180°﹣∠AOC=140°,∵OD平分∠BOC,∴∠COD= ∠BOC=70°,∵∠COE=90°,∴∠DOE=90°﹣70°=20°;故答案为:20.【点评】本题考查了角平分线的定义;弄清各个角之间的数量关系是解决问题的关键.22.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为55 .【考点】轴对称的性质.【分析】根据轴对称的性质可得∠B′OG=∠BOG,再根据∠AOB′=70°,可得出∠B′OG的度数.【解答】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=70°,可得∠B′OG+∠BOG=110°∴∠B′OG= ×110°=55°.【点评】本题考查轴对称的性质,在解答此类问题时要注意数形结合的应用.23.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为(﹣1)n+1•2n•xn.【考点】单项式.【专题】规律型.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵2x=(﹣1)1+1•21•x1;﹣4x2=(﹣1)2+1•22•x2;8x3=(﹣1)3+1•23•x3;﹣16x4=(﹣1)4+1•24•x4;第n个单项式为(﹣1)n+1•2n•xn,故答案为:(﹣1)n+1•2n•xn.【点评】本题考查了单项式的应用,解此题的关键是找出规律直接解答.三、解答题(共7小题,满分51分)24.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)先化简再求值(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.【考点】整式的加减—化简求值;有理数的减法;有理数的乘方.【专题】计算题;整式.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式去括号合并得到最简结果,把a的`值代入计算即可求出值.【解答】解:(1)原式=﹣1﹣5×(2﹣9)=﹣1+35=34;(2)原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13,当a=﹣1时,原式=﹣3﹣34﹣13=﹣50.【点评】此题考查了整式的加减﹣化简求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.25.解方程:(1)2(3﹣y)=﹣4(y+5);(2) = ;(3) ﹣ =1;(4)x﹣ =1﹣ .【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣2y=﹣4y﹣20,移项合并得:2y=﹣26,解得:x=﹣13;(2)去分母得:6x﹣4=3,移项合并得:6x=7,解得:x= ;(3)去分母得:6(3x+4)﹣(7﹣2x)=12,去括号得:18x+24﹣7+2x=12,移项合并得:20x=﹣5,解得:x=﹣0.25;(4)去分母得:6x﹣3(3﹣2x)=6﹣(x+2),去括号得:6x﹣9+6x=6﹣x﹣2,移项合并得:13x=13,解得:x=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.26.列方程解应用题:根据图中提供的信息,求出一个杯子的价格是多少元?【考点】一元一次方程的应用.【分析】设一个杯子的价格是x元,则一把暖瓶为(43﹣x)元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设一个杯子的价格是x元,则一把暖瓶为(43﹣x)元,依题意得:3x+2(43﹣x)=94,解得x=8.答:一个杯子的价格为8元.【点评】本题考查了一元一次方程的应用.关键是根据图,得出保温瓶与杯子的价钱之间的数量关系,再根据数量关系的特点,选择合适的方法进行计算.27.列方程解应用题:已知A、B两地相距48千米,甲骑自行车每小时走18千米,乙步行每小时走6千米,甲乙两人分别A、B两地同时出发.(1)同向而行,开始时乙在前,经过多少小时甲追上乙?(2)相向而行,经过多少小时两人相距40千米?【考点】一元一次方程的应用.【分析】(1)根据题意可以列出相应的方程,本题得以解决;(2)根据题意,分两种情况,一种是相遇前相距40千米,一种是相遇后相距40千米,从而可以分别写出两种情况下的方程,本题得以解决.【解答】解:(1)设同向而行,开始时乙在前,经过x小时甲追上乙,18x﹣6x=48解得,x=4即同向而行,开始时乙在前,经过4小时甲追上乙;(2)设相向而行,经过x小时两人相距40千米,18x+6x=48﹣40或18x+6x=48+40,解得x= 或x=即相向而行,经过小时或小时两人相距40千米.【点评】本题考查一元一次方程的应用,解题的关键是明确题意,列出相应的方程,注意第(2)问有两种情况.28.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间为2小时的扇形圆心角的度数.【考点】频数(率)分布直方图;扇形统计图.【分析】(1)根据时间是1小时的有32人,占40%,据此即可求得总人数;(2)利用总人数乘以百分比即可求得时间是0.5小时的一组的人数,即可作出直方图;(3)利用360°乘以活动时间是2小时的一组所占的百分比即可求得圆心角的度数.【解答】解:(1)调查人数=32÷40%=80(人);(2)户外活动时间为0.5小时的人数=80×20%=16(人);补全频数分布直方图见下图:(3)表示户外活动时间2小时的扇形圆心角的度数= ×360°=48°.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.29.已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.【考点】角平分线的定义.【分析】先根据角平分线的性质求出∠AOC的度数,再由AO⊥DO求出∠AOD的度数,根据∠COD=∠AOD﹣∠AOC即可得出结论.【解答】解:∵∠AOB=150°,OC平分∠AOB,∴∠AOC= ∠AOB=75°.∵AO⊥DO,∴∠AOD=90°,∴∠COD=∠AOD﹣∠AOC=90°﹣75°=15°.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.30.已知关于x的方程的解是x=2,其中a≠0且b≠0,求代数式的值.【考点】一元一次方程的解;代数式求值.【专题】计算题.【分析】此题把x的值代入,得出与的值,即可得出此题答案.【解答】解:把x=2代入方程得:,∴3(a﹣2)=2(2b﹣3),∴3a﹣6=4b﹣6,∴3a=4b,∴ ,,∴ .【点评】此题考查的是一元一次方程的解,关键在于解出关于a,b的比值.四、选做题(共3小题,不计入总分)31.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是亏损(请写出盈利或亏损) 80 元.【考点】一元一次方程的应用.【分析】设盈利20%的电子琴的成本为x元,设亏本20%的电子琴的成本为y元,再根据(1+利润率)×成本=售价列出方程,解方程计算出x、y的值,进而可得答案.【解答】解:设盈利20%的电子琴的成本为x元,x(1+20%)=960,解得x=800;设亏本20%的电子琴的成本为y元,y(1﹣20%)=960,解得y=1200;∴960×2﹣(800+1200)=﹣80,∴亏损80元,故答案为:亏损;80.【点评】此题主要考查了一元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.32.|x+2|+|x﹣2|+|x﹣1|的最小值是 4 .【考点】绝对值.【分析】根据|x﹣a|表示数轴上x与a之间的距离,因而原式表示:数轴上一点到﹣2,2和1距离的和,当x在﹣2和2之间的1时距离的和最小.【解答】解:|x+2|+|x﹣2|+|x﹣1|表示:数轴上一点到﹣2,2和1距离的和,当x在﹣2和2之间的1时距离的和最小,是4.故答案为:4.【点评】本题主要考查了绝对值的意义,正确理解|x﹣a|表示数轴上x与a之间的距离,是解决本题的关键.33.一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积.【考点】圆柱的计算.【专题】计算题.【分析】结合图形,知水的体积不变,从而根据第二个图空着的部分的高度是2cm,可以求得水与空着的部分的体积比为4:2=2:1.结合第一个图中水的体积,即可求得总容积.【解答】解:由已知条件知,第二个图上部空白部分的高为7﹣5=2cm,从而水与空着的部分的体积比为4:2=2:1.由第一个图知水的体积为10×4=40,所以总的容积为40÷2×(2+1)=60立方厘米.【点评】此题的关键是解决不同底的问题,能够有机地把两个图形结合起来,求得水与空着的部分的体积比.下载全文。

初一上册数学期末试卷及答案

初一上册数学期末试卷及答案

七年级第一学期期末试卷一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入题后括号内. 1.如果+20%表示增加20%,那么-6%表示( ). A .增加14% B .增加6% C .减少6% D .减少26%2.如果2()13⨯-=,则“”内应填的实数是( ) A .32B .23C .23-D .32-3. 实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1ab <D .0a b -<4. 下面说法中错误的是( ). A .368万精确到万位B .2.58精确到百分位C .0.0450有4个有效数字D .10000保留3个有效数字为1.00×1045.如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ( )A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱6.如果a <0,-1<b <0,则a ,ab ,2ab 按由小到大的顺序排列为( )A .a <ab <2abB .a <2ab <abC .ab <2ab <aD .2ab <a <ab7.在解方程5113--=x x 时,去分母后正确的是( )A .5x =15-3(x -1)B .x =1-(3 x -1)C .5x =1-3(x -1)D .5 x =3-3(x -1)b8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于( )A .4x -1B .4x -2C .5x -1D .5x -29. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n - B .m n - C .2m D .2n图1 图2 从正南方向看 从正西方向看 第7题 第8题10.若干个相同的正方体组成一个几何体,从不同方向看可以得到如图所示的形状,则这 个几何体最多可由多少个这样的正方体组成?( )A .12个B .13个C .14个D .18个二、填空题:本大题共10小题,每小题3分,共30分. 11.多项式132223-+--x xy y x x 是_______次_______项式12.三视图都是同一平面图形的几何体有 、 .(写两种即可) 13.若ab ≠0,则等式a b a b +=+成立的条件是______________. 14.若2320a a --=,则2526a a +-= .15.多项式223368x kxy y xy --+-不含xy 项,则k = ;16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)17.有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果 是________________.nnmn18.一个角的余角比它的补角的32还少40°,则这个角为 度.19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品20.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。

七年级(上)期末数学试卷(含答案解析)

七年级(上)期末数学试卷(含答案解析)

七年级(上)期末数学试卷(含答案解析)一、选择题(本大题共10小题,共30.0分)1.在下列有理数:-5,-(-3)3,|-|,0,-22中,负数有()A. 1个B. 2个C. 3个D. 4个2.随着北京公交车票价调整,乘客在乘车时可以通过新版公交站牌计算乘车费用,新版站牌每一个站名上方都有一个相应的数字,将上下车站站名称对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参考票制规则计算票价,具体来说:另外,一卡通刷卡实行8折优惠,小明用一卡通乘车上车时站名上对应的数字是5,下车时站名上对应的数字是20,那么小明乘车的费用是()A. 1.6元B. 2元C. 2.4元D. 3.2元3.下列各组中,不是同类项的是()A. 52与25B. -ab与baC. 0.2a2b与-a2bD. a2b3与-a3b24.下列说法:①倒数等于本身的数只有1;②若a、b互为相反数,那么a、b的商必定等于-1;③对于任意实数x,|x|+x一定是非负数;④两个负数,绝对值小的反而大,其中正确的个数是()A. 0个B. 1个C. 2个D. 3个5.在有理数-32,3.5,-(-3),|-2|、(-)2,-3.1415926中,负数的个数是()A. 1个B. 2个C. 3个D. 4个6.数18000用科学记数法表示为()A. 0.18×104B. 1.8×104C. 18×104D. 1.8×1057.下列各组数中,相等的一组是()A. (-2)3与-23B. (-2)2与-22C. (-3×2)3与3×(-2)3D. -32与(-3)+(-3)8.如图几何体的俯视图是()A.B.C.D.9.要使多项式不含的项,则的值是A. B. C. D.10.如图,已知AD∥BC,∠B=32°,DB平分∠ADE,则∠DEC=()A. 64°B. 66°C. 74°D. 86°二、填空题(本大题共10小题,共40.0分)11.单项式-4πa3b的系数是______.12.如图,数a,b,c所表示的数如图所示:化简代数式的结果为:|a+b-c|-2|b-a|+|2c|=______.13.已知有理数a、b在数轴上的位置如图所示,化简|a-b|+|a+b|的结果为______.14.已知a、b互为相反数,m、n互为倒数,x的绝对值为2,则-2mn+-x=______.15.将直角三角形按如图放置,直角顶点重合,则∠AOB+∠COD=______.16.若∠A的补角等于116°,则∠A= .17.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和相等,则a+b+c的值为______.18.如图.AC,BD交于点O.图中共有______ 条线段,它们分别是______ .19.废纸回收能减少树木的砍伐量,保持森林覆盖率,有利于封山育林减少水土流失,有利于生态环境,能减少化学原料的运用与排放,减少污染,有利于环境维护和降低消费本钱.若回收废纸1kg,可生产(结再生纸0.6kg,小明和小亮每学期分别能回收讲义等废纸a kg,b kg,这些废纸可生产再生纸______kg.果用含a,b的代数式表示)20.若x2=9,则x= ______ ;若x3=-27,x= ______ ;已知|x|=9,则x= ______ .三、计算题(本大题共1小题,共5.0分)21.先化简,再求值:5a2-[a2-(2a-5a2)-2(a2-3a)],其中a=4.四、解答题(本大题共7小题,共45.0分)22.某一出租车一天下午以菜市场为出发地在东西方向营运, 约定向东为正,向西为负,行车里程(单位:千米)依先后次序记录如下: +8,-3,-4,+2,-8,+13,-2(1)将最后一名乘客送到目的地,出租车离出发点菜市场多远?在菜市场的什么方向?(2)若每千米耗油0.2升,问从出发地出发到收工时共耗油多少升?23.有理数a,b,c在数轴上的位置如图所示,且|a|=|b|,化简|c-a|+|c-b|+|a+b|.24.由角的旋转的定义可知,平角的两边成一条直线,能不能说直线就是平角?周角两边重合成同一条射线,能不能说周角就是射线?为什么?25.如图,已知∠1+∠2=180°,∠3=∠B,对DE∥BC说明理由.理由:∵∠1+∠2=180°(已知)且∠1+______=180°(邻补角定义),∴∠2=______,∴BD∥EF (______),∴∠3=______(两直线平行,内错角相等),又∵∠3=∠B(已知)∴______=______(等量代换),∴DE∥BC (______).26.如图,点P是∠AOB的边OB上的一点,过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到______的距离,______是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是______(用“<”号连接)27.已知长方形的长为a,宽为b.(1)求阴影部分的面积.(用a、b字母表示)(2)当a=5,b=3时,求阴影部分的面积.28.已知直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;(2)如图2,判断∠PAB、∠CDP、∠APD之间的数量关系为______.(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠PAN+∠PAB=∠APD,求∠AND的度数.答案和解析1.【答案】B【解析】解:∵-(-3)3=27,|-|=,-22=-4,∴-5,-(-3)3,|-|,0,-22中,负数有-5,-22,故选B.首先化简各数,根据负数的定义分别进行判断,从而得出负数的个数即可.本题主要考查了正数和负数以及绝对值和乘方等知识,正确化简各数是解题关键.2.【答案】C【解析】解:小明乘车|20-5|=15(站),对应的票价为3元,3×80%=2.4(元),故选:C.先计算出小明乘车是15站,对照表格,对应的票价是3元,根据一卡通刷卡实行8折优惠,即可计算出费用.本题考查了有理数的减法,绝对值,根据题意求出小明乘车路程,对照表格,得出对应的票价,这是解题的关键.3.【答案】D【解析】解:A.52与25是同类项,故此选项不符合题意;B.-ab与ba所含字母相同,相同字母的指数相同,是同类项,故此选项不符合题意;C.0.2a2b与-a2b所含字母相同,相同字母的指数相同,是同类项,故此选项不符合题意;Da2b3与-a3b2所含字母相同,但相同字母的指数不同,不是同类项,故此选项符合题意.故选:D.根据同类项的定义(所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项)即可作出判断.本题考查了同类项,掌握同类项的定义是解答本题的关键.4.【答案】C【解析】解:①倒数等于本身的数只有1,错误,还有-1;②若a、b互为相反数,那么a、b的商必定等于-1,错误,a,b不能等于0;③对于任意实数x,|x|+x一定是非负数,正确;④两个负数,绝对值小的反而大,正确.故选:C.直接利用倒数以及绝对值和相反数的性质分别分析得出答案.此题主要考查了倒数以及绝对值和相反数的性质,正确把握相关性质是解题关键.5.【答案】B【解析】解:-32=-9,-(-3)=3,|-2|=2,,∴-32,-3.1415926是负数,一共2个,故选:B.根据有理数的乘方法则、相反数的概念、绝对值的性质计算,根据负数的概念判断即可.本题考查的是有理数的乘方、绝对值的性质、正数和负数,掌握有理数的乘方法则、绝对值的性质是解题的关键.6.【答案】B【解析】解:18000=1.8×104.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【答案】A【解析】解:A.(-2)3=-8,-23=-8,相等,此选项符合题意;B.(-2)2=4,-22=-4,不相等,此选项不符合题意;C.(-3×2)3=(-6)3=-216,3×(-2)3=3×(-27)=-81,不相等,此选项不符合题意;D.-32=-9,(-3)+(-3)=-6,不相等,此选项不符合题意;故选:A.根据乘方的定义和有理数混合运算顺序逐一计算即可判断.本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.8.【答案】C【解析】解:从上面看,是一个矩形,矩形内部是一个由虚线围成的小矩形.故选:C.找到从几何体的上面看所得到图形即可.此题主要考查了简单几何体的三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.注意所看到的线都要用实线表示出来.9.【答案】D【解析】由题意得,,,,故选D。

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试题一、单选题1.﹣8的相反数是()A .8B .18C .18-D .-82.下列方程为一元一次方程的是()A .538+=B .24x y +=C .30y -=D .22x x =+3.下列几何体中,面的个数最少的是()A .B .C .D .4.整式23xy -的系数是()A .-3B .3C .3x -D .3x5.如图,数轴上A 、B 两点表示的数分别为a 、b ,则a+b 的值是()A .负数B .0C .正数D .无法判断6.将数据3800000用科学记数法表示为()A .63.810⨯B .53.810⨯C .60.3810⨯D .53810⨯7.若5620'A ∠=︒,则A ∠补角的大小是()A .3440'︒B .3340'︒C .12440'︒D .12340'︒8.下列各图中表示射线MN ,线段PQ 的是()A .B .C .D .9.下列是根据等式的性质进行变形,正确的是()A .若a b =,则66a b +=-B .若ax ay =,则x y =C .若11a b -=+,则a b =D .若55a b =--,则a b =10.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D ¢处,若130∠=︒,则2∠的度数为()A .30°B .60°C .50°D .55°二、填空题11.11月24日,某市的最低温度是8-℃,最高温度比最低温度高16℃,则该市的最高温度是__℃.12.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是_____.13.一件校服,按标价的8折出售,售价是x 元,这件校服的标价是____元.14.已知1x =是关于x 的一元一次方程20x a -=的解,则a 的值为_____.15.若213n x y -与3m x y 是同类项,则m n +=_____.16.如图,甲从点A 出发向北偏东62︒方向走到点B ,乙从点A 出发向南偏西18︒方向走到点C ,则BAC ∠的度数是______.17.观察下列图形,用黑、白两种颜色的五边形地砖按如图所示的规律拼成若干个蝴蝶图案,则第n 个图案中白色地砖有___块.18.若有理数a ,b ,c 在数轴上的位置如图所示,则化简:2a c a b c b +++--=______.三、解答题19.计算:21(4)29()53-÷+⨯---.20.解方程:3x+2(x ﹣2)=6.21.先化简,再求值:7xy+2(3xy ﹣2x 2y )﹣13xy ,其中x =﹣1,y =2.22.把下列各数在数轴上表示出来,并将它们按从大到小的顺序排列.1.5--,3-,0,122+,()22-,12-.23.用简便方法计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭(2)31.530.750.534⎛⎫-⨯-⨯- ⎪⎝⎭24.甲每天加工零件80个,甲加工3天后,乙也加入加工同一种零件,再经过5天,两人共加工这种零件1120个,问乙每天加工这种零件多少个?25.如图,点C 为线段AB 上一点,点D 为BC 的中点,且12AB =,4AC CD =.(1)求AC 的长;(2)若点E 在直线AB 上,且3AE =,求DE 的长.26.“文明其精神,野蛮其体魄”,为进一步提升学生体质健康水平,我市某校计划用640元购买12个体育用品,备选体育用品及单价如表:备用体育用品足球篮球排球单价(元)806040(1)若640元全部用来购买足球和排球共12个,求足球和排球各买多少个?(2)若学校先用一部分资金购买了m 个排球,再用剩下的资金购买了相同数量的足球和篮球,此时正好剩余40元,求m 的值.27.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m ).(1)求阴影部分的面积(用含x 的整式表示并保留π);(2)当9x =,π取3时,求阴影部分的面积.28.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=_______(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=_______(直接写出结果).参考答案1.A【分析】根据相反数的概念:只有符号不同的两个数互为相反数可得答案.【详解】解:-8的相反数是8,故选A.【点睛】此题主要考查了相反数,关键是掌握相反数的定义.2.C【分析】根据一元一次方程的定义进行判断即可.+=不含未知数,所以不是一元一次方程;【详解】538+=含有两个未知数,所以不是一元一次方程;x y24y-=含有一个未知数,且未知数的最高次数为1,所以是一元一次方程;3022x x=+含有一个未知数,且未知数的项的次数为2,所以不是一元一次方程.故选:C.【点睛】本题考查了一元一次方程的定义,即只含有一个未知数,且未知数的项的次数为1的整式方程,叫做一元一次方程.3.C【分析】根据三棱柱、四棱柱、圆锥和圆柱的特点找到答案即可.【详解】三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥.故选C .【点睛】本题考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.4.A【分析】根据单项式的系数的定义求解即可.【详解】解:23xy -的系数为-3,故选A .【点睛】本题主要考查了单项式的系数,解题的关键在于能够熟练掌握单项式的系数的定义.5.C【分析】根据数轴判断出a ,b 的取值范围,从而进一步解答问题.【详解】解:根据数轴可得,-1<a<0,1<b<2,且|a|<|b|∴ 0a b +>故选:C【点睛】本题考查了数轴,利用数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,得出a 、b 的大小是解题关键.6.A【分析】根据科学记数法进行改写即可.【详解】63800000 3.810=⨯故选:A .【点睛】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 为整数,确定a 与n 的值是解题的关键.7.D【分析】根据补角的定义解答即可.【详解】解:∵∠A =56°20′,∴∠A 的补角=180°−∠A =180°−56°20′=123°40′.故选:D .【点睛】本题主要考查了补角的定义以及角的度分秒换算,正确理解补角的定义是解题的关键.8.B【分析】直线没有端点,射线只有一个端点,线段有两个端点.【详解】解:根据射线MN 有一个端点,线段PQ 有两个端点得到选项B 符合题意,选项A 、C 、D 均不符合题意,故选:B .【点睛】本题考查射线、线段的定义,是基础考点,掌握相关知识是解题关键.9.D【分析】根据等式的性质依次判断即可.【详解】解:A.若a b =,则66a b +=+,原选项错误,不符合题意;B.若ax ay =,当a≠0时x =y ,原选项错误,不符合题意;C.若11a b -=+,则2a b =+,原选项错误,不符合题意;D.若55a b =--,则a b =,原选项正确,符合题意.故选:D .【点睛】本题主要考查了等式的性质,熟记等式的性质是解题的关键.10.B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.11.8【分析】根据题意列出算式,再根据有理数的加法法则计算即可.【详解】解:8168-+=℃所以该市的最高温度是8℃.故答案为:8【点睛】本题主要考查了有理数的运算,掌握有理数的加法法则是解题关键.12.两点之间,线段最短【分析】根据题意可知,A B 两点之间,线段AB 和折线ACB 比较,线段最短【详解】解:点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是两点之间,线段最短故答案为:两点之间,线段最短【点睛】本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.13.54x 或者1.25x【分析】根据售价=标价⨯折扣,即可得到答案.【详解】x =标价0.8⨯∴标价=50.84x x =故答案为:54x .【点睛】本题考查了列代数式,掌握售价、标价和折扣之间的关系式解题的关键.14.2【分析】把x=1代入方程2x-a=0,再求出关于a 的方程的解即可.【详解】解:把x=1代入方程2x-a=0得:2-a=0,解得:a=2,故答案为:2.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.15.0【详解】解:∵213n xy -与3m x y 是同类项,∴2,13m n =-=,解得:2,2m n ==-,∴()220+=+-=m n .故答案为:0【点睛】本题主要考查了同类项的定义,熟练掌握所含字母相同,并且相同字母的次数相同的两个单项式称为单项式是解题的关键.16.136︒##136度【分析】先求得AB 与正东方向的夹角度数,再利用角的和差解题.【详解】解:AB 与正东方向的夹角为90°-62°=28°则BAC ∠=28°+90°+18°=136°故答案为:136︒【点睛】本题考查方向角,正确理解方向角的定义是解题关键.17.()31m +【分析】观察发现:第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1.【详解】解:根据图示得:每个图形都比其前一个图形多3个白色地砖,第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1块.故答案为(3n+1).【点睛】本题考查了图形的变化规律,找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律是解题的关键.18.a【详解】试题解析:根据数轴上点的位置得:c <b <0<a ,且|c|>|a|∴c-b <0,2a+b >0,a+c<0则原式=-(a+c)+(2a+b)+(c-b)=-a-c+2a+b+c-b=a.故答案为a.19.0【分析】先算乘方和绝对值,然后再按有理数的四则混合运算法则计算即可.【详解】解:原式162(3)5=÷+--835=--0=.20.x =2【分析】去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:去括号,可得:3x+2x ﹣4=6,移项,可得:3x+2x =6+4,合并同类项,可得:5x =10,系数化为1,可得:x =2.【点睛】此题主要考查解一元一次方程,解题的关键是熟知方程的解法.21.-4x 2y ,-8【分析】直接去括号合并同类项,再把已知数据代入得出答案.【详解】解:原式=7xy+6xy-4x 2y-13xy=-4x 2y ,当x=-1,y=2时,原式=-4×(-1)2×2=-4×1×2=-8.22.数轴见详解,-3< 1.5--<12-<0<122+<()22-.【分析】先将绝对值及乘方的数化简,再根据有理数与数轴上点的对应关系表示各数.【详解】 1.5--=-1.5,()22-=4,将各数表示在数轴上:∴-3< 1.5--<12-<0<122+<()22-.【点睛】此题考查绝对值的化简,有理数的乘方运算,利用数轴上的点表示有理数的方法,有理数的大小比较.23.(1)1(2)0.75-【分析】(1)根据有理数加法的运算律求解即可;(2)先把分数化为小数,然后根据有理数乘法的结合律求解即可.(1)解:原式110.573(2.75)24⎡⎤⎡⎤⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()76=+-1=.(2)解:原式 1.530.750.53(0.75)=-⨯-⨯-1.530.750.530.75=-⨯+⨯0.75(1.530.53)=⨯-+0.75(1)=⨯-0.75=-.【点睛】本题主要考查了有理数的计算,熟知有理数的加法和乘法运算律是解题的关键.24.乙每天加工这种零件96个.【分析】直接利用甲加工的零件+乙加工的零件=1120,进而得出等式求出答案.【详解】解:设乙每天加工这种零件x 个,根据题意可得:80×3+5(80+x )=1120,解得:x=96,答:乙每天加工这种零件96个.【点睛】本题主要考查了一元一次方程的应用,正确表示出甲乙加工的零件数是解题关键.25.(1)8;(2)7或13.【分析】(1)根据中点的定义可得22BC CD BD ==,由4AC CD =,12AB =求得CD 进而求得AC ;(2)分情况讨论,①当点E 在线段AB 上时,②当点在线段BA 的延长线上,分别根据线段的和差关系,求得ED .【详解】解:(1)∵点D 为BC 的中点,22BC CD BD∴==,4AB AC BC AC CD =+= ,4212CD CD ∴+=,2CD ∴=4428AC CD ∴==⨯=;(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=12AB = ,∴E 点不在AB 的延长线上,所以DE 的长为7或13.【点睛】本题考查了线段的和差关系,线段中点的定义,数形结合是解题的关键.26.(1)购买足球4个,购买排球8个;(2)8【分析】(1)设购买足球x 个,排球y 个,然后根据题意列出方程求解即可;(2)根据题意求出购买足球和篮球的数量,然后列方程求解即可.【详解】解:(1)设购买足球x 个,排球y 个,根据题意得:128040640x y x y +=⎧⎨+=⎩,解得:48x y =⎧⎨=⎩.答:购买足球4个,购买排球8个.(2)依题意得:购买了m 个排球,则购买足球和排球的数量均为122m -个,所以有:12124080606404022m m m --+⨯+⨯=-解得:8m =.答:m 的值为8.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次方程的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.27.(1)()29620m 2x π--(2)241m 2【分析】(1)根据阴影部分与其它部分面积之间的关系列出代数式即可;(2)代入计算即可.(1)由图形中各个部分面积之间的关系,得221242(22)(42)22S x π+⎛⎫=+--+-⋅ ⎪⎝⎭阴影部分1462492x π=+--⨯()29620m 2x π=--.(2)当9x =,π取3时,()2 27415420m 22S =--=阴影部分.【点睛】本题考查了列代数式、代数式求值、圆的面积公式等知识,正确地列出代数式是正确解答的前提.28.(1)∠MON =45°,原因见解析;(2)35°;(3)12α【分析】(1)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(2)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(3)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB =90°,∠BOC =60°,∴∠AOC =90°+60°=150°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =75°,∠NOC =12∠BOC =30°∴∠MON =∠MOC ﹣∠NOC =45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α即∠MON=12α.故答案为:12α.。

人教版七年级上学期数学《期末考试卷》含答案解析

人教版七年级上学期数学《期末考试卷》含答案解析
19.解方程
(1)5(2﹣x)=﹣(2x﹣7);
(2)
[答案](1)x=1;(2)x=
[解析]
[分析]
(1)方程去括号,移项合并,把x系数化为1,即可求出解;
(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.
[详解](1)去括号得:10﹣5x=7﹣2x,
移项得:﹣5x+2x=7﹣10,
人 教 版 数 学 七年 级上学 期
期末测 试 卷
学校________班级________姓名________成绩________
一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.-2020的相反数是()
A.-2020B.2020C. D.
13.计算:3+2×(﹣4)=_____.
14.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为_____度.
15.方程x+5= (x+3)的解是________.
16.若x、y为有理数,且|x+2|+(y﹣2)2=0,则( )2019的值为_____.
17.若代数式x2+3x﹣5 值为2,则代数式2x2+6x﹣3的值为_____.
A.1个B.2个C.3个D.4个
9.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()
A.a+b>0B.ab>0C.a﹣b<oD.a÷b>0
10.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是()
(2)(﹣34)× +(﹣16)

七年级上期末数学试卷(含答案)

七年级上期末数学试卷(含答案)

七年级上期末数学试卷〖含答案〗一﹨选择题〖每小题3分,共36分〗:每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卷相应位置上1.﹣2的倒数是〖〗A.﹣B.C.﹣2 D.22.阿里巴巴数据显示,2015年天猫商城“双11”全球狂欢交易额超912亿元,数据912亿用科学记数法表示为〖〗A.912×108B.91.2×109C.9.12×1010 D.0.912×10103.下列调查中,其中适合采用抽样调查的是〖〗①检测深圳的空气质量;②为了解某中东呼吸综合征〖MERS〗确诊病人同一架飞机乘客的健康情况;③为保证“神舟9号”成功发射,对其零部件进行检查;④调查某班50名同学的视力情况.A.①B.②C.③D.④4.下列几何体中,从正面看〖主视图〗是长方形的是〖〗A.B.C.D.5.下列运算中,正确的是〖〗A.﹣2﹣1=﹣1 B.﹣2〖x﹣3y〗=﹣2x+3yC.D.5x2﹣2x2=3x26.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为〖〗A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离7.已知2x3y2m和﹣x n y是同类项,则m n的值是〖〗A.1 B.C.D.8.如图,已知点C在线段AB上,点M﹨N分别是AC﹨BC的中点,且AB=8cm,则MN的长度为〖〗cm.A.2 B.3 C.4 D.69.下列说法中,正确的是〖〗A.绝对值等于它本身的数是正数B.任何有理数的绝对值都不是负数C.若线段AC=BC,则点C是线段AB的中点D.角的大小与角两边的长度有关,边越长角越大10.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是〖〗A.100元B.105元C.110元D.115元11.如图是一块长为a,宽为b〖a>b〗的长方形空地,要将阴影部分绿化,则阴影面积是〖〗A.a2b2B.ab﹣πa2C.D.12.有理数a﹨b在数轴上的位置如图所示,下列选项正确的是〖〗A.a+b>a﹣b B.ab>0 C.|b﹣1|<1 D.|a﹣b|>1二﹨填空题〖每小题3分,共12分〗:请把答案按要求填到答题卷相应位置上.13.单项式的系数是.14.对于有理数a﹨b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆〖﹣3〗= .15.如图,在直线AD上任取一点O,过点O作射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,∠BOE的度数是.16.如图所示,用长度相等的小棒按一定规律摆成一组图案,第一个图案需要6根小棒,第2个图案需要11根小棒,第3个图案需要16根小棒…,则第n个图案需要根小棒.三﹨解答题:17.计算〖1〗10﹣〖﹣5〗+〖﹣9〗+6〖2〗.18.化简〖1〗化简〖2m+1〗﹣3〖m2﹣m+3〗〖2〗化简〖2m+1〗﹣3〖m2﹣2a2b〗19.解方程〖1〗3〖2x﹣1〗=5x+2〖2〗.20.在“迎新年,庆元旦”期间,某商场推出A﹨B﹨C﹨D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:〖1〗商场中的D类礼盒有盒.〖2〗请在图1扇形统计图中,求出A部分所对应的圆心角等于度.〖3〗请将图2的统计图补充完整.〖4〗通过计算得出类礼盒销售情况最好.21.列方程解应用题某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?22.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?〖1〗如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=55°,求∠A′BD的度数.〖2〗在〖1〗条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠2和∠CBE的度数.〖3〗如果将图2中改变∠ABC的大小,则BA′的位置也随之改变,那么〖2〗中∠CBE的大小会不会改变?请说明.23.某工艺品生产厂为了按时完成订单,对员工采取生产奖励活动,奖励办法以下表计算奖励金额,但是一个月后还是不能按时完成,厂家请工程师改进工艺流程,提高了产量.改进工艺前一月生产A﹨B两种工艺品共413件,改进工艺后的第一个月生产这两种工艺品共510件,其中A和B的生产量分别比改进工艺前一个月增长25%和20%.产量〖x件〗每件奖励金额〖元〗0<x≤10010100<x≤30020x>300 30〖1〗在工艺改进前一个月,员工共获得奖励金额多少元?〖2〗如果某车间员工想获得5500元奖金,需要生产多少件工艺品;〖3〗改进工艺前一个月,生产的A﹨B两种工艺品分别为多少件?七年级上学期期末数学试卷参考答案与试题解析一﹨选择题〖每小题3分,共36分〗:每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卷相应位置上1.﹣2的倒数是〖〗A.﹣B.C.﹣2 D.2【考点】倒数.【专题】常规题型.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.阿里巴巴数据显示,2015年天猫商城“双11”全球狂欢交易额超912亿元,数据912亿用科学记数法表示为〖〗A.912×108B.91.2×109C.9.12×1010 D.0.912×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于912亿有11位,所以可以确定n=11﹣1=10.【解答】解:912亿=912000 000 000=9.12×1010.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.3.下列调查中,其中适合采用抽样调查的是〖〗①检测深圳的空气质量;②为了解某中东呼吸综合征〖MERS〗确诊病人同一架飞机乘客的健康情况;③为保证“神舟9号”成功发射,对其零部件进行检查;④调查某班50名同学的视力情况.A.①B.②C.③D.④【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力﹨物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①检测深圳的空气质量,应采用抽样调查;②为了解某中东呼吸综合征〖MERS〗确诊病人同一架飞机乘客的健康情况,意义重大,应采用全面调查;③为保证“神舟9号”成功发射,对其零部件进行检查,意义重大,应采用全面调查;④调查某班50名同学的视力情况,人数较少,应采用全面调查,【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查﹨无法进行普查﹨普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.下列几何体中,从正面看〖主视图〗是长方形的是〖〗A.B.C.D.【考点】简单几何体的三视图.【分析】主视图是分别从物体正面看,所得到的图形.【解答】解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.下列运算中,正确的是〖〗A.﹣2﹣1=﹣1 B.﹣2〖x﹣3y〗=﹣2x+3yC.D.5x2﹣2x2=3x2【考点】有理数的混合运算;合并同类项;去括号与添括号.【分析】计算出各选项中式子的值,即可判断哪个选项是正确的.【解答】解:因为﹣2﹣1=﹣3,﹣2〖x﹣3y〗=﹣2x+6y,2÷6×=2×,5x2﹣2x2=3x2,故选D.【点评】本题考查有理数混合运﹨合并同类项﹨去括号与添括号,解题的关键是明确它们各自的计算方法.6.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为〖〗A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离【考点】直线的性质:两点确定一条直线.【分析】依据两点确定一条直线来解答即可.【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.【点评】本题主要考查的是直线的性质,掌握直线的性质是解题的关键.7.已知2x3y2m和﹣x n y是同类项,则m n的值是〖〗A.1 B.C.D.【考点】同类项.【分析】根据同类项的定义〖所含字母相同,相同字母的指数相同〗列出方程2m=1,n=3,求出n,m的值,再代入代数式计算即可.【解答】解:∵2x3y2m和﹣x n y是同类项,∴2m=1,n=3,∴m=,∴m n=〖〗3=.故选D.【点评】本题考查同类项的定义﹨方程思想及负整数指数的意义,是一道基础题,比较容易解答.8.如图,已知点C在线段AB上,点M﹨N分别是AC﹨BC的中点,且AB=8cm,则MN的长度为〖〗cm.A.2 B.3 C.4 D.6【考点】两点间的距离.【分析】根据MN=CM+CN=AC+CB=〖AC+BC〗=AB即可求解.【解答】解:∵M﹨N分别是AC﹨BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=〖AC+BC〗=AB=4.故选C.【点评】本题考查线段和差定义﹨中点的性质,利用线段和差关系是解决问题的关键.9.下列说法中,正确的是〖〗A.绝对值等于它本身的数是正数B.任何有理数的绝对值都不是负数C.若线段AC=BC,则点C是线段AB的中点D.角的大小与角两边的长度有关,边越长角越大【考点】绝对值;两点间的距离;角的概念.【分析】根据绝对值﹨线段的中点和角的定义判断即可.【解答】解:A﹨绝对值等于它本身的数是非负数,错误;B﹨何有理数的绝对值都不是负数,正确;C﹨线段AC=BC,则线段上的点C是线段AB的中点,错误;D﹨角的大小与角两边的长度无关,错误;故选B.【点评】此题考查绝对值﹨线段的中点和角的定义问题,关键是根据定义判断.10.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是〖〗A.100元B.105元C.110元D.115元【考点】一元一次方程的应用.【分析】设这种服装每件的成本价为x元,根据题意列出一元一次方程〖1+20%〗•90%•x﹣x=8,求出x的值即可.【解答】解:设这种服装每件的成本价为x元,由题意得:〖1+20%〗•90%•x﹣x=8,解得:x=100.答:这种服装每件的成本价为100元.【点评】本题主要考查了一元一次方程的应用,解答本题的关键是根据题意正确地列出一元一次方程,此题难度不大.11.如图是一块长为a,宽为b〖a>b〗的长方形空地,要将阴影部分绿化,则阴影面积是〖〗A.a2b2B.ab﹣πa2C.D.【考点】列代数式.【专题】探究型.【分析】根据图形可以得到阴影部分面积的代数式,从而可以解答本题.【解答】解:由图可得,阴影部分的面积是:ab﹣=,故选C.【点评】本题考查列代数式,解题的关键是明确题意,利用数形结合的思想解答问题.12.有理数a﹨b在数轴上的位置如图所示,下列选项正确的是〖〗A.a+b>a﹣b B.ab>0 C.|b﹣1|<1 D.|a﹣b|>1【考点】数轴.【分析】根据数轴可以得到b<﹣1<0<a<1,从而可以判断各选项中式子是否正确.【解答】解:由数轴可得,b<﹣1<0<a<1,则a+b<a﹣b,ab<0,|b﹣1|>1,|a﹣b|>1,故选D.【点评】本题考查数轴,解题的关键是利用数形结合的思想解答问题.二﹨填空题〖每小题3分,共12分〗:请把答案按要求填到答题卷相应位置上.13.单项式的系数是﹣.【考点】单项式.【分析】根据单项式系数的概念求解.【解答】解:单项式的系数为﹣.故答案为:﹣.【点评】本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数.14.对于有理数a﹨b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆〖﹣3〗= 1 .【考点】有理数的混合运算.【专题】新定义.【分析】根据给出的运算方法把式子转化为有理数的混合运算,进一步计算得出答案即可.【解答】解:2☆〖﹣3〗=22﹣|﹣3|=4﹣3=1.故答案为:1.【点评】此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.15.如图,在直线AD上任取一点O,过点O作射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,∠BOE的度数是64°.【考点】角平分线的定义.【分析】先根据角平分线的性质求出∠AOB的度数,再利用平角求出∠BOD的度数,利用OE平分∠DOB,即可解答.【解答】解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=26°×2=52°,∴∠BOD=180°﹣∠AOB=180°﹣52°=128°,∵OE平分∠DOB,∴∠BOE=BOD=64°.故答案为:64°.【点评】本题考查了角平分线的定义,解决本题的关键是熟记角平分线的定义.16.如图所示,用长度相等的小棒按一定规律摆成一组图案,第一个图案需要6根小棒,第2个图案需要11根小棒,第3个图案需要16根小棒…,则第n个图案需要5n+1 根小棒.【考点】规律型:图形的变化类.【分析】由图案的变化,可以看出后面图案比前面一个图案多5根小棒,结合数据6,11,1 6可得出第n个图案需要的小棒数.【解答】解:图案〖2〗比图案〖1〗多了5根小棒,图案〖3〗比图案〖2〗多了5根小棒,根据图形的变换规律可知:每个图案比前一个图案多5根小棒,∵第一个图案需要6根小棒,6=5+1,∴第n个图案需要5n+1根小棒.故答案为:5n+1.【点评】本题考查的图形的变化,解题的关键是发现后面图案比前面一个图案多5根小棒,结合已有数据即可解决问题.三﹨解答题:17.计算〖1〗10﹣〖﹣5〗+〖﹣9〗+6〖2〗.【考点】有理数的混合运算.【分析】〖1〗先化简,再分类计算即可;〖2〗先算乘方,再算乘除,最后算加法.【解答】解:〖1〗原式=10+5﹣9+6=12;〖2〗原式=﹣1+10÷4×=﹣1+=﹣.【点评】此题考查有理数的混合运算,掌握运算方法与符号的判定是解决问题的关键.18.化简〖1〗化简〖2m+1〗﹣3〖m2﹣m+3〗〖2〗化简〖2m+1〗﹣3〖m2﹣2a2b〗【考点】整式的加减.【专题】计算题;整式.【分析】〖1〗原式去括号合并即可得到结果;〖2〗原式去括号合并即可得到结果.【解答】解:〖1〗原式=2m+1﹣3m2+3m﹣9=﹣3m2+5m﹣8;〖2〗原式=2m+1﹣3m2+6a2b.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.解方程〖1〗3〖2x﹣1〗=5x+2〖2〗.【考点】解一元一次方程.【专题】计算题;一次方程〖组〗及应用.【分析】〖1〗方程去括号,移项合并,把x系数化为1,即可求出解;〖2〗方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:〖1〗去括号得:6x﹣3=5x+2,移项合并得:x=5;〖2〗去分母得:10x+15﹣3x+3=15,移项合并得:7x=﹣3,解得:x=﹣.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.在“迎新年,庆元旦”期间,某商场推出A﹨B﹨C﹨D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:〖1〗商场中的D类礼盒有250 盒.〖2〗请在图1扇形统计图中,求出A部分所对应的圆心角等于126 度.〖3〗请将图2的统计图补充完整.〖4〗通过计算得出 A 类礼盒销售情况最好.【考点】条形统计图;扇形统计图.【专题】数形结合.【分析】〖1〗从扇形统计图中得到D类礼盒所占的百分比,然后用这个百分比乘以1000即可得到商场中的D类礼盒的数量;〖2〗从扇形统计图中得到A类礼盒所占的百分比,然后用这个百分比乘以360°即可得到A部分所对应的圆心角的度数;〖3〗用销售总量分别减去A﹨B﹨D类得销售量得到C类礼盒的数量,然后补全条形统计图;〖4〗由条形统计图得到礼盒销售量最大的类型,因此可判断礼盒销售情况最好的类型.【解答】解:〖1〗商场中的D类礼盒的数量为1000×25%=250〖盒〗;〖2〗A部分所对应的圆心角的度数为360°×35%=126°;〖3〗C部分礼盒的销售数量为500﹣168﹣80﹣150=102〖盒〗;如图,〖4〗A礼盒销售量最大,所以A礼盒销售情况最好.故答案为250,126,A.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图.21.列方程解应用题某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?【考点】一元一次方程的应用.【分析】设小明家到西湾公园距离x千米,根据“骑自行车比公交车多用1.6小时”列出方程求解即可.【解答】解:设小明家到西湾公园距离x千米,根据题意得:=+1.6,解得:x=16.答:小明家到西湾公园距离16千米.【点评】本题考查了一元一次方程的应用,解题的关键是能够找到题目的等量关系并根据等量关系列出方程.22.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?〖1〗如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=55°,求∠A′BD的度数.〖2〗在〖1〗条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠2和∠CBE的度数.〖3〗如果将图2中改变∠ABC的大小,则BA′的位置也随之改变,那么〖2〗中∠CBE的大小会不会改变?请说明.【考点】角平分线的定义;角的计算;翻折变换〖折叠问题〗.【分析】〖1〗由折叠的性质可得∠A′BC=∠ABC=55°,由平角的定义可得∠A′BD=180°﹣∠ABC﹣∠A′B C,可得结果;〖2〗由〖1〗的结论可得∠DBD′=70°,由折叠的性质可得==35°,由角平分线的性质可得∠CBE=∠A′BC+∠D′BE=×180°=90°;〖3〗由折叠的性质可得,,∠2=∠EBD=∠DBD′,可得结果.【解答】解:〖1〗∵∠ABC=55°,∴∠A′BC=∠ABC=55°,∴∠A′BD=180°﹣∠ABC﹣∠A′BC=180°﹣55﹣55°=70°;〖2〗由〖1〗的结论可得∠DBD′=70°,∴==35°,由折叠的性质可得,∴∠CBE=∠A′BC+∠D′BE=×180°=90°;〖3〗不变,由折叠的性质可得,,∠2=∠EBD=∠DBD′,∴∠1+∠2===90°,不变,永远是平角的一半.【点评】本题主要考查了角平分线的定义,根据角平分线的定义得出角的度数是解答此题的关键.23.某工艺品生产厂为了按时完成订单,对员工采取生产奖励活动,奖励办法以下表计算奖励金额,但是一个月后还是不能按时完成,厂家请工程师改进工艺流程,提高了产量.改进工艺前一月生产A﹨B两种工艺品共413件,改进工艺后的第一个月生产这两种工艺品共510件,其中A和B的生产量分别比改进工艺前一个月增长25%和20%.产量〖x件〗每件奖励金额〖元〗0<x≤10010100<x≤30020x>300 30〖1〗在工艺改进前一个月,员工共获得奖励金额多少元?〖2〗如果某车间员工想获得5500元奖金,需要生产多少件工艺品;〖3〗改进工艺前一个月,生产的A﹨B两种工艺品分别为多少件?【考点】一元一次方程的应用.【分析】〖1〗由于x>300,根据在新工艺出台前一个月,该经员工共获得奖励金额=每件奖励金额×件数,列式计算即可求解;〖2〗先确定产量的范围,进而确定奖励的金额,再列方程解答即可;〖3〗可设在新办法出台前一个月,生产A种工艺品y件,则生产B种工艺品〖413﹣y〗件,根据等量关系:改进工艺后的第一个月生产这两种工艺品共510件,列出方程求解即可.【解答】解:〖1〗413×30=12390〖元〗.答:在工艺改进前一个月,员工共获得奖励金额12390元;〖2〗∵100×20=2000〖元〗,300×20=6000〖元〗,∴2000<5500<6000,∴每件奖励金额为20元,设需要生产x件工艺品,20x=5500,解得:x=275,答:如果某车间员工想获得5500元奖金,需要生产275件工艺品;〖3〗设在新办法出台前一个月,生产A种工艺品y件,则生产B种工艺品〖413﹣y〗件,根据题意得:25%x+〖413﹣y〗20%=510﹣413,解得y=288,413﹣y=413﹣288=125.答:改进工艺前一个月,生产的A﹨B两种工艺品分别为288件﹨125件.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.。

七年级数学上册期末考试试卷【含答案】

七年级数学上册期末考试试卷【含答案】

七年级数学上册期末考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少?A. 240立方厘米B. 120立方厘米C. 60立方厘米D. 48立方厘米4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是多少?A. 22厘米B. 34厘米C. 44厘米D. 54厘米二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。

()2. 一个正方形的对角线长度等于它的边长。

()3. 0.3333……是一个无限循环小数。

()4. 一个等边三角形的三个角都是60度。

()5. 一个数的立方根只有一个。

()三、填空题(每题1分,共5分)1. 1千米等于______米。

2. 一个正方形的周长是24厘米,那么它的边长是______厘米。

3. 5的平方是______,5的立方是______。

4. 如果一个数的平方是49,那么这个数可能是______或______。

5. 两个质数相乘得到的数一定是______。

四、简答题(每题2分,共10分)1. 解释什么是素数。

2. 简述平行四边形的性质。

3. 什么是算术平均数?如何计算?4. 请解释概率的基本概念。

5. 什么是勾股定理?请简要说明。

五、应用题(每题2分,共10分)1. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的面积。

2. 一个等腰三角形的底边长是10厘米,高是12厘米,求这个三角形的面积。

3. 一个数的平方是36,求这个数。

4. 计算下列分数的和:1/3 + 1/4 + 1/6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019
期末考试考查的是整个学期的学习内容,内容很多。

考前我们要多做一些练习题。

为了帮助考生顺利通过考试,下文为初一的同学们整理了这篇七年级上学期数学期末试题以供大家参考!
一、选择题(每小题2分,共20分.)
-5的倒数是( )
A.5
B.-5
C.
D.
下列各组数中,互为相反数的一组是( )
A.3与
B.2与|-2|
C.(-1)2与1
D. -4与(-2)2
3.单项式的系数是( )
A. B.― C. D.―
4.对于一个六次多项式,它的任何一项的次数( )
A.都小于6
B.都等于6
C.都不小于6
D.都不大于6
5.如图是文峰超市中丝美洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮助算一算,该洗发水的原价是( )
A.22元
B.23元
C.24元
D.26元
6.有一个正方体木块,它的六个面上分别标有数字1~6,如图是这个正方体从不同方向所观察到的数字情况,则数字1和5对面的数字是( )
A.4,3
B.3,2
C.3,4
D.5,1
7.如图,直线与相交于点,,若,则的度数为( )
A.40
B.60
C.80
D.100
某市按以下规定收取每月水费:若每月每户不超过20立方米,则每立方米按1.2元收费,若超
过20立方米则超过部分每立方米按2元收费.如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月共用多少立方米的水?设这个月共用水x立方米,下列方程正确的( )
A. B.
C. D.
某测绘装置上一枚指针原来指向南偏西500(如图),把这枚指针按逆时针
方向旋转xx结果指针的指向( ).
A.xx偏东50
B.xx偏北50
C.xx偏东40
D.xx方向
10.某超市推出如下购物优惠方案:(1)一次性购物在100元(不含100元)以内时,不享受优惠;(2)一次性购物在100元(含100元)以上,300元(不含300元)以内时,一律享受九折的优惠;(3)一次性购物在300元(含300元)以上时,一律享受八折的优惠.某顾客在本超市两次购物分别付款80元、252元.如果他改成在本超市一次性购买与上两次完全相同的商品,则应付款( )
A. 332元
B.316元或332元
C. 288元
D.288元或316元
二、填空题(每小题3分,共24分.)
11.如图所示的图形绕虚线旋转一周,便能形成某个几何体.这个几何
体的名称叫做.
12.如图,已知点M是线段AB的中点,点P是线段AM的中点,若
AB=10,则PM= .
某市2019年接待境外游客人数和旅游直接创汇名列全省前茅,实现旅游直接创汇29092700
美元,这个数用科学计数法表示是______________美元(精确到十万位)
14.若关于的方程与的解相同,则的值为__________.
15.已知AOC=60,AOB︰AOC=2︰3,则BOC的度数是
______________.
16.已知三个相邻整数的和为-15,则这三个数中最大的整数是.
17.一个角的补角与它的余角的2倍的差是平角的三分之一,则这个角为_______.
18.某校准备为毕业班学生制作一批纪念册,甲公司提出:每册收材料费元,另收设计费元;乙公司提出:每册收材料费元,不收设计费.张老师经过计算,发现两家公司收费一样,则该校今年毕业生有_______人.
三、解答题(共56分)
19.(本题8分)计算:
(1) (2).
20.(7分)先化简,后求值.
(1)化简:
(2)当时,求上式的值.
21.(10分)解下列方程:
(1) 4x-3(20-x)= -4 (2)
22.(6分)xx解应用题:
在一次抗洪救灾中,甲处有91名解放军战士,乙处有49名解放军战士,现在又调来100名战士支援,问怎样调配这100名战士,才能使在甲处抗洪的人数是在乙处抗洪人数的3倍少12人?
23.(6分)已知C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求线段CD的长度.
24.(6分)如图,直线AB,CD相交于点O,OE平分AOD,FOC=90,1=32,
求2和3的度数.
24.(6分)已知方程的解也是关于x的方程的解.
(1)求m、n的值;
(2)已知线段AB=m,在直线AB上取一点P,恰好使,点Q为PB的中点,求线段AQ的长.
25.(7分)市政府要求武汉轻轨二七路段工程12个月完工。

现由甲、乙两工程队参与施工,已知甲队单独完成需要16个月,每月需费用600万元;乙队单独完成需要24个月,每月需费用400万元。

由于前期工程路面较宽,可由甲、乙两队共同施工。

随着工程的进行,路面变窄,两队再同时施工,对交通影响较大,为了减小对解放大道的交通秩序的影响,后期只能由一个工程队施工.工程总指挥部结合实际情况现拟定两套工程方案:
①先由甲、乙两个工程队合做m个月后,再由甲队单独施工,保证恰好按时完成.
②先由甲、乙两个工程队合做n个月后,再由乙队单独施工,也保证恰好按时完成.
⑴求两套方案xxm和n的值;
⑵通过计算,并结合施工费用及施工对交通的影响,你认为该工程总指挥部应该选择哪种方案?
这篇七年级上学期数学期末试题就为大家分享到这里了。

更多相关内容请点击查看七年级数学期末试卷,同时,更多的初一各科的期末试卷尽在七年级期末试卷,预祝大家都能顺利通过考试!
好消息:查字典数学网为了方便各地的初中生相互学习和交流,特地建立了QQ群【117367168】,欢迎广大学生尽快来加入哦!希望通过这个平台我们的成绩会有新的突破!!!
参考答案:
一选择题
1.A
2.A
3.A
4.D
5.C
6.B
7.D
8.B
9.C 10.D 11.A 12.C
二、填空题
三、计算题
19 (1)(m+2n)(m-2n) (2) 2(a-1)2
20无解
21(1)根据网格结构找出点A、B、C关于直线l的对称点A1、B1、C1的位置,然后顺次连接即可;
(2)根据网格结构找出点A、B绕点C顺时针旋转90后的A2、B2的位置,然后顺次连接即可;
(3)利用勾股定理列式求出BC的长,再根据弧长公式列式计算即可得解.
【解析】
(1)△A1B1C1如图所示;
(2)△A2B2C如图所示;
(3)根据勾股定理,BC= =,
所以,点B旋转到B2所经过的路径的长= = .22【解析】
(1)如图1所示:点P就是所求.
.23.解:∵|2a-b+1|+ =0,
解得,
∵原式=
当a=-,b=时,原式= =3.24(1)根据Rt△ABC≌Rt△ADE,得出AC=AE,BC=DE,AB=AD,ACB=AED,BAC=DAE,从而推出CAD=EAB,△ACD≌△AEB,△CDF≌△EBF,
(2)由△CDF≌△EBF,得到CF=EF.
(1)【解析】
△ADC≌△ABE,△CDF≌△EBF;
(2)证法一:连接CE,
∵Rt△ABC≌Rt△ADE,
AC=AE.
ACE=AEC(等边对等角).
又∵Rt△ABC≌Rt△ADE,
ACB=AED.
ACE-ACB=AEC-AED.
即BCE=DEC.
CF=EF.
25.解:⑴设乙单独完成建校工程需x天,则甲单独完成建校工程需1.5x 天,
x=120
经检验x=120是原方程的解,
1.5x=180
答:甲单独完成建校工程需180天,乙单独完成建校工程需
120天.
(2)设乙工程队平均每天的施工费用为a万元,120a0.8180
a1.2
∵a取最大值,
a=1.2,
答:乙工程队平均每天的施工费用最多1.2万元.
26.解:(1)当t=1时,AP=BQ=1,BP=AC=3,
又B=90,
在△ACP和△BPQxx,
△ACP≌△BPQ(SAS).
ACP=BPQ,
APC+BPQ=APC+ACP=90.
CPQ=90,
即线段PC与线段PQ垂直.
(2)①若△ACP≌△BPQ,
则AC=BP,AP=BQ,,
解得;
②若△ACP≌△BQP,
则AC=BQ,AP=BP,
解得;
综上所述,存在或使得△ACP与△BPQ全等。

相关文档
最新文档