沪科版九年级数学下册29.3 课题学习 制作立体模型
29.3制作立体模型 优秀教案
29.3 制作立体模型(活动课)文档设计者:设计时间:文档类型:文库精品文档,欢迎下载使用。
Word精品文档,可以编辑修改,放心下载一、学习目的通过根据三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会用三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。
二、工具准备刻度尺、剪刀、小刀、胶水、硬纸板、马铃薯(或萝卜)等。
三、具体活动1、以硬纸板为主要材料,分别做出下面的两组视图所表示的立体模型。
2、按照下面给出的两组视图,用马铃薯(或萝卜)做出相应的实物模型3、下面的每一组平面图形都是由四个等边三角形组成的。
(1) (2) (3)(1)指出其中哪些可以折叠成多面体。
把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;(2)画出由上面图形能折叠成的多面体的三视图,并指出三视图中是怎样体现“长对正,高平齐,宽相等”的;(3)如果上图中小三角形的边长为1,那么对应的多面体的体积和表面积各是多少?四、课题拓广三视图和展开图都是与立体图形有关的平面图形,了解有关生产实际,结合具体例子,写一篇短文介绍三视图、展开图的应用。
制作立体模型课标要求:通过动手操作体会三视图与几何体及由几何体的展开图制作几何体,体会三视图的重要性、应用性。
实践教学课的目的:通过根据三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。
教学的重点:能根据简单物体的三视图制作原实物图形,能根据平面展开图制作原实物图。
教学难点:根据三视图制作立体图。
操作工具的准备:刻度尺、剪刀、小刀、胶水、硬纸板、橡皮泥。
具体活动过程:可以编辑的试卷(可以删除)。
29.3 课题学习 制作立体模型教案
29.3课题学习制作立体模型学生已经学习了“由物画图”和“由图想物”,本节安排了“由图制物”的实践活动,这是结合生活实际中的问题动脑与动手相结合的活动内容.它不仅可以检验学生对本章核心内容“三视图”的掌握情况,还可以培养学生的动手能力,发展学生的空间观念,观察三视图,并综合考虑各视图表的过程,体会用三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系.【情景导入】观察下列模型,它们是如何得到的?以上立体图形都是通过拼接平面图形得到的,如何制作平面图形,从而拼接得到立体图形呢?【说明与建议】说明:通过现实生活中常见的实物模型引入课题,激发学生的实际操作欲望.建议:观察三视图,并综合考虑各视图所表达的含义以及视图间的联系,可以想象出三视图所表示的立体图形的形状,这是由视图转化为立体图形的过程.命题角度由平面展开图制作立体模型已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为(C)A.214° B.215° C.216° D.217°课题29.3 课题学习制作立体模型授课人素养目标1.会根据三视图制作立体模型.2.进一步感受立体图形与平面图形之间的联系.3.通过创设情境,让学生自主探索立体图形的制作过程.教学重点通过根据三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会用三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系.教学难点应用数学知识解决问题的意识和能力授课类型新授课课时教学步骤师生活动设计意图回顾1.如图是一个“凹”字形几何体,下列关于该几何体的俯视图画法正确的是(D)A B C D2.如图,根据三视图,这个立体图形的名称是(B)A.三棱锥B.三棱柱C.圆柱D.圆锥3.如图是某几何体的三视图,主视图和左视图是两个全等的长方形,俯视图是直径等于2的圆.若长方形的长为3,宽为2,则这个几何体的体积为3π.巩固学生已学过的知识,为学习新知做好铺垫.教师多媒体呈现问题,学生共同回答.活动一:创设情境、导入新课【课堂引入】问题:以硬纸板为主要材料,分别做出下面的两组三视图(如图)表示的立体模型.图1 图2师生活动:教师展示三视图并标注尺寸,启发学生由三视图想象出对应的立体模型的形状.由想象出的立体模型的形状,画出相应的三视图,并与上图比较,检验想象的结果是否准确.在确定立体模型形状的情况下,学生动手制作.图1的制作让学生合作完成,图2的制作让学生独立完成,然后教师展示课前制作好的模型样品.学生只有想象出立体模型的形状才可能正确地进行制作,这一步非常关键,要给学生足够的思考空间.独立完成与合作学习的方式,可以让学生顺利地完成学习任务.活动二:实践探究、交流新知1.类比学习问题:按照下面给出的两组三视图(如图),用马铃薯(或萝卜)做出相应的实物模型.师生活动:教师提问,想一想上面两组三视图,分别表示什么实物模型?学生确定了实物模型的形状后,利用马铃薯动手制作,在制作过程中,教师强调安全、有序,确保活动顺利进行.学生制作完成后,教师展示课前制作好的模型样品,供学生参考、比较.1.通过动手操作,体会三视图与实物模型之间的关系,检验和校正“由图想物”的结果,加深理解投影规律、三视图标注尺寸与实物长宽高的大小关系以及虚实线表示的实际含义,进一步培养学生的空间观念.2.充分展示学生作品,全体同学体验成功的感受,分享成功的喜悦,增强自信,共同提高.活动三:开放训练、体现应用【典型例题】例1下面的每一组平面图形(如图)都是由四个等边三角形组成的.①②③(1)其中哪些可以折叠成三棱锥?并把上面的图形描在纸上,剪下来,叠一叠,验证你的答案.(2)画出由上面图形能折叠成的多面体的三视图,并指出三视图中是怎样体现“长对正、高平齐、宽相等”的.(3)如果上图中小三角形的边长均为1,那么对应的三棱锥的表面积各是多少?解:(1)①和③.(2)略.(3) 3.例2下面的图形由一个扇形和一个圆组成.(1)把上面的图形描在纸上,剪下来,围成一个几何体,教师用课件出示问题,适时引导学生解决问题.(2)画出由上面图形围成的圆锥的三视图.(3)如果上图中扇形的半径为13,圆的半径为5,那么对应的圆锥的体积是多少?教师用课件出示问题,适时引导学生解决问题.学生动手做一做,画出圆锥的三视图,求出圆锥的体积.解:(1)略.(2)略.(3)100π.【变式训练】1.对于问题的解答,开始时会有一定的难度,但是随着例题模型的建立,会极大地丰富学生的空间想象力.2.加强学生的应用能力、让学生题理解平面图形和立图形的转化.如图是一个几何体的三视图,根据图中所示数据,求该几何体的表面积和体积.解:表面积:30×25×2+30×40×2+25×40×2+π×20×32=(5 900+640π)cm2,体积:30×25×40+π×(20÷2)2×32=(30 000+3 200π)cm3.活动四:课堂检测【课堂检测】1.下列图形是一些立体图形的平面展开图,请将这些立体图形的名称填在对应的横线上.四棱锥圆柱三棱柱2.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为(C)A.48 cm3 B.72 cm3 C.144 cm3 D.288 cm33.如图是一个几何体的三视图(图中尺寸单位:cm)根据图中数据计算这个几何体的侧面积为(D)A.28π cm2 B.24π cm2 C.16π cm2 D.12π cm2学生进行当堂检测,完成后,教师进行批阅、点评、讲解.针对本课时的主要问题,从多个角度、分层次进行检测,达到学有所成、了解课堂学习效果的目的.课堂小结 1.课堂总结通过师生总结帮。
九年级数学下册课件29.3课题学习制作立体模型-2020新人教部编
学习目标
1. 通过根据三视图制作立体模型的实践活动,体验平 面图形向立体图形转化的过程,体会用三视图表示 立体图形的作用. (重点、难点)
2. 进一步感受立体图形与平面图形之间的联系.
导入新课
图片引入
科学家为了研究化学物质,制作出物质 分子的立体模型
创意来源于生活
心灵手巧
各种建筑都离不开它的雏形——立体模型
2. 感性认识需要上升为理性认识,理论指导下的实践 会更明确有效.
3. 从技能上说,认识平面图形与立体图形的联系,有 助于根据需要实现它们之间的相互转化,即学会画 三视图和由三视图得出立体图形.从能力上说,认 识平面图形与立体图形的联系,对于培养空间想象 能力上非常重要的.
上册教学计划
一、学情分析。 本班总体情况来看,女生的学习自觉性非常强,学习效率也很高。而男生学习习惯相对较差,多数男生在学习上都不甚操心,需要老师和家长随时提醒。总之,在学习习惯上,还需要花功夫
讲授新课
制作立体模型
立体图形
体验转化过程 平面图形
主视图 左视图
高
长
宽
宽 俯视图
制作立体模型
活动
1. 以硬纸板为主要材料,分别做出下面的两组视图所 表示的立体模型.
2. 按照下面给出的两组视图,用马铃薯是由四个等边三角形组成的.
(1) 其中哪些可折叠成三棱锥?把上面的图形描在纸上, 剪下来,叠一叠,验证你的结论.
(2) 画出由上面图形能折叠成的三棱锥的三视图,并指 出三视图中是怎样体现“长对正,高平齐,宽相等”的.
(3) 如果上图中小三角形的边长为1,那么对应的三棱锥的 表面积是多少?
课堂小结
1. 数学是以数量关系和空间形式为主要研究对象的科 学,数量关系和空间形式是从现实世界中抽象出来 的. 很明显,关于投影和视图的知识是从实际需要 (建筑、 制造等)中产生的,它们与实际模型联系得非常紧密.
九年级下册数学29.3 课题学习 制作立体模型
(2)画出该纸盒的平面展开图; 解:(2)如图所示.
(3)计算制作一个纸盒所需纸板的面积(精确到
1 cm2). (3)由图可知:正六棱柱的侧面是边长为 5 的正
方形,上、下底面是边长 为 5 的正六边形,
侧面面积为 6×5×5=150(cm 2),
底面积为 2×6× 3×5×5=75 3(cm2), 4
9.(2020·开江县期末)小明家有一个如图所示的无 盖长方体纸盒,现沿着该纸盒的棱将纸盒剪开,得到
其平面展开图.若长方体纸盒的长、宽、高分别是 a, b,c(单位:cm,a>b>c),则它的展开图周长最大为
(6a+4b+2c) cm(用含 a,b,c 的代数式表示).
10.如图是一个包装纸盒的三视图(单位:cm), 其中俯视图为正六边形.
丛书·舒心教辅 /
2021春季学期 数学·九年级下(RJ)
第二十九章 投影与视图
29.3 课题学习 制作立体模型
目录页
A 分点训练•打好基础 B 综合运用•提升能力
知识点一 根据三视图制作几何体
1.某几何体的主视图和左视图如图所示,则该几何体
可能是( C )
故制作一个纸盒所需纸板的面积为 150+75 3 =75(2+ 3)≈280(cm2).
答:制作一个纸盒所需纸板的面积约为 280 cm2.
谢谢观看
Thank you for watching!
A.长方体 B.圆锥
C.圆柱
D.球
2.如图是某个几何体的三视图,该几何体是
A.圆锥 B.三棱锥
(D )
C.圆柱 D.三棱柱
3.如图,一几何体的三视图如下,那么这个 几何体是 四棱柱 .
人教版九年级数学下册:29.3《课题学习 制作立体模型》说课稿1
人教版九年级数学下册:29.3《课题学习制作立体模型》说课稿1一. 教材分析《人教版九年级数学下册:29.3《课题学习制作立体模型》》这一章节,是在学生已经掌握了立体几何的基本知识,如点、线、面的基础上进行讲解的。
通过这一章节的学习,学生能够了解并掌握立体模型的制作方法,培养学生的动手操作能力和空间想象能力。
同时,这一章节还与实际生活紧密相连,让学生能够感受到数学在生活中的应用,提高学生的学习兴趣。
二. 学情分析九年级的学生已经具备了一定的立体几何知识,对立体图形的认知也有了一定的基础。
但是,由于学生的学习基础和学习能力各不相同,对于立体模型的制作方法和技巧可能还存在疑惑。
因此,在教学过程中,需要关注学生的个体差异,因材施教,尽可能让每一个学生都能够掌握制作立体模型的方法。
三. 说教学目标1.知识与技能目标:通过本节课的学习,使学生了解并掌握制作立体模型的方法,提高学生的动手操作能力和空间想象能力。
2.过程与方法目标:通过小组合作,培养学生团队协作的能力,提高学生解决问题的能力。
3.情感态度与价值观目标:让学生感受到数学与生活的紧密联系,提高学生学习数学的兴趣。
四. 说教学重难点1.教学重点:制作立体模型的方法和技巧。
2.教学难点:如何让学生理解和掌握立体模型的制作方法,并能够运用到实际生活中。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法进行教学。
2.教学手段:利用多媒体课件、模型教具等辅助教学。
六. 说教学过程1.导入:通过展示一些生活中的立体模型,如建筑模型、玩具等,激发学生的学习兴趣,引出课题。
2.新课导入:讲解立体模型的定义和制作方法,让学生初步了解立体模型的制作过程。
3.案例分析:分析一些典型的立体模型案例,让学生了解不同材料的制作方法和技巧。
4.动手实践:让学生分组进行立体模型的制作,教师巡回指导,解答学生的疑问。
5.成果展示:让学生展示自己的作品,相互评价,教师给予点评和指导。
初中数学人教版九年级下册优质教学设计29-3 课题学习《 制作立体模型》
初中数学人教版九年级下册优质教学设计29-3 课题学习《制作立体模型》一. 教材分析人教版初中数学九年级下册第29-3课题学习《制作立体模型》的内容,是在学生学习了立体几何的基本知识之后,通过实践活动,让学生进一步理解和掌握立体几何图形的特征,培养学生的动手操作能力和空间想象能力。
本节课的内容与现实生活紧密相连,有助于激发学生的学习兴趣,提高学生解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了立体几何的基本知识,具备了一定的空间想象能力。
但学生在制作立体模型时,可能会遇到一些困难,如对立体图形的理解和把握,以及动手操作能力等方面。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生提供适当的帮助和指导。
三. 教学目标1.让学生通过制作立体模型,进一步理解和掌握立体几何图形的特征。
2.培养学生的动手操作能力和空间想象能力。
3.激发学生学习数学的兴趣,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:让学生通过制作立体模型,理解和掌握立体几何图形的特征。
2.教学难点:学生在制作立体模型过程中,对立体图形的理解和把握,以及动手操作能力。
五. 教学方法1.情境教学法:通过创设生活情境,让学生理解立体模型的实际意义。
2.实践教学法:让学生亲自动手制作立体模型,提高学生的动手操作能力。
3.小组合作学习法:让学生在小组内共同讨论和完成制作任务,培养学生的团队协作能力。
六. 教学准备1.教师准备:教师需要提前准备相关的立体模型材料和工具,如纸张、剪刀、胶水等。
2.学生准备:学生需要提前了解立体模型的基本知识,准备好制作模型所需的材料。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的立体模型,如建筑物、家具等,引导学生关注立体模型在现实生活中的应用,激发学生的学习兴趣。
同时,教师提出本节课的任务:制作一个简单的立体模型。
2.呈现(10分钟)教师呈现本节课要学习的立体模型,如长方体、正方体等,并通过多媒体展示立体模型的三维图形,让学生直观地感受和理解立体模型的特征。
9下29.6《课题学习制作立体图形》课案(教师用)
课案(教师用)课题:29.3课题学习制作立体模型【理论支持】《数学课程标准》指出:数学课程要面向全体学生,让不同的学生获得不同的发展.所以,在整个数学活动的过程中,我们既要关注学生学习的结果,更要关注学生在学习过程中的变化和发展,关注学生的生活经验和知识体验,关注他们在数学实践活动中所表现出来的情感和态度.在本章之前,学生接触过“从不同的方向看”等内容,对投影和视图有初步的感性认识,再此基础上,本章介绍了基本概念,归纳了基本规律,使学生的认识水平再次提升.但鉴于学生知识储备的局限,教师应重视借助直观模型,帮助学生克服立体几何知识不足的困难.本节课安排了“课题学习制作立体模型”这是结合实际问题动脑与动手并重的学习内容,“观察、想象、制作、交流”相结合是本节课的主要实践活动.在整个过程中,教师要切实关注学生对前面三视图所学内容能否灵活运用,关注学生能否掌握图形间的联系将立体图形与平面图形相互转化,关注学生能否在合作学习的过程中独立思考、勤于动手、积极参与讨论、共同提高.苏霍姆林斯基认为,兴趣是最好的老师.兴趣是推动学生学习的一种最实际的内部动力,直接影响学习的效果.所以,培养学生的数学学习兴趣,是数学教学的重要内容之一.针对本节课的实际情况,创设问题情境,以问题为载体,创设与教学目标、内容,学生认知结构紧密相关的问题从而激发学生的学习兴趣,培养学生自主地探索,解决问题的能力.总的来说,通过本节课的研究,旨在让学生体会到数学与实际生活的密切联系,培养学生的应用意识,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验,同时帮助学生认识自我,建立自信,激发学生学习数学的兴趣.【教学目标】【教学重难点】1.重点:通过根据三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会用三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系.2.难点:应用数学知识解决问题的意识和能力.【课前准备】1.教具准备:多媒体教学课件、制作完的模型样品2.学具准备:刻度尺、剪刀、小刀、胶水、硬纸板、马铃薯(或萝卜)等【课时安排】一课时【教学设计】课前延伸一.耐心想一想1.圆柱的展开图是.2.正四面体的展开图是个正三角形.3.下面四个平面图形,能够折叠成一个正方体的是()4.根据下面一个立体图形的三视图,判断此立体图形是,并试着制作立体模型.〖答案〗1.一个长方形和两个圆2.四3.C4.圆锥〖设计说明〗引导学生回顾立体图形的三视图以及侧面展开图的相关知识,要求学生能根据三视图想出立体图形,并能够尝试制作立体图形,并能够确定立体图形的侧面展开图.体会立体图形与平面图形的联系,从而掌握它们之间的相互转化,从而解决本节课“由图制物”的问题.课内探究一.创设情境,引入新课下面是某种机器的轴承与他的三视图,你知道工人师傅是怎样利用轴承三视图,制造这种轴承的吗?教师投入图片,简单介绍,引入新课.〖设计说明〗学生通过图片,初步了解本节课的学习任务,同时激发学生学习的好奇心和兴趣.二.探究新知(分组讨论合作探究)1.剪一剪以硬纸板为主要原材料,分别作出下面的两组视图所表示的立体模型:图1 图2〖点拨方法〗教师布置任务,分组,引导学生观察、想象、制作、交流.同时说明(1)由三视图可知,画出立体图形的各个面需要测量哪些数据.(2)利用工具,分别将该立体图形的各个面剪裁出来.(3)粘贴成立体图形.〖讲评策略〗有学生展示自己的成果,并相互交流.〖设计说明〗教师提供给学生一个开放的空间,放手让学生去探索去发挥,强调由三视图想象立体图形的方法是先根据主视图、俯视图和左视图想象立体图形的前面、上面和左面,然后综合起来考虑整体图形.2.刻一刻按照下面给出的两组视图,用马铃薯(或萝卜)做出相应的实物模型.〖点拨方法〗教师引导学生以小组为单位,观察、想象、动手,实践操作,小组交流.教师留给学生展示制作成果的时间.〖答案〗(1)圆锥(2)直五棱柱〖设计说明〗学生亲自探究、实验操作,加深了印象,化解了难度,而且获得了成功体验,发展了思维能力.3.折一折下面的每组平面图形,都是由四个等边三角形组成的.(1)指出其中哪些可以叠成多面体.把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;(2)画出由上面图形能叠成的多面体的三视图,并指出三视图中是怎样体现“长对正,高平齐,宽相等”的;(3)如果上图中小三角形的边长为1,那么对应的多面体的表面积是多少?〖讲评策略〗教师多媒体投影,鼓励学生尝试独立解决,小组内交流.教师巡视、适当引导学生解决.〖答案〗(1).(1)(3)可以折叠成正四面体(2).略(3)〖设计说明〗学生积极动手,愉快合作,在活动中既复习学过的知识,又激发了学生学习的兴趣.学生亲自动手折纸,验证自己的猜想,再与同学交流想法,知识得到升华.4.写一写三视图和展开图都是与立体图形有关的平面图形,了解有关生产实际,结合具体例子,俯视图左视图主视图写一篇短文介绍三视图、展开图的应用.〖设计说明〗以学生为主体,培养学生自主探究,勇于创新的精神. 三.总结提高1.你有哪些感想与收获? 2.教师补充完善:(1)数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从现实世界中抽象出来的.很明显,关于投影和视图的知识是从实际需要(建筑、制造等)中产生的,它们与实际模型联系的非常紧密.(2)感性认识需要上升为理性认识,理论指导下的实践会更明确有效.(3)从技能上说,认识平面图形与立体图形的联系,有助于根据需要实现它们之间的相互转化,即学会画三视图和由三视图得出立体图形.从能力上说,认识平面图形与立体图形的联系,对于培养空间想象能力非常重要.3.作业通过查阅书籍、资料或上网查询,了解有关立体模型的更多知识. 〖讲评策略〗教师聆听同学的收获,解决同学的疑惑,补充完善.〖设计说明〗加强教学反思,帮助学生养成系统整理知识的习惯.作业有助于加深认识、深化提高,形成体系.课后提升一.填空题(1)俯视图为圆的几何体是_______,______.(2)画视图时,看得见的轮廓线通常画成_______,看不见的部分通常画成_______. (3)举两个左视图是三角形的物体例子:________,_______.〖参考答案〗(1)球,圆锥等 (2)实线,虚线(3)圆锥,三棱锥等二.如图所示图形是一个多面体的三视图,请根据视图说出该多面体的具体名称.〖参考答案〗四棱锥三.如下图所示,根据物体的三视图,求它表示的几何体的体积,并制作其立体模型 .mm 〖参考答案〗(24000-2560 )3。
29.3课题学习制作立体模型
29.3 课题学习制作立体模型【学习目标】1.经过依据三视图制作主体模型的实践活动,体验平面图形向立体图形转变的过程。
领会用三视图表示立体图形的作用,进一步感觉立体图形与平面图形之间的联系。
2.经过自主研究、合作研究议论,使学生加深以投影和视图的认识。
3.经过着手实践,培育学生创新精神与创建发明的意识。
【学习要点】让学生亲自经历发现规律,深入研究、应用所学知识的过程。
【学习难点】学生经过手工制作,实现理论与实践的联合;在研究解决实质问题的过程中培育科学的研究态度。
【学习准备】刻度尺、剪刀、胶水、胶带、硬纸板、马铃薯(或萝卜)等。
【学习过程】【创建情境提出任务】情境 1 以硬纸板为主要资料,分别做出下边的两组视图所示的立体模型。
活动形式:学生小组沟通物体的形状,而后着手制作。
情境 2依据下边给出的两组视图,用马铃薯(或萝卜)做出相应的实物模型。
活动方式:小组沟通三视图所表示的物体是什么形状的,而后着手制作。
【创建情境研究问题】下边的每一组平面图形都是由四个等边三角形构成的。
(1)指出此中哪些能够折叠成多面体,把上边的图纸描在纸上,剪下来,叠一叠,考证你的答案;(2)画出上边图形能折叠成多面体的三视图,并指出三视图中是如何表现“长对正,高平齐,宽相等”的;( 3)假如上图中小三角形的边长为1,那么对应的多面体的表面积各是多少?活动方式:学生着手操作【讲堂小结反省收获】1、物体的三视图、睁开图、立体图形之间是相互联系的,三者能够相互转变。
2、物体的三视图、睁开图在生产中间应用庄宽泛,学习本章内容为我们此后的生产实践奠定基础。
3、从技术上说,认识平面图形与立体图形的联系,有助于依据需要实现它们之间的相互转变,即学会画三视图玫由三视图得出立体图形,从能力上说,认识平面图形与立体图形的联系关于培育空间想象能力上特别重要。
【课题拓展部署作业】三视图和睁开图都是与立体图形相关的平面图形,认识相关生产实质,详细例子写一篇短文,介绍三视图、睁开图的应用。
九年级下册数学29.3 课题学习 制作立体模型
3. 下面的每一组平面图形都是由四个等边三角形组成的.
(1) 其中哪些可折叠成三棱锥?把上面的图形描在纸上, 剪下来,叠一叠,验证你的结论.
(2) 画出由上面图形能折叠成的三棱锥的三视图,并指 出三视图中是怎样体现“长对正,高平齐,宽相等”的.
(3) 如果上图中小三角形的边长为1,那么对应的三棱锥的 表面积是多少?
创意来源于生活
心灵手巧
各种建筑都离不开它的雏形——立体模型
讲授新课
制作立体模型
立体图形
体验转化过程 平面图形
主视图 左视图
高
长
宽
宽 俯视图
制作立体模型
活动
1. 以硬纸板为主要材料,分别做出下面的两组视图所 表示的立体模型.
2. 按照下面给出的两组视图,用马铃薯(或萝卜)做 出相应的实物模型.
第二十九章 投影与视图
29.3 课题学习 制作立体模型
学习目标
1. 通过根据三视图制作立体模型的实践活动,体验平 面图形向立体图形转化的过程,体会用三视图表示 立体图形的作用. (重点、难点)
2. 进一步感受立体图形与平面图形之间的联系.
导入新课
图片引入
科学家为了研究化学物质,制作出物质 分子的立体模型
课堂小结
1. 数学是以数量关系和空间形式为主要研究对象的科 学,数量关系和空间形式是从现实世界中抽象出来 的. 很明显,关于投影和视图的知识是从实际需要 (建筑、 制造等)中产生的,它们与实际模型联系得非常紧密.
2. 感性认识需要上升为理性认识,理论指导下的实践 会更明确有效.
3. 从技能上说,认识平面图形与立体图形的联系,有 助于根据需要实现它们之间的相互转化,即学会画 三视图和由三视图得出立体图形.从能力上说,认 识平面图形与立体图形的联系,对于培养空间想象 能力上非常重要的.
九年级数学下册《制作立体模型》教案、教学设计
1.通过观察、分析现实生活中的立体图形,培养学生从生活中发现数学问题的意识,增强数学与生活的联系。
2.引导学生运用合作探究的学习方式,分组讨论和分享制作立体模型的方法和技巧,提高学生的沟通协作能力和团队精神。
3.在制作立体模型的过程中,指导学生运用数学思维,发现问题、分析问题、解决问题,培养学生的创新意识和实践能力。
(3)制作:指导学生分组制作立体模型,鼓励学生自主探究、相互协作,提高学生的动手操作能力。
(4)巩固:设计具有挑战性的实际问题,让学生运用所学知识解决问题,巩固所学知识。
(5)总结:引导学生总结本节课所学内容,分享制作过程中的收获和体会,提高学生的自我反思能力。
3.教学评价:
(1)过程性评价:关注学生在制作过程中的表现,包括团队合作、动手操作、问题解决等方面,给予及时的反馈和指导。
2.针对学生制作技巧和动手能力不足的问题,教师应循序渐进地指导学生,从简单到复杂地进行制作练习,鼓励学生多动手、多尝试,提高制作技巧。
3.针对学生在解决问题时数学知识运用能力不足的问题,教师应设计具有挑战性的实际问题,引导学生运用所学知识解决问题,培养学生的数学思维能力。
在学情分析的基础上,教师应充分调动学生的积极性,激发学生的学习兴趣,使他们在轻松愉快的氛围中学习,提高教学效果。同时,关注学生的情感需求,鼓励学生克服困难,培养他们勇于挑战、不断进取的精神。总之,通过本章节的学习,教师应帮助学生巩固基础知识,提高制作能力和解决问题的能力,为学生的全面发展奠定坚实基础。
(2)成果性评价:评价学生制作的立体模型,关注模型的美观、准确性以及创新性,鼓励学生展示自己的作品,提高自信心。
(3)自我评价:引导学生自我评价,反思自己在学习过程中的优点和不足,促进学生的自我成长。
九年级数学下册《课题学习制作立体模型》课程设计
2020-2021学年初三数学下册课件课题:29.3 课题学习制作立体模型一.教学目标1. 知识与技能目标(1)实际动手中进一步加深对投影和视图知识的认识;(2)加强在实践活动中手脑结合的能力;(3)体会用三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的.2. 过程与方法目标(1)通过创设情境,让学生自主探索立体图形的制作过程;(2)通过自主探索,合作研究讨论,使学生加深投影和视图的认识;(3)模型制作,体会由平面图形转化为立体图形的过程与乐趣.3. 情感、态度价值观目标(1)通过创设问题情境,使学生感受平面图形与立体图形的关系;(2)通过参与数学实践,培养合作探索精神和尊重理解他人想法的学习品质;(3)通过动手实践活动,培养学生的创新意识与创造发明的意识;二.教学重点和难点:重点:让学生亲自经历规律的发现、深入、研究、应用的过程;难点:学生通过手工制作,实现理论与实践的结合;在探索解决实际问题的过程中,科学的研究态度.三.教学方法和手段:创设情境、合作制作、讨论交流四.教学用具:1.教具准备:多媒体教学课件、制作完的模型样品2.学具准备:刻度尺、剪刀、小刀、胶水、硬纸板、马铃薯(或萝卜)等五.教学设计:教学环节教师活动学生活动设计意图一.创设情境,提出任务[来源:学&科&网] 师:情境1.以硬纸板为主要原材料,分别作出下面的两组视图所表示的立体模型[来源:学,科,网]图1图2情境2 按照下面给出的两组视图,用马铃薯(或萝卜)做出相应的实物模型学生动手制作想象做成的图形的样子也是一种乐趣学生动手制作实际动手制作立体物品有利于学生空间想象力的建立.[来源:Z& xx&k]二、创设情境,研究问题三、动手试验[来源:Zx xk] 师:下面的每组平面图形,都是由四个等边三角形组成的.(1)指出其中哪些可以叠成多面体.把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;(2)画出由上面图形能叠成的多面体的三视图,并指出三视图中是怎样体现“长对正,高平齐,宽相等”的;(3)如果上图中小三角形的边长为1,那么对应的多面体的体积和表面积各是多少?开始的想象会有一定难度,但是在随着立体模型的建立,学生空间的想象力可以得到极大的丰富.。
九年级数学下册29.3课题学习制作立体模型教案新版新人教版
29.3 课题学习制作立体模型知识与技能1.通过实际动手进一步加深对投影和视图知识的认识.2.加强在实践活动中手脑结合的能力.3.体会用三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系.过程与方法1.通过创设情境让学生自主探索立体图形的制作过程.2.通过自主探索、合作研究讨论使学生加深对投影和视图的认识.3.制作模型,体会由平面图形转化为立体图形的过程与乐趣.情感、态度与价值观1.通过创设问题情境使学生感受平面图形与立体图形的关系.2.通过参与数学实践培养合作探索的精神和尊重理解他人想法的学习品质.3.通过动手实践活动培养学生的创新意识与创造发明的意识.重点让学生亲自经历规律的发现、深入研究、应用的过程.难点学生通过手工制作实现理论与实践的结合;在探索解决实际问题的过程中,养成科学的研究态度.一、问题引入请学生回答下列两个问题:1.主视图反映物体的________和________,俯视图反映物体的________和________,左视图反映物体的________和________.答案长高长宽宽高2.下面是一个立体图形的三视图,请在括号内填上立体图形的名称( )答案圆柱体二、新课教授活动一:根据三视图制作原实物.师:以硬纸板为主要原材料,分别做出下面的两组视图所表示的立体模型.师:用硬纸板制作各面,围成立体图形.说明:教师要给学生提供充分的时间和空间,让学生自己动手去做,最后展示学生的作品,让学生感受到成功的喜悦,激发他们继续学习的兴趣.活动二:根据三视图制作实物模型.师:按照下面给出的两组视图,用马铃薯(或萝卜)制作相应的实物模型.生:学生动手制作,实际动手制作立体物品有利于培养学生的空间想象能力.师:(1)是圆锥,(2)是直五棱柱,它的底面五边形中有三个直角.说明:教师要给学生提供充分的时间和空间,让学生自己动手去做,最后展示学生的作品,让学生感受到成功的喜悦,激发学习的兴趣.活动三:根据平面图形制作相应的实物图.师:下面的每一组平面图形都是由四个等边三角形组成的.(1)指出其中哪些可以叠成多面体.把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;(2)画出由上面的图形能叠成的多面体的三视图,并指出三视图中是怎样体现“长对正,高平齐,宽相等”的;(3)如果图中小三角形的边长为1,那么对应的多面体的体积和表面积各是多少?(1) (2) (3)师:(1)和(3)可折叠成正四面体,正四面体的体积为212,表面积为 3.活动四:课题拓广.三视图和展开图都是与立体图形有关的平面图形,利用课余时间去观察了解或者上网查询了解,结合我们的生活实际和具体的事例,写一篇短文介绍三视图及展开图的应用以及你的感受.三、巩固练习1.小明从正面观察下图所示的两个物体,看到的是( )答案 C2.如图,一平面经过圆锥的顶点截圆锥所得到的截面形状是( )答案 B3.如图是一个正方体的平面展开图,当把它折成一个正方体时,与空白面相对的字应该是( )A.北B.京C.欢D.迎答案 C四、课堂小结从技能上说,认识平面图形与立体图形的联系,有助于根据需要实现它们之间的相互转化,即学会画三视图和由三视图得出立体图形.从能力上说,认识平面图形与立体图形的联系,对于培养空间想象能力是非常重要的.本节是结合实际问题动手与动脑并重的学习内容.“观察、想象、制作、交流”相结合是本节中的主要实践活动.设计这个课题学习的目的是:(1)在具体问题中,对是否切实理解掌握前面学习的三视图的内容以及能否灵活运用知识的一次检验;(2)是采用独立完成与合作学习相结合的方式,使同学之间相互讨论、互助互学,增强协作能力,增进感情.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知二次函数y =ax 1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 1﹣4ac =0;③a >1;④ax 1+bx+c =﹣1的根为x 1=x 1=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 1)为函数图象上的两点,则y 1>y 1.其中正确的个数是( )A .1B .3C .4D .5【答案】D【解析】根据二次函数的图象与性质即可求出答案. 【详解】解:①由抛物线的对称轴可知:02ba-<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>, ∴0c >,∴0abc >,故①正确; ②抛物线与x 轴只有一个交点, ∴0∆=,∴240b ac -=,故②正确; ③令1x =-,∴20y a b c =-++=, ∵12ba-=-, ∴2b a =,∴220a a c -++=, ∴2a c =+, ∵22c +>, ∴2a >,故③正确; ④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确;⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D . 【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.2.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是25400cm ,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=【答案】B【解析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程. 【详解】由题意,设金色纸边的宽为xcm , 得出方程:(80+2x )(50+2x )=5400, 整理后得:2653500x x +-= 故选:B. 【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.3.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A .60050x -=450xB .60050x +=450xC .600x =45050x + D .600x=45050x - 【答案】B【解析】设原计划平均每天生产x 台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【详解】设原计划平均每天生产x 台机器,则实际平均每天生产(x+50)台机器,由题意得:60045050x x=+.故选B . 【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程. 4.分式方程213xx =-的解为( ) A .x=-2 B .x=-3C .x=2D .x=3【答案】B【解析】解:去分母得:2x=x ﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B . 5.如图,A 、B 、C 是⊙O 上的三点,∠B=75°,则∠AOC 的度数是( )A .150°B .140°C .130°D .120°【答案】A【解析】直接根据圆周角定理即可得出结论. 【详解】∵A 、B 、C 是⊙O 上的三点,∠B=75°, ∴∠AOC=2∠B=150°. 故选A .6.反比例函数y=a x (a >0,a 为常数)和y=2x在第一象限内的图象如图所示,点M 在y=ax 的图象上,MC ⊥x 轴于点C ,交y=2x 的图象于点A ;MD ⊥y 轴于点D ,交y=2x的图象于点B ,当点M 在y=ax 的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点. 其中正确结论的个数是( )A .0B .1C .2D .3【答案】D【解析】根据反比例函数的性质和比例系数的几何意义逐项分析可得出解. 【详解】①由于A 、B 在同一反比例函数y=2x图象上,由反比例系数的几何意义可得S △ODB =S △OCA =1,正确; ②由于矩形OCMD 、△ODB 、△OCA 为定值,则四边形MAOB 的面积不会发生变化,正确; ③连接OM ,点A 是MC 的中点,则S △ODM =S △OCM =2a,因S △ODB =S △OCA =1,所以△OBD 和△OBM 面积相等,点B 一定是MD 的中点.正确; 故答案选D .考点:反比例系数的几何意义.7.如图,在平面直角坐标系中,矩形ABOC 的两边在坐标轴上,OB =1,点A 在函数y =﹣2x(x <0)的图象上,将此矩形向右平移3个单位长度到A 1B 1O 1C 1的位置,此时点A 1在函数y =kx(x >0)的图象上,C 1O 1与此图象交于点P ,则点P 的纵坐标是( )A.53B.34C.43D.23【答案】C【解析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.详解:∵OB=1,AB⊥OB,点A在函数2yx=-(x<0)的图象上,∴当x=−1时,y=2,∴A(−1,2).∵此矩形向右平移3个单位长度到1111A B O C的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数kyx=(x>0)的图象上,∴k=4,∴反比例函数的解析式为4yx=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,43y=,∴P4 (3,).3故选C.点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A 的坐标,利用平移的性质求出点A1的坐标.8.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是()A .x <0B .﹣1<x <1或x >2C .x >﹣1D .x <﹣1或1<x <2【答案】B【解析】y<0时,即x 轴下方的部分,∴自变量x 的取值范围分两个部分是−1<x<1或x>2. 故选B.9.如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若▱ABCD 的周长为18, 1.5OE =,则四边形EFCD 的周长为( )A .14B .13C .12D .10【答案】C【解析】∵平行四边形ABCD , ∴AD ∥BC ,AD=BC ,AO=CO , ∴∠EAO=∠FCO , ∵在△AEO 和△CFO 中,AEO CFO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEO ≌△CFO , ∴AE=CF ,EO=FO=1.5, ∵C 四边形ABCD =18,∴CD+AD=9,∴C 四边形CDEF =CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12. 故选C. 【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF 的周长进行转化.10.如图是二次函数y =ax 2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b 2–4ac<0,其中正确的有( )A .1个B .2个C .3个D .4【答案】B【解析】由抛物线的开口方向判断a 与1的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】①抛物线与y 轴交于负半轴,则c <1,故①正确; ②对称轴x 2ba=-=1,则2a+b=1.故②正确; ③由图可知:当x=1时,y=a+b+c <1.故③错误;④由图可知:抛物线与x 轴有两个不同的交点,则b 2﹣4ac >1.故④错误. 综上所述:正确的结论有2个. 故选B . 【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. 二、填空题(本题包括8个小题)11.已知A (﹣4,y 1),B (﹣1,y 2)是反比例函数y=﹣4x图象上的两个点,则y 1与y 2的大小关系为__________. 【答案】y 1<y 1【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y 1与y 1的大小,从而可以解答本题. 详解:∵反比例函数y=-4x,-4<0, ∴在每个象限内,y 随x 的增大而增大, ∵A (-4,y 1),B (-1,y 1)是反比例函数y=-4x图象上的两个点,-4<-1, ∴y 1<y 1,故答案为:y 1<y 1.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.12.如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是(把所有正确结论的序号都填在横线上)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF【答案】①②④【解析】试题解析:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.13.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于_____.【答案】210°【解析】根据三角形内角和定理得到∠B=45°,∠E=60°,根据三角形的外角的性质计算即可.【详解】解:如图:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠B=45°,∠E=60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,故答案为:210°.【点睛】本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.14.若分式的值为0,则a的值是.【答案】1.【解析】试题分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可.试题解析:∵分式的值为0,∴,解得a=1.考点:分式的值为零的条件.15.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为.【答案】2【解析】试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为6yx=;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E在抛物线上,∴61aa=+,整理得260a a+-=,解得2a=或3a=-(舍去),故正方形ADEF的边长是2.考点:反比例函数系数k的几何意义.16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为_____.【答案】2753x yx y+=⎧⎨=⎩【解析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【详解】根据图示可得2753x yx y+=⎧⎨=⎩,故答案是:2753x yx y+=⎧⎨=⎩.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.17.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).【答案】AE=AD(答案不唯一).【解析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加AE=AD,利用SAS来判定其全等;或添加∠B=∠C,利用ASA来判定其全等;或添加∠AEB=∠ADC,利用AAS来判定其全等.等(答案不唯一).18.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.【答案】1【解析】分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1.详解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案为:1.点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.三、解答题(本题包括8个小题)19.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【答案】1【解析】先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.【详解】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.故代数式a3b+2a2b2+ab3的值是1.202112(1)6tan303π-︒⎛⎫--+-⎪⎝⎭解方程:544101236x xx x-++=--【答案】(1)10;(2)原方程无解.【解析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)原式=323169-+=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.【答案】(1)26°;(2)1.【解析】试题分析:(1)根据垂径定理,得到AD DB=,再根据圆周角与圆心角的关系,得知∠E=12∠O,据此即可求出∠DEB的度数;(2)由垂径定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的长.试题解析:(1)∵AB是⊙O的一条弦,OD⊥AB,∴AD DB=,∴∠DEB=12∠AOD=12×52°=26°;(2)∵AB是⊙O的一条弦,OD⊥AB,∴AC=BC,即AB=2AC,在Rt△AOC中,22OA OC-2253-,则AB=2AC=1.考点:垂径定理;勾股定理;圆周角定理.22.如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE =2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.【答案】(1)见解析;(2)四边形BFGN是菱形,理由见解析.【解析】(1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;(2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN为菱形.【详解】(1)证明:过F作FH⊥BE于H点,在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四边形BHFC为矩形,∴CF=BH,∵BF=EF,FH⊥BE,∴H为BE中点,∴BE=2BH,∴BE=2CF;(2)四边形BFGN是菱形.证明:∵将线段EF绕点F顺时针旋转90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN ∥FG ,∴∠NBF +∠GFB =180°,∴∠NBA +∠ABC +∠CBF +∠GFB =180°,∵∠ABC =90°,∴∠NBA +∠CBF +∠GFB =180°−90°=90°,由BHFC 是矩形可得BC ∥HF ,∴∠BFH =∠CBF ,∴∠EFH =90°−∠GFB−∠BFH =90°−∠GFB−∠CBF =∠NBA ,由BHFC 是矩形可得HF =BC ,∵BC =AB ,∴HF =AB ,在△ABN 和△HFE 中,NAB EHF 90AB HF NBA EFH ∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△ABN ≌△HFE ,∴NB =EF ,∵EF =GF ,∴NB =GF ,又∵NB ∥GF ,∴NBFG 是平行四边形,∵EF =BF ,∴NB =BF ,∴平行四边NBFG 是菱形.点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN ≌△HFE 是解题的关键.23.如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x=的图象于点B ,AB=32.求反比例函数的解析式;若P (1x ,1y )、Q (2x ,2y )是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.【答案】(1)3yx=-;(2)P在第二象限,Q在第三象限.【解析】试题分析:(1)求出点B坐标即可解决问题;(2)结论:P在第二象限,Q在第三象限.利用反比例函数的性质即可解决问题;试题解析:解:(1)由题意B(﹣2,32),把B(﹣2,32)代入kyx=中,得到k=﹣3,∴反比例函数的解析式为3yx =-.(2)结论:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=33,BO:CO=1:3,求AB 的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=33,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.【答案】(1)75;43;(2)CD=413.【解析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=43,此题得解;(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=43,在Rt△AEB中,利用勾股定理可求出BE 的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【详解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴13 OD OBOA OC==.又∵AO=33,∴OD=13AO=3,∴AD=AO+OD=43.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=43.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴BO EO BE DO AO DA==.∵BO:OD=1:3,∴13 EO BEAO DA==.∵AO=33,∴EO=3,∴AE=43.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(43)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=1.在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=413.【点睛】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.25.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?【答案】(1)100,35;(2)补全图形,如图;(3)800人【解析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【详解】解:(1)∵被调查总人数为m=10÷10%=100人,∴用支付宝人数所占百分比n%=30100%30% 100⨯=,∴m=100,n=35.(2)网购人数为100×15%=15人,微信人数所占百分比为40100%40% 100⨯=,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.【点睛】本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.26.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.求证:△ADE∽△MAB;求DE的长.【答案】(1)证明见解析;(2)24 5.【解析】试题分析:利用矩形角相等的性质证明△DAE∽△AMB. 试题解析:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是边BC的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=245.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍D.骑车人数占20%【答案】B【解析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6【答案】D【解析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D选项符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.3.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2【答案】D【解析】根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【详解】解:根据题意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1•x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故选D.【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.4.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A .180元B .200元C .225元D .259.2元【答案】A 【解析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A. 【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 5.已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是( )A .20cm2B .20πcm2C .10πcm2D .5πcm2【答案】C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π. 故答案为C 6.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 【答案】B 【解析】根据二次根式有意义的条件即可求出x 的范围.【详解】由题意可知:3010x x -≥⎧⎨+>⎩, 解得:3x ,故选:B .【点睛】 考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.7.若关于x 的方程()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.【答案】A【解析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】由题意得:m ﹣1≠0,解得:m≠1,故选A .【点睛】。
九年级数学 教案 29.3课题学习 制作立体模型
29.3课题学习制作立体模型1.能根据简单物体的三视图制作原实物图形;(重点)2.能根据实物图制作展开图,根据展开图确定实物图.(难点)一、情境导入下面的每一组平面图形都是由四个等边三角形组成的.(1)指出其中哪些可折叠成多面体.把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;(2)画出由上面图形能折叠成的多面体的三视图,并指出三视图中是怎样体现“长对正,高平齐,宽相等”的;(3)如果上图中小三角形的边长为1,那么对应的多面体的体积和表面积各是多少?二、合作探究探究点一:根据三视图判断立体模型【类型一】由三视图得到立体图形如图,是一个实物在某种状态下的三视图,与它对应的实物图应是()解析:从俯视图可以看出直观图的下面部分为圆台,从左视图和主视图可以看出是一个站立的圆台.只有A满足这两点,故选A.方法总结:本题考查三视图的识别和判断,熟记一些简单的几何体的三视图是解答本题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】根据三视图判断实物的组成情况学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有()A.7盒B.8盒C.9盒D.10盒解析:观察图形得第一层有4盒,第二层最少有2盒,第三层最少有1盒,所以至少共有7盒.故选A.方法总结:考查对三视图的掌握程度和灵活运用的能力,同时也考查空间想象能力.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型三】综合性问题如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看的高为3cm,从上面看三角形的边长都为2cm,求这个几何体的侧面积.解析:(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是三角形,可得到此几何体为三棱柱;(2)此几何体的表面展开图由三个长方形和两个三角形组成;(3)侧面积由3个长方形组成,它的长和宽分别为3cm和2cm,计算出一个长方形的面积,乘以3即可.解:(1)正三棱柱;(2)如图所示:(3)3×3×2=18(cm2).答:这个几何体的侧面积为18cm2.方法总结:本题主要考查由三视图确定几何体和求几何体的侧面积等相关知识,关键是知道棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.变式训练:见《学练优》本课时练习“课堂达标训练”第8题探究点二:平面图的展开与折叠【类型一】根据展开图判断原实物体如图所示为立体图形的展开图,请写出对应的几何体的名称.解析:在本题的解答过程中,可以动手进行折纸,也可以根据常见立体图形的平面展开图的特征做出判断.解:几何体分别为五棱柱、圆柱与圆锥.方法总结:熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型二】判断几何体的展开图如图所示的四幅平面图中,是三棱柱的表面展开图的有________(只填序号).解析:三棱柱的两底展开是三角形,侧面展开是三个矩形,根据题设可知①②③符合题意,故答案为①②③.方法总结:本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型三】展开与折叠的综合性问题如图是一个正方体的表面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的数相等.(1)求x的值;(2)求正方体的上面和底面的数字之和.解析:(1)正方体的表面展开图,由相对面之间一定相隔一个正方形可确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字为3和1,然后相加即可.解:根据正方体的表面展开图中相对面之间一定相隔一个正方形,可得“A”与“-2”是相对面,“3”与“1”是相对面,“x”与“3x-2”是相对面.(1)∵正方体的左面与右面标注的数字相等,∴x=3x-2,解得x=1;(2)∵标注了A字母的是正方体的正面,左面与右面标注的数字相等,∴上面和底面上的两个数字为3和1,∴上面和底面上的数字之和为3+1=4.方法总结:本题主要考查了正方体相对两个面上的数字,注意正方体是空间图形,从相对面入手分析、解答问题.变式训练:见《学练优》本课时练习“课后巩固提升”第2题三、板书设计一、学习目的;二、工具准备;三、具体活动;四、课题拓广.三视图和平面展开图是以不同方式描绘立体图形的,它们在生产实际中有直接应用.了解这方面的例子,可以丰富实践知识,进一步认识三视图和平面展开图.。
2019-2020学年度初中九年级下册数学29.3 课题学习 制作立体模型人教版巩固辅导七十三
2019-2020学年度初中九年级下册数学29.3 课题学习制作立体模型人教版巩固辅导七十三第1题【单选题】圆锥的侧面展开图是( )A、三角形B、矩形C、扇形D、圆【答案】:【解析】:第2题【单选题】如图的几何体中,主视图是中心对称图形的是( )A、B、C、D、【答案】:【解析】:第3题【单选题】如图是由五个相同的小正方体组成的立体图形,从上面看到的图形是( )A、B、C、D、【答案】:【解析】:第4题【单选题】一个正方体的每个面都有一个汉字,其平面展开图如图,那么在该正方体中和“毒”字相对的字是( )A、卫B、防C、讲D、生【答案】:【解析】:第5题【单选题】如图是一个正方体的表面展开图,则原正方体中与“美”字所在面相对的面上标的字是( )A、丽B、张C、家D、界【答案】:【解析】:第6题【单选题】下列图形中,能通过折叠围成一个三棱柱的是( )A、B、C、D、【答案】:【解析】:第7题【单选题】明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中( )A、B、C、D、【答案】:【解析】:第8题【单选题】一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是( )A、中B、功C、考D、祝【解析】:第9题【单选题】如图,是一个正方形盒子的展开图,若要在展开后的其中的三个正方形A、B、C内分别填入适当的数,使得展开图折成正方体后相对的面上的两个数互为相反数,则填入正方形A,B,C内的三个数依次为( )A、1,﹣2,0B、0,﹣2,1C、﹣2,0,1D、﹣2,1,0【答案】:【解析】:第10题【填空题】八棱柱有______个顶点,______条棱,______个面.【解析】:第11题【填空题】如图,长方体中,AB=12cm,BC=2cm,B有误=3cm,一只蚂蚁从点A出发,以4cm/秒的速度沿长方体表面爬行到点有误^′ ,至少需要______分钟.【答案】:【解析】:第12题【填空题】圆锥有______个面,它的侧面展开图是______.A、二B、扇形【答案】:【解析】:第13题【填空题】如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有______种拼接方法.【答案】:【解析】:第14题【填空题】如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是______.【答案】:【解析】:第15题【解答题】如图是一个正方形的平面展开图,若要使得平面展开图折叠成正方体后,相对面上的两个数之和均为5,求x、y、z的值.【答案】:【解析】:。
人教版九年级下册29.3课题学习制作立体模型29.3课题学习制作立体模型课程设计
人教版九年级下册29.3课题学习制作立体模型一、课程目标本课程主要以九年级下册数学29.3课题学习制作立体模型为主题,通过学习制作立体模型的方法,培养学生的动手能力,提高学生的空间想象力和几何直观理解能力。
同时,通过对三维物体的构建和性质的认识,加深学生对几何概念的理解和运用。
二、教学内容1.立体几何图形的构建和性质2.立体模型的制作方法和步骤3.立体模型的展示和呈现方式三、教学过程1. 学习立体几何图形的构建和性质首先,学生应该了解立体几何图形的基本构成要素,包括点、线、面和体。
通过多种例子的讲解和练习,加深对立体几何图形的理解。
同时,通过图形性质的分析和推理,引导学生探索立体几何图形的特点和规律。
2. 制作立体模型的方法和步骤其次,学生应该了解立体模型制作的基础知识和技巧。
通过简单的实物制作,让学生了解模型制作的基本流程和注意事项。
同时,借助计算机辅助设计软件,让学生体验不同模型制作方式的特点和优势。
3. 立体模型的展示和呈现方式最后,学生应该了解立体模型的展示和呈现方式,包括照片、视频等多种方式。
通过多方位的展示方式,让学生了解不同展示方式的特点和优势,培养学生的展示能力和创造力。
四、教学评估本课程采用多种教学方法,结合数学29.3课题学习制作立体模型内容和实际工程实践的要求,注重教学效果和学生能力培养的提高。
通过课堂练习、作业和大作业等评估方式,综合评估学生的学习效果和能力提高情况,进而提高教学水平和效果。
五、总结与反思通过本课程的教学实践,可以发现学生在立体模型设计和展示方面的兴趣和能力得到了有效的提高和发展,在动手能力和创造力的培养方面取得了显著的成效。
同时,也需要进一步完善课程设计和教学方法,提高教学质量和效果,为学生未来的发展打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.3 课题学习制作立体模型
【知识与技能】
能根据物体的三视图制作立体模型.
【过程与方法】
在动手制作立体模型的过程中,体验平面图形与立体图形的转化过程.
【情感态度】
进一步感受立体图形与平面图形之间的联系,锻炼学生的动手操作能力,增强学生的空间观念.
【教学重点】
锻炼学生的动手操作能力,感知视图与立体图形的转化过程.
【教学难点】
制作模型过程中的规范操作.
一、活动预备,准备工具
刻度尺、剪刀、小刀、胶水、硬纸板、马铃薯(或萝卜 )
二、活动实践,升华知识
活动1以硬纸板为主要材料,分别做出下面两组视图所表示的立体模型.
活动2按照下面给出的两组三视图,用马铃薯(或萝卜)做出相应的实物模型.
活动3 下面的每一组平面图形都由四个等边三角形组成.
(1)指出其中哪些可以折叠成多面体.把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;
(2)画出由上面图形能折叠成的多面体的三视图,并指出三视图中是怎样体现“长对正,高平齐,宽相等”的;
(3)如果上图中小三角形的边长为1,那么对应的多面体的表面积各是多少?
【教学说明】通过学生自己动手实践,自己制作,由图形得出立体模型,在活动3中,需要先由展开图想象出立体图形,并通过制作模型
检验所想是否正确,最后画出它的三视图并计算体积和表面积.在活动过程中,教师巡视,关注学生的参与度,并及时与学生沟通,帮助他们解决所遇到的困难,并协助他完成模型制作. 最后,让学生积极展示自己的作品,使学生感受到成功的喜悦,激发他们的学习兴趣.在完成上述活动后,教师引导学生完成创优作业中本课时的“名师导学”部分.
活动4 (或课外活动)设计并制作笔筒
设计你喜欢的笔筒,画出三视图和展开图,制作笔筒模型,体会设计制作过程中三视图、展开图、实物(立体模型)之间的关系.
三、师生互动,课堂小结
这节课你有哪些收获?你觉得依据三视图制作立体模型时有哪些需注意的问题,与同伴交流.
完成创优作业中本课时的“课时作业”部分.
本课时主要在于让学生能动手完成立体模型的制作,因此教学时应放手让学生动手操作,并让学生感受和描述立体图形与平面图形之间的联系.。