2013年高考文科数学试题解析分类汇编1教学文稿
2013年高考文科数学全国卷1及答案
数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )A .{1,4}B .{2,3}C .{9,16}D .{1,2} 2.212i(1i)+=-( )A .11i 2--B .11i 2-+C .11i 2+D .11i 2-3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 ( )A .12B .13C .14D .164.已知双曲线C :22221(0,0)x y a b a b-=>>的离心率为52,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =± 5.已知命题p :x ∀∈R ,23x x<;命题q :x ∃∈R ,321x x =-,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝ 6.设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( )A .21n n S a =-B .32n n S a =-C .43n n S a =-D .32n n S a =-7.执行如图的程序框图,如果输入的[1,3]t ∈-,则输 出的s 属于( )A .[3,4]-B .[5,2]-C .[4,3]-D .[2,5]-8.O 为坐标原点,F 为抛物线C :242y x =的焦点,P 为C 上一点,若||42PF =,则POF △的面积为( )A .2B .22C .23D .49.函数()(1cos )sin f x x x =-在[π,π]-上的图象大致为( )10.已知锐角ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,223cos cos20A A +=,7a =,6c =,则b =( )A .10B .9C .8D .5 11.某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+12.已知函数22,0()ln(1),0.x x x f x x x ⎧-+=⎨+⎩≤,>若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b ,若0=b c ,则t =________.14.设x ,y 满足约束条件13,10,x x y ⎧⎨--⎩≤≤≤≤,则2z x y =-的最大值为________.15.已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.16.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列21211{}n n a a -+的前n 项和.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)18.(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ).试验的观测结果如下: 服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.52.61.22.71.52.93.03.12.32.4服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.60.51.80.62.11.12.51.22.70.5(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?A 药B 药0. 1. 2.3.19.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若2AB CB ==,16A C =,求三棱柱111ABC A B C -的体积.20.(本小题满分12分)已知函数2()e ()4x f x ax b x x =+--,曲线()y f x =在点(0,(0))f 处的切线方程为44y x =+.(Ⅰ)求a ,b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值.21.(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与圆M 外切并且与圆N内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求||AB .数学试卷 第7页(共18页)数学试卷 第8页(共18页) 数学试卷 第9页(共18页)2013年普通高等学校招生全国统一考试(全国新课标卷1)文科数学答案解析第Ⅰ卷当0a >时,y ax =与()y f x =恒有公共点,所以排除当0a ≤时,若0x >,则()f x ≥由2,2,y ax y x x =⎧⎨=-⎩得22()0x a x -+=. ∵22()0a ∆=+=,∴2a =-. ∴,0[]2a ∈-;故选D .第Ⅱ卷0=b c ,a 1112⨯⨯=a b 1(0[)]t t =+-=b c a b b ,即1()t t +-a b b 1120t t +-=;∴2t =. 【答案】3【解析】画出可行域如图所示。
2013年全国统一高考数学试卷(文科)(大纲版)(含解析版)
5.【解答】解:(x+2)8 展开式的通项为 T r+1=C x 8﹣r2 r
令 8﹣r=6 得 r=2, ∴展开式中 x6 的系数是 2 2C82=112. 故选:C. 【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.
6.【解答】解:设 y=log2(1+ ),
把 y 看作常数,求出 x:
设 A(x1,y1),B(x2,y2). ∴x1+x2=4+ ,x1x2=4.
∵曲线 y=x4+ax2+1 在点(﹣1,a+2)处切线的斜率为 8, ∴﹣4﹣2a=8 ∴a=﹣6 故选:D.
∴y1+y2= ,y1y2=﹣16,
又
=0,
∴
=(x1+2,y1﹣2)•(x2+2,y2﹣2)=
=0
【点评】本题考查导数的几何意义,考查学生的计算能力,属于基础题.
(II)由(I)得:A+C=60°,∵sinAsinC= ,cos(A+C)= , ∴co(s A﹣C)=cosAcosC+sinAsinC=cosAcosC﹣sinAsinC+2sinAsinC=co(s A+C)+2sinAsinC= +2×
∴k=2.
故选:D.
11.【解答】解:设 AB=1,则 AA1=2,分别以 建立空间直角坐标系,
的方向为 x 轴、y 轴、z 轴的正方向
【点评】本题考查直线与抛物线的位置关系,考查向量的数量积公式,考查学生的计算能力,属于中 档题.
第 5页(共 8页)
关注公众号:麦田笔墨 获取更多干货
故答案为:0
C.112
D.224
2013年高考新课标1数学文科试题及答案
2013年高考新课标1数学文科试题及答案绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( )(A){1,4}(B){2,3}(C){9,16} (D){1,2}(2)1+2i(1-i)2=( )(A )-1-12i (B )-1+12i (C )1+12i (D )1-12i (3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )(A )12 (B )13(C )14(D )16 (4)已知双曲线C:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为 ( )(A )y =±14x (B )y =±13x (C )y =±12x (D )y =±x (5)已知命题p :∀x ∈R,2x ><3x;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是:( )(A)p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为23的等比数列{a n}的前n项和为S n,则()(A)S n=2a n-1 (B)S n =3a n-2 (C)Sn=4-3a n(D)S n =3-2a n(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于 ( )(A)[-3,4] (B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=42x的焦点,P为C上一点,若|PF|=42,则△POF的面积为( )(A)2 (B)2 2 (C)2 3(D)4(9)函数f(x)=(1-cos x)sin x在[-π,π]的图像大致为( )A B C D(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=( )(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π (B)8+8π(C)16+16π (D)8+16π(12)已知函数f (x )=⎩⎨⎧ -x 2+2x x ≤0ln(x +1) x >0,若| f (x )|≥ax ,则a 的取值范围是( )(A )(-∞,0] (B )(-∞,1](C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。
2013年全国高考文科数学试题及答案-新课标1汇编
2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =( )(A ){0}(B ){-1,,0} (C ){0,1} (D ){-1,,0,1}(2)212(1)ii +=-( )(A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12 (B )13 (C )14 (D )16(4)已知双曲线2222:1x y C a b-=(0,0)a b >>的离心率为5,则C 的渐近线方程为( )(A )14y x =±(B )13y x =± (C )12y x =±(D )y x =±(5)已知命题:p x R ∀∈,23xx<;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧(B )p q ⌝∧(C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F 为抛物线2:42C y x =的焦点,P 为C 上一点,若||42PF =,则POF ∆的面积为( )(A )2(B )22(C )23(D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9(C )8(D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+ (C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。
2013年高考文科数学试题(全国课标1)解析版
2013年高考文科数学试题(全国课标1)一. 选择题:本大题共12小题,每小题5分,在每个小题给出的四个选项中,只有一个是符合题目要求的。
1. 已知集合A ={1,2,3,4},B =2{|,}x x n n A =∈,则A B ⋂=A .{1,4}B .{2,3}C .{9,16}D .{1,2}【命题意图】本题主要考查集合的运算,是容易题. 【解析】B ={1,4,9,16},故A B ⋂={1,4},故选A . 2.212(1)ii +-=A .112i --B .112i -+C .112i +D .112i -【命题意图】本题主要考查复数的运算,是容易题. 【解析】212(1)i i +-=122i i+-=112i -+,故选B . 3. 从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是A .12 B .13 C .14 D .16【命题意图】本题主要考查古典概型的计算,是容易题.【解析】从1,2,3,4中任取两个有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}6种不同取法,其中取出的2个数之差的绝对值为2的由{1,3},{2,4}2种,故其概率为26=13,故选B .4. 已知栓曲线C :22221x y a b -=(0,0a b >>)的离心率为2,则C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =± D .y x =± 【命题意图】本题主要考查双曲线的几何性质,是简单题.【解析】由题知,c a =54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C . 5. 已知命题p :,23x x x R ∀∈<;命题q :32,1x R x x ∃∈=-,则下列命题中为真命题的是A .p q ∧B .p q ⌝∧C . p q ∧⌝D .p q ⌝∧⌝【命题意图】本题主要考查特称命题、全称命题真假的判定及复合命题真假判断,是容易题. 【解析】由题意知p 为假命题,q 为真命题,∴p ⌝数真命题,∴p q ⌝∧为真命题,故选B .6. 设首项为1,公比为23的等比数列{n a }的前n 项和为n S ,则 A .n S =21n a - B .n S =32n a - C .n S =43n a - D .n S =32n a -【命题意图】本题主要考查等比数列前n 项和公式,是容易题.【解析】n S =213213na --=32n a -,故选D . 7. 运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]【命题意图】本题主要考查程序框图及分段函数值域求法,是简单题.【解析】有题意知,当[1,1)t ∈-时,3s t =[3,3)∈-,当[1,3]t ∈时,24s t t =-[3,4]∈, ∴输出s 属于[-3,4],故选A .8. O 是坐标原点,F 是抛物线C:2y =的焦点,P 为C 上一点,若|PF|=POF 的面积为A .2 B. C. D .4【命题意图】本题主要考查抛物线的定义,是容易题.【解析】由抛物线焦半径公式得P x P x=||P y=, ∴△POF 的面积为1||||2P OF y=12C . 9. 函数()f x =(1cos )sin x x -在[,]ππ-的图像大致为【命题意图】本题主要考查三角函数函数的图像与性质及利用导数研究初等函数的图像与性质,是中档题.【解析】显然()f x 是奇函数,故排除B,当0x π-<<时,()f x <0,故排除A ,∵()f x '=22sin cos cos x x x +-=22cos cos 1x x -++,由()f x '≥0解得1cos 2x -≤,又∵x ππ-≤≤,∴3344x ππ-≤≤,同理,由()f x '≤0解得,34x ππ-≤≤-或34x ππ≤≤,∴()f x 在[-π,-34π]上是减函数,在[-34π,34π]上是增函数,在[34π,π]上是减函数,∴当x =34π时,()f x 取最小值3()4f π-=π,故选C . 10. 已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,223cos cos 20A A +=,a =7,6c =,则b =A .10B .9C .8D .5【命题意图】本题主要考查二倍角公式、正余弦定理,是中档题. 【解析】由223cos cos 20A A +=及△ABC 是锐角三角形得cos A =15, ∵a =7,6c =,∴222176265b b =+-⨯⨯,即2512650b b --=,解得5b =或b =135-(舍),故选D .11. 某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C .1616π+D .816π+【命题意图】本题主要考查简单组合体的三视图及简单组合体体积公式,是中档题.【解析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为21244222π⨯⨯+⨯⨯ =168π+,故选A .12. 已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0]【命题意图】本题主要考查函数不等式恒成立求参数范围问题的解法,是难题。
2013年高考文科数学全国新课标卷1试题与答案word解析版
2013年普通高等学校招生全国统一考试(新课标全国卷I)数学(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=( ).A.{1,4} B.{2,3} C.{9,16} D.{1,2}(2) = ( )(A)-1 - i (B)-1 + i (C)1 + i (D)1 - i3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A.12 B.13 C.14 D.164.已知双曲线C:2222=1x ya b-(a>0,b>0)C的渐近线方程为( ).A. B.C.12y x=± D .5.已知命题p:?x∈R,2x<3x;命题q:?x∈R,x3=1-x2,则下列命题中为真命题的是( ).A.p∧q B.⌝p∧qC.p∧⌝q D.⌝p∧⌝q(6)设首项为1,公比为的等比数列{a n}的前n项和为S n,则()(A)S n=2a n-1 (B)S n =3a n-2 (C)S n=4-3a n(D)S n =3-2a n7.执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ).A.[-3,4]B.[-5,2] C.[-4,3]D.[-2,5]8.O为坐标原点,F为抛物线C:y2=的焦点,P为C上一点,若|PF|=,则△POF的面积为( ).A.2 B...49.函数f(x)=(1-cos x)sin x在[-π,π]的图像大致为( ).10.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos 2A=0,a=7,c=6,则b=( ).A.10 B.9 C.8 D.511.某几何体的三视图如图所示,则该几何体的体积为( ).A.16+8πB.8+8π C.16+16πD.8+16π12已知函数f(x)=22,0,ln(1),0.x x xx x⎧-+≤⎨+>⎩若|f(x)|≥ax,则a的取值范围是( ).A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a,b的夹角为60°,c=t a+(1-t)b.若b·c=0,则t =______.14.设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______.15.已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.16.设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.星期一已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和. 星期二如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C,求三棱柱ABC -A 1B 1C 1的体积.星期三为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.12.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.22.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?星期四已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |. 星期五已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.星期六(三选一)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC= ,延长CE 交AB 于点F ,求△BCF 外接圆的半径。
2013年全国大纲高考数学文科试卷带详解
2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,2,3,4,5,1,2,U U A A ===集合则ð ( )A.{}1,2B.{}3,4,5C.{}1,2,3,4,5D.∅ 【测量目标】集合的补集.【考查方式】直接给出集合,用列举法求集合补集. 【参考答案】B【试题解析】依据补集的定义计算. {}1,2,3,4,5U =,{}1,2A =,∴ U A =ð{3,4,5}. 2.已知α是第二象限角,5sin ,cos 13αα==则 ( ) A.1213- B.513- C.513 D.1213【测量目标】同角三角函数基本关系.【考查方式】直接给出角的象限和正弦值,求余弦值. 【参考答案】A【试题解析】利用同角三角函数基本关系式中的平方关系计算.因为α为第二象限角,所以12cos .13α==-3.已知向量()()()()1,1,2,2,,=λλλ=+=++⊥-若则m n m n m n ( )A.-4B.-3C.-2D.1- 【测量目标】平面向量的坐标运算与两向量垂直的坐标公式等.【考查方式】给出两向量的坐标表示,两向量坐标运算的垂直关系,求未知数.λ 【参考答案】B【试题解析】利用坐标运算得出+-与m n m n 的坐标,再由两向量垂直的坐标公式求λ, 因为()()23,3,1,1,λ+=+-=--m n m n 由()(),+⊥-m n m n 可得()()()()23,31,1260,λλ+-=+--=--= m n m n (步骤1)解得 3.λ=- (步骤2)4.不等式222x -<的解集是 ( )A.()1,1-B.()2,2-C.()()1,00,1-D.()()2,00,2- 【测量目标】含绝对值的一元二次不等式的解.【考查方式】给出绝对值不等式,求出满足不等式的解集. 【参考答案】D【试题解析】将绝对值不等式转化为一元二次不等式求解.由222,x -<得2222,x -<-<即204,x <<(步骤1)所以20x -<<或02,x <<故解集为()()2,00,2.- (步骤2)5.()862x x +的展开式中的系数是 ( )A.28B.56C.112D.224 【测量目标】二项式定理.【考查方式】由二项式展开式,求满足条件的项的系数. 【参考答案】C【试题解析】写出二项展开式的通项,从而确定6x 的系数.该二项展开式的通项为88188C 22C ,r r r r r r r T x x --+==(步骤1)令2,r =得2266382C 112,T x x ==所以6x 的系数是112. (步骤2)6.函数()()21log 10f x x x ⎛⎫=+> ⎪⎝⎭的反函数1()f x -= ( ) A.()1021x x >- B.()1021xx ≠- C.()21x x -∈R D.()210x x -> 【测量目标】反函数的求解方法,函数的值域求法. 【考查方式】给出函数的解析式,求它的反函数.. 【参考答案】A【试题解析】由已知函数解出,x 并由x 的范围确定原函数的值域,按照习惯把,x y 互换,得出反函数. 由21log 1y x ⎛⎫=+⎪⎝⎭得112,yx ⎛⎫+= ⎪⎝⎭故1.21yx =-(步骤1)把x 和y 互换,即得()11.21x f x -=-(步骤2) 由0,x >得111,x+>可得0.y > 故所求反函数为()11(0).21xf x x -=>-(步骤3) 7.已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于 ( )A.()10613---B.()101139-- C.()10313-- D.()1031+3-【测量目标】等比数列的定义及等比数列前n 项和.【考查方式】给出一个数列{n a }、它的前后项的关系,判断是否为特殊数列,从而求出它的前n 项和. 【参考答案】C【试题解析】先根据等比数列的定义判断数列{}n a 是等比数列,得到首项与公比,再代入等比数列前n 项和公式计算. 由130,n n a a ++=得11,3n n a a +=-故数列{}n a 是公比13q =-的等比数列. (步骤1)又24,3a =-可得1 4.a =(步骤2)所以()1010101413313.113S -⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦==-⎛⎫-- ⎪⎝⎭(步骤3)8.()()1221,0,1,0,F F C F x -已知是椭圆的两个焦点过且垂直于轴的直线交于A B 、两点,且3AB =,则C 的方程为 ( )A.2212x y += B.22132x y += C.22143x y += D.22154x y += 【测量目标】椭圆的标准方程及简单几何性质.【考查方式】给出椭圆焦点,由椭圆与直线的位置关系,利用待定系数法求椭圆的标准方程. 【参考答案】C【试题解析】设出椭圆的方程,依据题目条件用待定系数法求参数.由题意知椭圆焦点在x 轴上,且1,c =可设C 的方程为()22221,1x y a a a +>-(步骤1)由过2F 且垂直于x 轴的直线被C 截得的弦长3,AB =知点21,3⎛⎫ ⎪⎝⎭必在椭圆上,(步骤2)代入椭圆方程化简得4241740,a a -+=所以24a =或214a =(舍去). (步骤3) 故椭圆C 的方程为221.43x y +=(步骤4) 9.若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 ( ) A.5 B.4 C.3 D.2第9题图【测量目标】根据函数的部分图象确定函数解析式.【考查方式】给出正弦函数的未知解析式及正弦函数的部分图象.根据图象求出T ,确定ω的值.【参考答案】B【试题解析】根据图象确定函数的最小正周期,再利用2πT ω=求.ω设函数的最小正周期为T ,由函数图象可知0ππ=,244T x x ⎛⎫+-= ⎪⎝⎭所以π.2T =(步骤1)又因为2π,T ω=可解得 4.ω=(步骤2)10.已知曲线()421128=y x ax a a =++-+在点,处切线的斜率为, ( )A.9B.6C.9-D.6- 【测量目标】导数的几何意义及求导公式等知识.【考查方式】已知曲线在未知点处的切线斜率,利用导数的几何意义求未知数a . 【参考答案】D【试题解析】先对函数求导,利用导数的几何意义得出点()1,2a -+处的切线斜率,解方程所得.342,y x ax '=+由导数的几何意义知在点(1,2)a -+处的切线斜率1|428,x k y a =-'==--=解得 6.a =-11.已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ( )A.23 D.13 【测量目标】直线与平面所成角和线面垂直的判定.【考查方式】已知正四棱柱,利用其性质和几何体中的垂直关系求线面角的正弦值. 【参考答案】A【试题解析】利用正四棱柱的性质,通过几何体中的垂直关系,判断点C 在平面1BDC 上的射影位置,确定线平面角,并划归到直角三角形中求解.如图,连接AC ,交BD 于点O ,由正四棱柱的性质,有.AC BD ⊥ 因为1CC ⊥平面ABCD ,所以 BD ⊥(步骤1)又1,CC AC C = 所以BD ⊥平面 O (步骤2) 在平面1CC O 内作1,CH C O ⊥垂足为H ,则.BD CH ⊥又1,BD C O O = 所以CH ⊥平面1,BDC (步骤3) 第11题图 连接DH ,则DH 为CD 在平面1BDC 上的射影,所以CDH ∠为CD 与1BDC 所成的角.(步骤4)设12 2.AA AB ==在1Rt COC △中,由等面积变换易求得2,3CH =在Rt CDH △中,2sin .3CH CDH CD ∠==(步骤5) 12.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k = ( )A .12 D.2 【测量目标】直线与抛物线的位置关系,平面向量的坐标运算等知识.【考查方式】已知抛物线标准方程,利用抛物线性质及直线与抛物线的位置关系求解过焦点的直线的斜率. 【参考答案】D【试题解析】联立直线与抛物线的方程,消元得一元二次方程并得两根之间的关系,由0MA MB =进行坐标运算解未知量k .抛物线C 的焦点为()2,0,F 则直线方程为()2,y k x =-与抛物线方程联立,消去y 化简得()22224840.k x k x k -++=(步骤1)设点()()1122,,,,A x y B x y 则1212284, 4.x x x x k +=+=所以()121284,y y k x x k k+=+-=()21212122416.y y k x x x x =-++=-⎡⎤⎣⎦(步骤2) ()()()()()()112212122,22,22222MA MB x y x y x x y y =+-+-=+++--()()121212122280,x x x x y y y y =+++-++=(步骤3)将上面各个量代入,化简得2440,k k -+=所以 2.k =(步骤4)二、填空题:本大题共4小题,每小题5分.13.设()[)()21,3=f x x f x ∈是以为周期的函数,且当时, . 【测量目标】函数周期的应用及根据函数解析式求值.【考查方式】给出函数()f x 的周期及取值范围,代入解析式求函数值.【参考答案】1-【试题解析】利用周期将自变量转化到已知解析式中x 的范围内,代入解析式计算 . 由于()f x 的周期为2,且当[)1,3x ∈时,()2,f x x =-(步骤1)()2,f x x =-()()()112112 1.f f f -=-+==-=-(步骤2)14.从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答)【测量目标】简单的排列组合知识的应用. 【考查方式】直接利用排列组合知识列式求解. 【参考答案】60【试题解析】利用排列组合知识列式求解. 由题意知,所有可能的决赛结果有12365354C C C 61602⨯=⨯⨯=(种).15.若x y 、满足约束条件0,34,34,x x y x y ⎧⎪+⎨⎪+⎩………则z x y =-+的最小值为 .【测量目标】二元线性规划求目标函数最值.【考查方式】直接给出函数的约束条件,利用线性规划性质及借助数形结合思想求z 的最小值.【参考答案】0【试题解析】作出定义域,借助数形结合寻找最优解.由不等式组作出可行域,如图阴影部分所示()包括边界,且()()41,1040,.3A B C ⎛⎫⎪⎝⎭,,,,由数形结合知,直线y x z =+过点()1,1A 时,min 110.z =-+= 16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K = ,且圆与圆所在的平面所成角为,则球O 的表面积等于 .【测量目标】球的大圆、小圆及球的截面性质,二面角的平面角,球的表面积公式等知识. 【考查方式】已知二面角的平面角,根据球的截面性质,直角三角形的性质,求出球的半径,并由球的表面积公式求球的表面积. 【参考答案】16π 【试题解析】根据球的截面性质以及二面角的平面角的定义确定平面角,把球的半径转化到三角形中计算,进而求得球的表面积.如图所示,公共弦为AB ,设球的半径为R ,则,AB R =取AB 为中点M ,连接OM 、,KM由圆的性质知,,OM AB KM AB ⊥⊥ 所以KMO ∠为圆O 与圆K 所在平面所成的一个二面角的平面角,则60.KOM ∠=(步骤1)Rt KOM △中,3,2OK =所以sin 60OK OM == (步骤2) 在Rt OMA △中,因为222,OA OM AM =+所以2213,4R R =+解得24,R =(步骤3)所以球O 的表面积为24π16π.R =(步骤4)三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式; (II )设{}1,.n n n nb b n S na =求数列的前项和 【测量目标】等差数列的通项公式、裂项相消法求数列的前n 项和.【考查方式】(1)根据等差数列的通项公式求出首项和公差,进而求出等差数列的通项公式.(2)已知通项公式,利用裂项相消法求和.【试题解析】(1)设等差数列{}n a 的公差为d ,则()11.n a a n d =+-因为71994,2,a a a =⎧⎨=⎩所以()11164,1828.a d a d a d +=⎧⎨+=+⎩(步骤1)解得11,1.2a d =⎧⎪⎨=⎪⎩所以{}n a 的通项公式为1.2n n a +=(步骤2) (2)因为()222,11n b n n n n ==-++所以2222222.122311n n S n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭(步骤3) 18.(本小题满分12分)设ABC △的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I )求B(II)若1sin sin 4A C =,求C . 【测量目标】余弦定理解三角形,三角恒等变换公式及其应用.【考查方式】已知三角形的三边及三边关系.(1)由已知关系式展开,利用余弦定理求角. (2)三角形内角和得出A C +,由给出的sin sin A C 的形式,联想构造与已知条件相匹配的余弦公式,求出角C .【试题解析】(1)因为()(),a b c a b c ac ++-+=所以222.a c b ac +-=-(步骤1)由余弦定理得2221cos ,22a cb B ac +-==-因此120.B =(步骤2)(2)由(1)知60,A C +=所以()cos cos cos sin sin A C A C A C -=+cos cos sin sin 2sin sin A C A C A C =-+()11cos 2sin sin 2242A C A C =++=+⨯=(步骤1) 故30A C -=或30,A C -=- 因此15C =或45.C =(步骤2) 19.(本小题满分12分)如图,四棱锥P-ABCD 中,==90ABC BAD ∠∠,BC =2AD ,△P AB 与△PAD 都是边长为2的等边三角形. 图(1)(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离【测量目标】空间垂直关系的证明和点到平面距离的求解.第19题图【考查方式】已知四棱锥,底面为特殊的直角梯形,侧面为特殊三角形(1)借助线线、线面垂直求解.(2)通过做辅助线将点面距离转化为图形中的线段,再求解.【试题解析】(1)证明:取BC 的中点E ,连接DE ,则四边形ABCD 为正方形. 过点P 作PO ABCD ⊥平面,垂足为O .连接OA ,OB,OD ,OE . 图(2) 由PAB △和PAD △都是等边三角形知,PA PB PD ==(步骤1)所以,O A O B O D ==即O 为正方形ABED 对角线的交点,故 ,OE BD ⊥从而.P B O E ⊥(步骤2)因为O 是BD 的中点,E 是BC 的中点,所以OE //CD .因此.PB CD ⊥(步骤3)(2)解:取PD 的中点F ,连接OF ,则//.OF PB 由(1)知,,PB CD ⊥故.OF CD ⊥(步骤4)又12OD BD ==OP ==故POD △为等腰三角形,(步骤5) 因此.OF PD ⊥又,PD CD D = 所以.OF PCD ⊥平面(步骤6)因为//,AE CD CD PCD ⊂平面,,AE PCD ⊄平面所以//.AE PCD 平面(步骤7) 因此点O 到平面PCD 的距离OF 就是点A 到平面PCD 的距离,(步骤8) 而112OF PB ==,所以点A 到平面PCD 的距离为1. (步骤9) 20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(II )求前4局中乙恰好当1次裁判概率. 【测量目标】相互独立事件同时发生的概率,互斥事件概率加法公式的应用.【考查方式】(1)直接利用独立事件的概率公式求解.(2)由已知,直接利用互斥事件的加法公式求解.【试题解析】(1)记1A 表示事件“第2局结果为甲胜”,2A 表示“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12.A A A = ()()()()12121.4P A P A A P A P A === (步骤1)(2)记1B 表示事件“第1局比赛结果为乙胜”,2B 表示事件“第2局乙参加比赛,结果为乙胜”,3B 表示事件“第3局中乙参加比赛时,结果为乙胜”,B 表示事件“前4局中乙恰好当1次裁判”, 则1312312.B B B B B B B B =++ (步骤2)()()1312312P B P B B B B B B B =++=()()()1312312P B B P B B B P B B ++=()()()()()()()1312312P B P B P B P B P B P B P B ++=111+484+ =5.8(步骤3) 21.(本小题满分12分)已知函数()32=33 1.f x x ax x +++(I )求();a f x =的单调性; (II )若[)()2,0,x f x ∈+∞时,…求a 的取值范围. 【测量目标】导数在研究函数中的应用.【考查方式】已知含未知数a 的函数()f x (1)对()f x 求导,得出()f x =0时的根,根据导数性质讨论函数单调性.(2)利用特殊值法和放缩法求a 的范围.【试题解析】(1)当a =()3231,f x x x =-++()23 3.f x x '=-+(步骤1)令()0,f x '=得121, 1.x x ==(步骤2)当()1x ∈-∞时,()0,f x '>()f x 在()1-∞上是增函数;当)1x ∈时,()0,f x '<()f x 在)1上是减函数;当)1,x ∈+∞时,()0,f x '>()f x 在)1,+∞上是增函数. (步骤3) (2)由()20f …得4.5a -…当45a -…,()2,x ∈+∞时, ()()225321312f x x ax x ⎛⎫'=++-+ ⎪⎝⎭… =()1320,2x x ⎛⎫--> ⎪⎝⎭所以()f x 在()2,+∞上是增函数,(步骤4)于是当[)2+x ∈∞,时,()()20f x f 厖.综上,a 的取值范围是4,.5⎡⎫-+∞⎪⎢⎣⎭(步骤5) 22.(本小题满分12分) 已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF = 证明:22AF AB BF 、、成等比数列.【测量目标】双曲线的方程、性质,直线与双曲线的位置关系,等比中项等性质.【考查方式】(1)由双曲线与直线的位置关系、双曲线的几何性质求出a,b 值.(2)由直线方程和双曲线方程,利用双曲线与直线的位置关系及两点间距离公式证明线段的等比关系.【试题解析】(1)解:由题设知3,c a =即2229,a b a+=故228.b a = 所以C 的方程为22288.x y a -=(步骤1)将y=2代入上式,求得x =(步骤2)由题设知,=解得2 1.a =所以1,a b ==(步骤3)(2)证明:由(1)知,()()123,0,3,0,F F -C 的方程为2288.x y -=○1(步骤4)由题设可设l 的方程为()3,y k x k =-<将其代入○1并化简,得 ()222286980.k x k x k --++=(步骤5)设()1122,,(,),A x y B x y 则22121212226981,1,,.88k k x x x x x x k k +-+==--剠(步骤6)于是()1131,AF x ==-+123 1.BF x ==+(步骤7)由11,AF BF =得()123131,x x -+=+(步骤8) 即2122262,,383k x x k +=-=--故 解得212419,.59k x x ==-从而(步骤9)由于2113,AF x ===-2231,BF x ===- 故()2212234,AB AF BF x x =-=-+=(步骤10)()221212=39116,AF BF x x x x +--= 因而222,AF BF AB = 所以22AF AB BF 、、成等比数列(步骤11).。
2013年高考真题——文科数学(全国卷大纲版)解析版
绝密★启用前2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}{}1,2,3,4,5,1,2,u U A A ===集合则ð(A ){}1,2 (B ){}3,4,5 (C ){}1,2,3,4,5 (D )∅(2)已知a 是第二象限角,5sin ,cos 13a a ==则(A )1213-(B )513-(C )513(D )1213(3)已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则(A )4- (B )3- (C )-2 (D )-1(4)不等式222x -<的解集是(A )()-1,1 (B )()-2,2 (C )()()-1,00,1 (D )()()-2,00,2(5)()862x x +的展开式中的系数是(A )28 (B )56 (C )112 (D )224(6)函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数(A )()1021xx >- (B )()1021xx ≠- (C )()21xx R -∈ (D )()210xx ->(7)已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于(A )()-10-61-3 (B )()-1011-39(C )()-1031-3 (D )()-1031+3(8)已知()()1221,0,1,0,F F C F x -是椭圆的两个焦点过且垂直于轴的直线交于 A B 、两点,且3AB =,则C 的方程为 (A )2212xy += (B )22132xy+= (C )22143xy+= (D )22154xy+=(9)若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 (A )5 (B )4 (C )3 (D )2(10)已知曲线()421-128=y x ax a a =+++在点,处切线的斜率为,(A )9 (B )6 (C )-9 (D )-6(11)已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于(A )23(B (C (D )13(12)已知抛物线()2:82,2,C C y x M k C =-与点过的焦点,且斜率为的直线与交于,0,A B MA MB k ==两点,若则(A )12(B (C (D )2二、填空题:本大题共4小题,每小题5分.(13)设()[)()∈是以为周期的函数,且当时,.f x x f x21,3=(14)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有种.(用数字作答)(15)若x y 、满足约束条件0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩则z x y =-+的最小值为.(16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =,且圆与圆所在的平面所成角为,则球O 的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式;(II )设{}1,.nn n nb b n S na =求数列的前项和18.(本小题满分12分)设()(),,,,,.ABC A B C a b c a b c a b c ac ∆++-+=的内角的对边分别为(I )求;B(II )若sin sin C.A C =求19.(本小题满分12分)如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆中,,与都是边长为2的等边三角形.(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,各局比赛的2结果都相互独立,第1局甲当裁判.(I)求第4局甲当裁判的概率;(II)求前4局中乙恰好当1次裁判概率.21.(本小题满分12分)已知函数()32+++f x x ax x=33 1.(I)求()f;=的单调性;a x(II)若[)()时,求的取值范围∈+∞≥2,0,.x f x a22.(本小题满分12分) 已知双曲线()221222:10,0xy C a b F F a b -=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b ;(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF -证明:22.AF AB BF 、、成等比数列。
2013年全国统一高考大纲版文科数学试卷及参考答案与解析
2013年全国统一高考大纲版文科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合U={1,2,3,4,5},集合A={1,2},则∁UA=( )A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅2.(5分)若α为第二象限角,sinα=,则cosα=( )A. B. C. D.3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(-),则λ=( )A.-4B.-3C.-2D.-14.(5分)不等式|x2-2|<2的解集是( )A.(-1,1)B.(-2,2)C.(-1,0)∪(0,1)D.(-2,0)∪(0,2)5.(5分)(x+2)8的展开式中x6的系数是( )A.28B.56C.112D.2246.(5分)函数f(x)=log2(1+)(x>0)的反函数f-1(x)=( )A. B. C.2x-1(x∈R) D.2x-1(x>0)7.(5分)已知数列{an }满足3an+1+an=0,a2=-,则{an}的前10项和等于( )A.-6(1-3-10)B.C.3(1-3-10)D.3(1+3-10)8.(5分)已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交椭圆于A、B两点,且|AB|=3,则C的方程为( )A. B. C. D.9.(5分)若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=( )A.5B.4C.3D.210.(5分)已知曲线y=x4+ax2+1在点(-1,a+2)处切线的斜率为8,a=( )A.9B.6C.-9D.-611.(5分)已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于( )A. B. C. D.12.(5分)已知抛物线C:y2=8x的焦点为F,点M(-2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=( )A. B. C. D.2二、填空题:本大题共4小题,每小题5分.13.(5分)设f(x)是以2为周期的函数,且当x∈[1,3)时,f(x)=x-2,则f(-1)=.14.(5分)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有种.(用数字作答)15.(5分)若x、y满足约束条件,则z=-x+y的最小值为.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{an }中,a7=4,a19=2a9,(Ⅰ)求{an}的通项公式;(Ⅱ)设bn =,求数列{bn}的前n项和Sn.18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a-b+c)=ac. (Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.19.(12分)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求点A到平面PCD的距离.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)求前4局中乙恰好当1次裁判概率.21.(12分)已知函数f(x)=x3+3ax2+3x+1. (Ⅰ)求a=时,讨论f(x)的单调性;(Ⅱ)若x∈[2,+∞)时,f(x)≥0,求a的取值范围.22.(12分)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.2013年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.A=( )1.(5分)设集合U={1,2,3,4,5},集合A={1,2},则∁UA.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅A,即可选出正确选项【分析】由题意,直接根据补集的定义求出∁U【解答】解:因为U={1,2,3,4,5,},集合A={1,2}A={3,4,5}所以∁U故选:B.【点评】本题考查补集的运算,理解补集的定义是解题的关键2.(5分)若α为第二象限角,sinα=,则cosα=( )A. B. C. D.【分析】由α为第二象限角,得到cosα小于0,根据sinα的值,利用同角三角函数间的基本关系即可求出cosα的值.【解答】解:∵α为第二象限角,且sinα=,∴cosα=-=-.故选:A.【点评】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(-),则λ=( )A.-4B.-3C.-2D.-1【分析】利用向量的运算法则、向量垂直与数量积的关系即可得出.【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴-(2λ+3)-3=0,解得λ=-3.故选:B.【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.4.(5分)不等式|x2-2|<2的解集是( )A.(-1,1)B.(-2,2)C.(-1,0)∪(0,1)D.(-2,0)∪(0,2)【分析】直接利用绝对值不等式的解法,去掉绝对值后,解二次不等式即可.【解答】解:不等式|x2-2|<2的解集等价于,不等式-2<x2-2<2的解集,即0<x2<4, 解得x∈(-2,0)∪(0,2).故选:D.【点评】本题考查绝对值不等式的解法,考查转化思想与计算能力.5.(5分)(x+2)8的展开式中x6的系数是( )A.28B.56C.112D.224【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为6求出x6的系数.【解答】解:(x+2)8展开式的通项为Tr+1=C x 8-r2 r令8-r=6得r=2,∴展开式中x6的系数是2 2C82=112.故选:C.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.6.(5分)函数f(x)=log2(1+)(x>0)的反函数f-1(x)=( )A. B. C.2x-1(x∈R) D.2x-1(x>0)【分析】把y看作常数,求出x:x=,x,y互换,得到y=log2(1+)的反函数.注意反函数的定义域.【解答】解:设y=log2(1+),把y看作常数,求出x:1+=2y,x=,其中y>0,x,y互换,得到y=log2(1+)的反函数:y=,故选:A.【点评】本题考查对数函数的反函数的求法,解题时要认真审题,注意对数式和指数式的相互转化.7.(5分)已知数列{an }满足3an+1+an=0,a2=-,则{an}的前10项和等于( )A.-6(1-3-10)B.C.3(1-3-10)D.3(1+3-10)【分析】由已知可知,数列{an }是以-为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求【解答】解:∵3an+1+an=0∴∴数列{an}是以-为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1-3-10)故选:C.【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题8.(5分)已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交椭圆于A、B两点,且|AB|=3,则C的方程为( )A. B. C. D.【分析】设椭圆的方程为,根据题意可得=1.再由AB经过右焦点F2且垂直于x轴且|AB|=3算出A、B的坐标,代入椭圆方程得,两式联解即可算出a2=4,b2=3,从而得到椭圆C的方程.【解答】解:设椭圆的方程为,可得c==1,所以a2-b2=1…①∵AB经过右焦点F2且垂直于x轴,且|AB|=3∴可得A(1,),B(1,-),代入椭圆方程得,…②联解①②,可得a2=4,b2=3∴椭圆C的方程为故选:C.【点评】本题给出椭圆的焦距和通径长,求椭圆的方程.着重考查了椭圆的标准方程和椭圆的简单几何性质等知识,属于基础题.9.(5分)若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=( )A.5B.4C.3D.2【分析】利用函数图象已知的两点的横坐标的差值,求出函数的周期,然后求解ω.【解答】解:由函数的图象可知,(x0,y)与,纵坐标相反,而且不是相邻的对称点,所以函数的周期T=2()=,所以T==,所以ω==4.故选:B.【点评】本题考查三角函数解析式以及函数的周期的求法,考查学生的视图用图能力.10.(5分)已知曲线y=x4+ax2+1在点(-1,a+2)处切线的斜率为8,a=( )A.9B.6C.-9D.-6【分析】先求导函数,再利用导数的几何意义,建立方程,即可求得a的值.【解答】解:∵y=x4+ax2+1,∴y′=4x3+2ax,∵曲线y=x4+ax2+1在点(-1,a+2)处切线的斜率为8,∴-4-2a=8∴a=-6故选:D.【点评】本题考查导数的几何意义,考查学生的计算能力,属于基础题.11.(5分)已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于( )A. B. C. D.【分析】设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,设=(x,y,z)为平面BDC1的一个法向量,CD与平面BDC1所成角为θ,则sinθ=||,在空间坐标系下求出向量坐标,代入计算即可.【解答】解:设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,如下图所示:则D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),=(1,1,0),=(1,0,-2),=(1,0,0),设=(x,y,z)为平面BDC1的一个法向量,则,即,取=(2,-2,1),设CD与平面BDC1所成角为θ,则sinθ=||=,故选:A.【点评】本题考查直线与平面所成的角,考查空间向量的运算及应用,准确理解线面角与直线方向向量、平面法向量夹角关系是解决问题的关键.12.(5分)已知抛物线C:y2=8x的焦点为F,点M(-2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=( )A. B. C. D.2【分析】斜率k存在,设直线AB为y=k(x-2),代入抛物线方程,利用=(x1+2,y1-2)•(x2+2,y2-2)=0,即可求出k的值.【解答】解:由抛物线C:y2=8x得焦点(2,0),由题意可知:斜率k存在,设直线AB为y=k(x-2), 代入抛物线方程,得到k2x2-(4k2+8)x+4k2=0,△>0,设A(x1,y1),B(x2,y2).∴x1+x2=4+,x1x2=4.∴y1+y2=,y1y2=-16,又=0,∴=(x1+2,y1-2)•(x2+2,y2-2)==0∴k=2.故选:D.【点评】本题考查直线与抛物线的位置关系,考查向量的数量积公式,考查学生的计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分.13.(5分)设f(x)是以2为周期的函数,且当x∈[1,3)时,f(x)=x-2,则f(-1)=-1 . 【分析】利用函数的周期,求出f(-1)=f(1),代入函数的解析式求解即可.【解答】解:因设f(x)是以2为周期的函数,且当x∈[1,3)时,f(x)=x-2,则f(-1)=f(1)=1-2=-1.故答案为:-1.【点评】本题考查函数的周期的应用,函数值的求法,值域函数的定义域是解题的关键,考查计算能力.14.(5分)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有60 种.(用数字作答)【分析】6名选手中决出1名一等奖有种方法,2名二等奖,种方法,利用分步计数原理即可得答案.【解答】解:依题意,可分三步,第一步从6名选手中决出1名一等奖有种方法,第二步,再决出2名二等奖,有种方法,第三步,剩余三人为三等奖,根据分步乘法计数原理得:共有•=60种方法.故答案为:60.【点评】本题考查排列、组合及简单计数问题,掌握分步计数原理是解决问题的关键,属于中档题.15.(5分)若x、y满足约束条件,则z=-x+y的最小值为0 .【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=-x +y对应的直线进行平移,可得当x=y=1时,目标函数z取得最小值,从而得到本题答案.【解答】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(1,1),B(0,),C(0,4)设z=F(x,y)═-x+y,将直线l:z=-x+y进行平移,当l经过点A时,目标函数z达到最小值∴z最小值=F(1,1)=-1+1=0故答案为:0【点评】题给出二元一次不等式组,求目标函数z=-x+y的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于16π.【分析】正确作出图形,利用勾股定理,建立方程,即可求得结论.【解答】解:如图所示,设球O的半径为r,AB是公共弦,∠OCK是面面角根据题意得OC=,CK=在△OCK中,OC2=OK2+CK2,即∴r2=4∴球O的表面积等于4πr2=16π故答案为16π【点评】本题考查球的表面积,考查学生分析解决问题的能力,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{an }中,a7=4,a19=2a9,(Ⅰ)求{an}的通项公式;(Ⅱ)设bn =,求数列{bn}的前n项和Sn.【分析】(I)由a7=4,a19=2a9,结合等差数列的通项公式可求a1,d,进而可求an(II)由==,利用裂项求和即可求解【解答】解:(I)设等差数列{an}的公差为d∵a7=4,a19=2a9,∴解得,a1=1,d=∴=(II)∵==∴sn===【点评】本题主要考查了等差数列的通项公式及裂项求和方法的应用,试题比较容易18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a-b+c)=ac. (Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.【分析】(I)已知等式左边利用多项式乘多项式法则计算,整理后得到关系式,利用余弦定理表示出cosB,将关系式代入求出cosB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(II)由(I)得到A+C的度数,利用两角和与差的余弦函数公式化简cos(A-C),变形后将cos(A +C)及2sinAsinC的值代入求出cos(A-C)的值,利用特殊角的三角函数值求出A-C的值,与A+C的值联立即可求出C的度数.【解答】解:(I)∵(a+b+c)(a-b+c)=(a+c)2-b2=ac,∴a2+c2-b2=-ac,∴cosB==-,又B为三角形的内角,则B=120°;(II)由(I)得:A+C=60°,∵sinAsinC=,cos(A+C)=,∴cos(A-C)=cosAcosC+sinAsinC=cosAcosC-sinAsinC+2sinAsinC=cos(A+C)+2sinAsinC=+2×=,∴A-C=30°或A-C=-30°,则C=15°或C=45°.【点评】此题考查了余弦定理,两角和与差的余弦函数公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.19.(12分)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求点A到平面PCD的距离.【分析】(I)取BC的中点E,连接DE,则ABED为正方形,过P作PO⊥平面ABCD,垂足为O,连接OA,OB,OD,OE,证明PB⊥OE,OE∥CD,即可证明PB⊥CD;(II)取PD的中点F,连接OF,证明O到平面PCD的距离OF就是A到平面PCD的距离,即可求得点A到平面PCD的距离.【解答】(I)证明:取BC的中点E,连接DE,则ABED为正方形,过P作PO⊥平面ABCD,垂足为O,连接OA,OB,OD,OE由△PAB和△PAD都是等边三角形知PA=PB=PD∴OA=OB=OD,即O为正方形ABED对角线的交点∴OE⊥BD,∴PB⊥OE∵O是BD的中点,E是BC的中点,∴OE∥CD∴PB⊥CD;(II)取PD的中点F,连接OF,则OF∥PB由(I)知PB⊥CD,∴OF⊥CD,∵,=∴△POD为等腰三角形,∴OF⊥PD∵PD∩CD=D,∴OF⊥平面PCD∵AE∥CD,CD⊂平面PCD,AE⊈平面PCD,∴AE∥平面PCD∴O到平面PCD的距离OF就是A到平面PCD的距离∵OF=∴点A到平面PCD的距离为1.【点评】本题考查线线垂直,考查点到面的距离的计算,考查学生转化的能力,考查学生分析解决问题的能力,属于中档题.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)求前4局中乙恰好当1次裁判概率.【分析】(I)设A1表示事件“第二局结果为甲胜”,A2表示事件“第三局甲参加比赛结果为甲负”,A表示事件“第四局甲当裁判”,可得A=A1•A2.利用相互独立事件的概率计算公式即可得出;(II)设B1表示事件“第一局比赛结果为乙胜”,B2表示事件“第二局乙参加比赛结果为乙胜”,B3表示事件“第三局乙参加比赛结果为乙胜”,B表示事件“前4局中乙恰好当1次裁判”.可得B=,利用互斥事件和相互独立事件的概率计算公式即可得出.【解答】解:(I)设A1表示事件“第二局结果为甲胜”,A2表示事件“第三局甲参加比赛结果为甲负”,A表示事件“第四局甲当裁判”.则A=A1•A2.P(A)=P(A1•A2)=.(II)设B1表示事件“第一局比赛结果为乙胜”,B2表示事件“第二局乙参加比赛结果为乙胜”,B3表示事件“第三局乙参加比赛结果为乙胜”,B表示事件“前4局中乙恰好当1次裁判”. 则B=,则P(B)=P()=+=+=.【点评】正确理解题意和熟练掌握相互独立事件和互斥事件的概率计算公式是解题的关键.21.(12分)已知函数f(x)=x3+3ax2+3x+1.(Ⅰ)求a=时,讨论f(x)的单调性;(Ⅱ)若x∈[2,+∞)时,f(x)≥0,求a的取值范围.【分析】(I)把a=代入可得函数f(x)的解析式,求导数令其为0可得x=-,或x=-,判断函数在区间(-∞,-),(-,-),(-,+∞)的正负可得单调性;(II)由f(2)≥0,可得a≥,当a≥,x∈(2,+∞)时,由不等式的证明方法可得f′(x)>0,可得单调性,进而可得当x∈[2,+∞)时,有f(x)≥f(2)≥0成立,进而可得a的范围.【解答】解:(I)当a=时,f(x)=x3+3x2+3x+1,f′(x)=3x2+6x+3,令f′(x)=0,可得x=-,或x=-,当x∈(-∞,-)时,f′(x)>0,f(x)单调递增,当x∈(-,-)时,f′(x)<0,f(x)单调递减,当x∈(-,+∞)时,f′(x)>0,f(x)单调递增;(II)由f(2)≥0,可解得a≥,当a≥,x∈(2,+∞)时,f′(x)=3(x2+2ax+1)≥3()=3(x-)(x-2)>0,所以函数f(x)在(2,+∞)单调递增,于是当x∈[2,+∞)时,f(x)≥f(2)≥0,综上可得,a的取值范围是[,+∞)【点评】本题考查利用导数研究函数的单调性,涉及函数的最值问题,属中档题.22.(12分)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.【分析】(I)由题设,可由离心率为3得到参数a,b的关系,将双曲线的方程用参数a表示出来,再由直线建立方程求出参数a即可得到双曲线的方程;(II)由(I)的方程求出两焦点坐标,设出直线l的方程设A(x1,y1),B(x2,y2),将其与双曲线C的方程联立,得出x1+x2=,,再利用|AF1|=|BF1|建立关于A,B坐标的方程,得出两点横坐标的关系,由此方程求出k的值,得出直线的方程,从而可求得:|AF2|、|AB|、|BF2|,再利用等比数列的性质进行判断即可证明出结论.【解答】解:(I)由题设知=3,即=9,故b2=8a2所以C的方程为8x2-y2=8a2将y=2代入上式,并求得x=±,由题设知,2=,解得a 2=1所以a =1,b =2(II)由(I)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8 ① 由题意,可设l 的方程为y =k(x -3),|k|<2代入①并化简得(k 2-8)x 2-6k 2x +9k 2+8=0设A(x 1,y 1),B(x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=,,于是 |AF 1|==-(3x 1+1), |BF 1|==3x 2+1, |AF 1|=|BF 1|得-(3x 1+1)=3x 2+1,即故=,解得,从而=- 由于|AF 2|==1-3x 1,|BF 2|==3x 2-1,故|AB|=|AF 2|-|BF 2|=2-3(x 1+x 2)=4,|AF 2||BF 2|=3(x 1+x 2)-9x 1x 2-1=16 因而|AF 2||BF 2|=|AB|2,所以|AF 2|、|AB|、|BF 2|成等比数列 【点评】本题考查直线与圆锥曲线的综合关系,考查了运算能力,题设条件的转化能力,方程的思想运用,此类题综合性强,但解答过程有其固有规律,一般需要把直线与曲线联立利用根系关系,解答中要注意提炼此类题解答过程中的共性,给以后解答此类题提供借鉴.。
2013年高考全国1卷文科数学试题及答案(详细解析版,精校版)
2013年普通高等学校招生全国统一考试(全国I 卷)文科数学一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =A .{1,4}B .{2,3}C .{9,16}D .{1,2}2.212i 1i +(-)= A .1-1-i 2 B .1-1+i 2 C .11+i 2 D .11-i 23.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是A .12B .13C .14D .164.已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C 的渐近线方程为 A .y=14x ± B .y=13x ± C .y=12x ± D .y=±x 5.已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是A .p ∧qB .﹁p ∧qC .p ∧﹁qD .﹁ p ∧﹁q6.设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n7.执行下面的程序框图,如果输入的t ∈[-1,3],则输出的S 属于A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]8.O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C 上一点,若|PF |=POF 的面积为A .2B .C .D .49.函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为10.已知锐角ΔABC 的内角A,B,C 的对边分别为a,b,c , 23cos 2A +cos2A =0, a =7,c =6,则b =A .10B .9C .8D .511.某几何体的三视图如图所示,则该几何体的体积为A .16+8πB .8+8πC .16+16πD .8+16π12.已知函数f (x )=22,0,ln(1),0.x x x x x ⎧-+≤⎨+>⎩若|f (x )|≥ax , 则a 的取值范围是A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b . 若b ·c =0,则t =____.14.设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______. 15.已知H 是球O 的直径AB 上一点,AH :HB =1:2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.16.设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式; (2)求数列21211{}n n a a -+的前n 项和.18.(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C,求三棱柱ABC-A1B1C1的体积.20.(本小题满分12分)已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.21.(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N 内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.请考生在第22、23、24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求ΔBCF外接圆的半径.23 .(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1[,)22a-时,f(x)≤g(x),求a的取值范围.2013年高考全国1卷文科数学参考答案12.解:212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2- 3.解:依题所有基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种,满足条件的事件数是2种,所以所求的概率为13. 4.解:依题2254c a =. ∵c 2=a 2+b 2,∴2214b a =,∴12b a =. ∴渐近线方程为12y x =± 5.解:由20=30知,p 为假命题.令h (x )=x 3-1+x 2,∵h (0)=-1<0,h (1)=1>0, ∴h (x )=0在(0,1)内有解.∴∃x ∈R ,x 3=1-x 2,即命题q 为真命题.由此可知只有⌝p ∧q 为真命题.6.解:121(1)/133n n n a a q S a q -==--=3-2a n 7.解:当-1≤t <1时,s =3t ,则s ∈[-3,3).当1≤t ≤3时,s =4t -t 2. ∵该函数的对称轴为t =2,∴s max =4,s min =3. ∴s ∈[3,4].综上知s ∈[-3,4]8.解:利用|PF |=P x =x P =∴y P =±∴S △POF =12|OF |·|y P |=9.解:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π(0,)2时,f (x )>0,排除A. 当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1.令f ′(x )=0,可得2π3x =. 故极值点为2π3x =,可排除D ,故选C. 10.解:由23cos 2A +cos 2A =0,得cos 2A =125. ∵A ∈π(0,)2,∴cos A =15. ∵cos A =236491265b b +-=⨯,解得b =5或135b =-(舍).故选D. 11.解:该几何体为一个半圆柱的上面后方放一个长方体组成的一个组合体.V 半圆柱=12π×22×4=8π,V 长方体=4×2×2=16. 所以体积为16+8π. 故选A 12.解:可画出|f (x )|的图象如图所示.当a >0时,y =ax 与y =|f (x )|恒有公共点,所以排除B,C;当a ≤0时,若x >0,则|f (x )|≥ax 恒成立;若x ≤0,则以y =ax 与y =x 2-2x 相切为界限,联立y =ax 与y =x 2-2消去y 得x 2-(a +2)x =0. ∵Δ=(a +2)2=0,∴a =-2. ∴a ∈[-2,0].故选D.二、填空题:13.2 1 4.3 15.9π216.5- 13.解:依题a ·b =111122⨯⨯=,b ·c = t a ·b +(1-t )b 2 =0,∴12t +1-t =0. ∴t =2. 14.解:作出可行域如图所示.画出初始直线l 0:2x -y =0,l 0平移到l ,当直线l 经过点A (3,3)时z 取最大值,z =2×3-3=3.15.解:如图,π·EH 2=π,∴EH =1,设球O 的半径为R ,则AH =23R , OH =3R . 在RtΔOEH 中,R 2=22()+13R , ∴R 2=98. ∴S 球=4πR 2=9π2. 16. 解:∵f (x )=sin x -2cos x x +φ),其中tan φ=-2,φ是第四象限角.当x +φ=2k π+π2(k ∈Z )时,f (x )取最大值.即θ=2k π+π2-φ(k ∈Z ), ∴cos θ=πcos()2ϕ-=sin φ=5-. 三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.解:(1)设{a n }的公差为d ,则S n =1(1)2n n na d -+. 则11330,5105,a d a d +=⎧⎨+=⎩ …2分 解得a 1=1,d =-1. …4分 故{a n }的通项公式为a n =2-n . …6分(2)由(1)知21211n n a a -+=1111()321222321n n n n =-(-)(-)--, …8分 从而新数列的前n 项和为111111[(11)(1)()][1]23232122112n n T n n n n =--+-++-=--=---- …12分 18.解: (1)设A 药数据的平均数为x B 药观测数据的平均数为y . x =(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3 +2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9 +3.0+3.1+3.2+3.5)/20=2.3,…3分 y =+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)/20=1.6. …6分由以上计算结果可得x >y ,因此可看出A 药的疗效更好.(2)绘制茎叶图如图: … 9分 从茎叶图可以看出,A 药疗效数据有710的叶集中在茎“2.”,“3.”上,而B 药疗效数据有710的叶集中在茎“0.”,“1.”上,由此可看出A 药的疗效更好.… 12分19. (1)证:取AB 的中点O ,连结OC ,OA 1,A 1B .由于AB =AA 1,∠BAA 1=60°,故ΔAA 1B 为等边三角形,所以OA 1⊥AB . 又CA =CB ,所以OC ⊥AB . …3分因为OC ∩OA 1=O ,所以 AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,所以AB ⊥A 1C . …6分(2)解:依题ΔABC 与ΔAA 1B 都是边长为2的等边三角形,所以OC =OA 1又A 1C,则A 1C 2=OC 2+OA 12,故OA 1⊥OC ,又OA 1⊥AB ,OC ∩AB =O ,所以OA 1⊥平面ABC , …9分OA 1为三棱柱ABC -A 1B 1C 1的高. 又ΔABC 的面积S △ABC故三棱柱ABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3. …12分20.解:(1)f ′(x )=e x (ax +a +b )-2x -4. 依题f (0)=4,f ′(0)=4. …3分故b =4,a +b =8. 从而a =4,b =4. …6分(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=2(x +2)·(2e x -1).令f ′(x )=0得,x =-ln 2或x =-2. …8 分所以在(-∞,-2)与(-ln2,+∞)上,f ′(x )>0;f (x )单调递增.在(-2,-ln 2) 上,f ′(x )<0. f (x )单调递减. …10 分当x =-2时,函数f (x )取得极大值,极大值为f (-2)=-4e -2+4. …12 分21.解:(1)由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3. 设圆P 的圆心为P (x ,y ),半径为R .依题, |PM |=R +1. |PN |=3-R . 所以|PM |+|PN |=4. …3 分由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点的椭圆(左顶点除外),且a =2,c =1,∴b∴C 的方程为22=143x y +(x ≠-2). …6 分 (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. …7 分若l 的倾斜角为90°,则l 与y 轴重合,可得|AB|= …8 分若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,可设l 与x 轴的交点为Q (m ,0),由1||222||1QP R m QM r m-===--即,解得m =-4. 所以Q (-4,0),故可设l :y =k (x +4).由l 与圆M=1,解得k=4±.当k=4时,将4y x =代入22=143x y +,并整理得7x 2+8x -8=0, 解得x=47-±,所以|AB|x 2-x 1|=187. …10分 当k=4-时,由图形的对称性可知|AB |=187. 综上,|AB|=|AB |=187. …12 分 22.(1)证明:连结DE ,交BC 于点G . 由弦切角定理得,∠ABE =∠BCE . 而∠ABE =∠CBE ,故∠CBE =∠BCE ,所以BE =CE . 又因为DB ⊥BE ,所以DE 为直径,所以∠DCE =90°,由勾股定理可得DB =DC . …5分(2)解:由(1)知,∠CDE =∠BDE ,DB =DC ,故DG 是BC 的中垂线,所以BG. 设DE 的中点为O ,连结BO , 则∠BOG =60°. 从而∠ABE =∠BCE =∠CBE =30°,所以CF ⊥BF ,故RtΔBCF. …10分 23.解:(1)将45cos ,55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25, 将x=ρcos θ, y=ρsin θ代入整理得C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. …5分(2)C 2的普通方程为x 2+y 2-2y =0. 联立C 1的方程x 2+y 2 -8x -10y +16=0,解得交点为(1,1)与(0,2),其极坐标分别为π)(2,)42π与. …10分 24.解:(1)当a =-2时,不等式f (x )>g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}. …5分(2)当a >-1,且x ∈1[,)22a -时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈1[,)22a -都成立.故2a -≥a -2,即a ≤43. 从而a 的取值范围是4(1,]3-. …10分。
2013年广东高考文科数学(全解析)逐题详解
正视图侧视图俯视图第6题图2013年普通高等学校招生全国统一考试(广东卷)数学(文科)逐题详解【详解提供】广东佛山市南海区南海中学 钱耀周参考公式:椎体的体积公式13V Sh =,其中S 表示椎体的底面积,h 表示锥体的高.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2|20,S x x x x =+=∈R ,{}2|20,T x x x x =-=∈R ,则S T = ( )A . {}0B .{}0,2C .{}2,0-D .{}2,0,2-【解析】A ;易得{}2,0M =-,{}0,2N =,所以{}0S T = ,故选A . 2.函数()()lg 11x f x x +=-的定义域是( )A . ()1,-+∞B .[)1,-+∞C .()()1,11,-+∞D .[)()1,11,-+∞【解析】C ;依题意1010x x +>⎧⎨-≠⎩,解得1x >-且1x ≠,故选C .3.若()34i x yi i +=+,,x y ∈R ,则x yi +的模是( )A . 2B .3C .4D .5【解析】D ;依题意34y xi i -+=+,所以4,3x y ==-, 所以43x yi i +=-的模为5,故选D . 4.已知51sin 25πα⎛⎫+=⎪⎝⎭,那么cos α= ( ) A . 25- B .15-C .15D .25【解析】C ;由诱导公式可得51sin cos 25παα⎛⎫+==⎪⎝⎭,故选C .5.执行如图所示的程序框图,若输入n 的值为3,则输出的s 的值是 ( )A . 1B .2C .4D .7 【解析】C ;第一次循环后:1,2s i ==;第二次循环后:2,3s i ==;第三次循环后:4,4s i ==;循环终止,故输出4,选C . 6.某三棱锥的三视图如图所示,则该三棱锥的体积是 ( )A .16 B .13C .23D .1 【解析】B ;由三视图可知该三棱锥的底面积为12,高为2,所以1112323V =⨯⨯=,故选B . 7.垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是( )A . 0x y +=B .10x y ++=C .10x y +-=D .0x y +=【解析】A ;数形结合!画出直线和圆,不难得到切线方程为y x =-故选A . 8.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A . 若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 【解析】B ;ACD 是典型错误命题,选B .9.已知中心在原点的椭圆C 的右焦点为()1,0F ,离心率等于12,在椭圆C 的方程是 ( ) A . 22134x y += B .2214x += C .22142x y += D .22143x y +=【解析】D ;依题意1c =,12e =,所以2a =,从而24a =,2223b a c =-=,故选D .10.设a 是已知的平面向量且0a ≠ ,关于向量a的分解,有如下四个命题:① 给定向量b ,总存在向量c ,使a b c =+;② 给定向量b 和c,总存在实数λ和μ,使a b c λμ=+ ;③ 给定单位向量b 和正数μ,总存在单位向量c和实数λ,使a b c λμ=+ ;④ 给定正数λ和μ,总存在单位向量b 和单位向量c,使a b c λμ=+ . 上述命题中的向量b ,c 和a在同一平面内且两两不共线,则真命题的个数是( )A . 1B .2C .3D .4 【解析】C ;考查平面向量基本定理,成立的有①②③,故选B .说明:对于④,比如给定a和1λμ==,就不一定存在单位向量b 和单位向量c ,使a b c =+.二、填空题:本题共5小题,考生作答4小题,每小题5分,共20分 (一)必做题(11~13题)11.设数列{}n a 是首项为1,公比为2-的等比数列,则1234a a a a +++=________. 【解析】15;依题意2342,4,8a a a =-==-,所以1234124815a a a a +++=+++=. 12.若曲线2ln y ax x =-在点()1,a 处的切线平行于x 轴,则a =______. 【解析】12;求导得12y ax x '=-,依题意210a -=,所以12a =. 13. 已知变量,x y 满足约束条件30111x y x y -+≥⎧⎪-≤≤⎨⎪≥⎩,则z x y =+的最大值是____.【解析】5;画出可行域如图所示,其中z x y =+取得最大值时的点为()1,4A ,且最大值为5.(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分)14.(坐标系与参数方程选讲选做题)已知曲线C 的极坐标方程为2cos ρθ=,以极点为坐标原点,极轴为x轴的正半轴建立直角坐标系,则曲线C 的参数方程为_____________. 【解析】1cos sin x y θθ=+⎧⎨=⎩(θ为参数);曲线C 的普通方程为222x y x +=,即()2211x y -+=,圆心为()1,0,A EDCB 第15题图半径1r =,所以曲线C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数).15. (几何证明选讲选做题)如图,在矩形ABCD 中,AB =3BC =,BE AC ⊥,垂足为E ,则ED =_________.;依题意AC =在Rt ABC ∆中,由射影定理可得,2AB AE AC =⋅,所以AE =也可以由30ABC ∠=︒得到),在ADE ∆中,由余弦定理可得 2222cos30ED AD AEAD AE =+-⋅︒3219234224=+-⨯⨯=,所以2ED =三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(Ⅰ) 求3f π⎛⎫⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.【解析】(Ⅰ)133124f ππππ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭; (Ⅱ) 因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, cos sin 66124f ππππθθθθθ⎛⎫⎛⎫⎛⎫-=--=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭341555⎛⎫=+-=- ⎪⎝⎭.17.(本小题满分13分)从一批苹果中,随机抽取50个,其质量(单位:克)的频数分布表如下:(Ⅰ) 根据频率分布表计算苹果的重量在90,95的频率;(Ⅱ) 用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,其中重量在[)80,85的有几个?(Ⅲ) 在(Ⅱ)中抽出的4个苹果中,任取2个,求重量在[)80,85和[)95,100中各有1个的概率. 【解析】(Ⅰ)依题意,苹果的重量在[)90,95的频率为202505=; (Ⅱ) 抽样比为415155=+,所以重量在[)80,85的有1515⨯=个. (Ⅲ) 设抽取的4个苹果中,重量在[)80,85的为a ,重量在[)95,100中的为,,b c d .从中任取2个,包含的基本事件有:{}{}{}{}{}{},,,,,,,,,,,a b a c a d b c b d c d ,共6个;满足重量在[)80,85和[)95,100中各有1个的基本事件为{}{}{},,,,,a b a c a d ,共3个.所以所求概率为3162=. 18.(本小题满分13分)F ABC F DEG 图1图2如图1,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图2所示的三棱锥A BCF -,其中BC =.(Ⅰ) 证明://DE 平面BCF ; (Ⅱ) 证明:CF ⊥平面ABF ; (Ⅲ) 当23AD =时,求三棱锥F DEG -的体积V . 【解析】(Ⅰ)方法一:(面面平行)在图1中,因为AD AE =,AB AC =,所以AD AEAB AC=,所以//DE BC ; 由翻折的不变性可知,在图2中,//DG BF ,因为DG ⊄平面BCF ,BF ⊂平面BCF所以//DG 平面BCF ,同理可证//GE 平面BCF ,又DG GE G = ,所以平面//DGE 平面BCF 又DE ⊂平面DGE ,所以//DE 平面BCF .方法二:在图2中,由翻折不变性可知AD AE =,AB AC =,所以AD AEAB AC=,所以//DE BC , 因为DE ⊄平面BCF ,BC ⊂平面BCF ,所以//DE 平面BCF .(Ⅱ) 在图2中,因为12BF CF ==,2BC =,222BF CF BC +=,所以CF BF ⊥ 又CF AF ⊥,BF AF F = ,所以CF ⊥平面ABF .(Ⅲ) 因为//GE CF ,由(Ⅱ)知CF ⊥平面ABF ,所以GE ⊥平面ABF ,所以GE ⊥平面DGF ,依题意可得1123DG GE AD ===,236GF AF AG =-=-=,所以1123636DGF S ∆=⨯⨯=,所以三棱锥F DEG -的体积113363324V =⨯=. 20.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441n n S a n +=--,*n ∈N ,且2a 、5a 、14a 构成等比数列.(Ⅰ)证明:2a (Ⅱ)求数列{}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有1223111112n n a a a a a a ++++< . 【解析】(Ⅰ)在21441n n S a n +=--中令1n =,可得212441S a =--,而20a >,所以2a =(Ⅱ)由21441n n S a n +=--可得()214411n n S a n -=---(2n ≥).两式相减,可得22144n n n a a a +=--,即()2212n n a a +=+,因为0n a >,所以12n n a a +=+,于是数列{}n a 把第1项去掉后,是公差为2的等差数列.由2a 、5a 、14a 成等比数列可得25214a a a =,即()()2222624a a a +=+,解得23a =,由2a 11a =,于是212a a -=,所以数列{}n a 是首项为1,公差为2的等差数列,所以()12121n a n n =+-=-. (Ⅲ)因为()()111111212122121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以()1223111111111111112335212122212n n a a a a a a n n n +⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎣⎦. 20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.(Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值. 【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,=结合0c >,解得1c =. 所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y = 所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.21.(本小题满分14分)设函数()32f x x kx x =-+()k ∈R . (Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当0k <时,求函数()f x 在[],k k -上的最小值m 和最大值M . 【解析】(Ⅰ) 当1k =时, ()32f x x x x =-+,()2321f x x x '=-+因为()224310∆=--⨯⨯<,所以()0f x '>在R 上恒成立,所以()f x 在R 上单调递增. 所以()f x 的单调递增区间为(),-∞+∞,无递减区间.(Ⅱ) ()2321f x x kx '=-+,判别式()()22243143k k ∆=--⨯⨯=-当0∆≤,即0k <时,()0f x '≥ 在R 上恒成立,所以f 所以()f x 在[],k k -上的最小值()m f k k ==,最大值M = 当0∆>,即k <,令()0f x '=得13k x =2x = 因为()2321f x x kx '=-+的对称轴为2k x =,且恒过()0,1,画出大致图像如图所示,可知120k x x <<<,当x 变化时,()f x ',()f x 的变化如下表:由表可知,()(){}2min ,m f k f x =,()(){}1max ,M f k f x =-.因为()()()()32222222210f x f k x kx x k x k x -=-+-=-+>,所以()m f k k ==. 因为()()()()()()23232111111210f x f k x kx x k k x k x k k ⎡⎤--=-+---=+-++<⎣⎦, 所以()32M f k k k =-=--.综上所述,当0k <时,函数()f x 在[],k k -上的最小值()m f k k ==,最大值()32M f k k k =-=--.。
2013高考文科数学(全国卷大纲版)解析版全word版
2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合{}{}1,2,3,4,5,1,2,u U A A ===集合则ð(A ){}1,2 (B ){}3,4,5 (C ){}1,2,3,4,5 (D )∅ 【答案】B【解析】由补集定义易得{}3,4,5U C A =,故选B. 【考点定位】补集的概念 2、已知a 是第二象限角,5sin ,cos 13a a ==则 (A )1213- (B )513- (C )513 (D )1213 【答案】A【解析】因为α是第二象限角,∴12cos 13α===-,故选A. 【考点定位】考查同角三角函数基本关系式3、已知向量()()()()1,1,2,2,,=λλλ=+=++⊥-若则m n m n m n(A )4- (B )3- (C )-2 (D )-1 【答案】B【解析】∵()(),+⊥-m n m n ∴()()0+⋅-=m n m n ∴220-=m n即()()2211[24]0λλ++-++=∴3λ=-,故选B. 【考点定位】考查向量垂直,数量积坐标运算.4、不等式222x -<的解集是(A )()-1,1 (B )()-2,2 (C )()()-1,00,1 (D )()()-2,00,2【答案】D【解析】22|2|2222x x -<⇒-<-<2040||2x x ⇒<<⇒<<2002x x ⇒-<<<<或,故选D.(也可用排除法)【考点定位】绝对值不等式的解法,一元二次不等式的解法5、()862x x +的展开式中的系数是(A )28 (B )56 (C )112 (D )224 【答案】C【解析】26262+18=2112T C x x ⋅=,故选C【考点定位】二项式定理的通项公式 6、函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数 (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> 【答案】A【解析】由()2111log 11221yy y f x x x x ⎛⎫==+⇒+=⇒= ⎪-⎝⎭, ∵0x >∴0y >∴()11(0)21xfx x -=>-,故选A. 【考点定位】考查求反函数,指数式和对数式的互化. 7、已知数列{}n a 满足12430,,3n n a a a ++==-则{}n a 的前10项和等于 (A )()-10-61-3 (B )()-1011-39(C )()-1031-3 (D )()-1031+3 【答案】C【解析】∵130,n n a a ++=∴113n n a a +=-,∴数列{}n a 是以13-为公比的等比数列.∵24,3a =-∴14a = ∴10101014[1()]33(13)113S ---==-+,故选C.【考点定位】考查等比数列的通项与求和.8、已知()()1221,0,1,0,F F C F x -是椭圆的两个焦点过且垂直于轴的直线交于 A B 、两点,且3AB =,则C 的方程为(A )2212x y += (B )22132x y += (C )22143x y += (D )22154x y +=第 3 页 共 10 页【答案】C【解析】如图,21213||||,||222AF AB F F ===,由椭圆定义得, 13||22AF a =-○1在Rt △12AF F 中, 2222212123||||||()22AF AF F F =+=+○2由○1○2得,2a =∴2223b a c =-=,∴椭圆C 的方程为22143x y +=,故选C. 【考点定位】椭圆方程的求解9、若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 (A )5 (B )4 (C )3 (D )2 【答案】B【解析】由题中图象可知0042T x x π+-=,∴2T π= ∴22ππω=∴4ω=,故选B【考点定位】三角函数的图象与解析式10、已知曲线()421-128=y x ax a a =+++在点,处切线的斜率为,(A )9 (B )6 (C )-9 (D )-6 【答案】D【解析】由题意知311|(42)|428x x y x ax a =-=-'=+=--=,则6a =-.故选D 【考点定位】导数的几何意义11、已知正四棱锥1111ABCD A BC D -中,12,AA AB =则CD 与平面1BDC 所成的角的正弦值等于(A )23 (B)3 (C)3(D )13【答案】A【解析】如图,在正四棱锥1111ABCD A BC D -中,连结AC 、BD 记交点为O ,连结1OC ,过C 作CH ⊥1OC 于点H,∵BD ⊥AC ,BD ⊥1AA ,∴BD ⊥平面11ACC A ∵CH ⊂平面11ACC A∴CH ⊥BD,∴CH ⊥平面1C BD ∴∠CDH 为CD 与平面1BDC 所成的角.1OC=. 由等面积法得,1OC ·CH=OC ·1CC ,∴222CH ⋅= ∴23CH =∴223sin 13CH CDH CD ∠===,故选A【考点定位】线面角的定义求法12、已知抛物线2:8C y x =与点()2,2M -,C 的焦点,且斜率为k 的直线与C 交于A,B 两点,若0MA MB =,则k =(A)12 (B)2(C(D )2 【答案】D【解析】设直线AB 方程为(2y k x =-),代入28y x =得2222(48)40k x k x k -++=设1122(,),(,)A x y B x y ,则212248k x x k++=,124x x =(*) ∵0MA MB ⋅=∴1122(2,2)(2,2)0x y x y +-⋅+-= 即1212(2,)(2)(2)(2)0x x y y +++--=即121212122()42()40x x x x y y y y ++++-++=○1 ∵1122(2)(2)y k x y k x =-⎧⎨=-⎩∴1212(4)y y k x x +=+-○22212121212(2)(2)[2()4]y y k x x k x x x x =--=-++○3 由(*)及○1○2○3得2k =,故选D 【考点定位】直线与抛物线相交问题 二、填空题:本大题共4小题,每小题5分.13、设()f x 是以2为周期的函数,且当[)1,3x ∈时,()=2f x x -,则()1f -= .第 5 页 共 10 页【答案】1-【解析】∵()f x 是以2为周期的函数,且[)1,3x ∈时,()=2f x x -,则()1(12)(1)121f f f -=-+==-=- 【考点定位】函数的周期性,函数求值14、从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答) 【答案】60【解析】分三步:第一步,一等奖有16C 种可能的结果;第二步,二等奖有25C 种可能的结果;第三步,三等奖有33C 种可能的结果,故共12365360C C C =有种可能的结果.【考点定位】组合问题15、若x y 、满足约束条件0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩则z x y =-+的最小值为 .【答案】0【解析】z x y =-+y x z ⇒=+,z 表示直线y x z =+在y 轴上的截距,截距越小,z 就越小.画出题中约束条件表示的可行域(如图中阴影部分所示),当直线过点A(1,1)时,min 0z =【考点定位】线性规划求最值16、已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =,且圆与圆所在的平面所成角为,则球O 的表面积等于 .【答案】16π【解析】如图,设MN 为公共弦,长度为R,E 为MN 的中点, 连结OE,则OE ⊥MN,KE ⊥MN.∠OEK 为圆O 与圆K 所在平面的二面角.∴∠OEK=60°. 又∵△OMN 为正三角形.∴OE=2R . ∵OK=32且OK ⊥EK ∴3sin 602OE ⋅︒=∴3222R ⋅=∴R=2.∴2416S R ππ==【考点定位】二面角与球的表面积三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式; (II )设{}1,.n n n nb b n S na =求数列的前项和 【解析】(Ⅰ)设等差数列{}n a 的公差为d ,则1(1)n a a n d =+-因为719942a a a ==⎧⎨⎩,所以11164182(8)a d a d a d +=+=+⎧⎨⎩解得11a =,12d =,所以{}n a 的通项公式为12n n a +=. (Ⅱ)2)1122(1n n a n n b n n n ==-++=所以2222222)()()122311(n n n S n n -+-++-=+=+ 【考点定位】等差数列通项公式和裂项求和方法18.(本小题满分12分)设△ABC 的内角A,B,C的对边分别为,,a b c ,()()a b c a b c ac ++-+= (Ⅰ)求;B (Ⅱ)若1sin sin ,4A C =求C. 【解析】(Ⅰ)因为()()a b c a b c ac ++-+=,所以222a cb ac +-=-由余弦定理得2221cos 22a cb B ac +-==-,因此B=120°. (Ⅱ)由(Ⅰ)知A+C=120°,所以cos()cos cos sin sin A C A C A C -=+coscos sin sin 2sin sin AC A C A C =-+=cos()2sin sin A C A C ++=122+=第 7 页 共 10 页故30A C -=︒或30A C -=-︒,因此C=15°或C=45°.【考点定位】考查余弦定理、两角和与差的公式以及求角问题,考查学生的转化能力和计算能力19.(本小题满分12分)如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆中,,与都是边长为2的等边三角形.(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离【解析】(Ⅰ)证明:取BC 的中点E ,连结DE ,则ABED 为正方形.过P 作PO ⊥平面ABCD,垂足为O.连结OA,OB,OD,OE.由△PAB 和△PAD 都是等边三角形知PA=PB=PD,所以OA=0B=OD,即点O 为正方形ABED 对角线的交点,故OE ⊥BD,从而PB ⊥OE.因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD,因此;PB CD ⊥(Ⅱ)解:取PD 的中点F ,连结OF,则OF ∥PB ,由(Ⅰ)知,;PB CD ⊥,故OF ⊥CD.又12OD BD ==OP == 故△POD 为为等腰三角形,因此OF ⊥PD.又PD ∩CD=D ,所以OF ⊥平面PCD. 因为AE ∥CD ,CD ⊂平面PCD 的,AE ⊄平面PCD,所以AE ∥PCD. 因此,O 到平面PCD 的距离OF 就是A 到平面PCD 的距离,而112OF PB ==. 所以A 到平面PCD 的距离为1.【考点定位】(1)解题的关键是辅助线的添加,取BC 的中点E 是入手点,然后借助三垂线定理进行证明;(2)求点面距离的求解方法比较多,在解题过程中,如何根据题设条件恰当选择相适应的方法是比较棘手的问题 20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率; (II )求前4局中乙恰好当1次裁判概率.【解析】(Ⅰ)记1A 表示事件“第2局结果为甲胜”, 2A 表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”,则12A A A =⋅,12()()P A P A A =⋅12()()P A P A ⋅14= (Ⅱ)记1B 表示事件“第1局结果为乙胜”2B 表示事件“第2局乙参加比赛时,结果为乙胜”3B 表示事件“第3局乙参加比赛时,结果为乙胜”B 表示事件“前4局中乙恰好当1次裁判” 则1312312B B B B B B B B =⋅+⋅⋅+⋅,所以1312312()()()()P B P B B P B B B P B B =⋅+⋅⋅+⋅1312312()()()()()()()()P B P B P B P B P B P B P B P B =⋅+⋅⋅+⋅ 11154848=++= 【考点定位】考查独立事件和互斥事件的概率问题以及离散型数学期望,考查分析问题和计算能力21.(本小题满分12分)已知函数()32=33 1.f x x ax x +++(I )求()f ;a x =的单调性; (II )若[)()2,0,.x f x a ∈+∞≥时,求的取值范围【解析】(Ⅰ)当a =()32=3 1.f x x x -++ ()2=33f x x '-+.令()0f x '=,得121,1x x =.当(1)x ∈-∞时,()0f x '>,()f x 在(1)-∞上是增函数;当1)x ∈时,()0f x '<,()f x 在1)上是减函数;当1,)x ∈+∞时,()0f x '>,()f x 在1,)+∞上是增函数; (Ⅱ)由(2)0f ≥得54a ≥-. 当54a ≥-,(2,)x ∈+∞时, ()22251=3633(21)3(1)3()(2)22f x x ax x ax x x x x '-+=-+≥-+=--所以()f x 在(2,)+∞是增函数,于是当[2,)x ∈+∞时,()f x (2)0f ≥≥.第 9 页 共 10 页综上,a 的取值范围是5[,)4-+∞【考点定位】考查利用导数求解函数的单调性与参数范围问题 22.(本小题满分12分)已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b ;(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF -证明:22.AF AB BF 、、成等比数列【解析】(Ⅰ)由题设知3c a =,即2229a b a+=,故228b a =. 所以C 的方程为22288x y a -=.将2y =代入上式,求得x =由题设知,=21a =. 所以1a =,b =(Ⅱ)由(Ⅰ)知,1(3,0)F -,2(3,0)F ,C 的方程为2288x y -=○1 由题意可设的l 方程为(3)y k x =-,||k <,代入○1并化简得,2222(8)6980k x k x k -+--=,设1122(,),(,)A x y B x y ,11x ≤-,21x ≥则212268k x x k +=-,2122988k x x k +=-于是11||(31)AF x ===-+12||31BF x ===+由11||||AF BF =得123(1)31x x -+=+,即1223x x +=-故226283k k =--解得245k =从而12199x x =-由于21||13AF x ===-22||31BF x ===-故2212||||||23()4AB AF BF x x =-=-+=,221212||||3()9116AF BF x x x x ⋅=+--= 因而222||||||AF BF AB ⋅=,所以22||,||,||AF AB BF 成等比数列.【考点定位】本题考查双曲线方程与直线与双曲线的位置关系,考查设而不求的思想及就是能力。
2013年高考真题陕西卷(文科数学)解析版(附答案)
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =( )(A ){0}(B ){-1,,0} (C ){0,1}(D ){-1,,0,1}(2)212(1)ii +=-( )(A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12 (B )13 (C )14(D )16(4)已知双曲线2222:1x y C a b -=(0,0)a b >>的离心率为则C 的渐近线方程为( )(A )14y x =±(B )13y x =± (C )12y x =±(D )y x =±(5)已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧(B )p q ⌝∧(C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =则POF ∆的面积为( )(A )2(B )(C )(D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9(C )8(D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+(C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。
(完整版)2013陕西高考数学文科试题及解析
2013年普通高等学校招生全国统一考试文科数学乐享玲珑,为中国数学增光添彩!免费玲珑3D 画板,全开放的几何教学软件,功能强大,好用实用第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R , 函数()1f x x=-的定义域为M , 则C M R 为 (A) (-∞,1) (B) (1, + ∞) (C) (,1]-∞ (D) [1,)+∞2. 已知向量 (1,),(,2)a m b m ==, 若a //b , 则实数m 等于(A) 2-(B)2 (C) 2-或2(D) 03. 设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是 (A) ·log log log a c c b a b = (B) ·log lo log g a a a b a b =(C) ()log ?l g o lo g a a a b c bc =(D) ()log g og o l l a a a b b c c +=+4. 根据下列算法语句, 当输入x 为60时, 输出y 的值为(A) 25(B) 30(C) 31(D) 615. 对一批产品的长度(单位: mm )进行抽样检测, 下图喂检测结果的频率分布直方图. 根据标准, 产品长度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为(A) 0.09 (B) 0.20(C) 0.25 (D) 0.456. 设z 是复数, 则下列命题中的假命题是 (A) 若20z ≥, 则z 是实数 (B) 若20z <, 则z 是虚数(C) 若z 是虚数, 则20z ≥(D) 若z 是纯虚数, 则20z <输入xIf x ≤50 Theny =0.5 * x Else y =25+0.6*(x -50) End If 输出y7. 若点(x ,y )位于曲线y = |x |与y = 2所围成的封闭区域, 则2x -y 的最小值为 (A) -6 (B) -2 (C) 0 (D) 2 8. 已知点M (a ,b )在圆221:O x y +=外, 则直线ax + by = 1与圆O 的位置关系是(A) 相切 (B) 相交 (C) 相离 (D) 不确定9. 设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 (A) 直角三角形 (B) 锐角三角形 (C) 钝角三角形 (D) 不确定 10. 设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有(A) [-x ] = -[x ](B) [x +12] =[x ] (C) [2x ] = 2[x ] (D) 1[][][2]2x x x ++= 二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分) 11. 双曲线221169x y -=的离心率为 .12. 某几何体的三视图如图所示, 则其表面积为 .13. 观察下列等式: 23(11)21(21)(22)213(31)(32)(33)2135+=⨯++=⨯⨯+++=⨯⨯⨯…照此规律, 第n 个等式可为 .14. 在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为 (m ).x40m15. (考生请注意:请在下列三题中任选一题作答, 如果多做, 则按所做的第一题计分)A . (不等式选做题) 设a , b ∈R , |a -b |>2, 则关于实数x 的不等式||||2x a x b -+->的解集是 .B . (几何证明选做题) 如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = .DBCEPC . (坐标系与参数方程选做题) 圆锥曲线22x t y t ⎧=⎨=⎩(t 为参数)的焦点坐标是 .三、解答题: 解答应写出文字说明、证明过程及演算步骤(本大题共6小题,共75分) 16. (本小题满分12分)已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b .(Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.17. (本小题满分12分) 设S n 表示数列{}n a 的前n 项和. (Ⅰ) 若{}n a 为等差数列, 推导S n 的计算公式;(Ⅱ) 若11,0a q =≠, 且对所有正整数n , 有11nn q S q-=-. 判断{}n a 是否为等比数列.18. (本小题满分12分)如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA ==1A(Ⅰ) 证明: A 1BD // 平面CD 1B 1;(Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积.19. (本小题满分12分)有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 各组的人数如下:(Ⅰ) 为了调查评委对7位歌手的支持状况, 现用分层抽样方法从各组中抽取若干评委, 其中从B 组中抽取了6人. 请将其余各组抽取的人数填入下表.(Ⅱ) 在(Ⅰ)中, 若A , B 选1人, 求这2人都支持1号歌手的概率.20. (本小题满分13分)已知动点M (x ,y )到直线l :x = 4的距离是它到点N (1,0)的距离的2倍.(Ⅰ) 求动点M 的轨迹C 的方程;(Ⅱ) 过点P (0,3)的直线m 与轨迹C 交于A , B 两点. 若A 是PB 的中点, 求直线m 的斜率.21. (本小题满分14分)已知函数()e ,x f x x =∈R . (Ⅰ) 求f (x )的反函数的图象上图象上点(1,0)处的切线方程;(Ⅱ) 证明: 曲线y = f (x) 与曲线2112y x x =++有唯一公共点. (Ⅲ) 设a <b , 比较2a b f +⎛⎫⎪⎝⎭与()()f b f a b a --的大小, 并说明理由.参考答案一、选择题1.B 解:),1(],1,(.1,0-1∞=-∞=≤∴≥MR C M x x 即Θ,所以选B 2.C 解:.221,//),2,(),,1(±=⇒⋅=⋅∴==m m m b a m b m a 且Θ,所以选C3.B 解:a, b,c ≠1. 考察对数2个公式: abb y x xyc c a a a a log log log ,log log log =+=对选项A: bab a b bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式不符,所以为假。
2013年高考真题——文科数学(陕西卷)解析版 Word版含答案
2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题,第二部分为非选择题.。
2. 考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.。
3. 所有解答必须填写在答题卡上指定区域内。
考试结束后,将本试卷和答题卡一并交回。
第一部分(共50分)1. 第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R , 函数()f x =M , 则C M R 为(A) (-∞,1)(B) (1, + ∞)(C) (,1]-∞ (D) [1,)+∞【答案】B【解析】),1(],1,(.1,0-1∞=-∞=≤∴≥MR C M x x 即 ,所以选B 2. 已知向量 (1,),(,2)a m b m ==, 若a //b , 则实数m 等于(A) (B)(C) (D) 02. 【答案】C【解析】.221,//),2,(),,1(±=⇒⋅=⋅∴==m m m b a m b m a 且 ,所以选C 3. 设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是 (A) ·log log log a c c b a b = (B) ·log lo log g a a a b a b =(C) ()log ?l g o lo g a a a b c bc =(D) ()log g og o l l a a a b b c c +=+3. 【答案】B【解析】a, b,c ≠1. 考察对数2个公式: abb y x xyc c a a a a log log log ,log log log =+= 对选项A: bab a b bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式不符,所以为假。
2013年全国统一高考数学试卷(文科)(新课标一)(答案解析版)
2013年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.(5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=( )A.{1,4}B.{2,3}C.{9,16}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】由集合A中的元素分别平方求出x的值,确定出集合B,找出两集合的公共元素,即可求出交集.【解答】解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)=( )A.﹣1﹣i B.﹣1+i C.1+i D.1﹣i【考点】A5:复数的运算.【专题】11:计算题.【分析】利用分式的分母平方,复数分母实数化,运算求得结果.【解答】解:====﹣1+i.故选:B.【点评】本题考查复数代数形式的混合运算,复数的乘方运算,考查计算能力.3.(5分)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A.B.C.D.【考点】CC:列举法计算基本事件数及事件发生的概率.【专题】5I:概率与统计.【分析】本题是一个等可能事件的概率,试验发生包含的事件是从4个不同的数中随机的抽2个,共有C42种结果,满足条件的事件是取出的数之差的绝对值等于2的有两种,得到概率.【解答】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是从4个不同的数中随机的抽2个,共有C42=6种结果,满足条件的事件是取出的数之差的绝对值等于2,有2种结果,分别是(1,3),(2,4),∴要求的概率是=.故选:B.【点评】本题考查等可能事件的概率,是一个基础题,本题解题的关键是事件数是一个组合数,若都按照排列数来理解也可以做出正确的结果.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为( )A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是( )A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q【考点】2E:复合命题及其真假.【专题】21:阅读型;5L:简易逻辑.【分析】举反例说明命题p为假命题,则¬p为真命题.引入辅助函数f(x)=x3+x2﹣1,由函数零点的存在性定理得到该函数有零点,从而得到命题q为真命题,由复合命题的真假得到答案.【解答】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p:∀x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,因为f(0)=﹣1<0,f(1)=1>0.所以函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:∃x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.故选:B.【点评】本题考查了复合命题的真假,考查了指数函数的性质及函数零点的判断方法,解答的关键是熟记复合命题的真值表,是基础题.6.(5分)设首项为1,公比为的等比数列{a n}的前n项和为S n,则( )A.S n=2a n﹣1B.S n=3a n﹣2C.S n=4﹣3a n D.S n=3﹣2a n【考点】89:等比数列的前n项和.【专题】54:等差数列与等比数列.【分析】由题意可得数列的通项公式,进而可得其求和公式,化简可得要求的关系式.【解答】解:由题意可得a n=1×=,∴S n==3﹣=3﹣2=3﹣2a n,故选:D.【点评】本题考查等比数列的求和公式和通项公式,涉及指数的运算,属中档题.7.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于( )A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.8.(5分)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为( )A.2B.2C.2D.4【考点】K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】根据抛物线方程,算出焦点F坐标为().设P(m,n),由抛物线的定义结合|PF|=4,算出m=3,从而得到n=,得到△POF的边OF上的高等于2,最后根据三角形面积公式即可算出△POF的面积.【解答】解:∵抛物线C的方程为y2=4x∴2p=4,可得=,得焦点F()设P(m,n)根据抛物线的定义,得|PF|=m+=4,即m+=4,解得m=3∵点P在抛物线C上,得n2=4×3=24∴n==∵|OF|=∴△POF的面积为S=|OF|×|n|==2故选:C.【点评】本题给出抛物线C:y2=4x上与焦点F的距离为4的点P,求△POF 的面积.着重考查了三角形的面积公式、抛物线的标准方程和简单几何性质等知识,属于基础题.9.(5分)函数f(x)=(1﹣cosx)sinx在[﹣π,π]的图象大致为( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】51:函数的性质及应用.【分析】由函数的奇偶性可排除B,再由x∈(0,π)时,f(x)>0,可排除A,求导数可得f′(0)=0,可排除D,进而可得答案.【解答】解:由题意可知:f(﹣x)=(1﹣cosx)sin(﹣x)=﹣f(x),故函数f(x)为奇函数,故可排除B,又因为当x∈(0,π)时,1﹣cosx>0,sinx>0,故f(x)>0,可排除A,又f′(x)=(1﹣cosx)′sinx+(1﹣cosx)(sinx)′=sin2x+cosx﹣cos2x=cosx﹣cos2x,故可得f′(0)=0,可排除D,故选:C.【点评】本题考查三角函数的图象,涉及函数的奇偶性和某点的导数值,属基础题.10.(5分)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=( )A.10B.9C.8D.5【考点】HR:余弦定理.【专题】58:解三角形.【分析】利用二倍角的余弦函数公式化简已知的等式,求出cosA的值,再由a 与c的值,利用余弦定理即可求出b的值.【解答】解:∵23cos2A+cos2A=23cos2A+2cos2A﹣1=0,即cos2A=,A为锐角,∴cosA=,又a=7,c=6,根据余弦定理得:a2=b2+c2﹣2bc•cosA,即49=b2+36﹣b,解得:b=5或b=﹣(舍去),则b=5.故选:D.【点评】此题考查了余弦定理,二倍角的余弦函数公式,熟练掌握余弦定理是解本题的关键.11.(5分)某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力12.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是( )A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题. 二.填空题:本大题共四小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t= 2 .【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为 3 .【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x﹣y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:不等式组表示的平面区域如图所示,由得A(3,3),z=2x﹣y可转换成y=2x﹣z,z最大时,y值最小,即:当直线z=2x﹣y过点A(3,3)时,在y轴上截距最小,此时z取得最大值3.故答案为:3.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.15.(5分)已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H 为垂足,α截球O所得截面的面积为π,则球O的表面积为 .【考点】LG:球的体积和表面积.【专题】16:压轴题;5F:空间位置关系与距离.【分析】本题考查的知识点是球的表面积公式,设球的半径为R,根据题意知由与球心距离为R的平面截球所得的截面圆的面积是π,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积.【解答】解:设球的半径为R,∵AH:HB=1:2,∴平面α与球心的距离为R,∵α截球O所得截面的面积为π,∴d=R时,r=1,故由R2=r2+d2得R2=12+(R)2,∴R2=∴球的表面积S=4πR2=.故答案为:.【点评】若球的截面圆半径为r,球心距为d,球半径为R,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,即R2=r2+d216.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ= ﹣ .【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知等差数列{a n}的前n项和S n满足S3=0,S5=﹣5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列{}的前n项和.【考点】84:等差数列的通项公式;8E:数列的求和.【专题】54:等差数列与等比数列.【分析】(Ⅰ)设出等差数列{a n}的首项和公差,直接由S3=0,S5=﹣5列方程组求出,然后代入等差数列的通项公式整理;(Ⅱ)把(Ⅰ)中求出的通项公式,代入数列{}的通项中进行列项整理,则利用裂项相消可求数列{}的前n项和.【解答】解:(Ⅰ)设数列{a n}的首项为a1,公差为d,则.由已知可得,即,解得a1=1,d=﹣1,故{a n}的通项公式为a n=a1+(n﹣1)d=1+(n﹣1)•(﹣1)=2﹣n;(Ⅱ)由(Ⅰ)知.从而数列{}的前n项和S n==.【点评】本题考查了等差数列的通项公式,考查了裂项相消法求数列的和,是中档题.18.(12分)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【考点】BA:茎叶图;BB:众数、中位数、平均数.【专题】5I:概率与统计.【分析】(Ⅰ)利用平均数的计算公式即可得出,据此即可判断出结论;(Ⅱ)利用已知数据和茎叶图的结构即可完成.【解答】解:(Ⅰ)设A药观测数据的平均数据的平均数为,设B药观测数据的平均数据的平均数为,则=×(0.6+1.2+2.7+1.5+2.8+1.8+2.2+2.3+3.2+3.5+2.5+2.6+1.2+2.7+1.5+2.9+3.0+3.1+2.3+2.4)=2.3.×(3.2+1.7+1.9+0.8+0.9+2.4+1.2+2.6+1.3+1.4+1.6+0.5+1.8+0.6+2.1+1.1+2.5+1.2+2.7+0.5)=1.6.由以上计算结果可知:.由此可看出A药的效果更好.(Ⅱ)根据两组数据得到下面茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在2,3上.而B药疗效的试验结果由的叶集中在0,1上.由此可看出A药的疗效更好.【点评】熟练掌握平均数的计算公式和茎叶图的结果及其功能是解题的关键. 19.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积.【考点】LF:棱柱、棱锥、棱台的体积;LW:直线与平面垂直.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)由题目给出的边的关系,可想到去AB中点O,连结OC,OA1,可通过证明AB⊥平面OA1C得要证的结论;(Ⅱ)在三角形OCA1中,由勾股定理得到OA1⊥OC,再根据OA1⊥AB,得到OA1为三棱柱ABC﹣A1B1C1的高,利用已知给出的边的长度,直接利用棱柱体积公式求体积.【解答】(Ⅰ)证明:如图,取AB的中点O,连结OC,OA1,A1B.因为CA=CB,所以OC⊥AB.由于AB=AA1,,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)解:由题设知△ABC与△AA1B都是边长为2的等边三角形,所以.又,则,故OA 1⊥OC.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC﹣A1B1C1的高.又△ABC的面积,故三棱柱ABC﹣A 1B1C1的体积.【点评】题主要考查了直线与平面垂直的性质,考查了棱柱的体积,考查空间想象能力、运算能力和推理论证能力,属于中档题.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【考点】6D:利用导数研究函数的极值;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)求导函数,利用导数的几何意义及曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4,建立方程,即可求得a,b的值;(Ⅱ)利用导数的正负,可得f(x)的单调性,从而可求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x﹣),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).【点评】本题考查导数的几何意义,考查函数的单调性与极值,考查学生的计算能力,确定函数的解析式是关键.21.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M 外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.请考生在第22、23、24三题中任选一题作答。
2013年高考真题大纲全国卷(文数)解析版(附答案)
2013年高考真题大纲全国文科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013大纲全国,文1)设全集U ={1,2,3,4,5},集合A ={1,2},则U A =().A .{1,2}B .{3,4,5}C .{1,2,3,4,5}D .∅ 答案:B 解析:由题意得U A ={3,4,5}.故选B .2.(2013大纲全国,文2)已知α是第二象限角,sin α=513,则cos α=( ). A .1213-B .513-C .513D .1213答案:A解析:∵α是第二象限角,∴cos α=1213==-.故选A .3.(2013大纲全国,文3)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ).A .-4B .-3C .-2D .-1 答案:B解析:∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=0.∴|m |2-|n |2=0,即(λ+1)2+1-[(λ+2)2+4]=0. ∴λ=-3.故选B .4.(2013大纲全国,文4)不等式|x 2-2|<2的解集是( ). A .(-1,1) B .(-2,2)C .(-1,0)∪(0,1)D .(-2,0)∪(0,2) 答案:D解析:|x 2-2|<2⇒-2<x 2-2<2⇒0<x 2<4⇒0<|x |<2⇒-2<x <0或0<x <2.故选D .5.(2013大纲全国,文5)(x +2)8的展开式中x 6的系数是( ). A .28 B .56 C .112 D .224 答案:C解析:T 2+1=28C x 8-2·22=112x 6.故选C .6.(2013大纲全国,文6)函数f (x )=21log 1x ⎛⎫+ ⎪⎝⎭(x >0)的反函数f -1(x )=( ). A .121x -(x >0) B .121x-(x ≠0) C .2x -1(x ∈R ) D .2x -1(x >0) 答案:A解析:由y =f (x )=21log 1x ⎛⎫+ ⎪⎝⎭⇒1+1x =2y⇒x =121y -. ∵x >0,∴y >0. ∴f -1(x )=121x -(x >0).故选A . 7.(2013大纲全国,文7)已知数列{a n }满足3a n +1+a n =0,243a =-,则{a n }的前10项和等于( ).A .-6(1-3-10) B .19(1-310) C .3(1-3-10) D .3(1+3-10)答案:C解析:∵3a n +1+a n =0⇒a n +1=13-a n , ∴{a n }是以13-为公比的等比数列. 又∵a 2=43-,∴a 1=4. ∴S 10=101413113⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+=3(1-3-10).故选C .8.(2013大纲全国,文8)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( ).A .22x +y 2=1 B .22132x y += C .22143x y += D .22154x y += 答案:C解析:如图,|AF 2|=12|AB |=32,|F 1F 2|=2, 由椭圆定义得 |AF 1|=2a -32.① 在Rt △AF 1F 2中,|AF 1|2=|AF 2|2+|F 1F 2|2=232⎛⎫⎪⎝⎭+22.②由①②得a =2,∴b 2=a 2-c 2=3.∴椭圆C 的方程为22143x y +=,应选C . 9.(2013大纲全国,文9)若函数y =sin(ωx +φ)(ω>0)的部分图像如图,则ω=( ).A .5B .4C .3D .2 答案:B解析:∵由题中图象可知x 0+π4-x 0=2T .∴π2T =.∴2ππ2ω=.∴ω=4.故选B . 10.(2013大纲全国,文10)已知曲线y =x 4+ax 2+1在点(-1,a +2)处切线的斜率为8,则a =( ).A .9B .6C .-9D .-6 答案:D解析:由题意知y ′|x =-1=(4x 3+2ax )|x =-1=-4-2a =8,则a =-6.故选D .11.(2013大纲全国,文11)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ).A .23 BC.3D .13答案:A解析:如图,设AA 1=2AB =2,AC 交BD 于点O ,连结OC 1,过C 作CH ⊥OC 1于点H ,连结DH.∵BD ⊥AC ,BD ⊥AA 1, ∴BD ⊥平面ACC 1A 1. ∵CH ⊂平面ACC 1A 1,∴CH ⊥BD .∴CH ⊥平面C 1BD .∴∠CDH 为CD 与平面BDC 1所成的角.OC 1==由等面积法得OC 1·CH =OC ·CC 1,22CH =.∴CH =23.∴sin ∠CDH =22313CH CD ==.故选A .12.(2013大纲全国,文12)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA ·MB =0,则k =( ). A .12 BCD .2 答案:D解析:设AB :y =k (x -2),代入y 2=8x 得: k 2x 2-(4k 2+8)x +4k 2=0, 设A (x 1,y 1),B (x 2,y 2),则∴x 1+x 2=2248k k+, x 1x 2=4.(*)∵MA ·MB =0, ∴(x 1+2,y 1-2)·(x 2+2,y 2-2)=0, 即(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0.∴x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4=0.① ∵11222,2,y k x y k x =(-)⎧⎨=(-)⎩∴y 1+y 2=k (x 1+x 2-4),②y 1·y 2=k 2(x 1-2)(x 2-2)=k 2[x 1x 2-2(x 1+x 2)+4].③ 由(*)及①②③得k =2.故选D .二、填空题:本大题共4小题,每小题5分.13.(2013大纲全国,文13)设f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)=______.答案:-1解析:∵f (x )是以2为周期的函数,且x ∈[1,3)时,f (x )=x -2, 则f (-1)=f (-1+2)=f (1)=1-2=-1.14.(2013大纲全国,文14)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有__________种.(用数字作答)答案:60解析:分三步:第一步,一等奖有16C 种可能的结果;第二步,二等奖有25C 种可能的结果;第三步,三等奖有33C 种可能的结果.故共有123653C C C 60=(种)可能的结果.15.(2013大纲全国,文15)若x ,y 满足约束条件0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩则z =-x +y 的最小值为______.答案:0 解析:z =-x +y ⇒y =x +z ,z 表示直线y =x +z 在y 轴上的截距,截距越小,z 就越小.画出题中约束条件表示的可行域(如图中阴影部分所示),当直线过点A (1,1)时,z min =0.16.(2013大纲全国,文16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于______.答案:16π解析:如图,设MN 为公共弦,长度为R ,E 为MN 中点,连结OE ,EK ,则OE ⊥MN ,KE ⊥MN .∴∠OEK 为圆O 与圆K 所在平面的二面角. ∴∠OEK =60°.又△OMN 为正三角形,∴OE. ∵OK =32,且OK ⊥KE , ∴OE ·sin 60°=32.32=.∴R =2.∴S =4πR 2=16π.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013大纲全国,文17)(本小题满分10分)等差数列{a n }中,a 7=4,a 19=2a 9. (1)求{a n }的通项公式; (2)设1n nb na =,求数列{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差为d ,则 a n =a 1+(n -1)d .因为71994,2,a a a =⎧⎨=⎩所以11164,1828.a d a d a d +=⎧⎨+=(+)⎩解得a 1=1,12d =. 所以{a n }的通项公式为12n n a +=.(2)因为22211n b n n n n ==-(+)+, 所以2222222122311n n S n n n ⎛⎫⎛⎫⎛⎫=-+-++-=⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. 18.(2013大纲全国,文18)(本小题满分12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac .(1)求B ;(2)若sin A sin C =14,求C . 解:(1)因为(a +b +c )(a -b +c )=ac , 所以a 2+c 2-b 2=-ac .由余弦定理得cos B =222122a cb ac +-=-, 因此B =120°.(2)由(1)知A +C =60°,所以cos(A -C )=cos A cos C +sin A sin C =cos A cos C -sin A sin C +2sin A sin C =cos(A +C )+2sin A sin C=1+22故A -C =30°或A -C =-30°, 因此C =15°或C =45°.19.(2013大纲全国,文19)(本小题满分12分)如图,四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△P AB 和△P AD 都是边长为2的等边三角形.(1)证明:PB ⊥CD ;(2)求点A 到平面PCD 的距离.(1)证明:取BC 的中点E ,连结DE ,则ABED 为正方形.过P 作PO ⊥平面ABCD ,垂足为O . 连结OA ,OB ,OD ,OE .由△P AB 和△P AD 都是等边三角形知P A =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点, 所以OE ∥CD .因此PB ⊥CD .(2)解:取PD 的中点F ,连结OF ,则OF ∥PB . 由(1)知,PB ⊥CD ,故OF ⊥CD .又OD =12BD OP = 故△POD 为等腰三角形,因此OF ⊥PD . 又PD ∩CD =D ,所以OF ⊥平面PCD .因为AE ∥CD ,CD ⊂平面PCD ,AE ⊄平面PCD ,所以AE ∥平面PCD . 因此O 到平面PCD 的距离OF 就是A 到平面PCD 的距离,而OF =12PB =1, 所以A 到平面PCD 的距离为1.20.(2013大纲全国,文20)(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判. (1)求第4局甲当裁判的概率;(2)求前4局中乙恰好当1次裁判的概率.解:(1)记A 1表示事件“第2局结果为甲胜”,A 2表示事件“第3局甲参加比赛时,结果为甲负”, A 表示事件“第4局甲当裁判”. 则A =A 1·A 2. P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14. (2)记B 1表示事件“第1局比赛结果为乙胜”,B 2表示事件“第2局乙参加比赛时,结果为乙胜”, B 3表示事件“第3局乙参加比赛时,结果为乙胜”, B 表示事件“前4局中乙恰好当1次裁判”. 则B =1B ·B 3+B 1·B 2·3B +B 1·2B . P (B )=P (1B ·B 3+B 1·B 2·3B +B 1·2B ) =P (1B ·B 3)+P (B 1·B 2·3B )+P (B 1·2B ) =P (1B )P (B 3)+P (B 1)P (B 2)P (3B )+P (B 1)P (2B )=111484++ =58. 21.(2013大纲全国,文21)(本小题满分12分)已知函数f (x )=x 3+3ax 2+3x +1.(1)当a =f (x )的单调性;(2)若x ∈[2,+∞)时,f (x )≥0,求a 的取值范围.解:(1)当a =f (x )=x 3-2+3x +1,f ′(x )=3x 2-+3.令f ′(x )=0,得11x =,21x .当x ∈(-∞1)时,f ′(x )>0,f (x )在(-∞1)是增函数;当x ∈11)时,f ′(x )<0,f (x )在11)是减函数;当x ∈1,+∞)时,f ′(x )>0,f (x )在1,+∞)是增函数. (2)由f (2)≥0得54a ≥-.当54a ≥-,x ∈(2,+∞)时, f ′(x )=3(x 2+2ax +1)≥25312x x ⎛⎫-+ ⎪⎝⎭=312x ⎛⎫- ⎪⎝⎭(x -2)>0,所以f (x )在(2,+∞)是增函数,于是当x ∈[2,+∞)时,f (x )≥f (2)≥0. 综上,a 的取值范围是5,4⎡⎫-+∞⎪⎢⎣⎭. 22.(2013大纲全国,文22)(本小题满分12分)已知双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C (1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB |,|BF 2|成等比数列.(1)解:由题设知3c a =,即2229a b a+=,故b 2=8a 2. 所以C 的方程为8x 2-y 2=8a 2.将y =2代入上式,并求得x =由题设知,=a 2=1.所以a =1,b =(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k (x -3),|k (k 2-8)x 2-6k 2x +9k 2+8=0.设A (x 1,y 1),B (x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=2268k k -,x 1·x 2=22988k k +-.于是|AF 1|==-(3x 1+1),|BF 1|=3x 2+1.由|AF 1|=|BF 1|得-(3x 1+1)=3x 2+1,即x 1+x 2=23-. 故226283k k =--, 解得245k =,从而x 1·x 2=199-.由于|AF 2|==1-3x1,|BF2|=3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|·|BF2|=3(x1+x2)-9x1x2-1=16.因而|AF2|·|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.。
(精较)2013年高考真题——文科数学(新课标I卷)解析版
页眉内容绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =( )(A ){0}(B ){-1,,0} (C ){0,1}(D ){-1,,0,1}(2)212(1)ii +=-( )(A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12 (B )13 (C )14 (D )16(4)已知双曲线2222:1x y C a b -=(0,0)a b >>的离心率为则C 的渐近线方程为( )(A )14y x =±(B )13y x =± (C )12y x =±(D )y x =±(5)已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧(B )p q ⌝∧(C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =则POF ∆的面积为( )(A )2(B )(C )(D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9(C )8(D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+(C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年高考解析分类汇编1:集合一、选择题 1 .(2013年上海高考数学试题(文科))设常数a ∈R ,集合()(){}|10A x x x a =--≥,{}|1B x x a =≥-.若A B =R ,则a 的取值范围为( ) A .(),2-∞B .(],2-∞C .()2,+∞D .[)2,+∞【答案】B方法:代值法,排除法。
当a=1时,A=R ,符合题意;当a=2时,符合题意。
,)2),[]1,(),,1[R B A A B =⋃∴+∞⋃-∞=+∞=综上,选B标准解法如下: )1,(),,1[--∞⊇∴=⋃+∞-=a A R B A a B,时符合题意;当当时,当由),[]1,(11,10))(1(+∞⋃-∞∈>=∈=⇒≥--a x a a R x a a x x11),1[],(1;2111<⇒-≥⇒+∞⋃-∞∈<≤<-≥⇒a a a a x a a a 时当解得.2综上,≤a选B2 .(2013年高考重庆卷(文))已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U A B =ð( )A .{1,3,4}B .{3,4}C .{3}D .{4}【答案】D本题考查集合的基本运算。
{1,2,3}AB =,所以()={4}U AB ð,选D.3 .(2013年高考浙江卷(文))设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T= ( )A .[-4,+∞)B .(-2, +∞)C .[-4,1]D .(-2,1]【答案】D如图1所示(2,1]S T ⋂=-,所以选D【考点定位】此题考查集合的运算,利用数轴即可解决此题,体现数形结合思想的应用,此考点是历年来高考必考考点之一,属于简单题。
4 .(2013年高考天津卷(文1))已知集合A = {x ∈R | |x |≤2}, B = {x ∈R | x ≤1}, 则A B ⋂=( )A .(,2]-∞B .[1,2]C .[-2,2]D .[-2,1]【答案】D因为{22}A x x =-≤≤,所以{21}B Ax x =-≤≤,选D.5 .(2013年高考四川卷(文1))设集合{1,2,3}A =,集合{2,2}B =-,则A B = ( )A .∅B .{2}C .{2,2}-D . {2,1,2,3}-【答案】B}2{}2,2{}3,2,1{=-= B A ,选B.6 .(2013年高考山东卷(文2))已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B =ð,{1,2}B =,则U A B =ð( )A .{3}B .{4}C .{3,4}D .∅【答案】A{1,2,3}A B =,{3}U A C B =,故选A 。
7 .(2013年高考辽宁卷(文))已知集合{}{}0,1,2,3,4,|2,A B x x AB ==<=则 ( )A .{}0B .{}0,1C .{}0,2D .{}0,1,2【答案】B由已知{|22}B x x =-<<,所以{0,1}A B ⋂=,选B 。
8 .(2013年高考课标Ⅱ卷(文))已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N =( )(A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 【答案】C因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以MN {2,1,0}=--,选C.9 .(2013年高考课标Ⅰ卷(文))(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则AB =( )(A ){1,4} (B ){2,3} (C ){9,16} (D ){1,2}【答案】A2{|,}{1,4,9,16}B x x n n A ==∈=,所以{1,4}A B =,选A.10.(2013年高考江西卷(文2))若集合A={x ∈R|ax 2+ax+1=0}其中只有一个元素,则a=( )A .4B .2C .0D .0或4【答案】A本题考查集合元素的性质以及一元二次方程的根。
当0a =时,方程为10=不成立。
若0a ≠,则判别式240a a ∆=-=,解得4a =,选A.11.(2013年高考湖北卷(文))已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U BA =ð( )A .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5}【答案】B本题考查集合的基本运算。
{3,4,5}U A =ð,所以{3,4}U BA =ð,选B.12.(2013年高考广东卷(文))设集合2{|20,}S x xx x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =( )A .{0}B . {0,2}C .{2,0}-D .{2,0,2}-【答案】A先解两个一元二次方程,再取交集,选A 。
13.(2013年高考福建卷(文))若集合}4,3,1{},3,2,1{==B A ,则B A 的子集个数为( )A .2B .3C .4D .16【答案】C本题考查的是集合的交集和子集.因为}3,1{=B A ,有2个元素,所以子集个数为422=个.14.(2013年高考大纲卷(文1))设集合{}{}1,2,3,4,5,1,2,u UA A ===集合则ð ( ) A .{}1,2B .{}3,4,5C .{}1,2,3,4,5D .∅【答案】BA C u ={3,4,5},故选B.15.(2013年高考北京卷(文1))已知集合{}1,0,1A =-,{}|11B x x =-≤<,则AB =( )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1-【答案】B注意看清题目,B 集合中元素的范围是左闭右开,故答案为}0,1{-=B A .选B16.(2013年高考安徽(文))已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=( )A .{}2,1--B .{}2-C .{}1,0,1-D .{}0,1【答案】AA :1->x ,}1|{-≤=x x A C R ,}2,1{)(--=B AC R ,所以答案选A 【考点定位】考查集合的交集和补集,属于简单题.二、填空题17.(2013年高考湖南(文))对于E={a 1,a 2,.a 100}的子集X={a 1,a 2,,a n },定义X 的“特征数列”为x 1,x 2,x 100,其中x 1=x 10=x n =1.其余项均为0,例如子集{a 2,a 3}的“特征数列”为0,1,0,0,,0(1) 子集{a 1,a 3,a 5}的“特征数列”的前三项和等于____ _______;(2) 若E 的子集P 的“特征数列”P 1,P 2,,P 100 满足P 1+P i+1=1, 1≤i≤99; E 的子集Q 的“特征数列” q 1,q 2,q 100 满足q 1=1,q 1+q j+1+q j+2=1, 1≤j≤98,则P∩Q 的元素个数为_________. 【答案】(1) 2 (2) 17 本题考查对新定义的理解和推理。
(1)子集{a 1,a 3,a 5}的“特征数列”是:1,0,1,0,1,0,00.所以前三项之和为2.(2)18.(2013年高考湖南(文))已知集合{2,3,6,8},{2,3},{2,6,8}U A B ===,则()C A B ⋃⋂=_____【答案】}862{,,本题考查几何的基本运算。
因为{2,3},{2,6,8}A B ==,所以(){6,8}{2,6,8}{6,8}U A B ==ð。
19.(2013年高考福建卷(文))设T S ,是R 的两个非空子集,如果存在一个从S 到T 的函数)(x f y =满足;(i)}|)({S x x f T ∈=;(ii)对任意S x x ∈21,,当21x x <时,恒有)()(21x f x f <.那么称这两个集合“保序同构”.现给出以下3对集合:①*,N B N A ==;②}108|{},31|{≤≤-=≤≤-=x x B x x A ; ③R B x x A =<<=},10|{.其中,“保序同构”的集合对的序号是____________(写出所有“保序同构”的集合对的序号)【答案】①②③本题考查的函数的性质.由题意可知S 为函数的一个定义域,T 为其所对应的值域,且函数)(x f y =为单调递增函数.对于集合对①,可取函数)(2)(N x x f x∈=,是“保序同构”;对于集合对②,可取函数)31(2729≤≤--=x x y ,是“保序同构”;对于集合对③,可取函数)10)(2tan(<<-=x x y ππ,是“保序同构”.故答案为①②③.。