专题4-立体几何-数学-新课标
2020版高考数学二轮复习第2部分专题4立体几何第2讲空间向量与立体几何教案理
第2讲 空间向量与立体几何[做小题——激活思维]1.在正方体A 1B 1C 1D 1ABCD 中,AC 与B 1D 所成角的大小为( ) A.π6 B.π4 C.π3D.π2D [如图,连接BD ,易证AC ⊥平面BB 1D , ∴AC ⊥B 1D ,∴AC 与B 1D 所成角的大小为π2.] 2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135°D .90°C [∵m =(0,1,0),n =(0,1,1), ∴|m |=1,|n |=2,m ·n =1,∴cos〈m ,n 〉=m ·n |m ||n |=12=22,设两平面所成的二面角为α,则 |cos α|=22,∴α=45°或135°,故选C.] 3.用a ,b ,c 表示空间中三条不同的直线,γ表示平面,给出下列命题: ①若a ⊥b ,b ⊥c ,则a ∥c ;②若a ∥b ,a ∥c ,则b ∥c ; ③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b . 其中真命题的序号是( ) A .①② B .②③ C .①④D .②④D [对于①,正方体从同一顶点引出的三条直线a ,b ,c ,满足a ⊥b ,b ⊥c ,但是a ⊥c ,所以①错误;对于②,若a ∥b ,a ∥c ,则b ∥c ,满足平行线公理,所以②正确;对于③,平行于同一平面的两条直线的位置关系可能是平行、相交或者异面,所以③错误;对于④,由垂直于同一平面的两条直线平行,知④正确.故选D.]4.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________.π6[设l 与α所成的角为θ,则 sin θ=|cos 〈m ,n 〉|=12,又θ∈⎣⎢⎡⎦⎥⎤0,π2,∴θ=π6.][扣要点——查缺补漏]1.证明线线平行和线线垂直的常用方法(1)证明线线平行:①利用平行公理;②利用平行四边形进行平行转换;③利用三角形的中位线定理;④利用线面平行、面面平行的性质定理进行平行转换.如T 3.(2)证明线线垂直:①利用等腰三角形底边上的中线即高线的性质;②勾股定理;③线面垂直的性质.2.证明线面平行和线面垂直的常用方法(1)证明线面平行:①利用线面平行的判定定理;②利用面面平行的性质定理. (2)证明线面垂直:①利用线面垂直的判定定理;②利用面面垂直的性质定理. 3.异面直线所成的角求法 (1)平移法:解三角形.(2)向量法:注意角的范围.如T 1. 4.二面角的求法cos θ=cos 〈m ,n 〉=m ·n|m ||n |,如T 2.5.线面角的求法sin θ=|cos 〈m ,n 〉|,如T 4.利用空间向量求空间角(5年15考)[高考解读] 主要考查通过建立空间直角坐标系,解决空间图形中的线线角、线面角和面面角的求解,考查学生的空间想象能力、运算能力、三种角的定义及求法等.(2018·全国卷Ⅱ)如图,在三棱锥P ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C 为30°,求PC 与平面PAM 所成角的正弦值.切入点:(1)借助勾股定理,证明PO ⊥OB ;(2)建立空间直角坐标系,利用二面角M PA C 为30°求出点M 的坐标,进而求出PC 与平面PAM 所成角的正弦值.[解](1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,知PO ⊥平面ABC . (2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面PAC 的一个法向量OB →=(2,0,0).设M (a,2-a,0)(0≤a ≤2),则AM →=(a,4-a,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得⎩⎨⎧2y +23z =0,ax +-a y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23a -2a -2+3a 2+a2.由已知可得|cos 〈OB →,n 〉|=32,所以23|a -4|2a -2+3a 2+a2=32, 解得a =-4(舍去),a =43,所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. [教师备选题]1.(2015·全国卷Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.[解](1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt△EBG 中,可得BE =2,故DF =22. 在Rt△FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC . 因为EG平面AEC ,所以平面AEC ⊥平面AFC .(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G xyz .由(1)可得A (0,-3,0),E (1,0,2),F -1,0,22,C (0,3,0), 所以A E →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈A E →,CF →〉=A E →·CF →|A E →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 2.(2019·全国卷Ⅰ)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A MA 1N 的正弦值.[解](1)连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1DC ,可得B 1C A 1D ,故ME ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥D A.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,则 ⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0.所以⎩⎨⎧-x +3y -2z =0,-4z =0.可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量,则 ⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0.所以⎩⎨⎧-3q =0,-p -2r =0.可取n =(2,0,-1).于是cos 〈m ,n 〉=m·n |m||n|=232×5=155,所以二面角A MA 1N 的正弦值为105.1.利用向量法求线面角的两种方法(1)法一:分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)法二:通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.2.利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.提醒:判断二面角的平面角是锐角还是钝角,可结合图形进行.1.[一题多解](以圆柱为载体)如图,圆柱的轴截面ABCD 为正方形,E 为弧BC 的中点,则异面直线AE 与BC 所成角的余弦值为 ( )A.33 B.55 C.306D.66D [法一:(平移法)取BC 的中点H ,连接EH ,AH ,∠EHA =90°,设AB =2,则BH =HE =1,AH =5,所以AE =6,连接ED ,ED =6,因为BC ∥AD ,所以异面直线AE 与BC 所成角即为∠EAD ,在△EAD 中cos∠EAD =6+4-62×2×6=66,故选D.法二:(向量法)取圆柱底面的圆心O 为原点,建立空间直角坐标系O xyz ,设AB =2,则A (1,0,0),B (1,0,2),C (-1,0,2),E (0,1,2),∴A E →=(-1,1,2),BC →=(-2,0,0)∴cos〈A E →,BC →〉=26×2=66,故选D.] 2.(以棱柱为载体)在三棱柱ABC A1B 1C 1中, AB ⊥平面BCC 1B 1,∠BCC 1=π3, AB =BC =2, BB 1=4,点D 在棱CC 1上,且CD =λCC 1(0<λ≤1).建立如图所示的空间直角坐标系.(1)当λ=12时,求异面直线AB 1与A 1D 的夹角的余弦值;(2)若二面角A B 1D A 1的平面角为π3,求λ的值.[解](1)易知A ()0,0,2, B 1()0,4,0, A 1()0,4,2. 当λ=12时, 因为BC =CD =2, ∠BCC 1=π3,所以C ()3,-1,0,D ()3,1,0.所以AB 1→=()0,4,-2, A 1D →=()3,-3,-2. 所以cos 〈AB 1→,A 1D →〉=AB 1→·A 1D→||AB 1→||A 1D →=0×3+4×()-3+()-2×()-242+()-22·()32+()-32+()-22=-55. 故异面直线AB 1与A 1D 的夹角的余弦值为55. (2)由CD =λCC 1可知, D ()3,4λ-1,0, 所以DB 1→=()-3,5-4λ,0, 由(1)知, AB 1→=()0,4,-2.设平面AB 1D 的法向量为m =()x ,y ,z , 则⎩⎪⎨⎪⎧AB 1→·m =0,DB 1→·m =0,即⎩⎨⎧4y -2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =2,所以平面AB 1D 的一个法向量为m =⎝ ⎛⎭⎪⎫5-4λ3,1,2.设平面A 1B 1D 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧B 1A 1→·n =0,DB 1→·n =0,即⎩⎨⎧2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =0,所以平面A 1B 1D 的一个法向量为n =⎝ ⎛⎭⎪⎫5-4λ3,1,0.因为二面角A B 1D A 1的平面角为π3,所以||cos 〈m ,n 〉=|m·n |||m ||n=⎪⎪⎪⎪⎪⎪5-4λ3×5-4λ3+1×1+2×0⎝ ⎛⎭⎪⎫5-4λ32+12+22·⎝ ⎛⎭⎪⎫5-4λ32+12=12, 即()5-4λ2=1,解得λ=32(舍)或λ=1,故λ的值为1.3.(以棱台为载体)如图,在三棱台DEF ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.[解](1)证明:在三棱台DEF ABC 中, 由BC =2EF ,H 为BC 的中点, 可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形, 可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点, 所以GH ∥AB .又GH ∩HF =H ,所以平面FGH ∥平面ABED . 因为BD平面ABED ,所以BD ∥平面FGH .(2)设AB =2,则CF =1.在三棱台DEF ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形, 因此DG ∥FC . 又FC ⊥平面ABC , 所以DG ⊥平面ABC .连接GB ,在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 的中点, 所以AB =BC ,GB ⊥GC , 因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G xyz .所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1).可得H ⎝⎛⎭⎪⎫22,22,0,F (0,2,1). 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1).设n =(x ,y ,z )是平面FGH 的法向量,则 由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2). 因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0), 所以cos 〈GB →,n 〉=GB →·n |GB →|·|n |=222=12.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°. 4.(以五面体为载体)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D AF E 与二面角C BE F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E BC A 的余弦值.[解](1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,DF ∩EF =F , 所以AF ⊥平面EFDC .又AF 平面ABEF ,故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF . 以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G xyz .由(1)知∠DEF 为二面角D AF E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得,AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C BE F 的平面角,∠CEF =60°.从而可得C (-2,0,3).连接AC ,所以E C →=(1,0,3),E B →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·E C →=0,n ·E B →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4). 则cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E BC A 的余弦值为-21919.利用空间向量解决折叠性问题(5年3考)[高考解读] 以平面图形的翻折为载体,考查空间想象能力,在线面位置关系的证明中考查逻辑推理能力,在空间角的求解中,考查转化化归及数学运算的核心素养.1.(2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 切入点:(1)对照折叠前后的线面关系给予证明; (2)建立空间直角坐标系通过向量法求解. [解](1)由已知可得,BF ⊥PF ,BF ⊥EF ,又PF 平面PEF ,EF平面PEF ,且PF ∩EF =F ,所以BF ⊥平面PEF .又BF平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD . 以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,PF 2+PE 2=EF 2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. [教师备选题](2016·全国卷Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B D ′A C 的正弦值. [解](1)证明:由已知得AC ⊥BD ,AD =CD .又由AE =CF 得A EAD =CFCD,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4.由EF ∥AC ,得OH DO =A E AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD . (2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则 ⎩⎪⎨⎪⎧ m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧ 3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则 ⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m·n |m||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B D ′A C 的正弦值是29525.平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变和不变,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(以梯形为载体)如图,等腰梯形ABCD 中,AB ∥CD ,AD =AB =BC =1,CD =2,E 为CD 中点,以AE 为折痕把△ADE 折起,使点D 到达点P 的位置(P 平面ABCE ).(1)证明:AE ⊥PB ;(2)若直线PB 与平面ABCE 所成的角为π4,求二面角A PE C 的余弦值.[解](1)证明:连接BD ,设AE 的中点为O , ∵AB ∥CE ,AB =CE =12CD ,∴四边形ABCE 为平行四边形,∴AE =BC =AD =DE , ∴△ADE ,△ABE 为等边三角形, ∴OD ⊥AE ,OB ⊥AE , 又OP ∩OB =O , ∴AE ⊥平面POB ,又PB 平面POB ,∴AE ⊥PB .(2)在平面POB 内作PQ ⊥平面ABCE ,垂足为Q ,则Q 在直线OB 上, ∴直线PB 与平面ABCE 夹角为∠PBO =π4,又OP =OB ,∴OP ⊥OB ,∴O 、Q 两点重合,即PO ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系, 则P ⎝ ⎛⎭⎪⎫0,0,32,E ⎝ ⎛⎭⎪⎫12,0,0,C ⎝ ⎛⎭⎪⎫1,32,0,∴P E →=⎝ ⎛⎭⎪⎫12,0,-32,E C →=⎝ ⎛⎭⎪⎫12,32,0,设平面PCE 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·P E →=0,n 1·E C →=0,即⎩⎪⎨⎪⎧12x -32z =0,12x +32y =0,令x =3得n 1=(3,-1,1), 又OB ⊥平面PAE ,∴n 2=(0,1,0)为平面PAE 的一个法向量,设二面角A EP C 为α,则|cos α|=cos 〈n 1,n 2〉=|n 1·n 2||n 1||n 2|=15=55,易知二面角A EP C 为钝角,所以cos α=-55.立体几何的综合问题(5年3考)[高考解读] 将圆的几何性质、空间线面的位置关系、空间几何体的体积等知识融于一体,综合考查学生的逻辑推理能力.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 切入点:(1)借助圆的几何性质得出DM ⊥CM ,进而借助面面垂直的判定求解. (2)借助体积公式先探寻M 点的位置,建系借助坐标法求解. [解](1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz . 当三棱锥M ABC 体积最大时,M 为CD ︵的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2).DA →是平面MCD 的法向量,因为cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.存在性问题的求解策略(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“是否有解”“是否有规定范围内的解”等.(2)对于位置探究型问题,通常是借助向量,引入参数,综合条件和结论列方程,解出参数,从而确定位置.(3)在棱上是否存在一点时,要充分利用共线向量定理.(探索位置型)如图所示,四棱锥P ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°,且AB =AP .(1)若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;(2)在线段AD 上是否存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由. [解] (1)以A 为坐标原点,建立空间直角坐标系A xyz ,如图1所示.图1在平面ABCD 内,作CE ∥AB ,交AD 于点E ,则CE ⊥AD . 在Rt△CDE 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 设AB =AP =t (t >0),则B (t,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,∴E (0,3-t,0),C (1,3-t,0),D (0,4-t,0), ∴CD →=(-1,1,0),PD →=(0,4-t ,-t ). 设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥CD →,n ⊥PD →得⎩⎪⎨⎪⎧-x +y =0,-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). cos 60°=|n ·PB →||n |·|PB →|,即|2t 2-4t |t 2+t 2+-t 2·2t 2=12, 解得t =45或t =4(舍去,因为AD =4-t >0),∴AB =45.(2)法一:(向量法)假设在线段AD 上存在一点G (如图2所示),使得点G 到点P ,B ,C ,D 的距离都相等.设G (0,m,0)(其中0≤m ≤4-t ),则GC →=(1,3-t -m,0),GD →=(0,4-t -m,0),GP →(0,-m ,t ).图2由|GC →|=|GD →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m . ①由|GD →|=|GP →|,得(4-m -t )2=m 2+t 2. ② 由①,②消去t ,化简得m 2-3m +4=0. ③由于方程③没有实数根,所以在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等. 法二:(几何法)假设在线段AD 上存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等.图3由GC =GD 得∠GCD =∠GDC =45°, ∴∠CGD =90°,即CG ⊥AD , ∴GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 如图3所示,在Rt△ABG 中,GB =AB 2+AG 2=λ2+-λ2=2⎝⎛⎭⎪⎫λ-322+92>1, 这与GB =GD 矛盾.∴在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等.。
《立体几何》微专题4 空间中常见的组合体
四、典型例题 例 1 如图所示,平行四边形 ABCD 中,AB=2BD=2,且 AB⊥BD.将其沿 BD 折成直二面 角,所得的四面体 A-BCD 的外接球表面积为( )
A
B
D
B
D
C
A1
B1
D1
B1
D1
C1
类型 1
A
B
D
D
C
B
A1
B1
D1
M
B1
D1
C1
特征: 三棱锥中交于同一顶点的三条棱两两垂直. 类型 2
A
B
D
D
C
B
A1
B1
D1
B1
D1
C1
特征: 三棱锥的四个面都为直角三角形. 类型 3
2
A
B
D
B
D
C
A1
B1
D1
M
B1
D1
C1
特征: 三棱锥中的对棱相等. 类型 4
用以及利用重要截面“降维”处理,以供参考.
二、知识梳理
1.判断下列说法是否正确,正确的打“√”,错的打“×”.
(1)在空间中,到定点的距离等于定长的所有点的集合叫球面.( √ )
(2)用一个平面去截球面,所得图形均为圆面.( × )
(3)球的小圆的圆心与球心的连线垂直于这个小圆所在平面.( √ )
(4)经过球面上不同的两点只能作一个大圆.( × )
④若直棱柱的所有顶点都在同一个球面上,则该球的球心 O 是直棱柱的两个底面外接圆圆
心的连线的中点.半径的求解往往通过抓含球心的截面,将空间问题平面化,从而得解.
【多面体的内切球问题】
方法提炼:
1.利用等体积法求内切球半径;2.抓含球心与切点的截面.
完整版)新高中数学新课程标准版
完整版)新高中数学新课程标准版新高中数学新课程标准217版一、课程的基本理念新课标的理念是以学生发展为本,落实立德树人根本任务,培养和提高学生的数学核心素养。
课程面向全体学生,实现人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
在课程内容安排上,注重处理好数学核心素养与课程内容、过程与结果、直接经验与间接经验的关系,注意与其他学科的联系;还关注与义务教育课程的衔接。
教学活动的关键是启发学生学会数学思考,引导学生会学数学、会用数学。
树立以发展学生数学核心素养为导向的课程意识与教学意识,将核心素养贯穿于数学教学的全过程。
在教学中,教师应结合相应的教学内容,落实“四基”,培养“四能”,促进学生数学核心素养的形成与发展。
评价的依据是相应研究阶段学生数学核心素养的发展水平。
应建立目标多元、方法多样的评价体系。
二、课程目标新的课程着重提出了数学核心素养的概念,目标是获得进一步研究以及未来发展所必需的“四基”(基础知识、基本技能、基本思想、基本活动经验),提高“四能”(从数学角度发现和提出问题的能力、分析和解决问题的能力),增强创新意识和应用能力。
与旧课程相比,新旧课程的目标没有较大的差异,但新的课程更注重学生数学核心素养的培养。
1.发展数学应用和创新意识,思考并判断现实世界中的数学模式。
2.提高基本能力,包括空间想象、抽象概括、推理论证、运算求解和数据处理。
3.提高解决问题的能力,包括独立获取数学知识的能力。
4.提高研究数学的兴趣和信心,树立良好的数学研究惯,认识数学的科学、应用和文化价值。
5.研究数学核心素养,包括数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。
用数学眼光观察世界,用数学思维分析世界,用数学语言表达世界。
6.数学核心素养是具有数学基本特征的关键能力和思维品质,适应个人终身发展和社会发展的需要。
7.数学核心素养包括逻辑推理、数学建模、思维与表达、直观想象和数据分析。
8.研究数学核心素养需要掌握不同层次的知识和技能,以及经历、体验和探索。
新课标视角下新旧版高中数学教材对比分析——以空间向量与立体几何为例
新课标视角下新旧版高中数学教材对比分析——以空间向量与立体几何为例广州市南武中学510220摘要:人民教育出版社根据普通高中数学课程标准(2017年版)出版了2020年版普通高中教科书.对空间向量与立体几何进行了相应调整,本文通过对知识内容、课时安排、知识结构、以及例题与习题的变化四方面进行对比分析.关键词:空间向量与立体几何教材比较研究吴文俊先生曾指出“与以欧几里得为代表的希腊传统相异,我国的传统数学在研究空间几何形式时着重于可以通过数量来表达的那种属性,几何问题往往归结为代数问题来处理解决”,同时吴文俊先生也认为用代数方法研究几何问题,将是未来的发展方向.[1]而用代数方法研究立体几何的重要方法则是空间向量.同时,随着持续进行的基础教育改革,各出版社依据2017版普通高中数学课程标准,相继出版了不同版本的数学教材.不同版本的数学教材在空间向量与立体几何的编写上就会呈现出不同的特色和教学要求.本文选取2020年人教版(A版)选择性必修第一册(下称新教材)第一章和2007年人教版(A版)普通高中课程标准实验教科书选修2-1(下称旧教材)第三章作为研究对象.主要从知识内容、课时安排、知识结构以及例题与习题的变化四方面展开.通过回顾和梳理新旧人教版高中数学空间向量与立体几何的差异,归纳其变化的特点和经验,期望在新课标实施的过程中能够起到一定的推广作用.1 新旧教材具体内容对比分析课程标准是教材编写的重要依据,教材的编写在遵循课程标准要求的基础上,可以进行有逻辑性、创造性的内容选择与结构安排.《普通高中数学课程标准(2017年版)》明确指出空间向量的内容包括:空间直角坐标系、空间向量及其运算、向量基本定理及坐标表示、空间向量的应用.1.1新旧教材知识内容编排对比(1)新教材凸显知识的连续性.新教材将空间直角坐标系这一内容放置在空间向量及其运算的坐标表示中,旧教材将空间向量安排在必修二的圆与方程中.空间直角坐标系在高中的应用,主要是利用空间向量解决立体几何问题,将空间直角坐标系放置在空间向量与立体几何中更符合学生学习知识的连续性特点.(2)新教材凸显知识的完备性.①新教材根据课程标准的要求“能用向量方法解决点到直线、点到平面、相互平行的直线、相互平行的平面的距离问题和简单夹角问题,并能描述解决这一类问题的程序,体会向量方法在研究几何问题中的作用[2]”.新教材在旧教材内容安排的基础之上,增加了向量法求点到直线的距离公式.点是直线外一点,点是直线上的定点,直线的单位方向向量是,,则点到直线的距离.②在分配率的基础上增加.③新增零向量与任意向量平行.④模糊四点共面的充要条件.新教材对于四点共面以的形式呈现.旧教材则是以且呈现,并且是通过类比平面向量的三点共线在思考中得到.(3)新教材凸显知识的自然生成,使知识更易接受.如图,新教材从直线上找到非零向量,然后将与向量平行的非零向量都称为直线的方向向量.相比于旧教材的处理而言,更容易让学生理解和接受.同时,从直线的方向向量出发,获得空间直线的向量表示更加自然、顺畅.()(4)新教材凸显知识的延续性.在通过类比平面向量的投影和投影向量,新教材给出任意向量到平面内的投影、到直线的投影以及到向量的投影.投影的学习,能够帮助学生体会投影是构建高维空间与低维空间之间联系的桥梁,从而帮助学生形成直观想象.并且空间向量的投影是平面向量投影的延续,也体现了从特殊到一般,从低维到高维的学习规律.(5)新教材凸显知识的来源和本质.李邦和院士认为,“数学根本上是玩概念的,不是玩技巧.技巧不足道也!”以解题教学代替概念教学的做法严重偏离了数学的正轨,必需纠正[3].从中不难看出概念教学、概念的重要性,而原理又是由概念构成的.新教材在空间向量的应用章节中,明确的指出了空间中点、直线和平面的向量表示.在向量表示空间中点、线、面的位置关系后,详细介绍了如何用向量表示空间中的平行和垂直关系,并且在让学生理解的基础上得到了用空间向量研究距离、夹角问题的具体公式,而这在旧教材中是没有的.(6)新教材更加注重空间向量知识的整体性.新教材在介绍空间向量以后,突出了向量的作用.即以例题的形式运用向量的基底来解决空间中的垂直、平行和夹角问题.而旧教材更加突出空间向量的应用,更像是用坐标法解决立几问题.综上,新教材更加注重知识结构的体系化,注重知识之间的相互联系,尤其是强调数学的基础性,这也符合新课程的“高中数学课程具有基础性”的基本理念.2 新旧教材知识内容课时对比新教材在处理空间向量和立体几何上共安排了14个课时.其中,空间向量及其运算2课时,空间向量基本定理2课时,空间向量及其坐标运算的坐标表示2课时,空间向量的应用6课时,小结2课时.旧教材在空间向量和立体几何共安排了14个课时.其中,空间直角坐标系2课时,空间向量及其运算5课时,立体几何中的向量方法5课时,小结2课时.从课时对比发现,新旧教材在处理空间向量和立体几何的总课时均为14课时.而新教材课时的安排更加突出新教材编写的“先分散,后集中”的原则,即在平时的教学中分散学习空间向量基本知识,再利用空间向量集中处理立几问题.3 新旧教材知识结构对比3.1章节内容对比新教材在空间向量和立体几何的设置包含了四节内容:1.1空间向量及其运算;1.2空间向量基本定理;1.3空间向量及其运算的坐标表示;1.4空间向量的应用.旧教材则是安排了两节内容:3.1空间向量及其运算;3.2立体几何中的向量方法.从内容设置来看,新教材的章节设置更合理:(1)与平面向量的章节设置相对应,方便一线教师更好的展开类比教学;(2)章节安排的详细化,使得章节内容重点突出,从而方便学生自主学习.新课标“提倡独立思考、自主学习、合作交流等多种学习方式,激发学习数学的兴趣,养成良好的学习习惯,促进学生实践能力和创新意识的发展”[4]在平常的教学中我们经常要求学生预习,提倡学生自主学习,事实上这个要求只是少部分学生能够完成.新教材在章节设置上的系统化和详细化处理,一定程度上降低了教材的整体难度,能够帮助学生实现自主学习.3.2知识结构对比新教材中的空间向量与立体几何这一内容安排,使得知识结构起到了承上启下的作用.(1)在学习完必修第二册后,立即学习空间向量与立体几何,起到了承上的作用.有立体几何知识的铺垫,学生能够快速的接受直线的方向向量以及平面的法向量等概念.同时,不同于综合法找线线、线面的位置关系,向量法只要合理建系,求出相应坐标就能比较完美的解决立几中的问题,从而会极大地提升学生学习空间向量的兴趣.(2)空间向量与立体几何起到了启下的作用.有空间向量与立体几何的知识储备,那么在学习解析几何的时候,无论是公式推导还是应用都可以借助空间向量完成,从而较大幅度的降低解析几何的难度,帮助学生更好的学习解析几何的相关问题.4 新旧教材例题、习题对比4.1新教材例题示范性更严谨.新旧教材均保留了证明四点共面的例题.新教材证明到后得到共面,再交代三个向量共点后,从而得到四点共面.而旧教材直接由得到四点共面.4.2新教材例题更注重知识的完备性.新教材在学习完空间向量的基底后,安排了利用基底证明空间位置关系以及求角的问题.而旧教材没有安排利用基底解决问题的例题,只是在课后习题中体现.故新教材的处理更能全面的体现空间向量的作用.4.3新教材注重在已学知识的基础上渗透高等数学内容.新教材在处理完立几的问题后,安排了空间直线的对称式方程和平面的点法式方程的证明.对于学有余力的学生而言,适当接触高等数学的知识,更有利于学习数学知识.5 结语通过对新旧教材空间向量与立体几何的知识内容、课时安排、知识结构以及例题与习题的变化的对比分析,新教材的知识体系更加完善、知识结构更加合理、例题习题更加有针对性;新教材更加关注在学生已有认知结构的基础上,培养学生的逻辑推理、数学抽象、数学运算的核心素养.在旧版教材的基础上有了很大的进步,落实了“学生发展为本,立德树人、提升素养的”新课标理念[1].[1]吴文俊,关于研究数学在中国的历史与现状,东方数学典籍《九章算术》[j].自然辩证法通讯,1990.4[2]普通高中数学课程标准(2017年版)中华人民共和国教育部制定,北京:人民教育出版社,2018.1[3]章建跃,数学教育随想录,上卷,杭州:浙江教育出版社,2017.6(2019.3重印)371[4]中华人民共和国教育部,《普通高中数学课程标准(2017年版2020年修订)》,北京:人民教育出版社,2020.53[5]人民教育出版社课程教材研究所中学数学课程教材研究开发中心,普通高中教科书数学,选择性必修第一册,北京:人民教育出版社,2020[6]人民教育出版社课程教材研究所中学数学课程教材研究开发中心,普通高中课程标准实验教科书数学选修2-1,北京:人民教育出版社,2007。
《新课程标准高中数学必修②复习讲义》第一、二章-立体几何
一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体--把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征 1。
棱柱1。
1棱柱—-有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1。
2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1。
4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则,222sin sin sin 1αβγ++=222cos cos cos 2αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2。
1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的母线截面(轴截面)是全等的矩形.2。
三年 (2020-2022 ) 新高考数学真题汇编 专题04立体几何
新高考专题04立体几何【2022年新高考1卷】1.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m . 2.65)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯【答案】C 【解析】 【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出. 【详解】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V . 棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =+=⨯⨯⨯+⨯+'(()679933320109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .【2022年新高考1卷】2.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤则该正四棱锥体积的取值范围是( )A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]【答案】C 【解析】 【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】∴ 球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h , 则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l ≤0V '<,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.【2022年新高考2卷】3.已知正三棱台的高为1,上、下底面边长分别为则该球的表面积为( ) A .100π B .128π C .144π D .192π【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以123432,260sin 60r r ==,即123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d 2d =故121d d -=或121d d +=,1=1=,解得225R =符合题意,所以球的表面积为24π100πS R ==. 故选:A .【2021年新高考1卷】4)A .2B .C .4D .【答案】B 【解析】 【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求. 【详解】设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=解得l = 故选:B.【2021年新高考2卷】5.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A.20+B .C .563D 【答案】D 【解析】 【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解. 【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高h下底面面积116S =,上底面面积24S =,所以该棱台的体积((121116433V h S S =+=+ 故选:D.【2020年新高考1卷(山东卷)】6.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°【答案】B【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角. 【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.【2022年新高考1卷】7.已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒ D .直线1BC 与平面ABCD 所成的角为45︒【答案】ABD【分析】数形结合,依次对所给选项进行判断即可. 【详解】如图,连接1B C 、1BC ,因为11//DA B C ,所以直线1BC 与1B C 所成的角即为直线1BC 与1DA 所成的角,因为四边形11BB C C 为正方形,则1B C ⊥1BC ,故直线1BC 与1DA 所成的角为90︒,A 正确;连接1A C ,因为11A B ⊥平面11BB C C ,1BC ⊂平面11BB C C ,则111A B BC ⊥, 因为1B C ⊥1BC ,1111A B B C B =,所以1BC ⊥平面11A B C ,又1AC ⊂平面11A B C ,所以11BC CA ⊥,故B 正确; 连接11A C ,设1111AC B D O =,连接BO ,因为1BB ⊥平面1111D C B A ,1C O ⊂平面1111D C B A ,则11C O B B ⊥, 因为111C O B D ⊥,1111B D B B B ⋂=,所以1C O ⊥平面11BB D D , 所以1C BO ∠为直线1BC 与平面11BB D D 所成的角,设正方体棱长为1,则1C O =1BC 1111sin 2C O C BO BC ∠==, 所以,直线1BC 与平面11BB D D 所成的角为30,故C 错误;因为1C C ⊥平面ABCD ,所以1C BC ∠为直线1BC 与平面ABCD 所成的角,易得145C BC ∠=,故D 正确. 故选:ABD【2022年新高考2卷】8.如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD 【解析】 【分析】直接由体积公式计算12,V V ,连接BD 交AC 于点M ,连接,EM FM ,由3A EFM C EFM V V V --=+计算出3V ,依次判断选项即可. 【详解】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACDV ED Sa a a =⋅⋅=⋅⋅⋅=, ()232111223323ABCV FB Sa a a =⋅⋅=⋅⋅⋅=,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥,又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D =,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ==,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ==,3EF a =,222EM FM EF +=,则EM FM ⊥,212EFMS EM FM =⋅=,AC =, 则33123A EFM C EFM EFMV V V AC S a --=+=⋅=,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确. 故选:CD.【2021年新高考1卷】9.在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【答案】BD 【解析】 【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值; 对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【详解】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB BC λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,1A ⎫⎪⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫⎪⎝⎭,则112A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误; 对于D ,当12μ=时,112BP BC BB λ=+,取1BB ,1CC 中点为,M N .BP BM MN λ=+,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,0A ⎫⎪⎪⎝⎭,所以01,2AP y ⎛⎫=- ⎪ ⎪⎝⎭,11,12A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确. 故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.【2021年新高考2卷】10.如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是( )A .B .C .D .【答案】BC 【解析】 【分析】根据线面垂直的判定定理可得BC 的正误,平移直线MN 构造所考虑的线线角后可判断AD 的正误. 【详解】设正方体的棱长为2,对于A ,如图(1)所示,连接AC ,则//MN AC , 故POC ∠(或其补角)为异面直线,OP MN 所成的角,在直角三角形OPC ,OC =1CP =,故tanPOC ∠== 故MN OP ⊥不成立,故A 错误.对于B ,如图(2)所示,取NT 的中点为Q ,连接PQ ,OQ ,则OQ NT ⊥,PQ MN ⊥, 由正方体SBCM NADT -可得SN ⊥平面ANDT ,而OQ ⊂平面ANDT , 故SN OQ ⊥,而SNMN N =,故OQ ⊥平面SNTM ,又MN ⊂平面SNTM ,OQ MN ⊥,而OQ PQ Q =,所以MN ⊥平面OPQ ,而PO ⊂平面OPQ ,故MN OP ⊥,故B 正确.对于C ,如图(3),连接BD ,则//BD MN ,由B 的判断可得OP BD ⊥, 故OP MN ⊥,故C 正确.对于D ,如图(4),取AD 的中点Q ,AB 的中点K ,连接,,,,AC PQ OQ PK OK , 则//AC MN ,因为DP PC =,故//PQ AC ,故//PQ MN ,所以QPO ∠或其补角为异面直线,PO MN 所成的角,因为正方体的棱长为2,故12PQ AC ==OQ ==PO =222QO PQ OP <+,故QPO ∠不是直角,故,PO MN 不垂直,故D 错误. 故选:BC.【2020年新高考1卷(山东卷)】11.已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∴BAD =60°.以1D 球面与侧面BCC 1B 1的交线长为________.. 【解析】 【分析】根据已知条件易得1D E =1D E ⊥侧面11B C CB ,可得侧面11B C CB 与球面的交线上的点到E 可得侧面11B C CB 与球面的交线是扇形EFG 的弧FG ,再根据弧长公式可求得结果. 【详解】 如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以∴111D B C 为等边三角形,所以1D E 111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,1D E =||EP ==所以侧面11B C CB 与球面的交线上的点到E因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧FG , 因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得2FG π==.. 【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题. 【2020年新高考2卷(海南卷)】12.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________ 【答案】13【解析】 【分析】利用11A NMD D AMN V V --=计算即可. 【详解】因为正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点 所以11111112323A NMD D AMN V V --==⨯⨯⨯⨯=故答案为:13【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些. 【2022年新高考1卷】13.如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】【解析】 【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面11ABB A ,建立空间直角坐标系,利用空间向量法即可得解. (1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则111111112211433333A A BC A A ABC A ABC AB BC C C B V Sh h V S A A V ---=⋅===⋅==,解得h =所以点A 到平面1A BC (2)取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥, 又平面1A BC ⊥平面11ABB A ,平面1A BC平面111ABB A A B =,且AE ⊂平面11ABB A ,所以AE ⊥平面1A BC , 在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥, 又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE 12AA AB ==,1A B =2BC =, 则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1A C 的中点()1,1,1D , 则()1,1,1BD =,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c =,则020n BD a b c n BC a ⎧⋅=++=⎨⋅==⎩, 可取()0,1,1n =-, 则11cos ,22m n m n m n⋅===⨯⋅,所以二面角A BD C --.【2022年新高考2卷】14.如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值. 【答案】(1)证明见解析 (2)1113【解析】 【分析】(1)连接BO 并延长交AC 于点D ,连接OA 、PD ,根据三角形全等得到OA OB =,再根据直角三角形的性质得到AO DO =,即可得到O 为BD 的中点从而得到//OE PD ,即可得证; (2)建立适当的空间直角坐标系,利用空间向量法求出二面角的余弦的绝对值,再根据同角三角函数的基本关系计算可得. (1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P ABC -的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC , 所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒, 所以ODA OAD ∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD , 又OE ⊄平面PAC ,PD ⊂平面PAC , 所以//OE 平面PAC(2)解:过点A 作//Az OP ,如图建立平面直角坐标系, 因为3PO =,5AP =,所以4OA ==,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD,AB = 所以12AC =,所以()O,()B,()P ,()0,12,0C ,所以32E ⎛⎫ ⎪⎝⎭,则332AE ⎛⎫= ⎪⎝⎭,()4AB =,()0,12,0AC =,设平面AEB 的法向量为(),,n x y z =,则33302430n AE y z n AB ⎧⋅=++=⎪⎨⎪⋅==⎩,令2z =,则3y =-,0x =,所以()0,3,2n =-;设平面AEC 的法向量为(),,m a b c =,则33302120m AE ab c m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,令a =6c =-,0b =,所以()3,0,6m =-;所以cos ,13n m n m n m⋅-===设二面角C AE B --的大小为θ,则43cos cos ,=13n m θ=,所以11sin 13θ==,即二面角C AE B --的正弦值为1113.【2021年新高考1卷】15.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)证明见解析; 【解析】【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可. 【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥, 因为OA ⊂平面ABD ,平面ABD ⊥平面BCD , 且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD . 因为CD ⊂平面BCD ,所以OA CD ⊥. (2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=,设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--.又平面BCD 的一个法向量为()0,0,OA m =,所以cos ,n OA ==1m =. 又点C 到平面ABD112132A BCD C ABD V V --==⨯⨯⨯=, 所以三棱锥A BCD -[方法二]【最优解】:作出二面角的平面角 如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG 为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =. 由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCDBOCV SO S OA A -==⨯⨯=⨯⨯⨯⨯⨯=. [方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒, 记二面角E BC D --为θ.据题意,得45θ=︒. 对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.∴使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα.∴ 将∴∴两式平方后相加,可得223cos 2sin 14αα+=,由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=,根据三角形相似知,点G 为OD 的三等分点,即可得43BG =, 结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD -【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速. 【2021年新高考2卷】16.在四棱锥Q ABCD -中,底面ABCD 是正方形,若2,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面ABCD ; (2)求二面角B QD A --的平面角的余弦值. 【答案】(1)证明见解析;(2)23. 【解析】 【分析】(1)取AD 的中点为O ,连接,QO CO ,可证QO ⊥平面ABCD ,从而得到面QAD ⊥面ABCD . (2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥,建如图所示的空间坐标系,求出平面QAD 、平面BQD 的法向量后可求二面角的余弦值. 【详解】(1)取AD 的中点为O ,连接,QO CO . 因为QA QD =,OA OD =,则QO ⊥AD ,而2,AD QA ==2QO ==.在正方形ABCD 中,因为2AD =,故1DO =,故CO =因为3QC =,故222QC QO OC =+,故QOC 为直角三角形且QO OC ⊥, 因为OCAD O =,故QO ⊥平面ABCD ,因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥, 结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间坐标系.则()()()0,1,0,0,0,2,2,1,0D Q B -,故()()2,1,2,2,2,0BQ BD =-=-.设平面QBD 的法向量(),,n x y z =,则00n BQ n BD ⎧⋅=⎨⋅=⎩即220220x y z x y -++=⎧⎨-+=⎩,取1x =,则11,2y z ==,故11,1,2n ⎛⎫= ⎪⎝⎭.而平面QAD 的法向量为()1,0,0m =,故12cos ,3312m n ==⨯.二面角B QD A --的平面角为锐角,故其余弦值为23. 【2020年新高考1卷(山东卷)】17.如图,四棱锥P -ABCD 的底面为正方形,PD ∴底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ∴平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 【答案】(1)证明见解析;(2. 【解析】 【分析】(1)利用线面垂直的判定定理证得AD ⊥平面PDC ,利用线面平行的判定定理以及性质定理,证得//AD l ,从而得到l ⊥平面PDC ;(2)方法一:根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点(,0,1)Q m ,之后求得平面QCD 的法向量以及向量PB 的坐标,求得cos ,n PB <>的最大值,即为直线PB 与平面QCD 所成角的正弦值的最大值. 【详解】 (1)证明:在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以//AD 平面PBC,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥ 因为CD PD D =,所以l ⊥平面PDC . (2)[方法一]【最优解】:通性通法因为,,DP DA DC 两两垂直,建立空间直角坐标系D xyz -,如图所示:因为1PD AD ==,设(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B , 设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-, 设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则 1cos ,3n PB n PB n PB⋅+<>==根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于|cos ,|n PB <>==≤,当且仅当1m =时取等号,所以直线PB 与平面QCD . [方法二]:定义法如图2,因为l ⊂平面PBC ,Q l ∈,所以Q ∈平面PBC .在平面PQC 中,设PB QC E =.在平面PAD 中,过P 点作PF QD ⊥,交QD 于F ,连接EF . 因为PD ⊥平面,ABCD DC ⊂平面ABCD ,所以DC PD ⊥. 又由,,DC AD ADPD D PD ⊥=⊂平面PAD ,AD ⊂平面PAD ,所以DC ⊥平面PAD .又PF ⊂平面PAD ,所以DC PF ⊥.又由,,PF QD QDDC D QD ⊥=⊂平面,QOC DC ⊂平面QDC ,所以PF ⊥平面QDC ,从而FEP ∠即为PB 与平面QCD 所成角.设PQ a =,在PQD △中,易求PF =由PQE 与BEC △相似,得1PE PQ a EB BC ==,可得PE =所以sin FEP ∠=≤1a =时等号成立. [方法三]:等体积法如图3,延长CB 至G ,使得BG PQ =,连接GQ ,GD ,则//PB QG ,过G 点作GM ⊥平面QDC ,交平面QDC 于M ,连接QM ,则GQM ∠即为所求.设PQ x =,在三棱锥Q DCG -中,111()(1)326Q DCG V PD CD CB BG x -=⋅⋅+=+.在三棱锥G QDC -中,111323G QDC V GM CD QD GM -=⋅⋅=由Q DCG G QDC V V --=得11(1)63x GM +=解得GM ==, 当且仅当1x =时等号成立.在Rt PDB △中,易求PB QG ==,所以直线PB 与平面QCD 所成角的正弦值的最大值为sin MQG ∠== 【整体点评】(2)方法一:根据题意建立空间直角坐标系,直线PB 与平面QCD 所成角的正弦值即为平面QCD 的法向量n 与向量PB 的夹角的余弦值的绝对值,即cos ,n PB <>,再根据基本不等式即可求出,是本题的通性通法,也是最优解;方法二:利用直线与平面所成角的定义,作出直线PB 与平面QCD 所成角,再利用解三角形以及基本不等式即可求出;方法三:巧妙利用//PB QG ,将线转移,再利用等体积法求得点面距,利用直线PB 与平面QCD 所成角的正弦值即为点面距与线段长度的比值的方法,即可求出. 【2020年新高考2卷(海南卷)】18.如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB ,求PB 与平面QCD 所成角的正弦值.【答案】(1)证明见解析;(2. 【解析】 【分析】(1)利用线面平行的判定定理以及性质定理,证得//AD l ,利用线面垂直的判定定理证得AD ⊥平面PDC ,从而得到l ⊥平面PDC ;(2)根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点(,0,1)Q m ,之后求得平面QCD 的法向量以及向量PB 的坐标,求得cos ,n PB <>,即可得到直线PB 与平面QCD 所成角的正弦值.【详解】 (1)证明:在正方形ABCD 中,//AD BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =, 所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥ 且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥ 因为CD PD D = 所以l ⊥平面PDC ;(2)如图建立空间直角坐标系D xyz -,因为1PD AD ==,则有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B , 设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-,因为QB 1m = 设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y x z =⎧⎨+=⎩,令1x =,则1z =-,所以平面QCD 的一个法向量为(1,0,1)n =-,则2cos ,1n PB n PB n PB⋅<>==== 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于6|cos ,|3n PB <>=所以直线PB 与平面QCD 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定和性质,线面垂直的判定和性质,利用空间向量求线面角,利用基本不等式求最值,属于中档题目.。
高考数学第一轮复习教案 专题4立体几何
专题四立体几何一、考试内容平面及其基本性质.平面图形直观图的画法.平行直线.对应边分别平行的角.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面平行的判定与性质.直线和平面垂直的判定与性质.点到平面的距离.斜线在平面上的射影.直线和平面所成的角.三垂线定理及其逆定理.平行平面的判定与性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定与性质.多面体.正多面体.棱柱.棱锥.球.二、考试要求(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系.(2)掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.(3)掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理和性质定理;掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念掌握三垂线定理及其逆定理.(4)掌握两个平面平行的判定定理和性质定理,掌握二面角、二面角的平面角、两个平行平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理.(5)会用反证法证明简单的问题.(6)了解多面体、凸多面体的概念,了解正多面体的概念.(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(9)了解球的概念,掌握球的性质,掌握球的表面积、体积公式.三、命题热点高考对立体几何的考查主要有两个方面:一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系,线面平行、垂直关系的证明等;在高考试卷中,一般有1~2个客观题和一个解答题.多为容易题和中档题.四、知识回顾(一)、平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向)(二)、空间直线.1. 空间直线位置分三种:相交、平行、异面.相交直线:有且仅有一个公共点;平行直线:共面,没有公共点;异面直线:不同在任一平面内,没有公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[) 180,0∈θ) (直线与直线所成角(] 90,0∈θ) (斜线与平面成角() 90,0∈θ) (直线与平面所成角[] 90,0∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)(三)、直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,12方向相同12方向不相同可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上(四)、平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面. P OA a P αβθM AB O证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos 2222mn d n m l +++=(θ为锐角取加,θ为钝取减,综上,都取加则必有⎥⎦⎤ ⎝⎛∈2,0πθ) 7. ⑴最小角定理:21cos cos cos θθθ=(1θ为最小角,如图)⑵最小角定理的应用(∠PBN 为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.(五)、棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑵{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}. {直四棱柱}⋂{平行六面体}={直平行六面体}.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.⑷平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则1c o s c o s c o s 222=++γβα.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2c o s c o s c o s 222=++γβα.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) 图1θθ1θ2图2③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α) 附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别多个三角形的方法).⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的l ab c B等腰三角形不知是否全等)ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.简证:A B ⊥CD ,AC ⊥BD ⇒ BC ⊥AD. 令===,, 得-=⋅⇒=-=-=,,已知()()0,0=-⋅=-⋅c a b b c a0=-⇒c b c a 则0=⋅AD BC . iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形.iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形. 简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则EFGH FG EF ⇒=为正方形.3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. ⑵纬度、经度:①纬度:地球上一点P 的纬度是指经过P .②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度.附:①圆柱体积:h r V 2π=(r 为半径,h 为高)②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高)4. ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧 得a a a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅. 注:球内切于四面体:h S R S 313R S 31V 底底侧AC D B ⋅=⋅+⋅⋅⋅=- ②外接球:球外接于正四面体,可如图建立关系式.(六). 空间向量.1. (1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.注:①若a 与b 共线,b 与c 共线,则a 与c 共线.(×) [当0=b 时,不成立] ②向量c b a ,,共面即它们所在直线共面.(×) [可能异面]③若a ∥b ,则存在小任一实数λ,使b a λ=.(×)[与0=b 不成立]F E HG B C D A O'O rOR④若a 为非零向量,则00=⋅a .(√)[这里用到)0(≠b b λ之积仍为向量](2)共线向量定理:对空间任意两个向量)0(,≠b b a ,a ∥b 的充要条件是存在实数λ(具有唯一性),使b a λ=.(3)共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作a ∥α.(4)①共面向量定理:如果两个向量b a ,不共线,则向量P 与向量b a ,共面的充要条件是存在实数对x 、y 使b y a x P +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是P ABC 四点共面的充要条件.(简证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)注:①②是证明四点共面的常用方法.2. 空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 z y x ++=(这里隐含x+y+z≠1).注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心,则向量)(31++=用+=3. (1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标).①令a =(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a ±±±=+))(,,(321R a a a ∈=λλλλλ332211b a b a b a ++=⋅ a ∥)(,,332211R b a b a b a ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a 222321a a a ++==(=⇒⋅=)232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅⋅>=< ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.DB(2)法向量:若向量所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥,如果α⊥那么向量叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α②利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n 所成的角就是所求二面角的平面角或其补角大小(21,n 方向相同,则为补角,21,n 反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使CE CD AB μλ+=.(常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).AB(七)、常用结论、方法和公式1. 对照平面几何中的三角形,我们不难得到立体几何中的四面体的类似性质:①四面体的六条棱的垂直平分面交于一点,这一点叫做此四面体的外接球的球心;②四面体的四个面组成六个二面角的角平分面交于一点,这一点叫做此四面体的内接球的球心;③四面体的四个面的重心与相对顶点的连接交于一点,这一点叫做此四面体的重心,且重心将每条连线分为3︰1;④12个面角之和为720°,每个三面角中任两个之和大于另一个面角,且三个面角之和为180°.2. 直角四面体:有一个三面角的三个面角均为直角的四面体称为直角四面体,相当于平面几何的直角三角形. (在直角四面体中,记V 、l 、S 、R 、r 、h 分别表示其体积、六条棱长之和、表面积、外接球半径、内切球半径及侧面上的高),则有空间勾股定理:S 2△ABC +S 2△BCD +S 2△ABD =S 2△ACD.3. 等腰四面体:对棱都相等的四面体称为等腰四面体,好象平面几何中的等腰三角形.根据定义不难证明以长方体的一个顶点的三条面对角线的端点为顶点的四面体是等腰四面体,反之也可以将一个等腰四面体拼补成一个长方体.(在等腰四面体ABCD 中,记BC = AD =a ,AC = BD = b ,AB = CD = c ,体积为V ,外接球半径为R ,内接球半径为r ,高为h ),则有 ①等腰四面体的体积可表示为22231222222222c b a b a c a c b V -+⋅-+⋅-+=; O A BCD②等腰四面体的外接球半径可表示为22242c b a R ++=; ③等腰四面体的四条顶点和对面重心的连线段的长相等,且可表示为22232c b a m ++=; ④h = 4r.4、空间正余弦定理.空间正弦定理:sin ∠ABD/sin ∠A-BC-D=sin ∠ABC/sin ∠A-BD-C=sin ∠CBD/sin ∠C-BA-D 空间余弦定理:cos ∠ABD=cos ∠ABCcos ∠CBD+sin ∠ABCsin ∠CBDcos ∠A-BC-D5.从一点O 出发的三条射线OA 、OB 、OC ,若∠AOB=∠AOC ,则点A 在平面∠BOC 上的射影在∠BOC 的平分线上;6. 已知:直二面角M -AB -N 中,AE ⊂ M ,BF ⊂ N,∠EAB=1θ,∠ABF=2θ,异面直线AE 与BF 所成的角为θ,则;cos cos cos 21θθθ=7.立平斜公式:如图,AB 和平面所成的角是1θ,AC 在平面内,BC 和AB 的射影BA 1成2θ,设∠ABC=3θ,则cos 1θcos 2θ=cos 3θ;8.异面直线所成角的求法:(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;9.直线与平面所成的角斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。
微专题4:+立体几何中的探索问题+2022-2023学年高一下学期数学人教A版(2019)必修第二册
解:AD 上存在一点 P,AP=λPD,使得 CP
∥平面 ABEF,此时λ=3. 2
理由如下: 当λ=32时,AP=32PD,可知AADP=35,如图,过点 P 作 MP∥FD 交 AF 于点 M,连接 EM,PC,则有MFDP=AADP=35, 又 BE=1,可得 FD=5,故 MP=3, 又 EC=3,MP∥FD∥EC,故有 MP 綊 EC, 故四边形 MPCE 为平行四边形,所以 CP∥ME,
变式:如图,直三棱柱 ABC A1B1C1中,D,E分别是棱BC , AB的中点,点F在棱 CC1 上,已知AB=AC,AA1 3 , BC=CF=2.
(1)求证: C1E//平面ADF; (2)在棱 BB1 上是否存在点M,使平面 CAM 平面ADF ,若存在,试求出BM的值; 若不存在,请说明理由.
又BM=1,BC=2,CD=1,FC=2, Rt△CBM≌Rt△FCD
故 CM DF
DF . AD=D DF,AD
易证CM ,又
,
平面ADF,
故CM 平面ADF .
CAM
又 平面 CAM ,故平面
平面ADF.
翻折中的位置关系探索问题
例 3:如图,四边形 ABCD 中,AB⊥AD,AD∥BC,AD=6, BC=4,E,F 分别在 BC,AD 上,EF∥AB.现将四边形 ABCD 沿 EF 折起,使平面 ABEF⊥平面 EFDC.
证明如下:因为AB=AC, AD 平面ABC,故 AD BC.
在直三棱柱 ABC
中, A1B1C1
BB1
平面
ABC
新高考2023版高考数学一轮总复习练案45高考大题规范解答系列四__立体几何
高考大题规范解答系列(四)——立体几何1.(2022·安徽黄山质检)如图,直三棱柱ABC-A1B1C1中,D是BC的中点,且AD⊥BC,四边形ABB1A1为正方形.(1)求证:A1C∥平面AB1D;(2)若∠BAC=60°,BC=4,求点A1到平面AB1D的距离.[解析] (1)连接BA1,交AB1于点E,再连接DE,由已知得,四边形ABB1A1为正方形,E为A1B的中点,∵D是BC的中点,∴DE∥A1C,又DE⊂平面AB1D,A1C⊄平面AB1D,∴A1C∥平面AB1D.(2)∵在直三棱柱ABC-A1B1C1中,平面BCC1B1⊥平面ABC,且BC为它们的交线,又AD⊥BC,∴AD⊥平面BCC1B1,又∵B1D⊂平面BCC1B1,∴AD⊥B1D,且AD=2,B1D=2.同理可得,过D作DG⊥AB,则DG⊥面ABB1A1,且DG=.设A1到平面AB1D的距离为h,由等体积法可得:VA1-AB1D=VD-AA1B1,即··AD·DB1·h=··AA1·A1B1·DG,即2×2·h=4×4×,∴h=.即点A1到平面AB1D的距离为.(注:本题也可建立空间直角坐标系用向量法求解.)2.(2022·陕西汉中质检)如图所示,四棱锥P-ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.(1)求证:平面PDE⊥平面APC;(2)求直线PC与平面PDE所成的角的正弦值.[解析] 如图所示,以点C为坐标原点,直线CD,CB,CP分别为x,y,z轴,建立空间直角坐标系C-xyz,则相关点的坐标为C(0,0,0),A(2,1,0),B(0,3,0),P(0,0,2),D(2,0,0),E(1,2,0).(1)由于DE=(-1,2,0),CA=(2,1,0),CP=(0,0,2),所以DE·CA=(-1,2,0)·(2,1,0)=0,DE·CP=(-1,2,0)·(0,0,2)=0,所以DE⊥CA,DE⊥CP,而CP∩CA=C,所以DE⊥平面PAC,∵DE⊂平面PDE,∴平面PDE⊥平面PAC.(2)设n=(x,y,z)是平面PDE的一个法向量,则n·DE=n·PE=0,由于DE=(-1,2,0),PE=(1,2,-2),所以有,令x=2,则y=1,z=2,即n=(2,1,2),再设直线PC与平面PDE所成的角为α,而PC=(0,0,-2),所以sin α=|cos〈n,PC〉|===,∴直线PC与平面PDE所成角的正弦值为.3.(2022·湖北百师联盟质检)斜三棱柱ABC-HDE中,平面ABC⊥平面BCD,△ABC为边长为1的等边三角形,DC⊥BC,且DC长为,设DC中点为M,F、G分别为CE、AD的中点.(1)证明:FG∥平面ABC;(2)求二面角B-AC-E的余弦值.[解析] (1)解法一:取BD中点N,连结GN,NF,易知N、M、F三点共线,由GN∥AB,且GN⊄平面ABC,AB⊂平面ABC,故GN∥平面ABC,同理可得NF∥平面ABC,因为GN∩NF=N,故平面GNF∥平面ABC.由FG⊂平面FGN,故FG∥平面ABC.解法二:取AB中点N,连结GN,NC,易知GN是△ABD的中位线,故GN∥BD,GN=BD,因为CE綊BD,F为CE的中点.所以CF綊GN.四边形FGNC是平行四边形,故FG∥CN,因为CN⊂平面ABC,FG⊄平面ABC,故FG∥平面ABC.(2)以BC中点O为坐标原点,以OC、ON、OA分别为x、y、z轴,建立空间直角坐标系O-xyz,由已知可得A,C,E,故CE=(1,,0),AC=,设m=(x,y,z)为平面ACE的法向量,则,解得m=(,-1,1),由于ON⊥平面ABC,不妨取平面ABC的法向量为n=(0,1,0).所以cos〈m,n〉==-.由图可知所求二面角为钝角,故二面角B-AC-E的余弦值为-.4.(2021·全国新高考)在四棱锥Q-ABCD中,底面ABCD是正方形,若AD=2,QD=QA=,QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求二面角B-QD-A的平面角的余弦值.[解析] (1)取AD的中点为O,连接QO,CO.因为QA=QD,OA=OD,则QO⊥AD,而AD=2,QA=,故QO==2.在正方形ABCD中,因为AD=2,故DO=1,故CO=,因为QC=3,故QC2=QO2+OC2,故△QOC为直角三角形且QO⊥OC,因为OC∩AD=O,故QO⊥平面ABCD,因为QO⊂平面QAD,故平面QAD⊥平面ABCD.(2)在平面ABCD内,过O作OT∥CD,交BC于T,则OT⊥AD,结合(1)中的QO⊥平面ABCD,故可建如图所示的空间坐标系.则D(0,1,0),Q(0,0,2),B(2,-1,0),故BQ=(-2,1,2),BD=(-2,2,0).设平面QBD的法向量n=(x,y,z),则即,取x=1,则y=1,z=,故n=.而平面QAD的法向量为m=(1,0,0),故cos〈m,n〉==.二面角B-QD-A的平面角为锐角,故其余弦值为.5.(2021·安徽省淮北市一模)在直角梯形ABCD(如图1)中,∠ABC=90°,BC∥AD,AD=8,AB=BC=4,M为线段AD中点.将△ABC沿AC折起,使平面ABC⊥平面ACD,得到几何体B-ACD(如图2).(1)求证:CD⊥平面ABC;(2)求AB与平面BCM所成角θ的正弦值.[解析] (1)由题设可知AC=4,CD=4,AD=8,∴AD2=CD2+AC2,∴CD⊥AC,又∵平面ABC⊥平面ACD,平面ABC∩平面ACD=AC,∴CD⊥平面ABC.(2)解法一:等体积法取AC的中点O连接OB,由题设可知△ABC为等腰直角三角形,所以OB⊥面ACM,∵V B-ACM=V A-BCM且V B-ACM=S △ACM·BO=,而SΔBCM=4,∴A到面BCM的距离h=,所以sin θ==.解法二:向量法,取AC的中点O,连接OB,由题设可知△ABC为等腰直角三角形,所以OB⊥面ACM,连接OM,因为M、O分别为AD和AC的中点,所以OM∥CD,由(1)可知OM⊥AC,故以OM、OC、OB所在直线为x轴、y轴、z轴建立空间直角坐标系,如图所示.则A(0,-2,0),B(0,0,2),C(0,2,0),M(2,0,0),∴CB=(0,-2,2),CM=(2,-2,0),BA=(0,-2,-2),设平面BCM法向量n=(x,y,z)由得令y=1得n=(1,1,1)∴平面BCM的一个法向量n=(1,1,1),∴sin θ==.6.(2021·山东聊城三模)如图,在平面四边形ABCD中,BC=CD,BC⊥CD,AD⊥BD,以BD为折痕把△ABD折起,使点A到达点P的位置,且PC⊥BC.(1)证明:PD⊥CD;(2)若M为PB的中点,二面角P-BC-D的大小为60°,求直线PC与平面MCD所成角的正弦值.[解析] (1)证明:因为BC⊥CD,BC⊥PC,PC∩CD=C,所以BC⊥平面PCD,又因为PD⊂平面PCD,所以BC⊥PD,又因为PD⊥BD,BD∩BC=B,所以PD⊥平面BCD,又因为CD⊂平面BCD,所以PD⊥CD.(2)因为PC⊥BC,CD⊥BC,所以∠PCD是二面角P-BC-D的平面角,即∠PCD=60°,在Rt△PCD中,PD=CD tan 60°=CD,取BD的中点O,连接OM,OC,因为BC=CD,BC⊥CD,所以OC⊥BD,由(1)知,PD⊥平面BCD,OM为△PBD的中位线,所以OM⊥BD,OM⊥OC,即OM,OC,BD两两垂直,以O为原点,建立如图所示的空间直角坐标系O-xyz,设OB=1,则P(0,1,),C(1,0,0),D(0,1,0),M,CP=(-1,1,),CD=(-1,1,0),CM=,设平面MCD的一个法向量为n=(x,y,z),则由得令z=,得n=(,,),所以cos〈n,CP〉===,所以直线PC与平面MCD所成角的正弦值为.7.(开放题)(2022·云南昆明模拟)如图,在三棱锥A-BCD中,△BCD是边长为2的等边三角形,AB=AC,O是BC的中点,OA⊥CD.(1)证明:平面ABC⊥平面BCD;(2)若E是棱AC上的一点,从①CE=2EA;②二面角E-BD-C大小为60°;③A-BCD的体积为这三个论断中选取两个作为条件,证明另外一个成立.[证明] (1)因为AB=AC,O是BC的中点,所以OA⊥BC,又因为OA⊥CD,所以OA⊥平面BCD,因为OA⊂平面ABC,所以平面ABC⊥平面BCD.(2)连接OD,又因为△BCD是边长为2的等边三角形,所以DO⊥BC,由(1)知OA⊥平面BCD,所以AO,BC,DO两两互相垂直.以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴建立如图所示空间直角坐标系.设|OA|=m,则O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),D(0,,0),若选①②作为条件,证明③成立.因为CE=2EA,所以E,易知平面BCD的法向量为n=(0,0,1),BE=,BD=(-1,,0),设m=(x,y,z)是平面BDE的法向量,则,所以,可取m=,由二面角E-BD-C大小为60°可得cos θ===,解得m=3,所以A-BCD的体积为×2×××3=.若选①③作为条件,证明②成立.因为A-BCD的体积为,所以×2×××|OA|=,解得|OA|=3,又因为CE=2EA,所以E,易知平面BCD的法向量为n=(0,0,1),BE=,BD=,设m=(x,y,z)是平面BDE的法向量,则所以,可取m=,所以cos θ===,即二面角E-BD-C大小为60°.若选②③作为条件,证明①成立.因为A-BCD的体积为,所以×2×××|OA|=,解得|OA|=3,即A(0,0,3),AC=(-1,0,-3),不妨设AE=λAC(0≤λ≤1),所以E(-λ,0,-3λ+3),易知平面BCD的法向量为n=(0,0,1),BE=(-λ-1,0,-3λ+3),BD=(-1,,0),设m=(x,y,z)是平面BDE的法向量,取m=(3(1-λ),(1-λ),λ+1)cos θ===,解得λ=3(舍),λ=,所以CE=2EA.8.(2022·河北石家庄质检)如图,四棱锥P-ABCD中,底面ABCD为正方形,△PAB 为等边三角形,平面PAB⊥底面ABCD,E为AD的中点.(1)求证:CE⊥PD;(2)在线段BD(不包括端点)上是否存在点F,使直线AP与平面PEF所成角的正弦值为,若存在,确定点F的位置;若不存在,请说明理由.[解析] (1)证明:取AB的中点O,连结PO,OD,因为PA=PB,所以PO⊥AB,又因为平面PAB⊥平面ABCD,所以PO⊥底面ABCD,取CD的中点G,连结OG,则OB,OP,OG两两垂直,分别以OB,OG,OP所在直线为x轴,y轴,z轴建立空间直角坐标系(如图所示),设AB=2,则C(1,2,0),P(0,0,),E(-1,1,0),D(-1,2,0),所以CE=(-2,-1,0),PD=(-1,2,-),则CE·PD=2-2=0,故CE⊥PD,所以CE⊥PD.(2)由(1)可知,A(-1,0,0),B(1,0,0),所以PE=(-1,1,-),AP=(1,0,),BD=(-2,2,0),BE=(-2,1,0),设BF=λBD(0<λ<1),则BF=(-2λ,2λ,0),所以EF=BF-BE=(-2λ+2,2λ-1,0),设平面PEF的法向量为n=(x,y,z),令y=1,则x=,z=,故n=,所以|cos〈AP,n〉|===,整理可得9λ2-6λ+1=0,解得λ=,所以在BD上存在点F,使得直线AP与平面PEF所成角的正弦值为,此时点F为靠近点B的三等分点,即BF=BD.。
2023年高考数学二轮复习第一部分专题攻略专题四立体几何第一讲空间几何体的表面积与体积
专题四 立体几何第一讲 空间几何体的表面积与体积——小题备考微专题1 空间几何体的表面积和体积常考常用结论1.柱体、锥体、台体、球的表面积公式: ①圆柱的表面积S =2πr (r +l ); ②圆锥的表面积 S =πr (r +l );③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ④球的表面积S =4πR 2.2.柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 球=43πR 3.保 分 题1.[2022·山东枣庄三模]若圆锥的母线长为2,侧面积为2π,则其体积为( ) A .√6π B .√3π C .√63π D .√33π2.[2022·河北保定一模]圆柱的底面直径与高都等于球的直径,则球的表面积与圆柱的侧面积的比值为( )A .1∶1B .1∶2C .2∶1D .2∶33.[2022·湖北武汉二模]如图,在棱长为2的正方体中,以其各面中心为顶点构成的多面体为正八面体,则该正八面体的体积为( )A .2√23B .43 C .4√23D .83提分题例1 (1)[2022·河北张家口三模]如图,在三棱柱ABC A1B1C1中,过A1B1的截面与AC交于点D,与BC交于点E,该截面将三棱柱分成体积相等的两部分,则CDAC=()A.13B.12C.2−√32D.√3−12(2)[2022·湖南雅礼中学二模]某圆锥高为1,底面半径为√3,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为()A.2 B.√3C.√2D.1听课笔记:【技法领悟】1.求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.2.求不规则几何体的体积,常用分割或补形的方法,将不规则几何体转化为规则几何体,易于求解.巩固训练11.[2022·山东菏泽一模]如图1,在高为h的直三棱柱容器ABC A1B1C1中,AB=AC=2,AB⊥AC.现往该容器内灌进一些水,水深为2,然后固定容器底面的一边AB于地面上,再将容器倾斜,当倾斜到某一位置时,水面恰好为A 1B 1C (如图2),则容器的高h 为( )A .3B .4C .4√2D .62.[2022·福建福州三模]已知AB ,CD 分别是圆柱上、下底面圆的直径,且AB ⊥CD ,O 1,O 分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A BCD 的体积为18,则该圆柱的侧面积为( )A .9πB .12πC .16πD .18π微专题2 与球有关的切、接问题常考常用结论1.球的表面积S =4πR 2,体积V =43πR 3.2.长方体、正方体的体对角线等于其外接球的直径. 3.n 面体的表面积为S ,体积为V ,则内切球的半径r =3VS .4.直三棱柱的外接球半径:R =√r 2+(L2)2,其中r 为底面三角形的外接圆半径,L 为侧棱长,如果直三棱柱有内切球,则内切球半径R ′=L2.5.正四面体中,外接球和内切球的球心重合,且球心在高对应的线段上,它是高的四等分点,球心到顶点的距离为外接球的半径R =√64a (a 为正四面体的棱长),球心到底面的距离为内切球的半径r =√612a ,因此R ∶r =3∶1.保 分 题1.[2022·广东深圳二模]已知一个球的表面积在数值上是它的体积的√3倍,则这个球的半径是( )A .2B .√2C .3D .√32.已知正四棱锥P ABCD 中,AB =√6,P A =2√3,则该棱锥外接球的体积为( )A.4π B.32π3C.16π D.16π33.[2022·天津红桥一模]一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1、√2、3,则此球的体积为________.提分题例2 (1)[2022·江苏苏州三模]《九章算术》卷第五《商功》中,有“贾令刍童,上广一尺,袤二尺,下广三尺,袤四尺,高一尺.”,意思是:“假设一个刍童,上底面宽1尺,长2尺;下底面宽3尺,长4尺,高1尺.”(注:刍童为上下底面为相互平行的不相似长方形,两底面的中心连线与底面垂直的几何体),若该几何体所有顶点在一球体的表面上,则该球体的体积为()立方尺A.√41πB.41π3D.3√41πC.41√41π6(2)[2022·山东泰安三模]如图,已知三棱柱ABC A1B1C1的底面是等腰直角三角形,AA1⊥底面ABC,AC=BC=2,AA1=4,点D在上底面A1B1C1(包括边界)上运动,则三棱锥D ABC 的外接球表面积的最大值为()π B.24πA.814C.243π D.8√6π16听课笔记:【技法领悟】1.确定球心的位置,弄清球的半径(直径)与几何体的位置和数量关系.2.求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.3.补成正方体、长方体、正四面体、正棱柱、圆柱等规则几何体.巩固训练21.已知圆柱的轴截面为正方形,其外接球为球O,球O的表面积为8π,则该圆柱的体积为()A.√22π B.√2πC.2π D.2√2π2.[2022·广东潮州二模]已知△ABC是边长为3的等边三角形,三棱锥P ABC全部顶点都在表面积为16π的球O的球面上,则三棱锥P ABC的体积的最大值为()A.√3B.3√32C.9√34D.√32专题四 立体几何第一讲 空间几何体的表面积与体积微专题1 空间几何体的表面积和体积保分题1.解析:设圆锥的底面半径为r ,高为h ,则πr ×2=2π,可得r =1,则h =√22−r 2=√3,因此,该圆锥的体积为V =13πr 2h =13π×12×√3=√33π. 答案:D2.解析:设球的半径为r ,依题意圆柱的底面半径也是r ,高是2r , 圆柱的侧面积=2πr ·2r =4πr 2 ,球的表面积为4πr 2 , 其比例为1∶1. 答案:A3.解析:该正八面体是由两个同底的正四棱锥组成,且正四棱锥的底面是边长为√2的正方形,棱锥的高为1,所以该正八面体的体积为2×13×√2×√2×1=43.答案:B提分题[例1] 解析:(1)由题可知平面A 1B 1ED 与棱柱上、下底面分别交于A 1B 1,ED , 则A 1B 1∥ED ,ED ∥AB , 显然CDE - C 1A 1B 1是三棱台,设△ABC 的面积为1,△CDE 的面积为S ,三棱柱的高为h , ∴12·1·h =13h (1+S +√S ), 解得√S =√3−12,由△CDE ∽△CAB ,可得CD AC =√S√1=√3−12. (2)如图,截面为△P AB ,设C 为AB 中点,设OC =x ,x ∈[0,√3),则AB =2√3−x 2,PC =√x 2+1,则截面面积S =12×2√3−x 2×√x 2+1=√−(x 2−1)2+4,则当x 2=1时,截面面积取得最大值为2. 答案:(1)D (2)A[巩固训练1]1.解析:在图1中V 水=12×2×2×2=4,在图2中,V 水=V ABC − A 1B 1C 1− V C − A 1B 1C 1=12×2×2×h -13×12×2×2×h =43h , ∴43h =4,∴h =3.答案:A2.解析:分别过A ,B 作圆柱的母线AE ,BF ,连接CE ,DE ,CF ,DF ,设圆柱的底面半径为r ,则三棱锥A - BCD 的体积为两个全等四棱锥C - ABFE 减去两个全等三棱锥A - CDE , 即2×13×r ×2r ×r -2×13×r ×12×2r ×r =23r 3=18,则r =3,圆柱的侧面积为2πr ×r =18π答案:D微专题2 与球有关的切、接问题保分题1.解析:设球的半径为R ,则根据球的表面积公式和体积公式, 可得,4πR 2=43πR 3×√3,化简得R =√3. 答案:D2.解析:正方形ABCD 的对角线长√6+6=2√3,正四棱锥的高为 √(2√3)2−(2√32)2=3,设外接球的半径为R ,则(3-R )2+(2√32)2=R 2⇒R =2, 所以外接球的体积为4π3×23=32π3.答案:B3.解析:长方体外接球的直径为√12+(√2)2+32=2√3,所以外接球半径为√3,所以球的体积为4π3×(√3)3=4√3π.答案:4√3π提分题[例2] 解析:(1)作出图象如图所示:由已知得球心在几何体的外部, 设球心到几何体下底面的距离为x , 则R 2=x 2+(52)2=(x +1)2+(√52)2,解得x =2,∴R 2=414, ∴该球体的体积V =4π3×(√412)3=41√41π6.(2)因为△ABC 为等腰直角三角形,AC =BC =2,所以△ABC 的外接圆的圆心为AB 的中点O 1, 且AO 1=√2,连接O 1与A 1B 1的中点E ,则O 1E ∥AA 1,所以O 1E ⊥平面ABC , 设球的球心为O ,由球的截面性质可得O 在O 1E 上, 设OO 1=x ,DE =t (0≤t ≤√2),半径为R , 因为OA =OD =R ,所以√2+x 2=√(4−x )2+t 2, 所以t 2=8x -14,又0≤t ≤√2, 所以74≤x ≤2,因为R 2=2+x 2,所以8116≤R 2≤6,所以三棱锥D -ABC 的外接球表面积的最大值为24π. 答案:(1)C (2)B [巩固训练2]1.解析:设外接球的半径为R ,圆柱底面圆的半径为r ,因为圆柱的轴截面为正方形,所以圆柱的高h =2r ,由球O 的表面积S =4πR 2=8π,得R =√2,又R = √(h2)2+r 2=√2r ,得r =1,所以圆柱的体积V =πr 2·2r =2πr 3=2π.答案:C2.解析:球O 的半径为R ,则4πR 2=16π,解得:R =2,由已知可得:S △ABC =√34×32=9√34,其中AE =23AD =√3,球心O 到平面ABC 的距离为√R 2−(√3)2=1, 故三棱锥P - ABC 的高的最大值为3, 体积最大值为13S △ABC ·3=9√34.答案:C。
2023年新高考数学大一轮复习专题四立体几何第1讲空间几何体(含答案)
新高考数学大一轮复习专题:第1讲 空间几何体[考情分析] 几何体的结构特征是立体几何的基础,空间几何体的表面积与体积是高考题的重点与热点,多以小题的形式进行考查,属于中等难度. 考点一 表面积与体积 核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径).例1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________. 答案 402π解析 因为母线SA 与圆锥底面所成的角为45°, 所以圆锥的轴截面为等腰直角三角形. 设底面圆的半径为r ,则母线长l =2r . 在△SAB 中,cos∠ASB =78,所以sin∠ASB =158.因为△SAB 的面积为515,即12SA ·SB sin∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.答案 233解析 如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2, ∴AC =2,OC =1,则AO = 3. ∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3. 又11BB C S=12×2×2=2, ∴11D BB C V =13×2×3=233.易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算). (2)一些不规则几何体的体积不会采用分割法或补形思想转化求解. (3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.跟踪演练1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt△ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.答案327解析 设CD =DE =x (0<x <1),则四边形ABDE 的面积S =12(1+x )(1-x )=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝ ⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 考点二 多面体与球 核心提炼解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.例2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________. 答案 64π解析 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上, 即球心就是△PAB 的外心,根据正弦定理ABsin∠APB =2R ,解得R =4,所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB , 故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π.规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心. (3)多面体的内切球可利用等积法求半径.跟踪演练2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB.64πC.144πD.256π 答案 C解析 如图所示,设球O 的半径为R ,因为∠AOB =90°, 所以S △AOB =12R 2,因为V O -ABC =V C -AOB , 而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大, 此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.答案 20π解析 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3, ∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2,设鳖臑P -ADE 的外接球的半径为R 1, 则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21,可得PA 2=R 21-r 21=102,∴PA =10.正方形ABCD 的外接圆直径为2r 2=AC =2AD =10, ∴r 2=102, ∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题强化练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 答案 A解析 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt△AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt△SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22,∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( )A.12B.13C.14D.18答案 C解析如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r,l为底面圆周长,R为母线长,则12lR=2πr2,即12·2π·r·R=2πr2,解得R=2r,故∠ADC=30°,则△DEF为等边三角形,设B为△DEF的重心,过B作BC⊥DF,则DB为圆锥的外接球半径,BC为圆锥的内切球半径,则BCBD=12,∴r内r外=12,故S1S2=14.4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体的费用最少为( )A.4500元B.4000元C.2880元D.2380元答案 B解析因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高 1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V=1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1000元,所以气体的费用最少为4×1000=4000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关 答案 B解析 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h (h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3B.4π3 C.5π3D .2π 答案 C解析 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE=π×12×2-13π×12×1=5π3.7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64πB.48πC.36πD.32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt△OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3B .3πC.4π3D .8π 答案 A解析 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3,∴2r =AB sin∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A.9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2000π9B.4000π27C .81πD .128π答案 B解析 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,V 单调递增;当53<h <5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝⎛⎭⎪⎫53+5=4000π27,故选B.10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( ) A.36B.12C.13D.32答案 C解析 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O , ∵球O 的半径为1,∴正方体的边长为233,即PA =PB =PC =233,球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13S △PAB ×PC =13×12×⎝⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形,S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13.二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值 答案 AD解析 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFGAB,即AE ·AH 是定值,故D 正确.12.(2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π 答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE .由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, 即r ·l =2.由于侧面展开图为半圆, 可知12πl 2=2π,可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40cm ,母线长最短50cm ,最长80cm ,则斜截圆柱的侧面面积S =________cm 2.答案 2600π解析 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2600π(cm 2).15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________. 答案823π 解析 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π.16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r , 则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.。
2020年高考数学 专题四 立体几何题型分析 理
2020专题四:立体几何题型分析考点一三视图、直观图与表面积、体积1.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系S直观图=24S原图形,S原图形=22S直观图.2.三视图(1)几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrlS圆台侧=π(r+r′)l2名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S =4πR 2 V =43πR 3例1.等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.例2.(2020·重庆高考)某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240例3.(1)如图所示,已知三棱柱ABC A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1 ABC 1的体积为( )A.312 B.34 C.612D.64(2)(2020·新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π考点二 球与空间几何体的“切”“接”问题 方法主要是“补体”和“找球心” 方法一:直接法例1、一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为 .练习:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ) A. 16π B. 20π C. 24π D. 32π 方法二:构造法(构造正方体或长方体)例2(2020年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 练习 (2020年全国卷)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A. 3π B. 4π C. 33π D. 6π 三、确定球心位置法例3、在矩形ABCD 中,AB=4,BC=3,AC 沿将矩形ABCD 折成一个直二面角B-AC-D ,则四面体ABCD 的外接球的体积为( )四、构造直角三角形例4、正四面体的棱长为a ,则其内切球和外接球的半径是多少,体积是多少?练习: 角度一 直三棱柱的外接球1.(2020·辽宁高考)已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310角度二 正方体的外接球2.(2020·合肥模拟)一个正方体削去一个角所得到的几何体的三视图如图所示 (图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________. 角度三 正四面体的内切球3.(2020·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________. 角度四 四棱锥的外接球4.四棱锥P ABCD 的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( ) A .9π B .3π C .22π D .12π考点三 利用空间向量求角和距离 1.两条异面直线所成角的求法π12125.A π9125.B π6125.C π3125.D设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a ,b 所成的角).2.直线和平面所成的角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|n·e||n||e|.3.求二面角的大小(1)如图①,AB ,CD 是二面角α l β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB u u u r ,CD u u ur 〉.(2)如图②③,n 1,n 2分别是二面角α l β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).4.点到平面的距离的求法设n r 是平面α的法向量,在α内取一点B, 则 A 到α的距离|||||cos |||AB n d AB n θ==u u u r r u u u r g r 易错点:1.求异面直线所成角时,易求出余弦值为负值而盲目得出答案而忽视了夹角为⎝⎛⎦⎥⎤0,π2.2.求直线与平面所成角时,注意求出夹角的余弦值的绝对值应为线面角的正弦值.3.利用平面的法向量求二面角的大小时,二面角是锐角或钝角由图形决定.由图形知二面角是锐角时cosθ=|n 1·n 2||n 1||n 2|;由图形知二面角是钝角时,cos θ=-|n 1·n 2||n 1||n 2|.当图形不能确定时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等(一个平面的法向量指向二面角的内部,另一个平面的法向量指向二面角的外部),还是互补(两个法向量同时指向二面角的内部或外部),这是利用向量求二面角的难点、易错点.一、线线角问题1.(2020·沈阳调研)在直三棱柱A 1B 1C 1 ABC 中,∠BCA =90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A.3010 B.12 C.3015D.15102.如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为________.二、线面角的问题3、(2020·湖南高考)如图,在直棱柱ABCD A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.[针对训练](2020·福建高考改编)如图,在四棱柱ABCD A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.三、二面角问题4、(2020·新课标卷Ⅱ)如图,直三棱柱ABC A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1//平面A 1CD ; (2)求二面角D A 1C E 的正弦值.[针对训练](2020·杭州模拟)如图,已知平面QBC 与直线PA 均垂直于Rt△ABC 所在平面, 且PA =AB =AC .(1)求证:PA ∥平面QBC ;(2)若PQ ⊥平面QBC ,求二面角Q PB A 的余弦值.四、 利用空间向量解决探索性问题.(2020·江西模拟)如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D 的余弦值;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.[针对训练]已知正方体ABCD A 1B 1C 1D 1的棱长为1,点P 在线段BD 1上.当∠APC 最大时,三棱锥P ABC 的体积为________.五、近三年新课标高考试题立体几何(三视图1小+1小1大:(1)三视图(2)线面关系(3)与球有关的组合体(4)证明、求体积与表面积(注意规范性),作辅助线的思路(5)探索性问题的思考方法)(11)(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为(18)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值。
专题04 立体几何-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)(原卷版)
专题04立体几何题型简介立体几何一般作为全国卷第20题21题.重点题型主要是1体积问题及表面积问题2线面距离及线面角问题3二面角问题4空间几何综合问题典例在线题型一:体积及表面积问题1.在如图所示的多面体ABCDE 中,⊥AE 平面ABC ,AE CD ∥,22AE CD ==,3CA CB ==,25AB =(1)证明:平面ABE ⊥平面BDE ;(2)求多面体ABCDE 的体积.变式训练1.如图①,在平面四边形ABCD 中,2AB AD ==,2BC CD ==60BAD ∠= .将BCD △沿着BD 折叠,使得点C 到达点C '的位置,且二面角A BD C '--为直二面角,如图②.已知,,P G F 分别是,,AC AD AB '的中点,E 是棱AB 上的点,且C E '与平面ABD 所成角的正233(1)证明:平面//PGF 平面C DB ';(2)求四棱锥P GFED -的体积.题型二:线面距离及线面角问题1如图,在多面体ABCDE 中,已知ABC ,ACD ,BCE 均为等边三角形,平面ACD ⊥平面ABC ,平面BCE ⊥平面ABC ,H 为AB的中点.(1)判断DE 与平面ABC 的位置关系,并加以证明;(2)求直线DH 与平面ACE 所成角的正弦值.变式训练1如图,PD 垂直于梯形ABCD 所在平面,90ADC BAD ∠=∠=,F 为PA 的中点,2PD =112AB AD CD ===,四边形PDCE 为矩形.(1)求证://AC 平面DEF ;(2)求平面ABCD 与平面BCP 的夹角的大小;(3)求点F 到平面BCP 的距离.题型三:二面角问题1如图,四棱锥P -ABCD 中,已知AD BC ∥,BC =2AD ,AD =DC ,∠BCD =60°,CD ⊥PD ,PB ⊥BD.(1)证明:PB ⊥AB ;(2)设E 是PC 的中点,直线AE 与平面ABCD 所成角等于45°,求二面角B -PC -D 的余弦值.变式训练1如图,在四棱锥S ABCD -中,底面ABCD 为梯形,AB CD ∥,2AB CD =,AD SD =,SAB △为正三角形,SC BC ⊥,CB CS =.(1)求证:平面SAB ⊥平面SBC ;(2)求二面角C SA D --的余弦值.题型四:空间几何综合问题1.如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,AN BM ∥,2AN AB BC ===,4BM =,23CN =(1)证明:BM ⊥平面ABCD ;(2)在线段CM (不含端点)上是否存在一点E ,使得二面角E BN M --33若存在,求出的CEEM值;若不存在,请说明理由.变式训练1如图,在四棱锥E -ABCD 中,平面ADE ⊥平面ABCD ,O 、M 分别为线段AD 、DE 的中点,四边形BCDO 是边长为1的正方形,AE =DE ,AE ⊥DE.(1)求证:CM //平面ABE ;(2)求直线CM 与BD 所成角的余弦值;(3)点N 在直线AD 上,若平面BMN ⊥平面ABE ,求线段AN 的长.模拟尝试1.(2023·山东·潍坊一中校联考模拟预测)如图,在四棱锥P ABCD -中,PAD 为等边三角形,M 为PA 的中点,PD AB ⊥,平面PAD ⊥平面ABCD .(1)证明:平面MCD ⊥平面PAB ;(2)若//AD BC ,2AD BC =,2CD AB =,求平面MCD 与平面PBC 夹角的余弦值.2.(2023·山东·日照一中校考模拟预测)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为22(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AAAB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C--的正弦值.3.(2023·吉林·长春十一高校联考模拟预测)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为线段AB 的中点,4CB =,43AB =118AC =,三棱锥1A A DC -的体积为8.(1)证明:1A D ⊥平面11B C D ;(2)求平面1ACD 与平面1A BC 夹角的余弦值.4.(2022·江苏南京·南京师大附中校考模拟预测)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ADC ∠=︒,PAD 为等边三角形,O 为线段AD 的中点,且平面PAD ⊥平面ABCD ,M 是线段PC 上的点.(1)求证:OM BC ⊥;(2)若直线AM 与平面PAB 的夹角的正弦值为1010,求四棱锥M ABCD -的体积.5.(2023·河北衡水·衡水市第二中学校考模拟预测)如图,直四棱柱1111ABCD A B C D -中,16AA =E 是1AA 的中点,底面ABCD 是平行四边形,若1A C ⊥平面1BDC.(1)若1AB AA =,证明:底面ABCD 是正方形(2)若60BAD ∠=︒,求二面角1B BE D --的余弦值6.(2022·河北衡水·河北衡水中学校考模拟预测)直四棱柱1111ABCD A B C D -被平面α所截,所得的一部分如图所示,EF DC =.(1)证明://ED 平面ACF ;(2)若1242DC AD A E ===,3ADC π∠=,平面EFCD 与平面ABCD 所成角的正切值433,求点E 到平面ACF 的距离.真题再练1.(2021·全国·统考高考真题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.2.(2021·全国·统考高考真题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?3.(2021·全国·统考高考真题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.4.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.5.(2022·全国·统考高考真题)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).6.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为22(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C--的正弦值.7.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.8.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.9.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.。
专题04 立体几何-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)解析版1
专题04立体几何题型简介立体几何一般作为全国卷第20题21题.重点题型主要是1体积问题及表面积问题2线面距离及线面角问题3二面角问题4空间几何综合问题典例在线题型一:体积及表面积问题1.在如图所示的多面体ABCDE 中,⊥AE 平面ABC ,AE CD ∥,22AE CD ==,3CA CB ==,25AB =.(1)证明:平面ABE ⊥平面BDE ;(2)求多面体ABCDE 的体积.【答案】(1)证明见解析(2)25解(1)证明:设AB ,BE 的中点分别为F ,G ,连接CF ,FG ,DG ,则FG AE ∥,且12FG AE =,又CD AE ∥,且12CD AE =,所以FG CD ∥,且FG CD =,所以四边形CFGD 为平行四边形,所以∥CF DG .因为⊥AE 平面ABC ,CF ⊂平面ABC ,所以AE CF ⊥,所以AE DG ⊥,因为CA CB =,F 为AB 的中点,所以CF AB ⊥,所以DG AB ⊥,又AB ,AE ⊂平面ABE ,且AB AE A = ,所以DG ⊥平面ABE ,又DG ⊂平面BDE ,所以平面ABE ⊥平面BDE .(2)由(1)得CF AB ⊥,CF AE ⊥,且AB ,AE ⊂平面ABE ,AB AE A = ,所以CF ⊥平面ABE ,又因为3CA CB ==,25AB =,F 为AB 的中点,所以2CF =.因为CD AE ∥,AE ⊂平面ABE ,CD ⊄平面ABE ,所以CD ∥平面ABE ,所以点D 到平面ABE 的距离等于点C 到平面ABE 的距离CF .因为⊥AE 平面ABC ,AC ,BC ⊂平面ABC ,所以AE AC ⊥,AE BC ⊥,又CD AE ∥,所以CD AC ⊥,CD BC ⊥,又AC ,BC ⊂平面ABC ,且AC BC C = ,所以CD ⊥平面ABC ,连接AD ,多面体ABCDE 的体积V 等于三棱锥D ABC -的体积与三棱锥D ABE -的体积之和,而11252521323D ABC V -=⨯⨯⨯⨯=,11452522323D ABE V -=⨯⨯⨯⨯=,所以多面体ABCDE 的体积25452533V =+=.变式训练1.如图①,在平面四边形ABCD 中,2AB AD ==,2BC CD ==,60BAD ∠=.将BCD △沿着BD 折叠,使得点C 到达点C '的位置,且二面角A BD C '--为直二面角,如图②.已知,,P G F 分别是,,AC AD AB'的中点,E 是棱AB 上的点,且C E '与平面ABD 所成角的正切值为3.(1)证明:平面//PGF 平面C DB ';(2)求四棱锥P GFED -的体积.【答案】(1)证明见解析解(1),,P G F 分别为,,AC AD AB '的中点,//PG C D '∴,//PF BC ',,PG PF ⊄ 平面C DB ',,C D BC ''⊂平面C DB ',//PG ∴平面C DB ',//PF 平面C DB ',又PG PF P ⋂=,,PG PF ⊂平面PGF ,∴平面//PGF 平面C DB '.(2)取BD 的中点M ,连接,C M EM ',2AB AD == ,60BAD ∠= ,ABD ∴ 为等边三角形,2BD ∴=,又BC C D ''==222BC C D BD ''∴+=,C DB '∴ 为等腰直角三角形,112C M BD '∴==,C M BD '⊥; 二面角A BD C '--是直二面角,即平面C DB '⊥平面ABD ,平面C DB '⋂平面ABD BD =,C M '⊂平面C DB ',C M '∴⊥平面ABD ,C EM '∴∠即为C E '与平面ABD所成角,1tan 3C M C EM EM EM ''∴∠===,解得:2EM =;在EMB △中,由余弦定理得:2222cos60EM BM BE BM BE =+-⋅ ,即2314BE BE =+-,解得:12BE =,E ∴为线段AB 上靠近点B 的四等分点,111442ABD AGF BDE ABD ABD ABD ABDGFED S S S S S S S S ∴=--=--=四边形211222=⨯⨯⨯111113232P GFED GFED V S C M -'∴=⨯⨯=⨯=四棱锥四边形题型二:线面距离及线面角问题.如图,在多面体ABCDE 中,已知ABC ,ACD ,BCE 均为等边三角形,平面ACD ⊥平面ABC ,平面BCE ⊥平面ABC ,H 为AB的中点.(1)判断DE 与平面ABC 的位置关系,并加以证明;(2)求直线DH 与平面ACE 所成角的正弦值.【答案】(1)DE ∥平面ABC ,证明见解析;(2)155【详解】(1)DE ∥平面ABC ,理由如下:分别取,AC BC 的中点,O P ,连接,,DO EP OP ,因为AD CD =,所以DO AC ⊥,又平面ACD ⊥平面ABC ,平面ACD 平面ABC AC =,DO ⊂平面ACD ,所以DO ⊥平面ABC ,同理EP ⊥平面ABC ,所以EP DO ∥,又因为,ACD BCE 是全等的正三角形,所以EP DO =,所以四边形DOPE 是平行四边形,所以DE OP ∥,因为ED ⊄平面ABC ,OP ⊂平面ABC ,所以ED ∥平面ABC ;(2)连接BO ,则易知BO ⊥平面ACD ,以O 为坐标原点,分别以,,OD OA OB的方向为,,x y z 轴的正方向,建立如图所示的空间直角坐标系O xyz -,令2AC =.则()()())13130,0,0,0,1,0,0,1,0,3,0,0,0,,,0,,2222O A C DH P ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,13,3,,22DE OP E ⎫=∴-⎪⎪⎭所以()33130,2,0,3,,3,2222AC AE DH ⎛=-=-= ⎭⎝⎭ ,设平面ACE 的法向量为(),,m x y z =,所以·0·0m AC m AE ⎧=⎪⎨=⎪⎩ ,所以20333022y y z -=⎧⎪⎨-+=⎪⎩则0y =,取2z =,1x ∴=-,则()1,0,2m =-,所以2315cos ,525DH m DH m DH m ===,设直线DH 与平面ACE 所成的角为θ,则15sin cos ,5DH m θ==.变式训练1如图,PD 垂直于梯形ABCD 所在平面,90ADC BAD ∠=∠=,F 为PA 的中点,2PD =112AB ADCD ===,四边形PDCE 为矩形.(1)求证://AC 平面DEF ;(2)求平面ABCD 与平面BCP 的夹角的大小;(3)求点F 到平面BCP 的距离.【答案】(1)证明见解析(2)45 (3)14【详解】(1)设CP DE G = ,连接FG,四边形PDCE 为矩形,G ∴为PC 中点,又F 为PA 中点,//AC FG ∴,又FG ⊂平面DEF ,AC ⊄平面DEF ,//AC ∴平面DEF .(2)以D 为坐标原点,,,DA DC DP正方向为,,x y z 轴,可建立如图所示空间直角坐标系,则()1,1,0B ,()0,2,0C,(P ,()1,1,0BC ∴=-,(0,CP =-,设平面BCP 的法向量(),,n x y z =,020BC n x y CP n y ⎧⋅=-+=⎪∴⎨⋅=-+=⎪⎩,令1y =,解得:1x =,z =,(n ∴=;z 轴⊥平面ABCD ,∴平面ABCD 的一个法向量()0,0,1m =,cos ,2m n m n m n⋅∴<>==⋅ ,则平面ABCD 与平面BCP的夹角为45 .(3)由(2)知:1,0,22F ⎛ ⎝⎭,(P,1,0,22PF ⎛⎫∴= ⎪ ⎪⎝⎭,由平面BCP的法向量(n =,∴点F 到平面BCP 的距离11224PF nd n⋅=== .题型三:二面角问题1如图,四棱锥P -ABCD 中,已知AD BC ∥,BC =2AD ,AD =DC ,∠BCD =60°,CD ⊥PD ,PB ⊥BD .(1)证明:PB ⊥AB ;(2)设E 是PC 的中点,直线AE 与平面ABCD 所成角等于【答案】(1)证明见解析(2)77解(1)连结BD ,在BDC 中,因为BC=2DC ,∠BCD=60°,由余弦定理()22222cos603BD DC DC DC DC +-⋅⋅︒.因为222BD CD BC +=,所以CD ⊥BD ,又CD ⊥PD ,BD PD D = ,,BD PD ⊂平面PDB ,所以CD ⊥平面PDB ,由于PB ⊂平面PDB ,所以CD ⊥PB .因为PB ⊥BD ,CD BD D =I ,,CD BD ⊂平面ABCD ,所以PB ⊥平面ABCD ,由于AB ⊂平面ABCD ,因此PB ⊥AB .(2)解法1:以B 为坐标原点,BC的方向为x 轴正方向,||DC为单位长度,建立如图所示的空间直角坐标系A-xyz ,由(1)可知y 轴在平面ABCD 内.则(0,0,0)B ,1322A ⎛⎫⎪ ⎪⎝⎭,(2,0,0)C ,3322D ⎛⎫ ⎪⎝⎭,13,22DC ⎛⎫= ⎪⎝⎭ .设(0,0,)(0)P t t >,则(2,0,)PC t =- ,1,0,2t E ⎛⎫ ⎪⎝⎭,13,222t AE ⎛⎫= ⎪⎝⎭ .因为平面ABCD 的法向量为(0,0,1)m =,所以2cos ,||||4AE m AE m AE m t 〈〉==⋅+⋅由AE 与平面ABCD 所成角等于45°,2sin 454t =+,解得t=2.设平面DPC 的法向量1(,,)n x y z =,则110,0.n PC n DC ⎧⋅=⎪⎨⋅=⎪⎩即220,130.22x z x -=⎧⎪⎨=⎪⎩所以可取1(3,1,3)n =.因为平面BPC 的法向量为2(0,1,0)n = ,于是1212127cos ,7n n n n n n 〈〉=⋅=.因为二面角B-PC-D 是锐二面角,所以其余弦值为77.解法2:取BC 中点为F ,连结EF ,AF ,则EF PB ∥,且AF=DC .由(1)可知EF ⊥平面ABCD ,∠EAF 是AE 与平面ABCD 所成角,所以∠EAF=45°,所以EF=AF=DC ,于是PB=2EF=2DC .以B 为坐标原点,BC的方向为x 轴正方向,||DC 为单位长度,建立如图所示的空间直角坐标系A-xyz ,由(1)可知y 轴在平面ABCD 内.则(0,0,0)B ,(2,0,0)C ,332D ⎛⎫ ⎪⎝⎭,(0,0,2)P ,(2,0,2)PC =-,13,22DC ⎛⎫= ⎪⎝⎭ .设平面DPC 的法向量(,,)m x y z =,则0,0.m PC m DC ⎧⋅=⎪⎨⋅=⎪⎩即可得220,130.22x z x y -=⎧⎪⎨-=⎪⎩所以可取(3,1,3)m = .因为平面BPC 的法向量(0,1,0)n = ,于是7cos ,7||||m n m n m n ⋅〈〉==⋅.因为二面角B-PC-D 是锐二面角,所以其余弦值为77.解法3:取BC 中点为F ,连结EF ,AF ,则//EF PB ,且AF=DC .由(1)可知EF ⊥平面ABCD ,∠EAF 是AE 与平面ABCD 所成角,故∠EAF=45°,因此EF=AF=DC ,于是PB=2EF=2DC=BC ,可得22PC DC =.连结BE ,则BE ⊥PC .过E 在平面PDC 内作EG ⊥PC ,交PD 于点G ,则∠BEG 是二面角B-PC-D 的平面角.因为PB ⊥BC ,所以2BE DC ,7PD DC =.因为CD ⊥PD ,由PEG PDC △∽△可得147EG =.由PC ⊥平面BEG ,BG ⊂平面BEG ,所以PC ⊥BG ,而CD ⊥BG ,,,PC CD C PC CD ⋂=⊂平面PDC ,故BG ⊥平面PDC ,由于GE Ì平面PDC ,所以BG ⊥GE ,所以由余弦定理得7cos 7GE BEG BE ∠==.因此二面角B PCD --的余弦值为77.变式训练1如图,在四棱锥S ABCD -中,底面ABCD 为梯形,AB CD ∥,2AB CD =,AD SD =,SAB △为正三角形,SC BC ⊥,CB CS =.(1)求证:平面SAB ⊥平面SBC ;(2)求二面角C SA D --的余弦值.【答案】(1)证明见解析(2)277解(1)分别取BS ,AS 的中点O ,E ,连接OE ,OC ,ED ,则//OE AB 且12OE AB =.因为//AB CD ,2AB CD =,所以//,OE CD OE CD =,所以四边形OCDE 为平行四边形,则//CO DE .因为AD SD =,故DE SA ⊥,故CO SA ⊥.因为CB CS =,故CO SB ⊥.因为SA SB S =I ,SA ,SB ⊂平面SAB ,所以CO ⊥平面SAB.因为CO ⊂平面SBC ,所以平面SAB ⊥平面SBC.(2)连接AO ,因为△SAB 为正三角形,所以AO SB ⊥,因为平面SAB ⊥平面SBC ,平面SAB 平面SBC SB =,AO ⊂面SAB ,所以AO ⊥平面SBC ,OC 、OS 在面SBC 内,又CO SB ⊥,故OA ,OS ,OC 两两垂直,故以O 为坐标原点,OC ,OS ,OA 所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示.设2BC SC ==,则22AB SB ==,6OA =,2OC =,所以()0,0,6A ,()2,0,0C,()0,2,0S ,262,,22D ⎛⎫ ⎪ ⎪⎝⎭,(难点:点D 的坐标不易直接看出,可先求出点E 的坐标,利用CO DE =求解点D 的坐标)所以()0,2,6AS =- ,262,,22SD ⎛⎫=- ⎪ ⎪⎝⎭ ,()2,2,0CS =-.设面SAD 的法向量为()111,,m x y z =,由11111260262022m AS y z m SD x y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令11z =,得()0,3,1m =.设面SAC 的法向量为()222,,x n y z =,则2222260220n AS y z n CS x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,令23y =,得()3,3,1n = .则427cos ,727m n m n m n ⋅===⨯⋅,显然二面角C SAD --为锐二面角,所以二面角C SA D --的余弦值为277.题型四:空间几何综合问题1.如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,AN BM ∥,2AN AB BC ===,4BM =,CN =(1)证明:BM ⊥平面ABCD ;(2)在线段CM (不含端点)上是否存在一点E ,使得二面角E BN M --的余弦值为3.若存在,求出的CE EM 值;若不存在,请说明理由.【答案】(1)见解析(2)存在,12CE EM =【详解】(1)证明:正方形ABCD 中,BC AB ⊥,平面ABCD ⊥平面ABMN ,平面ABCD ⋂平面ABMN AB =,BC ⊂平面ABCD ,BC ∴⊥平面ABMN ,又BM ⊂平面ABMN ,BC ∴⊥BM ,且BC BN ⊥,又2,BC ==BN ∴=2AB AN == ,222BN AB AN ∴=+,AN AB ∴⊥,又//AN BM ,BM AB ∴⊥,又,,BC BA B BA BC =⊂ 平面ABCD ,∴BM ⊥平面ABCD ;(2)解:如图,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系,则()()()0,0,0,2,0,0,0,0,2B A C ,()()()2,0,2,2,2,0,0,4,0D N M ,设点(),,E a b c ,()01CE CM λλ=<<,()(),,20,4,2a b c λ∴-=-,()04,0,4,2222a b E c λλλλ=⎧⎪∴=∴-⎨⎪=-⎩,()()2,2,0,0,4,22BN BE λλ∴==-,设平面BEN 的法向量为(),,m x y z = ,()2204220BN m x y BE m y z λλ⎧⋅=+=⎪∴⎨⋅=+-=⎪⎩,令221,1,,1,1,11x y z m λλλλ⎛⎫=∴=-=∴=- ⎪--⎝⎭ ,显然,平面BMN 的法向量为()0,0,2BC =,cos ,3BC m BC m BC m⋅∴==,==,即=即23210λλ+-=,解得13λ=或1-(舍),所以存在一点E,且12CE EM =.变式训练1如图,在四棱锥E -ABCD 中,平面ADE ⊥平面ABCD ,O 、M 分别为线段AD 、DE 的中点,四边形BCDO 是边长为1的正方形,AE =DE ,AE ⊥DE.(1)求证:CM //平面ABE ;(2)求直线CM 与BD 所成角的余弦值;(3)点N 在直线AD 上,若平面BMN ⊥平面ABE ,求线段AN 的长.【答案】(1)证明见解析(2)6(3)53【详解】(1)证明:取AE 的中点P ,连接BP 、MP ,如图所示.∵M 、P 分别为ED 、AE 的中点,∴PM //AD ,且PM=12AD.又四边形BCDO 是边长为1的正方形,∴BC //OD ,且BC=OD ,又O 为AD 的中点,∴BC //AD ,且BC=12AD ,即PM //BC ,且PM=BC ,∴四边形BCMP 为平行四边形,∴CM //PB ,又CM ⊄平面ABE ,PB ⊂平面ABE ,∴CM //平面ABE.(2)(2)连接EO ,∵AE=DE ,O 为AD 中点,∴EO ⊥AD.∵EO ⊂平面ADE ,且平面ADE ⊥平面ABCD ,平面ADE∩平面ABCD=AD ,∴EO ⊥平面ABCD.又OB ⊂平面ABCD ,OD ⊂平面ABCD ,∴EO ⊥OB ,EO ⊥OD ,以O 为原点,OB 、OD 、OE 所在直线分别为x 轴,y 轴,z轴建立空间直角坐标系,如图所示,则(0A ,1-,0),C (1,1,0),B (1,0,0),D (0,1,0),(0E ,0,1),M 11(0,,22∴11(1,,),22CM BD=-- =(-1,1,0).设直线CM 与BD 所成角为θ,则cosθ=1||2||||CM BD CM BD ⋅=,∴直线CM 与BD所成角的余弦值为6.(3)设ON →=λOD →,则N (0,λ,0),∴NB →=(1,-λ,0),11(1,,)22MB =-- ,设平面BMN 的法向量为n →=(a ,b ,c),则0,0,n MB n NB ⎧⋅=⎨⋅=⎩ 即220220a b c a b λ⎧--=⎪⎨⎪-=⎩,令a=λ,则b=1,c=2λ-1,∴n →=(λ,1,2λ-1),设面ABE 的法向量为(,,)m x y z =,(1,1,0),(0,1,1)AB AE ==由00AB m x y AE m y z ⎧⋅=+=⎨⋅=+=⎩,可取(1,1,1)m =- .∵平面BMN ⊥平面ABE ,∴0m n →→⋅=,即λ-1+2λ-1=0,解得λ=23,53AN ∴=.模拟尝试一、解答题1.(2023·山东·潍坊一中校联考模拟预测)如图,在四棱锥P ABCD -中,PAD 为等边三角形,M 为PA 的中点,PD AB ⊥,平面PAD ⊥平面ABCD.(1)证明:平面MCD ⊥平面PAB ;(2)若//AD BC ,2AD BC =,2CD AB =,求平面MCD 与平面PBC 夹角的余弦值.【答案】(1)证明见解析;.【详解】(1)设AD 的中点为E ,连接PE ,因为PAD 为等边三角形,所以PE AD ⊥,又因为平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,且PE ⊂平面PAD ,所以PE ⊥平面ABCD ,因为AB ⊂平面ABCD ,所以PE AB ⊥,又PD AB ⊥,,PD PE P PD PE =⊂ ,平面PAD ,所以AB ⊥平面PAD ,又因为MD ⊂平面PAD ,所以AB MD ⊥,因为在等边三角形PAD 中,M 为PA 的中点,所以MD AP ⊥,因为AB AP A =I ,,AB AP ⊂平面PAB ,所以MD ⊥平面PAB ,因为MD ⊂平面MCD ,所以平面MCD ⊥平面PAB ;(2)连接CE ,由(1)知,AB ⊥平面PAD ,因为AD ⊂平面PAD ,所以AB AD ⊥,因为//AD BC ,2AD BC =,2CD AB =,所以四边形ABCE 为矩形,即CE AD ⊥,BC AE DE ==,22CD AB CE ==,所以30∠=︒CDE ,设BC a =,2AD a =,tan 60PE AE =⋅︒,tan 303AB CE DE ==⋅︒=,以E 为原点,分别以EC 、ED 、EP 所在直线为x 、y 、z轴建立空间直角坐标系,所以()0,,0A a -,()P,C ⎫⎪⎪⎝⎭,,0B a ⎫-⎪⎪⎝⎭,()0,,0D a,0,2a M ⎛- ⎝⎭,所以,,322a MC ⎛⎫=- ⎪ ⎪⎝⎭,30,,22a MD ⎛⎫=- ⎪ ⎪⎝⎭,,,3PB a ⎛⎫=- ⎪ ⎪⎝⎭,,0,3PC ⎛⎫= ⎪ ⎪⎝⎭,设平面MCD 和平面PBC 的法向量分别为()1111,,n x y z =,()2222,,n x y z =,则111111102302a n MC y a n MD y ⎧⋅=+-=⎪⎪⎨⎪⋅=-=⎪⎩,222222200n PB ay n PC ⎧⋅=--=⎪⎪⎨⎪⋅=-=⎪⎩,即1111x z ⎧=⎪⎨=⎪⎩,22203y x z =⎧⎨=⎩,取11y =,21z =,则1n = ,()23,0,1n =,所以121212cos ,35n n n n n n ⋅==⋅,所以平面MCD 与平面PBC.2.(2023·山东·日照一中校考模拟预测)如图,直三棱柱111ABC A B C -的体积为4,1A BC的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】【详解】(1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则1111111111433333A A BC A A ABC A ABC A B BC C C B V S h h V S A A V ---=⋅===⋅== ,解得h =所以点A 到平面1A BC;(2)取1A B 的中点E,连接AE,如图,因为1AA AB =,所以1AE A B ⊥,又平面1A BC ⊥平面11ABB A ,平面1A BC ⋂平面111ABB A A B =,且AE ⊂平面11ABB A ,所以⊥AE 平面1A BC ,在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得2AE =,所以12AA AB ==,12A B =以2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D ,则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =- ,设平面BDC 的一个法向量(),,n a b c =,则20n BD a b c n BC a ⎧⋅=++=⎨⋅==⎩,可取()0,1,1n =-r,则1cos ,222m n m n m n ⋅==⨯⋅,所以二面角A BD C --213122⎛⎫-= ⎪⎝⎭3.(2023·吉林·长春十一高校联考模拟预测)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为线段AB 的中点,4CB =,43AB =118AC =,三棱锥1A A DC -的体积为8.(1)证明:1A D ⊥平面11B C D ;(2)求平面1ACD 与平面1A BC 夹角的余弦值.【答案】(1)见解析65555【详解】(1)证明:因为1AA ⊥平面ABC ,CB ⊂平面ABC ,所以1AA BC ⊥,在三棱柱111ABC A B C -中,四边形11AAC C 为平行四边形,则118AC AC ==,因为43AB =4CB =,所以222AB CB AC +=,所以CB AB ⊥,又因为1AB AA A ⋂=,1AA ⊂平面11ABB A ,AB ⊂平面11ABB A ,所以CB ⊥平面11ABB A ,因为11//CB C B ,所以11C B ⊥平面11ABB A ,又1A D ⊂平面11ABB A ,所以111C B A D ⊥.1832ABC S AB BC =⋅=△,D 为AB 的中点,则132ACD ABC S S ==△△因为1AA ⊥平面ABC ,1111113833A A CD A ACD ACD V V S AA AA --==⋅=⨯= ,所以123AA =11A DB △中,1126A D B D ==1143A B =2221111A D B D A B +=,所以11A D B D ⊥,1111C B BD B ⋂=,111,C B B D ⊂平面11B C D ,所以1A D ⊥平面11B C D ;(2)因为1BB ⊥平面ABC ,BC AB ⊥,以点B 为坐标原点,BA 、1BB 、BC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,4C 、()3,0,0D 、()143,3,0A 、()10,23,0B ,设平面1DAC 的法向量为()111,,m x y z =,()123,3,0DA = ,()23,0,4DC =-,则11111330340m DA x y m DC x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩ ,取12x =,可得(2,3m =-,设平面1A CB 的法向量为()222,,x n y z =,()13,3,0BA = ,()0,0,4BC =,则1222433040n BA x y n BC z ⎧⋅=+=⎪⎨⋅==⎪⎩ ,取21x =,可得()1,2,0n =- ,所以,6655cos ,55115m n m n m n ⋅===⋅⨯,所以平面1DAC 与平面1ACB 夹角的余弦值为65555.4.(2022·江苏南京·南京师大附中校考模拟预测)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ADC ∠=︒,PAD 为等边三角形,O 为线段AD 的中点,且平面PAD ⊥平面ABCD ,M 是线段PC 上的点.(1)求证:OM BC ⊥;(2)若直线AM 与平面PAB 的夹角的正弦值为1010,求四棱锥M ABCD -的体积.【答案】(1)证明见解析;(2)43【详解】(1)因为PAD 为等边三角形,O 为线段AD 的中点,所以PO AD ⊥;因为平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD ;又BC ⊂平面ABCD ,所以PO BC ⊥;在OCD 中,1,2,60OD CD ADC ==∠=︒,由余弦定理可得OC =因为222OC OD CD +=,所以CO AD ⊥;因为//AD BC ,所以CO BC ⊥,所以BC ⊥平面POC ;因为OM ⊂平面POC ,所以OM BC ⊥.(2)由(1)得,,OP OC OD 两两垂直,以O 为坐标原点,建系如图,则()())0,1,0,0,0,,2,0,A P BC -;)(1,0,,0,1,AB PC AP =-=-=;设PM PC λ=,则)AM AP PM =+= ;设平面PAB 的一个法向量为(),,n x y z =,则00n AB n AP ⎧⋅=⎨⋅=⎩,0y y -==⎪⎩,令y =则()1n =- .因为直线AM 与平面PAB所以n AM n AM ⋅==,解得13λ=或23λ=-(舍),即有13PM PC =,M 是靠近P 的三等分点,所以四棱锥M ABCD -的高等于OP 的23.四棱锥M ABCD -的体积为114222sin 603233V ︒=⨯⨯⨯⨯⨯⨯=.5.(2023·河北衡水·衡水市第二中学校考模拟预测)如图,直四棱柱1111ABCD A B C D -中,1AA =,E 是1AA 的中点,底面ABCD 是平行四边形,若1A C ⊥平面1BDC.(1)若1AB AA =,证明:底面ABCD 是正方形(2)若60BAD ∠=︒,求二面角1B BE D --的余弦值【答案】(1)证明见解析;(2)【详解】(1)如图,连接1,AC CD ,1A C ⊥平面1BDC ,BD ⊂平面1BDC ,1C D ⊂平面1BDC ,则1AC BD ⊥,11AC C D ⊥,直棱柱中1AA ⊥底面ABCD ,BD ⊂平面ABCD ,1AA BD ⊥,111AA A C A = ,11,AA A C ⊂平面1ACA ,则BD ⊥平面1ACA ,又AC ⊂平面1ACA ,所以BD AC ⊥,所以平行四边形ABCD 是菱形,1AA AB =,则直棱柱的侧面11ABB A 是正方形,因此侧面11CDD C 也是正方形,所以11CD C D ⊥,11A C CD C = ,11,AC CD ⊂平面11ACD ,所以1C D ⊥平面11ACD ,又11A D ⊂平面11ACD ,所以111C D A D ⊥,直棱柱中易知111DD A D ⊥,而111DD CD D = ,11,DD CD ⊂平面11CC D D ,所以11A D ⊥平面11CC D D ,11C D ⊂平面11CC D D ,所以1111A D C D ⊥,因此底面1111D C B A 是矩形,即四边形ABCD是矩形,所以四边形ABCD 是正方形;(2)由(1)知底面ABCD 是菱形,因此AC BD ⊥,设AC BD O ⋂=,分别以,OA OB 为,x y 轴,过O 与1AA 平行的直线为z 轴建立空间直角坐标系,如图,设2AB a =,则3OA a =,OB a =,1(36)A a ,(3,0,0)C a -,(0,,0)B a ,1(36)C a -,1(23,0,6)AC a =-- ,1(3,6)BC a a =-- ,由(1)知211660AC BC a ⋅=-= ,1a =(负值舍去),6(3,0,2E ,(0,1,0)B ,(0,1,0)D -,16)B ,6(3,)2BE =- ,(0,2,0)DB = ,16)BB = ,设平面1B BE 的一个法向量是111(,,)m x y z =,则11111606302m BB m BE y z ⎧⋅=⎪⎨⋅=-=⎪⎩,取11x =得3,0)m = ,设平面BED 的一个法向量是222(,,)n x y z =,则2222630220n BE x y n DB y ⎧⋅=-+=⎪⎨⎪⋅==⎩,取21x =,得(1,0,2)n = ,3cos ,623m n m n m n ⋅==⨯,所以二面角1B BE D--的余弦值为366.(2022·河北衡水·河北衡水中学校考模拟预测)直四棱柱1111ABCD A B C D -被平面α所截,所得的一部分如图所示,EF DC =.(1)证明://ED 平面ACF ;(2)若1242DC AD A E ===,3ADC π∠=,平面EFCD与平面ABCD 433,求点E 到平面ACF 的距离.【答案】(1)详见解析;(2255.【详解】(1)依题:平面α与两平行平面ABCD ,1111D C B A 的交线分别为EF ,DC ,故有//EF DC ,又EF DC =,故有平行四边形EFCD ,∴//ED FC ,ED ⊄面ACF ,FC ⊂面ACF ,∴//ED 平面ACF .(2)ADC △中,由余弦定理可得3AC =得AC AD ⊥,又1AA ⊥平面ABCD ,故而1AA ,AC ,AD 两两垂直,如图建系.【法一求EH 】取AD 中点H ,由1//AH A E ,1AH A E =得平行四边形1A AHE ,∴1//AA HE ,HE ⊥平面ACD ,作HI DC ⊥,(连EI ),又HE CD ⊥,∴CD ⊥平面EHI ,得CD EI ⊥,又HI DC ⊥,∴EIH ∠为所求二面角的平面角.易求3HI =4tan 33EH EIH HI ∠==,1EH =.【法二求EH 】面ABCD 的法向量显然为()0,0,1n =,设面EFCD 的法向量为(),,k x y z = ,1,0,2E h ⎛⎫⎪⎝⎭,00k DC k DE ⎧⋅=⎨⋅=⎩,令3x =33,1,2k h ⎫=⎪⎪⎭,依题:3119n k h n k⋅=⇒= .由//ED 平面ACF ,点E 到平面ACF 的距离转化为D 到平面ACF 的距离d ,()1,0,0D ,()3,0C ,13,12DC EF F ⎛⎫=⇒- ⎪⎝⎭ ,设平面ACF 的法向量为(),,m x y z = ,00m AC m m AF ⎧⋅=⇒⎨⋅=⎩可为()2,0,1,255m AD d m⋅== .真题再练1.(2021·全国·统考高考真题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.【答案】(12(2)7014【详解】(1)[方法一]:空间坐标系+空间向量法PD ⊥ 平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a ,则()2,1,1PB a =- ,(),1,0AM a =-,PB AM ⊥ ,则2210PB AM a ⋅=-+= ,解得22a =22BC a ==[方法二]【最优解】:几何法+相似三角形法如图,连结BD .因为PD ⊥底面ABCD ,且AM ⊂底面ABCD ,所以PD AM ⊥.又因为PB AM ⊥,PB PD P = ,所以AM ⊥平面PBD .又BD ⊂平面PBD ,所以AM BD ⊥.从而90ADB DAM ∠+∠=︒.因为90∠+∠=︒MAB DAM ,所以∠=∠MAB ADB .所以 ∽ADB BAM ,于是=AD BAAB BM.所以2112BC =.所以BC =[方法三]:几何法+三角形面积法如图,联结BD 交AM 于点N.由[方法二]知⊥AM DB .在矩形ABCD 中,有 ∽DAN BMN ,所以2==AN DAMN BM,即23AN AM =.令2(0)=>BC t t ,因为M 为BC 的中点,则BM t =,=DB,=AM 由1122=⋅=⋅ DAB S DA AB DB AN,得=t 212t =,所以2==BC t (2)[方法一]【最优解】:空间坐标系+空间向量法设平面PAM 的法向量为()111,,m x y z =,则,1,02AM ⎛⎫=- ⎪ ⎪⎝⎭,()AP = ,由1111020m AM x y mAP z ⎧⋅=+=⎪⎨⎪⋅=+=⎩,取1x =)m =,设平面PBM 的法向量为()222,,n x y z =,,0,02BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =- ,由222200n BM n BP y z ⎧⋅==⎪⎨⎪⋅=-+=⎩,取21y =,可得()0,1,1n =,cos ,14m n m n m n ⋅==⋅,所以,sin ,m n = 因此,二面角A PM B --14.[方法二]:构造长方体法+等体积法如图,构造长方体1111ABCD A B C D -,联结11,AB A B ,交点记为H ,由于11AB A B ⊥,1AB BC ⊥,所以AH ⊥平面11A BCD .过H 作1D M 的垂线,垂足记为G .联结AG ,由三垂线定理可知1⊥AG D M ,故AGH ∠为二面角A PM B --的平面角.易证四边形11A BCD 是边长为2的正方形,联结1D H ,HM .111111111,2D HM D HM D A H HBM MCD A BCD S D M HG S S S S S =⋅=--- 正方形,由等积法解得31010=HG .在Rt AHG 中,2310,210==AH HG ,由勾股定理求得355=AG .所以,70sin 14AH AGH AG ∠==,即二面角A PM B --的正弦值为7014.2.(2021·全国·统考高考真题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)证明见解析;(2)112B D =【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,AM BN ,因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅ ,则1CBF BBN ∠=∠.又因为1190BBN BNB ∠+∠=︒,所以1190CBF BNB BF BN ∠+∠=︒⊥,.又因为111111,BF AB BN AB B ⊥= ,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥.[方法二]【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1B B AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B AC ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅= ,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++ ()11=BF B D BF EB BB ⋅+⋅+ 1BF EB BF BB =⋅+⋅ 11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=52520255-⨯⨯⨯,所以BF ED ⊥.(2)[方法一]【最优解】:向量法设平面DFE 的法向量为(),,m x y z = ,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅=⋅ 222214a a =⨯-+22214a a =-+当12a =时,2224a a -+取最小值为272,此时cos θ=.所以()minsin θ=,此时112B D =.[方法二]:几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE 平面11B BCC FT =.作1BH FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1D H B ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//CG AB 交DS 于点G .由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D BT C G C T=,即12(2)3t s s t =--,所以31t s t =+.又111B H BT C F FT=,即11B H =1B H =所以DH ===则11sin B D DHB DH∠===所以,当12t =时,()1min sin 3DHB ∠=.[方法三]:投影法如图,联结1,FB FN,DEF 在平面11BB C C 的投影为1BN F ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS S θ=.设1(02)BD t t =≤≤,在1Rt DB F中,DF ==在Rt ECF中,EF 过D 作1B N 的平行线交EN 于点Q .在Rt DEQ △中,DE ==在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅=sin DFE ∠=1sin 2DFE S DF EF DFE =⋅∠ =13,2B NF S = 1cos B NF DFES S θ==sin θ当12t =,即112B D =,面11BBC C 与面DFE所成的二面角的正弦值最小,最小值为3.(2021·全国·统考高考真题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,ABAD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)证明见解析;(2)6.(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD .因为CD ⊂平面BCD ,所以OA CD ⊥.(2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz-,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,0)3322EB m BC =--= ,设(),,n x y z =r为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩ 可求得平面EBC 的一个法向量为2(3,1,)n m=--.又平面BCD 的一个法向量为()0,0,OA m =,所以222cos ,244n OA m m -=⋅+,解得1m =.又点C 到平面ABD 321133213226A BCD C ABD V V --==⨯⨯⨯=所以三棱锥A BCD -36.[方法二]【最优解】:作出二面角的平面角如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG ∠为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =.由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以3BC =.因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCD BOC V S O S OA A -==⨯⨯=⨯⨯⨯⨯⨯ .[方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒,记二面角E BC D --为θ.据题意,得45θ=︒.对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos 2βα=.①使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.②将①②两式平方后相加,可得223cos 2sin 14αα+=,由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=,根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD -的体积为6.4.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF 与平面ABD 所成的角的437【详解】(1)因为AD CD =,E 为AC 的中点,所以AC DE ⊥;在ABD △和CBD △中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC 的中点,所以AC BE ⊥;又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED ,因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED ,所以AC EF ⊥,所以1=2AFC S AC EF ⋅△,当EF BD ⊥时,EF 最小,即AFC △的面积最小.因为ABD CBD ≌△△,所以2CB AB ==,又因为60ACB ∠=︒,所以ABC 是等边三角形,因为E 为AC 的中点,所以1AE EC ==,3BE =因为AD CD ⊥,所以112DE AC ==,在DEB 中,222DE BE BD +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz -,则()()()1,0,0,3,0,0,0,1A B D ,所以()()1,0,1,3,0AD AB =-=-,设平面ABD 的一个法向量为(),,n x y z =,则00n AD x z n AB x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取y =()n = ,又因为()31,0,0,,4C F ⎛⎫- ⎪ ⎪⎝⎭,所以34CF ⎛⎫= ⎪ ⎪⎝⎭ ,所以cos ,7n CF n CF n CF⋅==,设CF 与平面ABD 所成的角的正弦值为02πθθ⎛⎫≤≤ ⎪⎝⎭,所以sin cos ,n CF θ== 所以CF 与平面ABD所成的角的正弦值为7.5.(2022·全国·统考高考真题)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;【详解】(1)如图所示:分别取,AB BC 的中点,M N ,连接MN ,因为,EAB FBC为全等的正三角形,所以,EM AB FN BC ⊥⊥,EM FN =,又平面EAB ⊥平面ABCD ,平面EAB ⋂平面ABCD AB =,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,而EM FN =,所以四边形EMNF 为平行四边形,所以//EF MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以//EF 平面ABCD .(2)[方法一]:分割法一如图所示:分别取,AD DC 中点,K L ,由(1)知,//EF MN 且EF MN =,同理有,//,HE KM HE KM =,//,HG KL HG KL =,//,GF LN GF LN =,由平面知识可知,BD MN ⊥,MN MK ⊥,KM MN NL LK ===,所以该几何体的体积等于长方体KMNL EFGH -的体积加上四棱锥B MNFE -体积的4倍.因为MN NL LK KM ====,8sin 60EM == 点B 到平面MNFE 的距离即为点B 到直线MN 的距离d,d =(21343V =⨯+⨯⨯==.[方法二]:分割法二如图所示:连接AC,BD,交于O ,连接OE,OF,OG,OH.则该几何体的体积等于四棱锥O-EFGH 的体积加上三棱锥A-OEH 的4倍,再加上三棱锥E-OAB 的四倍.容易求得,OE=OF=OG=OH=8,取EH 的中点P ,连接AP,OP.则EH 垂直平面APO.由图可知,三角形APO,四棱锥O-EFGH 与三棱锥E-OAB 的高均为EM 的长.所以该几何体的体积(21111144444433232V =⋅+⋅⋅⋅⋅6.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】2.【详解】(1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则111111111143333A A BC A A ABC A ABC A B BC C C B V S h V S A A V ---=⋅===⋅==,解得h =所以点A 到平面1A BC;(2)取1A B 的中点E,连接AE,如图,因为1AA AB =,所以1AE A B ⊥,又平面1A BC ⊥平面11ABB A ,平面1A BC ⋂平面111ABB A A B =,且AE ⊂平面11ABB A ,所以⊥AE 平面1A BC ,在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE 12AA AB ==,1A B =以2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D ,则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =- ,设平面BDC 的一个法向量(),,n a b c = ,则020n BD a b c n BC a ⎧⋅=++=⎨⋅==⎩,可取()0,1,1n =-r,则1cos ,2m n m n m n ⋅==⋅,所以二面角A BD C --2=.7.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.【答案】(1)证明见解析(2)1113【详解】(1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥-P ABC 的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC ,所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒,所以ODA OAD∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD ,又OE ⊄平面PAC ,PD ⊂平面PAC ,所以//OE 平面PAC(2)解:过点A 作//Az OP ,如图建立空间直角坐标系,因为3PO =,5AP =,所以224OA AP PO =-=,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD ,43AB =所以12AC =,所以()23,2,0O ,()43,0,0B ,()23,2,3P ,()0,12,0C ,所以333,1,2E ⎛⎫ ⎪⎝⎭,则333,1,2AE ⎛⎫= ⎪⎝⎭ ,()3,0,0AB =,()0,12,0AC = ,设平面AEB 的法向量为(),,n x y z =,则33302430n AE y z n AB ⎧⋅=++=⎪⎨⎪⋅==⎩,令2z =,则=3y -,0x =,所以()0,3,2n =-;设平面AEC 的法向量为(),,m a b c =,则33302120m AE a b c m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,令a 6c =-,0b =,所以)6m =-;所以cos ,n m n m n m⋅==设二面角C AE B --的大小为θ,则cos cos ,=n m θ=所以11sin 13θ==,即二面角C AE B --的正弦值为1113.8.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)见解析(2)见解析【详解】(1)取AB 的中点为K ,连接,MK NK ,由三棱柱111ABC A B C -可得四边形11ABB A 为平行四边形,而11,B M MA BK KA ==,则1//MK BB ,而MK ⊄平面11BCC B ,1BB ⊂平面11BCC B ,故//MK 平面11BCC B ,而,CN NA BK KA ==,则//NK BC ,同理可得//NK 平面11BCC B ,而,,NK MK K NK MK =⊂ 平面MKN ,故平面//MKN 平面11BCC B ,而MN ⊂平面MKN ,故//MN 平面11BCC B ,(2)因为侧面11BCC B 为正方形,故1CB BB ⊥,而CB ⊂平面11BCC B ,平面11CBB C ⊥平面11ABB A ,平面11CBB C ⋂平面111ABB A BB =,故CB ⊥平面11ABB A ,因为//NK BC ,故NK ⊥平面11ABB A ,因为AB ⊂平面11ABB A ,故NK AB ⊥,若选①,则AB MN ⊥,而NK AB ⊥,NK MN N = ,故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB MK ⊥,所以1AB BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩ ,从而020x y y z +=⎧⎨+=⎩,取1z =-,则()2,2,1n =--,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯ .若选②,因为//NK BC ,故NK ⊥平面11ABB A ,而KM ⊂平面MKN ,故NK KM ⊥,而11,1B M BK NK ===,故1B M NK =,而12B B MK ==,MB MN =,故1BB M MKN ≅ ,所以190BB M MKN ∠=∠=︒,故111A B BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM === ,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩,从而020x y y z +=⎧⎨+=⎩,取1z =-,则()2,2,1n =--,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯.9.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,。
2021届高考数学第专题四 高考中的立体几何问题文档强练 文
专题四 高考中的立体几何问题1.(2021·广东)某四棱台的三视图如下图,那么该四棱台的体积是( ) A.4 B.143C.163D.6 答案 B 解析 由三视图知四棱台的直观图为由棱台的体积公式得:V =13(2×2+ 1×1+2×2×1×1)×2=143. 2.(2021·课标全国Ⅱ)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l满 足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,那么( )A.α∥β且l ∥αB.α⊥β且l ⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l答案 D 解析 假设α∥β,由m ⊥平面α,n ⊥平面β,那么m ∥n ,这与已知m ,n 为异面直线矛盾,那么α与β相交,设交线为l 1,那么l 1⊥m ,l 1⊥n ,在直线m 上任取一点作n 1平行于n ,那么l 1和l 都垂直于直线m 与n 1所确信的平面,因此l 1∥l .3.如图,点O 为正方体ABCD —A ′B ′C ′D ′的中心,点E 为面B ′BCC ′的中心,点F 为B ′C ′的中点,那么空间四边形D ′OEF在该正方体的各个面上的投影不可能是( ) 答案 D解析 空间四边形D ′OEF 在正方体的面DCC ′D ′上的投影是A ;在面BCC ′B ′上的投影是B ;在面ABCD 上的投影是C ,应选D.4.在如下图的四个正方体中,能得出AB ⊥CD 的是( ) 答案 A解析 A 中,∵CD ⊥平面AMB ,∴CD ⊥AB ;B 中,AB 与CD 成60°角,C 中,AB 与CD 成45°角;D 中,AB 与CD 夹角的正切值为 2.5.如图,四棱锥P -ABCD 的底面是一直角梯形,AB ∥CD ,BA ⊥AD ,CD =2AB ,PA ⊥底面ABCD ,E 为PC 的中点,那么BE 与平面PAD的 位置关系为________.答案 平行解析 取PD 的中点F ,连接EF ,在△PCD 中,EF 綊12CD . 又∵AB ∥CD 且CD =2AB ,∴EF 綊AB ,∴四边形ABEF 是平行四边形,∴EB ∥AF .又∵EB ⊄平面PAD ,AF ⊂平面PAD ,∴BE ∥平面PAD .题型一 空间点、线、面的位置关系例1 (2021·山东)如图,四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥PA ,AB ∥CD ,AB =2CD ,E , F ,G ,M ,N 别离为PB ,AB ,BC ,PD ,PC 的中点.(2)求证:平面EFG ⊥平面EMN .思维启发 (1)在平面PAD 内作直线CE 的平行线或利用平面CEF ∥平面PAD 证明;(2)MN 是平面EFG 的垂线.证明 (1)方式一 取PA 的中点H ,连接EH ,DH .又E 为PB 的中点,因此EH 綊12AB .又CD 綊12AB ,因此EH 綊CD .因此四边形DCEH 是平行四边形,因此CE ∥DH .又DH ⊂平面PAD ,CE ⊄平面PAD .因此CE ∥平面PAD .方式二 连接CF .因为F 为AB 的中点,因此AF =12AB .又CD =12AB ,因此AF =CD .又AF ∥CD ,因此四边形AFCD 为平行四边形.因此CF ∥AD ,又CF ⊄平面PAD ,因此CF ∥平面PAD .因为E ,F 别离为PB ,AB 的中点,因此EF ∥PA .又EF ⊄平面PAD ,因此EF ∥平面PAD .因为CF ∩EF =F ,故平面CEF ∥平面PAD .又CE ⊂平面CEF ,因此CE ∥平面PAD .(2)因为E 、F 别离为PB 、AB 的中点,因此EF ∥PA .又因为AB ⊥PA ,因此EF ⊥AB ,同理可证AB ⊥FG .因此AB⊥平面EFG.又因为M,N别离为PD,PC的中点,因此MN∥CD,又AB∥CD,因此MN∥AB,因此MN⊥平面EFG.又因为MN⊂平面EMN,因此平面EFG⊥平面EMN.思维升华高考对该部份的考查重点是空间的平行关系和垂直关系的证明,一样以解答题的形式显现,试题难度中等,但对空间想象能力和逻辑推理能力有必然的要求,在试卷中也可能以选择题或填空题的方式考查空间位置关系的大体定理在判定线面位置关系中的应用.如下图,直三棱柱ABC-A1B1C1中,∠ACB=90°,M,N别离为A1B,B1C1的中点.求证:(1)BC∥平面MNB1;(2)平面A1CB⊥平面ACC1A.证明(1)因为BC∥B1C1,且B1C1⊂平面MNB1,BC⊄平面MNB1,故BC∥平面MNB1.(2)因为BC⊥AC,且ABC-A1B1C1为直三棱柱,故BC⊥平面ACC1A1.因为BC⊂平面A1CB,故平面A1CB⊥平面ACC1A1.题型二平面图形的翻折问题例2如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC 上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,BE,设点F是AB的中点.(1)求证:DE⊥平面BCD;(2)假设EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.思维启发(1)翻折前后,△ACD内各元素的位置关系没有转变,易知DE⊥DC,再依照平面BCD⊥平面ACD(2)注意从条件EF ∥平面BDG 得线线平行,为求高作基础.(1)证明 ∵AC =6,BC =3,∠ABC =90°,∴∠ACB =60°.∵CD 为∠ACB 的平分线,∴∠BCD =∠ACD =30°.∴CD =2 3. ∵CE =4,∠DCE =30°, ∴DE 2=CE 2+CD 2-2CE ·CD ·cos 30°=4,∴DE =2,那么CD 2+DE 2=EC 2.∴∠CDE =90°,DE ⊥DC .又∵平面BCD ⊥平面ACD ,平面BCD ∩平面ACD =CD ,DE ⊂平面ACD ,∴DE ⊥平面BCD .(2)解 ∵EF ∥平面BDG ,EF ⊂平面ABC ,平面ABC ∩平面BDG =BG ,∴EF ∥BG .∵点E 在线段AC 上,CE =4,点F 是AB 的中点,∴AE =EG =CG =2.如图,作BH ⊥CD 于H .∵平面BCD ⊥平面ACD ,∴BH ⊥平面ACD .由条件得BH =32, S △DEG =13S △ACD =13×12AC ·CD ·sin 30°=3, ∴三棱锥B -DEG 的体积V =13S △DEG ·BH =13×3×32=32. 思维升华 平面图形的翻折问题,关键是弄清翻折前后图形中线面位置关系和气宇关系的转变情形.一样地翻折后还在同一个平面上的性质不发生转变,不在同一个平面上的性质发生转变.(2021·北京)如图(1),在Rt△ABC 中,∠C =90°,D ,E 别离为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(2)求证:A1F⊥BE.(3)线段A1B上是不是存在点Q,使A1C⊥平面DEQ?说明理由.(1)证明因为D,E别离为AC,AB的中点,因此DE∥BC.又因为DE⊄平面A1CB,因此DE∥平面A1CB.(2)证明由已知得AC⊥BC且DE∥BC,因此DE⊥AC.因此DE⊥A1D,DE⊥CD.又A1D∩CD=D,因此DE⊥平面A1DC.而A1F⊂平面A1DC,因此DE⊥A1F.又因为A1F⊥CD,因此A1F⊥平面BCDE,又因为BE⊂平面BCDE,因此A1F⊥BE.(3)解线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,别离取A1C,A1B的中点P,Q,那么PQ∥BC.又因为DE∥BC,因此DE∥PQ.因此平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,因此DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,因此A1C⊥DP.因此A1C⊥平面DEP.从而A1C⊥平面DEQ.题型三 线面位置关系中的存在性问题例3 如图,在矩形ABCD 中,AB =2BC ,P 、Q 别离是线段AB 、CD的 中点,EP ⊥平面ABCD .(1)求证:DP ⊥平面EPC ;(2)问在EP 上是不是存在点F ,使平面AFD ⊥平面BFC ?假设存在,求出FP AP的值;假设不存在,说明理由.思维启发 先假设EP 上存在点F 使平面AFD ⊥平面BFC ,然后推证点F 的位置.(1)证明 ∵EP ⊥平面ABCD ,∴EP ⊥DP .又ABCD 为矩形,AB =2BC ,P 、Q 别离为AB 、CD 的中点,连接PQ ,则PQ ⊥DC 且PQ =12DC . ∴DP ⊥PC .∵EP ∩PC =P ,∴DP ⊥平面EPC .(2)解 假设存在F 使平面AFD ⊥平面BFC ,∵AD ∥BC ,BC ⊂平面BFC ,AD ⊄平面BFC ,∴AD ∥平面BFC .∴AD 平行于平面AFD 与平面BFC 的交线l .∵EP ⊥平面ABCD ,∴EP ⊥AD ,而AD ⊥AB , AB ∩EP =P ,∴AD ⊥平面EAB ,∴l ⊥平面FAB .∴∠AFB 为平面AFD 与平面BFC 所成二面角的平面角.∵P 是AB 的中点,且FP ⊥AB ,∴当∠AFB =90°时,FP =AP .∴当FP =AP ,即FP AP =1时,平面AFD ⊥平面BFC .思维升华 关于线面关系中的存在性问题,第一假设存在,然后在那个假设下利用线面关系的性质进行推理论证,寻求假设知足的条件.假设条件知足那么确信假设,假设取得矛盾那么否定假设.如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)求证:D1C⊥AC1;(2)问在棱CD上是不是存在点E,使D1E∥平面A1BD.假设存在,确信点E位置;假设不存在,说明理由.(1)证明在直四棱柱ABCD-A1B1C1D1中,连接C1D,∵DC=DD1,∴四边形DCC1D1是正方形,∴DC1⊥D1C.又AD⊥DC,AD⊥DD1,DC∩DD1=D,∴AD⊥平面DCC1D1,又D1C⊂平面DCC1D1,∴AD⊥D1C.∵AD⊂平面ADC1,DC1⊂平面ADC1,且AD∩DC1=D,∴D1C⊥平面ADC1,又AC1⊂平面ADC1,∴D1C⊥AC1.(2)解假设存在点E,使D1E∥平面A1BD.连接AD1,AE,D1E,设AD1∩A1D=M,BD∩AE=N,连接MN,∵平面AD1E∩平面A1BD=MN,要使D1E∥平面A1BD,可使MN∥D1E,又M是AD1的中点,则N是AE的中点.又易知△ABN≌△EDN,∴AB=DE.综上所述,当E 是DC 的中点时,可使D 1E ∥平面A 1BD .(时刻:80分钟)1.如下图,在边长为5+2的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.解 设圆锥的母线长为l ,底面半径为r ,高为h ,由已知条件得⎩⎪⎨⎪⎧ l +r +2r =5+2×22πrl =π2,解得r =2,l =42,S =πrl +πr 2=10π,h =l 2-r 2=30,V =13πr 2h =230π3.2.如图,在四棱台ABCD -A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .证明 (1)方式一 因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,因此D 1D ⊥BD .又因为AB =2AD ,∠BAD =60°,在△ABD 中,由余弦定理得BD 2=AD 2+AB 2-2AD ·AB cos 60°=3AD 2,因此AD 2+BD 2=AB 2,因此AD ⊥BD .又AD ∩D 1D =D ,因此BD ⊥平面ADD 1A 1.故AA 1⊥BD .方式二 因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,因此BD ⊥D 1D .如图,取AB 的中点G ,连接DG ,在△ABD 中,由AB =2AD 得AG =AD .又∠BAD =60°,因此△ADG 为等边三角形,因此GD =GB ,故∠DBG =∠GDB .又∠AGD =60°,因此∠GDB =30°,故∠ADB =∠ADG +∠GDB =60°+30°=90°,因此BD ⊥AD .又AD ∩D 1D =D ,因此BD ⊥平面ADD 1A .又AA 1⊂平面ADD 1A ,故AA 1⊥BD .(2)如图,连接AC ,A 1C 1,设AC ∩BD =E ,连接EA 1,因为四边形ABCD 为平行四边形,因此EC =12AC . 由棱台概念及AB =2AD =2A 1B 1知A 1C 1∥EC 且A 1C 1=EC ,因此四边形A 1ECC 1为平行四边形,因此CC 1∥EA .又EA 1⊂平面A 1BD ,CC 1⊄平面A 1BD ,因此CC 1∥平面A 1BD .3.如图,四棱锥P —ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段 AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)假设PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P —ABCD 的体积.因此PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,因此CE ⊥AD .又PA ∩AD =A ,因此CE ⊥平面PAD .(2)解 由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1.又因为AB =CE =1,AB ∥CE ,因此四边形ABCE 为矩形.因此S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE=1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,因此V 四棱锥P —ABCD =13S 四边形ABCD ·PA =13×52×1=56.4.如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 别离是CD 、A 1D 1的中点.(1)求证:AB 1⊥BF ;(2)求证:AE ⊥BF ;(3)棱CC 1上是不是存在点P ,使BF ⊥平面AEP ?假设存在,确信点P 的位置,假设不存在,说明理由.(1)证明 连接A 1B ,那么AB 1⊥A 1B ,又∵AB 1⊥A 1F ,且A 1B ∩A 1F =A 1,∴AB 1⊥平面A 1BF .又BF ⊂平面A 1BF ,∴AB 1⊥BF .(2)证明 取AD 中点G ,连接FG ,BG ,那么FG ⊥AE ,又∵△BAG ≌△ADE ,∴∠ABG =∠DAE .∴AE ⊥BG .又∵BG ∩FG =G ,∴AE ⊥平面BFG .又BF ⊂平面BFG ,∴AE ⊥BF .(3)解 存在.取CC 1中点P ,即为所求.连接EP ,AP ,C 1D ,∵EP∥C1D,C1D∥AB1,∴EP∥AB1.由(1)知AB1⊥BF,∴BF⊥EP.又由(2)知AE⊥BF,且AE∩EP=E,∴BF⊥平面AEP.5.(2021·安徽)如图,在长方体ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点.(1)证明:BD⊥EC1;(2)若是AB=2,AE=2,OE⊥EC1,求AA1的长.(1)证明连接AC,A1C1.由底面是正方形知,BD⊥AC.因为AA1⊥平面ABCD,BD⊂平面ABCD,因此AA1⊥BD.又AA1∩AC=A,因此BD⊥平面AA1C1C.因为EC1⊂平面AA1C1C知,BD⊥EC1.(2)解方式一设AA1的长为h,连接OC1.在Rt△OAE中,AE=2,AO=2,故OE2=(2)2+(2)2=4.在Rt△EA1C1中,A1E=h-2,A1C1=22,故EC21=(h-2)2+(22)2.在Rt△OCC1中,OC=2,CC1=h,OC21=h2+(2)2.因为OE⊥EC1,因此OE2+EC21=OC21,即4+(h-2)2+(22)2=h2+(2)2,解得h=32,因此AA1的长为3 2.方式二∵OE⊥EC1,∴∠AEO+∠A1EC1=90°.又∵∠A1C1E+∠A1EC1=90°,∴∠AEO=∠A1C1E.又∵∠OAE=∠C1A1E=90°,∴△OAE∽EA1C1,∴AEA1C1=AOA1E,即222=2A1E,∴A1E=22,∴AA1=AE+A1E=3 2.6.(2021·辽宁)如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.证明(1)由AB是圆O的直径,得AC⊥BC,由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,因此BC⊥平面PAC.(2)连接OG并延长交AC于M,连接QM,QO,由G为△AOC的重心,得M为AC中点.由Q为PA中点,得QM∥PC,又O为AB中点,得OM∥BC.因为QM∩MO=M,QM⊂平面QMO,MO⊂平面QMO,BC∩PC=C,BC⊂平面PBC,PC⊂平面PBC.因此平面QMO∥平面PBC.因为QG⊂平面QMO,因此QG∥平面PBC.。
专题4:立体几何(理科)
专题四:立体几何【一、基础知识归类:】1、三视图画法规则:高平齐:主视图与左视图的高要保持平齐 长对正:主视图与俯视图的长应对正 宽相等:俯视图与左视图的宽度应相等2、空间几何体三视图:正视图(从前向后的正投影);侧视图(从左向右的正投影); 俯视图(从上向下正投影).3、空间几何体的直观图——斜二测画法特点:①斜二测坐标系的y 轴与x 轴正方向成 45角; ②原来与x 轴平行的线段仍然与x 平行,长度不变; ③原来与y 轴平行的线段仍然与y 平行,长度为原来的一半. 常用结论:平面图形面积与其斜二侧直观图面积之比为22:1. 4、特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线):ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表()22R Rl rl r S +++=π圆台表 S 球面=24R π5、柱体、锥体、台体和球的体积公式:V Sh =柱 2V Sh r h π==圆柱 13V S h =锥 h r V 231π=圆锥'1()3V S S h =台'2211()()33V S S h r rR R h π=++=++圆台V 球=343R π 6、空间线面的位置关系①直线与直线:相交、平行、异面(不同在任何一个平面内的两条直线); ②直线与平面:属于a ⊂α、相交a∩α=A 、平行a ∥α;③ 平面与平面:平行—没有公共点:α∥β、相交—有一条公共直线:α∩β=b . 7、垂直和平行证明问题的解决方法须熟练掌握两类相互转化关系: 1.平行转化2.垂直转化同时注意结合运用中位线定理、勾股定理、等腰(等边)三角形“三线合一”; 平行四边形两组对边分别平行且相等,对角线互相平分; 菱形对边平行且四边相等,对角线互相垂直平分并平分对角; 矩形对边平行且相等,四个角为直角,以及对角线互相平分且相等;正方形对边平行且四边相等,四个角为直角,对角线互相垂直平分且相等并平分对角; 梯形上底和下底平行; 圆直径对应圆周角为直角、垂径定理、过切点的半径垂直于切线等. 8、立体几何中体积的求法:直接法、割补法、等积转化等方法. 9、(1)求异面直线所成的角θ∈(0,2π]. ①平移转化法:在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线;或过空间任一点分别作两异面直线的平行线,这样就作出了两异面直线所成的角θ,构造一个含θ的三角形,解三角形即可.②空间向量法:232221232221332211||||,cos bb b a a a b a b a b a b a ba b a ++⋅++++=⋅⋅>=<.(2)求直线与平面所成的角θ∈0,2π⎡⎤⎢⎥⎣⎦. ①一般先确定直线与平面的交点(斜足),然后在直线上取一点(除斜足外)作平面的垂线,再连接垂足和斜足(即得直接在平面内的射影),最后解由垂线、斜线、射影所组成的直角三角形,求出直线与平面所成的角.②法向量求直线与平面所成的角:要求直线a 与平面α所成的角θ,先求这个平面α的法向量与直线a的夹角的余弦a ,易知θ=a 2-π.(3)求二面角θ∈(0,π).1)直接法求二面角通常有:①根据定义作二面角的平面角;②垂面法作二面角的平面角; ③利用三垂线定理及其逆定理作二面角的平面角;无棱二面角先作出棱后同上进行. 2)间接法主要是投影法:即在一个平面α上的图形面积为S ,它在另一个平面β上的 投影面积为S′,这两个平面的夹角为θ,则S ′=S cos θ.3)法向量求二面角:如图,有两个平面α与β,分别作这两个平面的法向量1n 与2n ,则平面α与β所成的角跟法向量1n 与2n 所成的角2n 相等或互补,所以首先必须判断二面角是锐角还是钝角. 10.空间求距离(1)用法向量求异面直线间的距离:如右图所示,a 、b 是两异面直线,是a 和b的法向量,点E ∈a ,F ∈b ,则异面直线a 与b之间的距离是d=.(2)求点到平面的距离:①法向量:如右图所示,已知AB 是平面α的一条斜线,n 为平面α的法向量,则 A 到平面α的距离为d =;②等体积法:即求棱锥的高.(3)用法向量求直线到平面间的距离:首先必须确定直线与平面平行,然后将直线到平面的距离问题转化成直线上一点到平面的距离问题.(4)用法向量求两平行平面间的距离:首先必须确定两个平面是否平行,这时可以在一个平面上任取一点,将两平面间的距离问题转化成点到平面的距离问题.【二、专题练习:】一、选择题(本大题共12小题,每小题5分,总分60分)1.(2009天津重点学校二模) 如图,直三棱柱的主视图面积为2a 2,则左视图的面积为( )A .2a 2B .a 2C .23a D .243a2.(2009枣庄市二模)一个几何体的三视图如图所示, 则这个几何体的体积等于( ) A .361a B .321a C .332a D .365a 3.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( ) A .38π B .328π C .π28 D .332π 4.如图,正四棱柱1111D C B A ABCD -中,AB AA 21=, 则异面直线11AD B A 与所成角的余弦值为( )aaaA .51 B .52C .53D .545.给定空间中的直线l 及平面α,条件“直线l 与平面α内无 数条直线都垂直”是“直线l 与平面α垂直”的( )条件A .充要B .充分非必要C .必要非充分D .既非充分又非必要 6.一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为( )A .48+B .48+C .36+D .36+7.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1, 则BC 1与平面BB 1D 1D 所成角的余弦值为( )B.C.D.8.如图,在四面体ABCD 中,截面PQMN 是正方形, 则在下列命题中,错误..的为( ) A . AC BD ⊥B . AC ∥截面PQMNC . AC BD =D . 异面直线PM 与BD 所成的角为459.(2009泰安一模)一个几何体的三视图如图所示,则这个几何体的体积等于( )A .4B .6C .8D .1210.设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是( ) A .βαβα⊥⊥,//,b a B .βαβα//,,⊥⊥b aC .βαβα//,,⊥⊂b aD .βαβα⊥⊂,//,b a11.如图,1111ABCD A BC D -为正方体,下面结论错误..的是( ) (A )//BD 平面11CB D (B )1AC BD ⊥(C )1AC ⊥平面11CB D(D )异面直线AD 与1CB 所成的角为60︒12.正六棱锥P -ABCDEF 中,G 为PB 的中点,则三棱锥D -GAC 与三棱锥P -GAC 体积之比为( ) A .1:1 B .1:2 C .2:1 D .3:2二、填空题(本大题共4小题,每小题4分,总分16分)13.如果一个水平放置的图形的斜二测直观图是一个底面为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是 .14.在半径为13的球面上有A , B , C 三点,AB=6,BC=8,CA=10,则球心到平面ABC 的距离为 . 15.图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是 .16.如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D ,作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .三、解答题(本大题共6小题,总分74分)17.如图,四棱锥P —ABCD 的底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点. (Ⅰ)证明PA//平面BDE ;A(Ⅱ)求二面角B —DE —C 的平面角的余弦值;(Ⅲ)在棱PB 上是否存在点F ,使PB ⊥平面DEF ?证明你的结论.18.(2009东莞一模)如图,在长方体1,1,11111>==-AB AA AD D C B A ABCD 中,点E 在棱AB 上移动,小蚂蚁从点A 沿长方体的表面爬到点C 1,所爬的最短路程为22. (1)求证:D 1E ⊥A 1D ; (2)求AB 的长度;(3)在线段AB 上是否存在点E ,使得二面角41π的大小为D EC D --.若存在,确定点E 的位置;若不存在,请说明理由.19.(2009番禺一模)如图,在四棱锥P ABCD-中,底面形,侧面PAD ⊥底面ABCD,且PA P D ==,若E 、F分别为线段PC 、BD 的中点. (1)求证:直线EF // 平面PAD ; (2)求证:平面PDC ⊥平面PAD ; (3)求二面角B PD C --的正切值.20.(广东省湛江二中2010届高三第四次月考)如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,垂足为A ,PA=AB ,点M 在棱PD 上,PB ∥平面ACM . (1)试确定点M 的位置;(2)计算直线PB 与平面MAC 的距离;(3)设点E 在棱PC 上,当点E 在何处时,使得AE ⊥平面PBD ?21.(2009汕头一模)如图,己知∆BCD 中,∠BCD = 900,BC =CD =1,AB ⊥平面BCD ,∠ADB =600,E 、F 分别是AC 、AD 上的动点,且(01)AE AFAC ADλλ==<<. (1)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;D(2)若平面BEF 与平面BCD 所成的二面角的大小为60°,求λ的值.22.如图,四面体ABCD 中,O 是BD 的中点,ABD ∆和BCD ∆均为等边三角形,2,AB AC = (I )求证:AO ⊥平面BCD ;(Ⅱ)求二面角A BC D --的余弦值; (Ⅲ)求O 点到平面ACD 的距离.【参考答案】一、选择题 1.C 2.D3.答案:B 解析:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒的体积公式知3433R V π==球,故B 为正确答案. 4.D5.答案:C 解析:直线与平面α内的无数条平行直线垂直,但该直线未必与平面α垂直,即充分性不成立. 6.答案:A 解析:棱锥的直观图如右,则有PO =4,OD =3,由勾股定理,得PD =5,AB =62,全面积为:21×6×6+2×21×6×5+21×62×4=48+122,故选A . 7.【解析】选D. 连11AC 与11B D 交于O 点,再连BO ,则1OBC ∠为BC 1与平面BB 1D 1D 所成的角.111cos OC OBC BC ∠=,1OC =1BC =1cos OBC ∴∠=.8—9:D A10.答案:C 解析:由b β⊥,α∥β得b α⊥,又a α⊂,可知b a ⊥,故a b ⊥的一个充分条件是C . 11.【解析】选D .显然异面直线AD 与1CB 所成的角为45︒.12.【解析】选C .由于G 是PB 的中点,故P -GAC 的体积等于B -GAC 的体积 在底面正六边形ABCDER 中 BH =ABtan30°=而BD故DH =2BH 于是V D -GAC =2V B -GAC =2V P -GAC .二、填空题13.恢复后的原图形为一直角梯形1(11)222S =+⨯=+ 14.答案:12解析:由ABC ∆的三边大小易知此三角形是直角三角形,所以过,,A B C 三点小圆的直径即为10,也即半径是5,设球心到小圆的距离是d ,则由222513d +=,可得12d =.15.【解析】向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,设长方体的高为x ,则()()42122214x x x +=++,所以3x =,所以长方体的体积为3.16.【解析】此题的破解可采用二个极端位置法,即对于F 位于DC 的中点时,1t =,随着F 点到C 点时,因,,CB AB CB DK CB ⊥⊥∴⊥平面A D B ,即有CB BD ⊥,对于2,1,CD BC BD ==∴,又1,2AD AB ==,因此有AD BD ⊥,则有12t =,因此t 的取值范围是1,12⎛⎫⎪⎝⎭.三、解答题17.【解析】(Ⅰ)以D 为坐标原点,分别以DA 、DC 、DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设PD=DC=2,则A (2,0,0),P (0,0,2),E (0,1,1),B (2,2,0), )0,2,2(),1,1,0(),2,0,2(==-=设 1(,,)n x y z =是平面BDE 的一个法向量,则由 111001,(1,1,1).2200n DE y z y n x y n DB ⎧⋅=+=⎧⎪=-=-⎨⎨+=⋅=⎩⎪⎩得取得∵11220,,//.PA n PA n PA BDE PA BDE ⋅=-=∴⊥⊄∴,又平面平面 (Ⅱ)由(Ⅰ)知1(1,1,1)n =-是平面BDE 的一个法向量, 又2(2,0,0)n DA ==是平面DEC 的一个法向量.设二面角B —DE —C 的平面角为θ,由图可知12,n n θ=<>∴121212cos cos ,||||3n n n n n n θ⋅=<>===⋅⨯故二面角B —DE —C 的余弦值为33(Ⅲ)∵)1,1,0(),2,2,2(=-= ∴.,0220DE PB DE PB ⊥∴=-+=⋅ 假设棱PB 上存在点F ,使PB ⊥平面DEF ,设)10(<<=λλ, 则)22,2,2(),2,2,2(λλλλλλ-=+=-=PF DP DF PF ,由0)22(244022=--+=⋅λλλλ得∴PB PF 31)1,0(31=∈=,此时λ即在棱PB 上存在点F ,31=PF PB ,使得PB ⊥平面DEF18.解一:(1)证明:连结AD 1,由长方体的性质可知:AE ⊥平面AD 1,∴AD 1是ED 1在 平面AD 1内的射影。
专题提升卷04 立体几何中组合体问题(解析版)
高一下学期期中复习备考精准测试卷---第二篇 专题提升卷 专题4 立体几何中的组合体问题类型一 组合体的表面积与体积【典型例题】早期的毕达哥拉斯学派学者注意到:用等边三角形或正方形为表面可构成四种规则的立体图形,即正四面体、正六面体、正八面体和正二十面体,它们的各个面和多面角都全等.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin 36︒按35计算,则该正二十面体的表面积与该正二十面体的外接球表面积之比等于___________.【答案】36π【分析】可得正二十面体的外接球即为上方正五棱锥的外接球,设外接球半径为R ,正五边形的外接圆半径为r ,正二十面体的棱长为l ,可得56l r =,11R =,即可表示出外接球的表面积和正二十面体的表面积,得出答案.【详解】由图知正二十面体的外接球即为上方正五棱锥的外接球,设外接球半径为R ,正五边形的外接圆半径为r ,正二十面体的棱长为l ,则3sin 3652lr =︒=,得56lr =,所以正五棱锥的顶点到底面的距离是h ===,所以222()R r R h =+-,即22256l R R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭,解得R =.所以该正二十面体的外接球表面积为22236441111S R l πππ⎛⎫==⨯= ⎪ ⎪⎝⎭球,而该正二十面体的表面积是2 120sin 602S l l =⨯⨯⨯⨯︒=正二十面体,所以该正二十面体的表面积与该正二十面体的外.【变式训练】已知一个圆锥的底面半径与高均为2,且在这个圆锥中有一个内接圆柱.当此圆柱的侧面积最大时,此圆柱的体积等于___________. 【答案】π【分析】先画出几何体的轴截面图,设圆柱的底面半径为r ,则圆柱的侧面积为222(2)2(2)2[(1)1]S r r r r r πππ=-=--=---,从而可求出1r =时,S 取得最大值,进而可求出圆柱的体积【详解】该几何体的轴截面如图所示,则2OA OB OC ===,设圆柱的底面半径为r ,则,2OD ME AM r OM r ====-,所以圆柱的侧面积为222(2)2(2)2[(1)1]S r r r r r πππ=-=--=---, 所以当1r =时,S 取得最大值2π,此时圆柱的体积为211V ππ=⨯⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弦值为 cosθ=|mm|·|nn|=31111,∴1
1212,所以
tanθ=
32.
第13讲 │ 要点热点探究
例 4 [2011·全国卷] 已知直二面角 α-l-β,点 A∈α,AC⊥l,C
为垂足.点 B∈β,BD⊥l,D 为垂足.若 AB=2,AC=BD=1,则
D 到平面 ABC 的距离等于( )
(1)证明:EA⊥PB; (2)证明:BG∥平面 AFC.
M
图 13-2
第13讲 │ 要点热点探究
【解答】 证明:(1)因为底面 ABCD 为菱形,且∠ABC=60°, 所以△ACD 为等边三角形. 又因为 E 是 CD 的中点,所以 EA⊥AB. 又 PA⊥平面 ABCD,所以 EA⊥PA. 由 PA∩AB=A,所以 EA⊥平面 PAB,所以 EA⊥PB. (2)取 PF 中点 M,所以 PM=MF=FD.连接 MG,MG∥CF, 所以 MG∥平面 AFC. 连接 BM,BD,设 AC∩BD=O,连接 OF, 所以 BM∥OF,所以 BM∥平面 AFC. 所以平面 BGM∥平面 AFC,所以 BG∥平面 AFC.
BH 垂直 AG,则 EH⊥AG,故∠BHE 是平面 AEF 与平面 ABC 所成二面角的
平面角.设正方体的棱长为 a,可得 BE=a3,BG=a,所以 BH= 22a,则 tan
a
∠BHE=BBHE=
3 2
=
2 3.
2a
第13讲 │ 要点热点探究
方法二:设正方体的棱长为 3,建立以 B1A1 为 x 轴,B1C1 为 y 轴,B1B 为 z 轴的空间直角坐标系,则 A(3,0,3),E(0,0,2),F(0,3,1),则E→A=(3,0,1), E→F=(0,3,-1),设平面 AEF 的法向量为 n=(x,y,z),则 n⊥E→A,n⊥E→F, 即 3x+z=0 且 3y-z=0,取 z=3,则 x=-1,y=1,所以 n=(-1,1,3).又 平面 ABC 的法向量为 m=(0,0,3),所以面 AEF 与面 ABC 所成的二面角的余
(1)在三棱柱 ABC-A1B1C1 中,各棱长相等,侧棱垂直于底
面,点 D 是侧面 BB1C1C 的中心,则 AD 与平面 BB1C1C 所成角的大小是
()
A.30°
B.45°
C.60°
D.90°
(2)如图 13-3,在正三角形 ABC 中,D,E,F 分别为各边的中点, G,H 分别为 DE,AF 的中点,将△ABC 沿 DE,EF,DF 折成正四面体 P-DEF,则四面体中异面直线 PG 与 DH 所成的角的余弦值为________.
在垂直的相关定理中,要特别注意记忆面面垂直的性质定理:两个平面 垂直,在一个平面内垂直于它们交线的直线必垂直于另一个平面.当题目中 有面面垂直的条件时,一般都要用此定理进行转化.
第13讲 │ 要点热点探究
要点热点探究
► 探究点一 空间线面位置关系的判断
例 1 [2011·四川卷] l1,l2,l3 是空间三条不同的直线,则下列
【点评】 在直线与直线的位置关系中,要注意平面上两 直线位置关系的结论,在空间不一定成立.在解决点线面位 置关系的判断时要注意空间问题和平面问题的区别与联系.
第13讲 │ 要点热点探究
► 探究点二 平行与垂直关系的证明
例 2 如图 13-2,已知四棱锥 P-ABCD,底面 ABCD 为菱形, PA⊥平面 ABCD,∠ABC=60°,点 E、G 分别是 CD、PC 的中点, 点 F 在 PD 上,且 PF∶FD=2∶1.
2.解决平行问题时要注意以下结论的应用 (1)经过平面外一点有且只有一个平面与已知平面平行. (2)两个平面平行,其中一个平面内的任一直线必平行于另一个 平面.
第13讲 │ 主干知识整合
(3)一条直线与两平行平面中的一个相交,那么它与另一个也相交. (4)平行于同一条直线的两条直线平行. (5)平行于同一个平面的两个平面平行. (6)如果一条直线与两个相交平面都平行,那么这条直线必与它们的交 线平行. 3.垂直关系的转化 与平行关系之间的转化类似,它们之间的转化如下示意图.
A.m∥β 且 l1∥α
B.m∥l1 且 n∥l2
C.m∥β 且 n∥β
D.m∥β 且 n∥l2
第13讲 │ 要点热点探究
B 【解析】 对于 A,直线 l1 与 l3 可能异面;对于 C,直线 l1、 l2、l3 可能构成三棱柱三条侧棱所在直线时而不共面;对于 D,直 线 l1、l2、l3 相交于同一个点时不一定共面. 所以选 B.
命题正确的是( B ) A.l1⊥l2,l2⊥l3⇒l1∥l3 B.l1⊥l2,l2∥l3⇒l1⊥l3 C.l1∥l2∥l3⇒l1,l2,l3 共面 D.l1,l2,l3 共点⇒l1,l2,l3 共面
变式 设 m,n 是平面 α 内的两条不同直线;l1,l2 是平面 β
内的两条相交直线,则 α∥β 的一个充分而不必要条件是( B )
A.
2 3
B.
3 3
C.
6 3
D.1
C 【解析】 ∵α⊥β,AC⊥l,∴AC⊥β,则平面 ABC ⊥β,在平面 β 内过 D 作 DE⊥BC,则 DE⊥平面 ABC,DE 即为 D 到平面 ABC 的距离,在△DBC 中,运用等面积法得
DE= 36,故选 C.
第13讲 │ 要点热点探究
第13讲 │ 要点热点探究
第13讲 │ 要点热点探究
► 探究点三 空间角与距离的求法
例 3 [2011·全国卷] 已知点 E,F 分别在正方体 ABCD-A1B1C1D1 的棱 BB1,CC1 上,且 B1E=2EB,CF=2FC1,则面 AEF 与面 ABC 所成的二面角的正切值等于________.
2 3
【解析】 方法一:在平面 BC1 内延长 FE 与 CB 相交于 G,过 B 作
专题四 立体几何
专题四 │ 知识网络构建
知识网络构建
第13讲 点、直线、平面之间的位置关系
第13讲 点、直线、平面之间 的位置关系
第13讲 │ 主干知识整合
主干知识整合
1.平行关系的转化 两平面平行问题常常转化为直线与平面的平行,而直线与平面平 行又可转化为直线与直线平行,所以要注意转化思想的应用,以下为 三种平行关系的转化示意图.