2018届高三数学过关测试:第24练 导数综合练 含答案
2018版高三新课标版·数学(理)总复习题组层级快练24含解析
题组层级快练(二十四)1.(2017·江苏无锡模拟)函数y=sin(2x-错误!)在区间[-错误!,π]上的简图是()答案A解析令x=0得y=sin(-错误!)=-错误!,排除B、D项.由f(-错误!)=0,f(错误!)=0,排除C项.故选A。
2.(2016·浙江)函数y=sinx2的图像是()答案D解析由于函数y=sinx2是一个偶函数,选项A、C的图像都关于原点对称,所以不正确;选项B与选项D的图像都关于y轴对称,在选项B中,当x=±错误!时,函数y=sinx2<1,显然不正确,当x=±错误!,y=sinx2=1,而错误!<错误!,故选D。
3.为得到函数y=cos(2x+错误!)的图像,只需将函数y=sin2x的图像( )A.向左平移错误!个长度单位B.向右平移错误!个长度单位C.向左平移错误!个长度单位D.向右平移错误!个长度单位答案A解析本题主要考查三角函数的平移,首先是化为同名函数.y=cos (2x+错误!)=sin(2x+错误!).4.若把函数y=f(x)的图像沿x轴向左平移错误!个单位,沿y轴向下平移1个单位,然后再把图像上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到函数y=sinx的图像,则y=f(x)的解析式为( )A.y=sin(2x-错误!)+1 B.y=sin(2x-错误!)+1C.y=sin(错误!x+错误!)-1 D.y=sin(错误!x+错误!)-1答案B解析将y=sinx的图像上每个点的横坐标变为原来的一半(纵坐标保持不变),得到y=sin2x的图像,再将所得图像向上平移1个单位,得到y=sin2x+1的图像,再把函数y=sin2x+1的图像向右平移错误!个单位,得到y=sin2(x-错误!)+1的图像,即函数f(x)的图像,所以f(x)=sin2(x-错误!)+1=sin(2x-错误!)+1,故选B.5.要得到函数y=sin错误!x的图像,只需将函数y=sin(错误!x-错误!)的图像( )A.向左平移错误!个单位B.向右平移错误!个单位C.向左平移错误!个单位D.向右平移错误!个单位答案C6.函数y=sinx-cosx的图像可由y=sinx+cosx的图像向右平移( )A.错误!个单位B.π个单位C.错误!个单位D.错误!个单位答案D解析y=sinx+cosx=错误!sin错误!,y=sinx-cosx=2sin错误!=错误!sin错误!.7.(2017·河北石家庄模拟)若ω〉0,函数y=cos(ωx+错误!)的图像向右平移2π3个单位长度后与原图像重合,则ω的最小值为( )A。
高考数学专题:导数大题专练含答案
高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围. 2.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.4.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数) 5.求下列函数的导数: (1)2cos x xy x -=; (2)()e 1cos 2x x y x =+-; (3)()3log 51y x =-.6.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.7.已知函数()323f x x ax x =-+.(1)若3x =是()f x 的极值点,求()f x 在[]1,a 上的最大值和最小值;(2)若()f x 在[)1,+∞上是单调递增的,求实数a 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.10.已知函数()222(0)e xmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224e f x f x -≤恒成立,求实数m 的取值范围.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+;②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数,所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)单调递增 (2)证明见解析 【解析】 【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x =+-的两个零点得到1212122ln x xx x x x -=,分别解出1211212ln x xx x x -=,2121212ln xx x x x -=,再换元令12x t x =构造函数()12ln l t t t t=--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x=+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln22x x x x =-,即112221ln 2x x x x x x -=, ∴1212122ln x x x x x x -=,则1211212ln x x x x x -=,2121212ln xx x x x -=. 令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.【点睛】本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立,因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞.4.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x x x x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>,所以函数()g x 在10,4⎛⎫⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减, 所以,()()01r x r <=,所以不等式()21e 011x xx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a-<<<-,所以βα-> 所以21x x->综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii)小题证明的关键是,利用1e x x +≤,进行放缩可得1x 21x x -<;再利用()21e 011x xx x +<<<-,进行放缩可得()()1201,21ii i ixax f x i x +'⋅+->==-,从而构造二次函数()(222m x ax ax =-++++21x x ->5.(1)'y ()31sin 2cos x x xx --=;(2)'y ()e 1cos sin 2ln 2x xx x =+--;(3)'y ()551ln 3x =-⋅.【解析】 【分析】根据导数的运算法则,对(1)(2)(3)逐个求导,即可求得结果. (1)因为2cos x x y x -=,故'y ()()()243sin 12cos 1sin 2cos x x x x x x x x x x------==. (2)因为()e 1cos 2x x y x =+-,故'y ()e 1cos sin 2ln 2x xx x =+--.(3)因为()3log 51y x =-,故'y ()()155?51ln 351ln 3x x =⨯=--⋅. 6.(1)()3232f x x x =+-(2)()2,2- 【解析】 【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围.(1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-.当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值. 因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >,由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减, 则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-. 7.(1)最大值为15,最小值为9- (2)3a ≤ 【解析】 【分析】(1)由()30f '=可求得实数a 的值,再利用函数的最值与导数的关系可求得函数()f x 在[]1,a 上的最大值和最小值;(2)分析可知()23230f x x ax '=-+≥对任意的1≥x 恒成立,利用参变量分离法结合基本不等式可求得实数a 的取值范围. (1)解:因为()323f x x ax x =-+,则()2323f x x ax =-+',则()33060f a '=-=,解得5a =,所以,()3253f x x x x =-+,则()()()23103313f x x x x x '=-+=--,列表如下:所以,min 39f x f ==-,因为11f =-,515f =,则max 515f x f ==. (2)解:由题意可得()23230f x x ax '=-+≥对任意的1≥x 恒成立,即312a x x⎛⎫≤+ ⎪⎝⎭,由基本不等式可得313322x x ⎛⎫+≥⨯ ⎪⎝⎭,当且仅当1x =时,等号成立,故3a ≤.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】 【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元. 9.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调性和极值. (1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞,令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e . 又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.10.(1)单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦ (2)20,4e ⎛⎤ ⎥-⎝⎦【解析】 【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围. (1)()()()()221422(0)e e xxmx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>,当[)2,x ∞∈+时,()0f x '≤即()f x 的单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦(2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立 所以()f x 在[]1,2上为增函数, 即()()max min242()2,()1e em mf x f f x f +====. ()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-=()()1224e f x f x ⎡⎤≥-⎣⎦恒成立()224e 24e e m -+∴≥ 即24em ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦ 故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦。
直击2024年高考——高三数学导数题型专练(全国版)
导数题型专练【利用公式和四则运算求导】 【例1】下列求导运算正确的是( ) A.⎝⎛⎭⎫1ln x ′=-1x ln 2x B .(x 2e x )′=2x +e x C.⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-sin ⎝⎛⎭⎫2x -π3 D.⎝⎛⎭⎫x -1x ′=1+1x 2 【答案】 AD【解析】 ⎝⎛⎭⎫1ln x ′=-1ln 2x ·(ln x )′=-1x ln 2x , 故A 正确;(x 2e x )′=(x 2+2x )e x ,故B 错误;⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-2sin ⎝⎛⎭⎫2x -π3,故C 错误;⎝⎛⎭⎫x -1x ′=1+1x 2,故D 正确.【复合函数求导】 【例2】设函数,若,则.【答案】 1; 【解析】 函数, , ,,解得, 故答案为:.【根据导数构造抽象函数】 【例3】已知可导函数的导函数为,若对任意的,都有,且为奇函数,则不等式的解集为( ).A.B.C.D.【答案】 A; 【解析】 设,由,得:,故函数在递减,由为奇函数,得, ∴,即,∵不等式,∴,即, 结合函数的单调性得:, 故不等式的解集是.故选.【求在某点处的切线方程】【例4】曲线y =2x -1x +2在点(-1,-3)处的切线方程为__________.【答案】 5x -y +2=0【解析】 y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.【求过某点处的切线方程】【例5】y =2x 2+8过点P(1,2)的切线方程是( ). A. y =−4x +6B. y =12x −10C. y =−4x +6或y =12x −10D. y =4x +6或y =12x −10【答案】 C;【解析】 设切点坐标为(x 0 ,2x 02+8),y ′=4x ,∴切线斜率k =4x 0,则2x 02+8−2x 0−1=4x 0,解得x 0=−1或3,∴所求切线方程为y =−4x +6或y =12x −10.【根据切线求参数问题】【例6】直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于( ) A .4 B .3C .2D .1【答案】 A【解析】 ∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵ f (x )=a ln x +b ,∴ f ′(x )=ax , 由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln 1+b =2,解得b =2,故2a +b =2+2=4.【例7】过定点P (1,e)作曲线y =a e x (a >0)的切线,恰有2条,则实数a 的取值范围是________. 【答案】 (1,+∞)【解析】 由y ′=a e x ,若切点为(x 0,0e x a ), 则切线方程的斜率k =0'|x x y ==0e x a >0,∴切线方程为y =0e x a (x -x 0+1), 又P (1,e)在切线上, ∴0e x a (2-x 0)=e ,即ea =0e x (2-x 0)有两个不同的解,令φ(x )=e x (2-x ), ∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0; 当x ∈(1,+∞)时,φ′(x )<0,∴φ(x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴φ(x )max =φ(1)=e , 又x →-∞时,φ(x )→0; x →+∞时,φ(x )→-∞, ∴0<ea <e ,解得a >1,即实数a 的取值范围是(1,+∞).【两曲线的公切线】【例8】已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于( ) A .0 B .-1 C .3 D .-1或3【答案】 D【解析】 由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln 1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1,因为直线l 与g (x )的图象也相切,则方程组⎩⎪⎨⎪⎧y =x -1,g x =x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.【利用导数确定函数图象】 【例9】已知函数,则的图象大致为( ).A. B.C. D.【答案】A;【解析】令,则,由,得,即函数在上单调递增,由得,即函数在上单调递减,所以当时,函数有最小值,,于是对任意的,有,故排除、,因为函数在上单调递减,则函数在上单调递增,故排除.故选.【利用导数求具体函数的单调性】【例10】函数f(x)=x2-2ln x的单调递减区间是()A.(0,1) B.(1,+∞)C.(-∞,1) D.(-1,1)【答案】A【解析】∵f′(x)=2x-2 x=2(x+1)(x-1)x(x>0),令f′(x)=0,得x=1,∴当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.【例11】若函数f(x)=ln x+1e x,则函数f(x)的单调递减区间为________.【答案】(1,+∞)【解析】f(x)的定义域为(0,+∞),f′(x)=1x-ln x-1e x,令φ(x)=1x-ln x-1(x>0),φ′(x)=-1x2-1x<0,φ(x)在(0,+∞)上单调递减,且φ(1)=0,∴当x∈(0,1)时,φ(x)>0,当x∈(1,+∞)时,φ(x)<0,∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.【利用导数求含参函数的单调性】【例12】已知函数.讨论的单调性.【答案】当时,增区间为,无减区间;当时,增区间为,减区间为.【解析】函数的定义域为:,,①当时,恒成立,在上单调递增,无减区间;②当时,令,解得,∴增区间为,减区间为综上:当时,增区间为,无减区间;当时,增区间为,减区间为.【例13】已知函数是自然对数的底数).讨论的单调性.【答案】 当时,在上单调递减; 当时,在上单调递减,在上单调递增. 【解析】,当时,,在上单调递减; 当时,由得,所以在上单调递减;由得,所以在上单调递增.综上,当时,在上单调递减;当时,在上单调递减,在上单调递增.【导数解决单调性的应用-比较大小】【例14】已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 【答案】 A【解析】 因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3.又当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=sin x +x cos x >0,所以函数f (x )在⎝⎛⎭⎫0,π2上单调递增,所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5.【导数解决单调性的应用-解不等式】【例15】已知函数f (x )=e x -e -x -2x +1,则不等式f (2x -3)>1的解集为________.【答案】 ⎝⎛⎭⎫32,+∞【解析】 f (x )=e x -e -x -2x +1,定义域为R , f ′(x )=e x +e -x -2≥2e x ·e -x -2=0,当且仅当x =0时取“=”, ∴f (x )在R 上单调递增, 又f (0)=1,∴原不等式可化为f (2x -3)>f (0), 即2x -3>0,解得x >32, ∴原不等式的解集为⎝⎛⎭⎫32,+∞.【导数解决单调性的应用-求参数范围】【例16】已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上单调递增,则实数a 的取值范围为________. 【答案】 ⎣⎡⎭⎫43,+∞ 【解析】 由题意知f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立, 即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立, ∵⎝⎛⎭⎫-x +1x max =83, ∴2a ≥83,即a ≥43.【根据函数图象判断极值】【例17】设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A.函数f(x)有极大值f(-3)和f(3)B.函数f(x)有极小值f(-3)和f(3) C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)【答案】D【解析】由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).【利用导数求函数的极值】【例18】已知函数,其中.求函数的极值.【答案】当时,在单调递减,无极值,当时,在单调递增,上单调递减.∴有极大值.【解析】,,令得,,当时,在单调递减,无极值,当时,在单调递增,上单调递减.∴有极大值.【例19】已知函数.判断函数的极值点的个数,并说明理由.【答案】当时,函数有一个极值点;当或时,函数有两个极值点,当时,函数无极值点.【解析】因为,所以.()当时,有,令,得.当变化时,和的变化情况如下:所以当时,函数只有一个极值点.()当时,令,得,.①当时,.当变化时,和的变化情况如下:所以当时,函数有两个极值点.②当时,恒成立,所以在上单调递增,所以当时,函数无极值点.③当时,,当变化时,和的变化情况如下:所以当时,函数有两个极值点,综上,当时,函数有一个极值点;当或时,函数有两个极值点,当时,函数无极值点.【已知极值(点)求参数】【例20】函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则a +b 等于()A .-7B .0C .-7或0D .-15或6【答案】 A【解析】 由题意知,函数f (x )=x 3+ax 2+bx +a 2,可得f ′(x )=3x 2+2ax +b ,因为f (x )在x =1处取得极值10,可得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10,解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3,检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1),当x <-113或x >1时,f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减,当x =1时,函数f (x )取得极小值,符合题意.所以a +b =-7.【利用导数求函数的最值】【例21】函数的最小值为 . 【答案】 ; 【解析】 当时,,,此时单调递减,此时.当时,,, 当时,,单调递减, 时,,单调递增, ∴此时,∵,∴的最小值为. 【例22】已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).【答案】(1) e 2-3e +1;(2) h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.【解析】 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x=(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1;②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增,h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ;③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e.综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.【数形结合法研究函数零点】【例23】已知函数f (x )=e x -a (x +2).(1)当a =1时,讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【解析】 (1)当a =1时,f (x )=e x -(x +2),f ′(x )=e x -1,令f ′(x )<0,解得x <0,令f ′(x )>0,解得x >0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)令f (x )=0,得e x =a (x +2),即1a =x +2e x ,所以函数y =1a 的图象与函数φ(x )=x +2e x 的图象有两个交点,φ′(x )=-x -1e x ,当x ∈(-∞,-1)时,φ′(x )>0;当x ∈(-1,+∞)时,φ′(x )<0,所以φ(x )在(-∞,-1)上单调递增,在(-1,+∞)上单调递减,所以φ(x )max =φ(-1)=e ,且x →-∞时,φ(x )→-∞;x →+∞时,φ(x )→0,所以0<1a <e ,解得a >1e .所以a 的取值范围是⎝⎛⎭⎫1e ,+∞.【利用函数性质研究函数零点】【例24】已知函数f (x )=x -a ln x (a >0).(1)求函数f (x )的单调区间;(2)求函数g (x )=12x 2-ax -f (x )的零点个数.【解析】 (1)函数f (x )的定义域为(0,+∞),由f (x )=x -a ln x 可得f ′(x )=1-a x =x -a x ,由f ′(x )>0可得x >a ;由f ′(x )<0可得0<x <a ,所以f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由g (x )=12x 2-ax -x +a ln x=12x 2-(a +1)x +a ln x ,可得g ′(x )=x -(a +1)+a x令g ′(x )=0可得x =1或x =a ,因为g (1)=12-a -1=-a -12<0,g (2a +3)=12(2a +3)2-(a +1)(2a +3)+a ln(2a +3)=a +a ln(2a +3)+32>0,当a >1时,g (x )在(1,a )上单调递减,所以g (1)>g (a ),所以g (a )<0,所以g (x )有一个零点,当a =1时,g (x )在(0,+∞)上单调递增,所以g (x )有一个零点,当0<a <1时,g (x )在(0,a )上单调递增,在(a ,1)上单调递减,在(1,+∞)上单调递增,此时g (a )=12a 2-(a +1)a +a ln a=-12a 2-a +a ln a <0,g (x )只有一个零点,综上所述,g (x )在(0,+∞)上只有一个零点.【导数构造问题】【例25】已知定义在R 上的函数f (x ),其导函数为f ′(x ),当x >0时,f ′(x )-f (x )x >0,若a=2f (1),b =f (2),c =4f ⎝⎛⎭⎫12,则a ,b ,c 的大小关系是( )A .c <b <aB .c <a <bC .b <a <cD .a <b <c 【答案】 B【解析】 构造函数g (x )=f (x )x (x >0),得g ′(x )=xf ′(x )-f (x )x 2=1x ⎣⎡⎦⎤f ′(x )-f (x )x , 由题知当x >0时,f ′(x )-f (x )x >0,所以g ′(x )>0,故g (x )在(0,+∞)上单调递增,所以f (2)2>f (1)1>f ⎝⎛⎭⎫1212,即f (2)>2f (1)>4f ⎝⎛⎭⎫12,即b >a >c .【例26】(多选)已知f (x )是定义在(-∞,+∞)上的函数,导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)<e 2f (0)B .f (2)>e 2f (0)C .e 2f (-1)>f (1)D .e 2f (-1)<f (1)【答案】 AC【解析】 构造F (x )=f (x )e x ,则F ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x,导函数f ′(x )满足f ′(x )<f (x ),则F ′(x )<0,F (x )在R 上单调递减,根据单调性可知A ,C 选项正确.【例27】(多选)定义在⎝⎛⎭⎫0,π2上的函数f (x ),已知f ′(x )是它的导函数,且恒有cos x ·f ′(x )+sin x ·f (x )<0成立,则有( )A .f ⎝⎛⎭⎫π6>2f ⎝⎛⎭⎫π4 B.3f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π3 C .f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3 D.2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4 【答案】 CD【解析】 构造函数g (x )=f (x )cos x ⎝⎛⎭⎫0<x <π2. 则g ′(x )=f ′(x )cos x +f (x )sin x (cos x )2<0,即函数g (x )在⎝⎛⎭⎫0,π2上单调递减, 所以g ⎝⎛⎭⎫π6>g ⎝⎛⎭⎫π3,所以f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3, 同理g ⎝⎛⎭⎫π6>g ⎝⎛⎭⎫π4, 即2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4.【同构法导数构造】【例28】若存在x ,y ∈(0,+∞)使得x ln(2ax )+y =x ln y ,则实数a 的最大值为( ) A.1eB.12eC.13eD.2e【答案】 B【解析】 由x ln(2ax )+y =x ln y ,得ln(2a )=ln y x -y x ,令t =y x >0,g (t )=ln t -t ,则g ′(t )=1t -1=1-t t ,当0<t <1时,g ′(t )>0,当t >1时,g ′(t )<0,所以g (t )在(0,1)上单调递增,在(1,+∞)上单调递减,所以当t =1时,g (t )取得极大值即最大值g (1)=-1,因为当t →0时,g (t )→-∞,所以g (t )∈(-∞,-1],所以ln 2a ≤-1,所以0<a ≤12e ,所以实数a 的最大值为12e .【分参法解决恒成立问题】【例29】已知函数f (x )=(x -2)e x -12ax 2+ax (a ∈R ).(1)当a =0时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当x ≥2时,f (x )≥0恒成立,求a 的取值范围.【解析】(1)当a =0时,f (x )=(x -2)e x ,f (0)=(0-2)e 0=-2,f ′(x )=(x -1)e x ,k =f ′(0)=(0-1)e 0=-1,所以切线方程为y +2=-(x -0),即x +y +2=0.(2)方法一 当x ≥2时,f (x )≥0恒成立,等价于当x ≥2时,(x -2)e x -12ax 2+ax ≥0恒成立.即⎝⎛⎭⎫12x 2-x a ≤(x -2)e x 在[2,+∞)上恒成立.当x =2时,0·a ≤0,所以a ∈R .当x >2时,12x 2-x >0,所以a ≤(x -2)e x 12x 2-x=2e x x 恒成立. 设g (x )=2e x x ,则g ′(x )=2(x -1)e x x 2, 因为x >2,所以g ′(x )>0,所以g (x )在区间(2,+∞)上单调递增.所以g (x )>g (2)=e 2,所以a ≤e 2.综上所述,a 的取值范围是(-∞,e 2].【整体法解决恒成立问题】【例30】已知函数f (x )=e x -1-ax +ln x (a ∈R ). (1)若函数f (x )在x =1处的切线与直线3x -y =0平行,求a 的值;(2)若不等式f (x )≥ln x -a +1对一切x ∈[1,+∞)恒成立,求实数a 的取值范围.【解析】(1)f ′(x )=e x -1-a +1x ,∴f ′(1)=2-a =3,∴a =-1,经检验a =-1满足题意,∴a =-1,(2)f (x )≥ln x -a +1可化为e x -1-ax +a -1≥0,x >0,令φ(x )=e x -1-ax +a -1,则当x ∈[1,+∞)时,φ(x )min ≥0,∵φ′(x )=e x -1-a ,①当a ≤1e 时,φ′(x )>0,∴φ(x )在[1,+∞)上单调递增,∴φ(x )min =φ(1)=1-a +a -1=0≥0恒成立,∴a ≤1e 符合题意.②当a >1e 时,令φ′(x )=0,得x =ln a +1.当x ∈(0,ln a +1)时,φ′(x )<0,当x ∈(ln a +1,+∞)时,φ′(x )>0,∴φ(x )在(0,ln a +1)上单调递减,在(ln a +1,+∞)上单调递增.当ln a +1≤1,即1e <a ≤1时,φ(x )在[1,+∞)上单调递增,φ(x )min =φ(1)=0≥0恒成立,∴1e <a ≤1符合题意.当ln a +1>1,即a >1时,φ(x )在[1,ln a +1)上单调递减,在(ln a +1,+∞)上单调递增, ∴φ(x )min =φ(ln a +1)<φ(1)=0与φ(x )≥0矛盾.故a >1不符合题意.综上,实数a 的取值范围为(-∞,1].【双变量的恒(能)成立问题】【例31】设f (x )=a x +x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围. 解 (1)存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M 成立. g ′(x )=3x 2-2x =x (3x -2),令g ′(x )=0,得x =0或x =23,∵g ⎝⎛⎭⎫23=-8527, 又g (0)=-3,g (2)=1, ∴当x ∈[0,2]时,g (x )max =g (2)=1,g (x )min =g ⎝⎛⎭⎫23=-8527, ∴M ≤1-⎝⎛⎭⎫-8527=11227, ∴满足条件的最大整数M 为4.(2)对任意的s ,t ∈⎣⎡⎦⎤12,2有f (s )≥g (t ),则f (x )min ≥g (x )max .由(1)知当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (2)=1, ∴当x ∈⎣⎡⎦⎤12,2时,f (x )=a x +x ln x ≥1恒成立, 即a ≥x -x 2ln x 恒成立.令h (x )=x -x 2ln x ,x ∈⎣⎡⎦⎤12,2,∴h ′(x )=1-2x ln x -x , 令φ(x )=1-2x ln x -x , ∴φ′(x )=-3-2ln x <0,h ′(x )在⎣⎡⎦⎤12,2上单调递减,又h ′(1)=0,∴当x ∈⎣⎡⎦⎤12,1时,h ′(x )≥0, 当x ∈[1,2]时,h ′(x )≤0,∴h (x )在⎣⎡⎦⎤12,1上单调递增,在[1,2]上单调递减,∴h (x )max =h (1)=1,故a ≥1.∴实数a 的取值范围是[1,+∞).【利用导数证明不等式】【例32】已知函数g (x )=x 3+ax 2.(1)若函数g (x )在[1,3]上为单调函数,求a 的取值范围;(2)已知a >-1,x >0,求证:g (x )>x 2ln x .(1)解 由题意知,函数g (x )=x 3+ax 2,则g ′(x )=3x 2+2ax ,若g (x )在[1,3]上单调递增,则g ′(x )=3x 2+2ax ≥0在[1,3]上恒成立,则a ≥-32;若g (x )在[1,3]上单调递减,则g ′(x )=3x 2+2ax ≤0在[1,3]上恒成立,则a ≤-92.所以a 的取值范围是⎝⎛⎦⎤-∞,-92∪⎣⎡⎭⎫-32,+∞. (2)证明 由题意得,要证g (x )>x 2ln x ,x >0,即证x 3+ax 2>x 2ln x ,即证x +a >ln x ,令u (x )=x +a -ln x ,x >0,可得u ′(x )=1-1x =x -1x ,x >0,当0<x <1时,u ′(x )<0,函数u (x )单调递减;当x >1时,u ′(x )>0,函数u (x )单调递增.所以u (x )≥u (1)=1+a ,因为a >-1,所以u (x )>0,故当a >-1时,对于任意x >0,g (x )>x 2ln x .【例33】已知函数f (x )=a ln x +x .(1)讨论f (x )的单调性;(2)当a =1时,证明:xf (x )<e x .(1)解 f (x )的定义域为(0,+∞),f ′(x )=a x +1=x +a x .当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增.当a <0时,若x ∈(-a ,+∞),则f ′(x )>0;若x ∈(0,-a ),则f ′(x )<0.所以f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减.综上所述,当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减.(2)证明 当a =1时,要证xf (x )<e x ,即证x 2+x ln x <e x ,即证1+ln x x <e x x 2.令函数g (x )=1+ln x x ,则g ′(x )=1-ln x x 2.令g ′(x )>0,得x ∈(0,e);令g ′(x )<0,得x ∈(e ,+∞).所以g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,所以g (x )max =g (e)=1+1e ,令函数h (x )=e x x 2,则h ′(x )=e x (x -2)x 3.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以h (x )min =h (2)=e 24.因为e 24-⎝⎛⎭⎫1+1e >0,所以h (x )min >g (x )max ,即1+ln x x <e x x 2,从而xf (x )<e x 得证.【例34】已知函数f (x )=e x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当x >-2时,求证:f (x )>ln(x +2).(1)解 由f (x )=e x ,得f (0)=1,f ′(x )=e x ,则f ′(0)=1,即曲线y =f (x )在点(0,f (0))处的切线方程为y -1=x -0,所以所求切线方程为x -y +1=0.(2)证明 设g (x )=f (x )-(x +1)=e x -x -1(x >-2),则g ′(x )=e x -1,当-2<x <0时,g ′(x )<0;当x >0时,g ′(x )>0,即g (x )在(-2,0)上单调递减,在(0,+∞)上单调递增,于是当x =0时,g (x )min =g (0)=0,因此f (x )≥x +1(当且仅当x =0时取等号),令h (x )=x +1-ln(x +2)(x >-2),则h ′(x )=1-1x +2=x +1x +2, 则当-2<x <-1时,h ′(x )<0,当x >-1时,h ′(x )>0,即有h (x )在(-2,-1)上单调递减,在(-1,+∞)上单调递增,于是当x =-1时,h (x )min =h (-1)=0,因此x +1≥ln(x +2)(当且仅当x =-1时取等号),所以当x >-2时,f (x )>ln(x +2).【隐零点问题】【例35】已知函数f (x )=ln x -ax (a ∈R ).(1)讨论函数f (x )的单调性;(2)证明不等式e x -2-ax >f (x )恒成立. 【解析】 (1) f ′(x )=1x -a =1-ax x (x >0),当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,得x =1a ,所以当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0,f (x )单调递增; 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增, 在⎝⎛⎭⎫1a ,+∞上单调递减.(2)设函数φ(x )=e x -2-ln x (x >0),则φ′(x )=e x -2-1x ,可知φ′(x )在(0,+∞)上单调递增.又由φ′(1)<0,φ′(2)>0知,φ′(x )=0在(0,+∞)上有唯一实数根x 0,且1<x 0<2, 则φ′(x 0)=02ex −-1x 0=0, 即02e x −=1x 0. 当x ∈(0,x 0)时,φ′(x )<0,φ(x )单调递减;当x ∈(x 0,+∞)时,φ′(x )>0,φ(x )单调递增,所以φ(x )≥φ(x 0)=02ex −-ln x 0, 结合02e x −=1x 0, 知x 0-2=-ln x 0,所以φ(x )≥φ(x 0)=1x 0+x 0-2=x 20-2x 0+1x 0=(x 0-1)2x 0>0, 则φ(x )=e x -2-ln x >0,即不等式e x -2-ax >f (x )恒成立.【极值点偏移问题】【例36】已知函数f (x )=a e x -x ,a ∈R .若f (x )有两个不同的零点x 1,x 2.证明:x 1+x 2>2.【解析】由f (x )=a e x -x =0,得x e x -a =0,令g (x )=x e x -a ,则g ′(x )=1-x e x ,由g ′(x )=1-x e x >0,得x <1;由g ′(x )=1-x e x <0,得x >1.所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,由于x 1,x 2是方程g (x )=0的实根,不妨设x 1<1<x 2,方法一 (对称化构造函数法)要证x 1+x 2>2, 只要证x 2>2-x 1>1.由于g (x )在(1,+∞)上单调递减,故只要证g (x 2)<g (2-x 1), 由于g (x 1)=g (x 2)=0,故只要证g (x 1)<g (2-x 1),令H (x )=g (x )-g (2-x )=x e x -2-x e 2-x (x <1), 则H ′(x )=1-x e x -1-x e 2-x =(e 2-x -e x )(1-x )e 2, 因为x <1,所以1-x >0,2-x >x ,所以e 2-x >e x ,即e 2-x -e x >0,所以H ′(x )>0,所以H (x )在(-∞,1)上单调递增. 所以H (x 1)<H (1)=0,即有g (x 1)<g (2-x 1)成立,所以x 1+x 2>2.方法二 (比值代换法)设0<x 1<1<x 2,由g (x 1)=g (x 2),得1212e e x x x x −−=,等式两边取对数得ln x 1-x 1=ln x 2-x 2.令t =x 2x 1>1,则x 2=tx 1,代入上式得ln x 1-x 1=ln t +ln x 1-tx 1,得x 1=ln t t -1,x 2=t ln t t -1. 所以x 1+x 2=(t +1)ln t t -1>2⇔ln t -2(t -1)t +1>0, 设g (t )=ln t -2(t -1)t +1(t >1),所以g ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0, 所以当t >1时,g (t )单调递增, 所以g (t )>g (1)=0,所以ln t -2(t -1)t +1>0,故x 1+x 2>2.。
2018版高考数学(人教A版理科)一轮复习课时跟踪检测24含答案
课时跟踪检测(二十四)1.在△ABC中,AB=错误!,AC=1,B=30°,△ABC的面积为错误!,则C=()A.30°B.45°C.60°D.75°答案:C解析:解法一:∵S△ABC=错误!|AB||AC|sin A=错误!,即错误!×错误!×1×sin A=错误!,∴sin A=1,∴A=90°,∴C=60°,故选C.解法二:由正弦定理,得错误!=错误!,即错误!=错误!,∴C=60°或C=120°。
当C=120°时,A=30°,S△ABC=错误!≠错误!(舍去).而当C=60°时,A=90°,S△ABC=错误!,符合条件,故C=60°.故选C.2.两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的( )A.北偏东10°B.北偏西10°C.南偏东80°D.南偏西80°答案:D解析:由条件及题图可知,∠A=∠CBA=40°,又∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此灯塔A在灯塔B南偏西80°.3.在△ABC中,角A,B,C所对的边分别为a,b,c,若b cos A+a cos B=c2,a=b=2,则△ABC的周长为( )A.5 B.6C.7 D.7。
5答案:A解析:由正弦定理得,sin B cos A+sin A cos B=c sin C,即sin(A+B)=sin C=c sin C,又sin C>0,∴c=1,故周长为a+b+c=2+2+1=5,故选A。
4.已知△ABC中,内角A,B,C的对边分别为a,b,c,a2=b2+c2-bc,bc=4,则△ABC的面积为( )A.错误!B.1C.错误!D.2答案:C解析:∵a2=b2+c2-bc,∴cos A=错误!,∴A=错误!,又bc=4,∴△ABC的面积为错误!bc sin A=错误!,故选C。
2018年高考数学(理科)总复习(福建专用)配套训练(人教版) 课时规范练24Word版含答案
课时规范练24平面向量的概念及线性运算一、基础巩固组1.下列关于平面向量的说法正确的是()A.零向量是唯一没有方向的向量B.平面内的单位向量是唯一的C.方向相反的向量是共线向量,共线向量不一定是方向相反的向量D.共线向量就是相等向量2.设a,b都是非零向量,下列四个条件中,使a|a|=b|b|成立的充分条件是()A.a=-bB.a∥bC.a=2bD.a∥b,且|a|=|b|3.设D为△ABC所在平面内一点,BC=3CD,则()A.AD=-1AB+4ACB.AD=1AB−4ACC.AD=43AB+13ACD.AD=43AB−13AC4.(2017北京丰台一模,理4)设E,F分别是正方形ABCD的边AB,BC上的点,且AE=1AB,BF=2BC.如果EF=m AB+n AC(m,n为实数),那么m+n的值为() A.-1 B.0C.1D.15.设向量a,b不共线,AB=2a+p b,BC=a+b,CD=a-2b.若A,B,D三点共线,则实数p的值是()A.-2B.-1C.1D.26.已知平面上不共线的四点O,A,B,C,若OA+2OC=3OB,则|BC||AB|的值为()A.12B.1 3C.1 4D.167.在四边形ABCD中,O是四边形ABCD内一点,OA=a,OB=b,OC=c,OD=a-b+c,则四边形ABCD的形状为() A.梯形 B.正方形C.平行四边形D.菱形8.如图,已知AB是圆O的直径,点C,D是半圆弧的三等分点,AB=a,AC=b,则AD=()A.a-1bB.1a-bC.a+1bD.1a+b〚导学号21500726〛9.若点M是△ABC所在平面内的一点,且满足5AM=AB+3AC,则△ABM与△ABC的面积比为.10.已知A,B,C为圆O上的三点,若AO=1(AB+AC),则AB与AC的夹角为.11.已知D为△ABC的边BC的中点,点P满足PA+BP+CP=0,AP=λPD,则实数λ的值为.12.在任意四边形ABCD中,E,F分别是AD,BC的中点,若EF=λAB+μDC,则λ+μ=.二、综合提升组13.在△ABC中,D是AB边上的一点,CD=λCA|CA|+CB|CB|,|CA|=2,|CB|=1.若CA=b,CB=a,则用a,b表示CD为()A.CD=23a+13b B.CD=13a+23bC.CD=1a+1bD.CD=2a+2b14.在△ABC中,点O在线段BC的延长线上,且与点C不重合,若AO=x AB+(1-x)AC,则实数x的取值范围是()A.(-∞,0)B.(0,+∞)C.(-1,0)D.(0,1)15.A,B,C三点共线的充要条件是对不在直线AB上的任意一点O,存在实数t使得OC=t OA+OB.16.已知向量a,b,c中任意两个都不共线,且a+b与c共线,b+c与a共线,则a+b+c=.三、创新应用组17.已知A,B,C三点不共线,且点O满足OA+OB+OC=0,则下列结论正确的是()A.OA=1AB+2BCB.OA=2AB+1BCC.OA=13AB−23BCD.OA=-23AB−13BC18.(2017安徽马鞍山质检)已知△ABC是边长为4的正三角形,D,P是△ABC内的两点,且满足AD=1(AB+AC),AP=AD+1BC,则△APD的面积为()A.34B.32C.3D.23〚导学号21500727〛课时规范练24 平面向量的概念及线性运算1.C 对于A,零向量是有方向的,其方向是任意的,故A 不正确;对于B,单位向量的模为1,其方向可以是任意方向,故B 不正确;对于C,方向相反的向量一定是共线向量,共线向量不一定是方向相反的向量,故C 正确;对于D,由共线向量和相等向量的定义可知D 不正确.故选C .2.C 因为a |a |表示与a 同向的单位向量,b |b |表示与b 同向的单位向量,所以只要a 与b 同向即可,观察可知C 满足题意.3.A AD =AB +BD =AB +BC +CD =AB +4BC =AB +4(AC −AB )=-1AB +4AC .故选A .4.C 如图,EF =EA +AC +CF =-12AB +AC −13BC =-12AB +AC −13(BA +AC )=-16AB +23AC .∵EF =m AB +n AC , ∴m=-16,n=23,∴m+n=12.故选C .5.B ∵BC=a +b ,CD =a -2b , ∴BD=BC +CD =2a -b . 又A ,B ,D 三点共线, ∴AB,BD 共线.设AB =λBD , 则2a +p b =λ(2a -b ).即2=2λ,p=-λ.解得λ=1,p=-1.6.A 由OA +2OC =3OB ,得OA −OB =2OB -2OC ,即BA =2CB ,所以|BC||AB |=12.故选A . 7.C 因为OD =a-b+c ,所以AD =OD −OA =c-b . 又BC=OC −OB =c-b , 所以AD ∥BC 且|A D |=|BC|, 所以四边形ABCD 是平行四边形. 8.D 连接CD (图略),由点C ,D 是半圆弧的三等分点,得CD ∥AB ,且CD =12AB =12a ,所以AD =AC +CD =b +12a . 9.35 如图,设AB 的中点为D.由5AM=AB +3AC , 得3AM -3AC =2AD -2AM , 即3CM=2MD , 故C ,M ,D 三点共线,且MD =35C D ,也就是△ABM 与△ABC 对于边AB 上的两高之比为3∶5,故△ABM 与△ABC 的面积比为35.10.90° 由AO =12(AB +AC ),得O 为BC 的中点,则BC 为圆O 的直径,即∠BAC=90°,故AB与AC 的夹角为90°.11.-2 如图,由AP=λPD ,且PA +BP +CP =0,得P 为以AB ,AC 为邻边的平行四边形的顶点,因此AP =-2PD,故λ=-2.12.1 如图,因为E ,F 分别是AD 与BC 的中点,所以EA +ED =0,BF+CF =0.又因为AB +BF +FE +EA=0, 所以EF =AB +BF +EA. ①同理EF=ED +DC +CF . ②由①+②,得2EF =AB +DC +(EA +ED )+(BF +CF )=AB +DC ,所以EF =12(AB +DC ), 所以λ=12,μ=12.所以λ+μ=1.13.A 由题意,得CD 是∠ACB 的平分线,则CD =CA +AD =CA +23AB =CA +23(CB−CA ) =23CB +13CA =23a +13b ,故选A.14.A 设BO =λBC(λ>1), 则AO =AB +BO =AB +λBC =(1-λ)AB +λAC . 又AO =x AB+(1-x )AC , 所以x AB+(1-x )AC =(1-λ)AB +λAC . 所以λ=1-x>1,解得x<0.15.(1-t ) 根据共线向量定理知,A ,B ,C 三点共线的充要条件是存在实数t 使得BC=t BA ,即OC −OB=t (OA −OB ),即OC =t OA +(1-t )OB . 16.0 因为a +b 与c 共线,所以a +b =λ1c . ① 又因为b +c 与a 共线, 所以b +c =λ2a . ② 由①得b =λ1c -a .所以b +c =(λ1+1)c -a =λ2a ,所以 λ1+1=0,λ2=-1,即 λ1=-1,λ2=-1.所以a +b +c =-c +c =0.17.D ∵OA +OB+OC =0, ∴O 为△ABC 的重心, ∴OA =-23×12(AB +AC )=-13(AB +AC )=-13(AB +AB +BC )=-13(2AB +BC )=-23A B −13BC ,故选D . 18.A 取BC 的中点E ,连接AE ,因为△ABC 是边长为4的正三角形,所以AE ⊥BC ,AE=12(AB +AC ).。
高考数学专题:导数大题专练含答案
高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln ex f x x =,()2ln 1g x a x x =-+,e 是自然对数的底数.(1)求函数()f x 的最小值;(2)若()0g x ≤在()0,∞+上恒成立,求实数a 的值;(3)求证:2022202320232023e 20222022⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.2.已知函数()()e sin x f x rx r *=⋅∈N ,其中e 为自然对数的底数.(1)若1r =,求函数()y f x =的单调区间;(2)证明:对于任意的正实数M ,总存在大于M 的实数a ,b ,使得当[,]x a b ∈时,|()|1f x ≤.3.已知:()e xf x mx =+.(1)当1m =时,求曲线()y f x =的斜率为2的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-成立,求实数m 的范围4.设函数()1e ln 1xa f x a x -=--,其中0a > (1)当1a =时,讨论()f x 单调性;(2)证明:()f x 有唯一极值点0x ,且()00f x ≥.5.已知函数()ln 1f x x ax =++,R a ∈,函数()()21e ln 2xg x x x x x x =-++-,)2e ,x -∈+∞⎡⎣.(1)试讨论函数()f x 的单调性;(2)若0x 是函数()g x 的最小值点,且函数()()h x xf x =在0x x =处的切线斜率为2,试求a 的值.6.已知函数()()32131.3f x x a x x =-++ (1)若1a =,求函数()f x 的单调区间; (2)证明:函数()2y f x a =-至多有一个零点. 7.已知函数()ln xf x x =, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()321623f x x ax x =+-+在2x =处取得极值.(1)求()f x 的单调区间;(2)求()f x 在[]4,3-上的最小值和最大值.10.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.【参考答案】一、解答题 1.(1)1- (2)2(3)证明见解析 【解析】 【分析】(1)根据导数判断函数()f x 的单调性,进而可得最值;(2)将不等式恒成立转化为求函数()g x 的最大值问题,可得参数取值范围; (3)根据函数()f x 与()g x 的单调性直接可证不等式. (1)函数()ln ln ex f x x x x x ==-的定义域为()0,∞+,()ln f x x '=,当()0,1x ∈时,()0f x '<,()1,x ∈+∞时,()0f x '>, 故()f x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()min 11f x f ==-. (2)函数()2ln 1g x a x x =-+,0x >,则()()2220a a x g x x x x x-'=-=>,当0a ≤时,()0g x '<,()g x 在()0,∞+上单调递减, 此时存在()00,1x ∈,使得()()010g x g >=,与题设矛盾,当0a >时,x ⎛∈ ⎝时,()0g x '>,x ⎫∈+∞⎪⎪⎭时,()0g x '<,故()g x 在⎛ ⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减,所以()max 1ln 12222a a a ag x g a ==+=-+,要使()0g x ≤在()0,∞+恒成立, 则()max 0g x ≤,即ln 10222aa a -+≤,又由(1)知()ln 1f x x x x =-≥-即ln 10x x x -+≥,(当且仅当1x =时,等号成立).令2a x =有ln 10222a a a -+≥,故ln 1022a a -+=且12a =, 所以2a =. (3)由(1)知()l n 1l n x f x x x x ex ==-≥-(当且仅当1x =时等号成立).令()10t x t t +=>,则1x >,故111ln 1t t t t t t +++->-,即11ln 1tt t ++⎛⎫> ⎪⎝⎭,所以11e tt t ++⎛⎫> ⎪⎝⎭令2022t =,则20232023e 2022⎛⎫> ⎪⎝⎭;由(2)知22ln 1x x ≤-在()0,∞+上恒成立, 所以22ln 1x x ≤-(当且仅当1x =时等号成立).令()210m x m m +=>,则21x >,故11ln 1m m m m ++<-,即1ln 1mm m +⎛⎫< ⎪⎝⎭, 所以1e mm m +⎛⎫< ⎪⎝⎭.令2022m =,则20222023e 2022⎛⎫< ⎪⎝⎭综上,2022202320232023e 20222022⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.(1)增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 减区间为52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)证明过程见解析. 【解析】 【分析】(1)对函数求导,利用辅助角公式合并为同名三角函数,利用单调增减区间代入公式求解即可.(2)将绝对值不等式转化为11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,移向构造新函数,利用导数判定单调性,借助零点定理和隐零点证明新构造函数恒正,再结合三角函数的特有的周期特点寻找M 即可. (1)()e (sin cos )sin 4x x f x x x x π⎛⎫'=+=+ ⎪⎝⎭令22242k x k πππππ-≤+≤+,得32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦令322242k x k ππππ+≤+≤π+,得24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦当32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时, ()0f x '>,()f x 单调递增 当24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦时, ()0,()f x f x '< 单调递減 综上() f x 单调递增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为 52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)要证|()|1f x ≤,即证e sin 1xrx ⋅≤,即证11sin =e e xx rx ⎛⎫≤ ⎪⎝⎭即证 11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭在[,]x a b ∈时成立即可,[,]x a b ∈时,1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩. 令1()sin e x h x rx ⎛⎫=- ⎪⎝⎭, 1()cos e xh x r rx ⎛⎫'=+ ⎪⎝⎭当222,k k x rr πππ⎛⎫+ ⎪∈⎪ ⎪⎝⎭时, cos 0,r rx > 所以1()cos 0,e xh x r rx ⎛⎫'=+> ⎪⎝⎭所以()h x 单调递增,2210,e k rk h rππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭2221210(0)e k r k h k r ππππ+⎛⎫⎛⎫+ ⎪⎪=±>> ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0(2)22,k k x rrπππ+∴∃∈ , 满足()00h x =由单调性可知02,k x x r π⎛⎫∈ ⎪⎝⎭, 满足()0()0h x h x <= 又因为当021,,sin 0,0,xk x x rx r e π⎛⎫⎛⎫∈>≥ ⎪ ⎪⎝⎭⎝⎭ 1sin 0xrx e ⎛⎫∴+≥ ⎪⎝⎭,所以1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩能够同时满足, 对于任意的正实数M ,总存在正整数k ,且满足2Mr k π>时, 使得 2k M r π>成立, 所以不妨取 02,,2k Mr a k b x rππ⎛⎫=>= ⎪⎝⎭ 则,a b M >且[,]x a b ∈时,1sin 01sin 0xxrx e rx e ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩, 故对于任意的正实数M ,总存在大于M 的实数,a b ,使得当[,]x a b ∈ 时,|()|1f x ≤. 3.(1)21y x =+(2)ln 3m ⎡∈-⎣【解析】 【分析】(1)利用导数的几何意义直接可得切线方程;(2)()2213222m f x x ≥+-恒成立,可转化为()22130222xm g x e mx x =+--+≥恒成立,利用导数判断函数()g x 的单调性与最值情况. (1)当1m =时,()e xf x x =+, 则()e 1xf x '=+,设切点为()()00,x f x ,故()00e 12xk f x '==+=,解得00x =,故()000e e 01x f x x =+=+=,即切点坐标为()0,1,所以切线方程()120y x -=-,即21y x =+; (2)当0x ≥时,()2213222m f x x ≥+-成立,即2213e 0222xm mx x +--+≥恒成立,设()2213e 222xm g x mx x =+--+,()e x g x x m '=-+, ()e 1x g x ''=-,因为0x ≥,故()e 10xg x ''=-≥恒成立, 则()e xg x x m '=-+在()0,∞+上单调递增,所以()()01g x g m ''≥=+,当1m ≥-时,()()010g x g m ''≥=+≥恒成立, 故()g x 在()0,∞+上单调递增,即()()2235012222m m g x g ≥=-+=-,所以25022m -≥,解得m ≤≤故1m -≤≤当1m <-时,()010g m '=+<,()e 2m g m m -'-=+,设()e 2mh m m -=+,1m <-,()e 20m h m -'=-+<恒成立,则()h m 在(),1-∞-上单调递减,所以()()120h m h e >-=->,即()e 20mg m m -'-=+>,所以存在()00,x m ∈-,使()00g x '=,即000xe x m -+=,所以()g x 在()00,x 上单调递减,在()0,x +∞上单调递增, 故()()02200013e 222x m g x g x mx x ≥=+--+()()00000222000011313e e e e e 022222x x x x x x x x x =+----+=-++≥,解得0ln 3x ≤,即00ln 3x ≤≤, 设()e xx m x ϕ==-,0ln3x ≤≤,()1e 0x x ϕ'=-≤恒成立,故()x ϕ在()0,3上单调递减, 故()()3ln33x ϕϕ≥=-, 即ln33m ≥-, 所以ln331m -≤<-,综上所述,ln 3m ⎡∈-⎣.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.4.(1)()f x 在0,1上单调递减,在()1,+∞上单调递增; (2)证明见解析. 【解析】 【分析】(1)首先确定()f x 定义域,再应用二阶导数的符号判断f x 的单调性,进而分区间判断f x 的符号,即可确定()f x 的单调性.(2)求()f x 的二阶导,根据其符号知f x 在()0,+∞上单调递增,令0f x 得到ln 1x x a+=,构造()ln 1x h x x a=+-结合其单调性,注意利用导数研究()ln 1x x x ϕ=-+的符号,再用放缩法判断1a h a ⎛⎫⎪+⎝⎭、()1ea h +的符号,即可判断零点0x 的唯一性,进而得到00011ln ln x x a x -==-,结合基本不等式求证()00f x ≥. (1)当1a =时,()1e ln 1xf x x -=--,定义域为()0,+∞,则()11e x f x x -'=-,()121e 0xf x x -+'=>', 所以f x 在()0,+∞上单调递增,又()10f '=, 当01x <<时,0f x ,所以()f x 在区间0,1上单调递减; 当1x >时,0f x,所以()f x 在区间()1,+∞上单调递增.综上,()f x 在0,1上单调递减,在()1,+∞上单调递增. (2)由题意,()11ex af x x -='-,()1211e 0x af x a x-=⋅+'>',则f x 在()0,+∞上单调递增,至多有一个零点,令()ln 1x x x ϕ=-+,其中1x >,则()111xx x xϕ-'=-=, 当()0,1x ∈时,()0ϕ'>x ,()ϕx 单调递增. 当()1,x ∈+∞时,()0ϕ'<x ,()ϕx 单调递减,所以()()10x ϕϕ≤=,即ln 10x x -+≤,于是ln 1≤-x x , 令0f x,则e e x a x ⋅=,两边取自然对数可得ln 1xx a+=,令()ln 1x h x x a=+-,则()h x 在()0,+∞上单调递增. 故11ln 1111011111a a a h a a a a a ⎛⎫=+-≤-+-=-<⎪+++++⎝⎭,又()11111e eln ee 10a a a a h a a a++++=+⋅-=+>, 所以()h x 在()0,+∞上有唯一零点0x ,则f x 有唯一零点0x ,即()f x 有唯一极值点0x .下证()00f x ≥: 因为()01001e0x af x x -'=-=,所以0101e x a x -=,可得00011ln ln x x a x -==-,所以()010000e ln 11120x ax a f x a x x a -=--=+--≥=,当且仅当0x a =时等号成立,综上,()f x 有唯一极值点0x 且()00f x ≥,得证. 【点睛】关键点点睛:第二问,利用二阶导数研究一阶导数的单调性,根据零点所得的等量关系构造()ln 1x h x x a=+-,结合单调性、零点存在性定理判断f x 零点的唯一性,进而利用基本不等式证明不等式. 5.(1)答案见解析; (2)12a =. 【解析】 【分析】(1)由题可得()11ax f x a xx+'=+=,讨论0a ≥,0a <即得; (2)由题可得()g x '是一个单调递增的函数,利用零点存在定理可得()2e ,1t -∃∈,使得()0g t '=,进而可得()0000111ln e e 1ln x x x x ⎛⎫+=+ ⎪⎝⎭,利用导数可得001e x x =,结合条件可得00ln 20x ax +=,即求. (1)()11ax f x a x x+'=+=,0x >, 当0a ≥时,函数()f x 在定义域()0,∞+上单调递增; 当0a <时,函数的单调性如表格所示:由题可得()()()22121e 1ln 2e ln 1x xg x x x x x x x x '=-++-++-=++-,0x >,则()g x '是一个单调递增的函数, 当2e x -=时,()()2242e e e e e 30g ----'=+-<,当1x =时,()12e 10g '=->,故()2e ,1t -∃∈,使得()0g t '=,且所以0x t =,00000e ln 10g x x x x '=++-=,整理该式有()02000e 1ln x xx x +=-,()000001111e ln xx x x x +=+, ∴()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭令()()21ln ,e m x x x x -=+>,则()2ln 0m x x '=+>,所以函数在()2e ,-+∞上单调递增,故()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭的解满足001e xx =;又()2ln h x x x ax x =++,()1ln 21h x x ax '=+++,()0002ln 22h x x ax '=++=,所以00ln 20x ax +=,由01e xx =知,0020x ax -+=,故12a =.6.(1)()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减 (2)证明见解析 【解析】 【分析】(1)直接求导后判断单调性即可;(2)先变形得到323033x a x x -=++,构造函数,求导后说明单调性即可证明.(1)当1a =时,()()321313f x x x x =-++,2()23f x x x '=--. 令()0f x '=,解得1x =-或3x =,当()(),13,x ∞∞∈--⋃+时,()0f x '>;当(1,3)x ∈-时,()0f x '<, 故()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减.(2)()321()2333y f x a x a x x =-=-++,由于2330x x ++>,所以()20f x a -=等价于3230.33x a x x -=++设()32333x g x a x x =-++, 则()g x '()()222269033x x x xx ++=++,当且仅当0x =或3x =-时,()0g x '=,所以()g x 在(,)-∞+∞上单调递增,故()g x 至多有一个零点,从而()2y f x a =-至多有一个零点. 7.(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造函数()=ln 1h x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l xx x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1)由题意可知,()f x 的定义域为()()0,11,+∞,由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0, 若直线yg x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()=ln 1,0h x x x x +-∈+∞,则()1=10h x x'+>, 所以()h x 在()0+∞上单调递增,又()1ln1110h =+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1xk x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-,2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()110t x x'=--<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为()()e ee e 1ln e e 1ϕ==--,即ee 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明,对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元.9.(1)增区间为(),3-∞-,()2,+∞,减区间为()3,2- (2)()max 312f x =,()min 163f x =-【分析】(1)根据题意得()20f '=,进而得12a =,再根据导数与单调性的关系求解即可;(2)由(1)知[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2-,进而求解()4f -,()3f -,()2f ,()3f 的值即可得答案. (1)解:(1)()226f x x ax '=+-,因为()f x 在2x =处取得极值,所以()24460f a '=+-=,解得12a =. 检验得12a =时,()f x 在2x =处取得极小值,满足条件.所以()26f x x x '=+-,令()0f x '>,解得3x <-或2x >,令()0f x '<,解得32x -<<, 所以()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; (2)解:令()260f x x x '=+-=,解得3x =-或2x =,由(1)知()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; 当[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2- 又()()()()321138444642323f -=⨯-+⨯--⨯-+=, ()()()()321131333632322f -=⨯-+⨯--⨯-+=,()321116222622323f =⨯+⨯-⨯+=-,()32115333632322f =⨯+⨯-⨯+=-,所以()max 312f x =,()min 163f x =-. 10.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调(1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞, 令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e .又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.。
高三数学导数与积分2024练习题及答案
高三数学导数与积分2024练习题及答案(正文开始)一、导数练习题1. 求函数f(x) = 2x^3 - 5x^2 + 3x - 7的导数f'(x)。
解答:对于f(x) = 2x^3 - 5x^2 + 3x - 7,使用幂函数的求导法则,得到其导数f'(x)为:f'(x) = 6x^2 - 10x + 3。
2. 已知函数g(x) = sin(x) + cos(x),求g'(x)。
解答:对于函数g(x) = sin(x) + cos(x),使用三角函数的求导法则,得到其导数g'(x)为:g'(x) = cos(x) - sin(x)。
3. 若函数h(x) = ln(x^2 + 1),求h'(x)。
解答:根据对数函数的求导法则,针对函数h(x) = ln(x^2 + 1)进行求导,得到其导数h'(x)为:h'(x) = (2x) / (x^2 + 1)。
二、积分练习题1. 计算函数f(x) = 2x^2 + 3x - 1的不定积分∫f(x)dx。
解答:对于函数f(x) = 2x^2 + 3x - 1,使用基本积分法则,得到其不定积分∫f(x)dx为:∫f(x)dx = (2/3)x^3 + (3/2)x^2 - x + C,其中C为积分常数。
2. 已知函数g(x) = 3e^x + 2sin(x),求∫g(x)dx。
解答:对于函数g(x) = 3e^x + 2sin(x),根据指数函数和三角函数的积分法则,得到其不定积分∫g(x)dx为:∫g(x)dx = 3e^x - 2cos(x) + C,其中C为积分常数。
3. 若函数h(x) = 1 / (x^2 + 1),计算定积分∫[0, 1]h(x)dx。
解答:针对函数h(x) = 1 / (x^2 + 1),计算其在区间[0, 1]上的定积分,得到结果为:∫[0, 1]h(x)dx = arctan(1) - arctan(0) = π/4。
2018年全国高考卷数学导数解答题含答案
2018年全国I -III 文理数学卷导数解答题1、(2018年全国I 理)已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--解:(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x -=或2a x +=.当2()2a a x +∈+∞时,()0f x '<; 当x ∈时,()0fx '>.所以()f x 在)+∞单调递减,在单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----,所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 2、(2018年全国I 文)已知函数()e ln 1x f x a x =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥.解:(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e . 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0.因此,当1ea ≥时,()0f x ≥.3、(2018年全国II 理)已知函数2()e x f x ax =-. (1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .解:(1)当1a =时,()1f x ≥等价于2(1)e 10xx -+-≤.设函数2()(1)e1xg x x -=+-,则22()(21)e (1)e x x g'x x x x --=--+=--.当1x ≠时,()0g'x <,所以()g x 在(0,)+∞单调递减. 而(0)0g =,故当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1e xh x ax -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当0a >时,()(2)e xh'x ax x -=-.当(0,2)x ∈时,()0h'x <;当(2,)x ∈+∞时,()0h'x >. 所以()h x 在(0,2)单调递减,在(2,)+∞单调递增. 故24(2)1eah =-是()h x 在[0,)+∞的最小值.学&科网 ①若(2)0h >,即2e 4a <,()h x 在(0,)+∞没有零点;②若(2)0h =,即2e 4a =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即2e 4a >,由于(0)1h =,所以()h x 在(0,2)有一个零点,由(1)知,当x >时,2e x x >,所以33342241616161(4)11110e (e )(2)a a a a a h a a a=-=->-=->. 故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,2e 4a =.4、(2018年全国II 文)已知函数()()32113f x x a x x =-++.(1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.解:(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --.令f ′(x )=0解得x =3-x =3+当x ∈(–∞,3-3++∞)时,f ′(x )>0;当x ∈(3-3+ f ′(x )<0.故f (x )在(–∞,3-3++∞)单调递增,在(3-3+单调递减.(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++. 设()g x =3231x a x x -++,则g ′(x )=2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′(x )=0,所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.学·科网又f (3a –1)=22111626()0366a a a -+-=---<,f (3a +1)=103>,故f (x )有一个零点.综上,f (x )只有一个零点.5、(2018年全国III 理)已知函数.(1)若,证明:当时,;当时,; (2)若是的极大值点,求.解:(1)当时,,. 设函数,则. 当时,;当时,.故当时,,且仅当时,,从而,且仅当时,. 所以在单调递增.学#科网又,故当时,;当时,.(2)(i )若,由(1)知,当时,,这与是的极大值点矛盾. (ii )若,设函数.()()()22ln 12f x x ax x x =+++-0a =10x -<<()0f x <0x >()0f x >0x =()f x a 0a =()(2)ln(1)2f x x x x =++-()ln(1)1xf x x x'=+-+()()ln(1)1x g x f x x x '==+-+2()(1)x g x x '=+10x -<<()0g x '<0x >()0g x '>1x >-()(0)0g x g ≥=0x =()0g x =()0f x '≥0x =()0f x '=()f x (1,)-+∞(0)0f =10x -<<()0f x <0x >()0f x >0a ≥0x >()(2)ln(1)20(0)f x x x x f ≥++->=0x =()f x 0a <22()2()ln(1)22f x xh x x x ax x ax ==+-++++由于当时,,故与符号相同. 又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点. 如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点综上,. 6、(2018年全国III 文)已知函数21()exax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥.解:(1)2(21)2()e xax a x f x -+-+'=,(0)2f '=.因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-+≥+-+. 令21()1e x g x x x +≥+-+,则1()21e x g x x +'≥++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 所以()g x (1)=0g ≥-.因此()e 0f x +≥.||min{x <220x ax ++>()h x ()f x (0)(0)0h f ==0x =()f x 0x =()h x 2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++610a +>6104a x a +<<-||min{x <()0h x '>0x =()h x 610a +<224610a x ax a +++=10x <1(,0)x x∈||min{x <()0h x '<0x =()h x 610a +=322(24)()(1)(612)x x h x x x x -'=+--(1,0)x ∈-()0h x '>(0,1)x ∈()0h x '<0x =()h x 0x =()f x 16a =-7、(2018•浙江)已知函数f x lnx =()﹣.(Ⅰ)若f (x )在x=x 1,x 2(x 1≠x 2)处导数相等,证明:12882f x f x ln +()()>﹣;(Ⅰ)若342a ln ≤﹣,证明:对于任意k >0,直线y kx a =+与曲线y f x =()有唯一公共点.证明:(Ⅰ)∵函数f (x )=﹣lnx ,∴x >0,f′(x )=﹣,∵f (x )在x=x 1,x 2(x 1≠x 2)处导数相等, ∴=﹣,∵x 1≠x 2,∴+=,由基本不等式得:=≥,∵x 1≠x 2,∴x 1x 2>256, 由题意得f (x 1)+f (x 2)==﹣ln (x 1x 2),设g (x )=,则,∴列表讨论:x (0,16)16 (16,+∞)g′(x ) ﹣ 0 + g (x )↓2﹣4ln2↑∴g (x )在[256,+∞)上单调递增, ∴g (x 1x 2)>g (256)=8﹣8ln2, ∴f (x 1)+f (x 2)>8﹣8ln2. (Ⅰ)令m=e ﹣(|a |+k ),n=()2+1,则f (m )﹣km ﹣a >|a |+k ﹣k ﹣a ≥0, f (n )﹣kn ﹣a <n (﹣﹣k )≤n (﹣k )<0,∴存在x 0∈(m ,n ),使f (x 0)=kx 0+a ,∴对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点,由f(x)=kx+a,得k=,设h(x)=,则h′(x)==,其中g(x)=﹣lnx,由(1)知g(x)≥g(16),又a≤3﹣4ln2,∴﹣g(x)﹣1+a≤﹣g(16)﹣1+a=﹣3+4ln2+a≤0,∴h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,∴方程f(x)﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.。
2018届高考理科数学第二轮限时规范训练24(单独成册)-有答案
[限时规范训练] 单独成册1.已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率为63,且椭圆C 上的点到一个焦点的距离的最小值为3- 2.(1)求椭圆C 的方程;(2)已知过点T (0,2)的直线l 与椭圆C 交于A 、B 两点,若在x 轴上存在一点E ,使∠AEB =90°,求直线l 的斜率k 的取值范围.解析:(1)设椭圆的半焦距长为c ,则由题设有:⎩⎨⎧c a =63,a -c =3-2,解得:a =3,c =2,∴b 2=1, 故椭圆C 的方程为y 23+x 2=1.(2)由已知可得,以AB 为直径的圆与x 轴有公共点. 设A (x 1,y 1)、B (x 2,y 2),AB 中点为M (x 0,y 0),将直线l :y =kx +2代入y 23+x 2=1,得(3+k 2)x 2+4kx +1=0,Δ=12k 2-12, ∴x 0=x 1+x 22=-2k 3+k 2,y 0=kx 0+2=63+k 2, |AB |=1+k212k 2-123+k 2=23k 4-13+k 2,∴⎩⎪⎨⎪⎧Δ=12k 2-12>0,63+k 2≤12|AB |.解得:k 4≥13,即k ≥413或k ≤-413.2.已知动点P 到直线l :x =-1的距离等于它到圆C :x 2+y 2-4x +1=0的切线长(P 到切点的距离).记动点P 的轨迹为曲线E . (1)求曲线E 的方程.(2)点Q 是直线l 上的动点,过圆心C 作QC 的垂线交曲线E 于A ,B 两点,问是否存在常数λ,使得|AC |·|BC |=λ|QC |2?若存在,求λ的值;若不存在,说明理由.解析:(1)由已知得圆心为C (2,0),半径r = 3.设P (x ,y ),依题意可得|x +1|=(x -2)2+y 2-3,整理得y 2=6x .故曲线E 的方程为y 2=6x . (2)设直线AB 的方程为my =x -2,则直线CQ 的方程为y =-m (x -2),可得Q (-1,3m ). 设A (x 1,y 1),B (x 2,y 2).将my =x -2代入y 2=6x 并整理得y 2-6my -12=0,那么y 1y 2=-12,则|AC |·|BC |=(1+m 2)|y 1y 2|=12(1+m 2),|QC |2=9(1+m 2),即|AC |·|BC |=43|QC |2,所以λ=43. 3.如图所示,已知椭圆C 的中心在原点,焦点在x 轴上,离心率等于32,它的一个顶点恰好在抛物线x 2=8y 的准线上.(1)求椭圆C 的标准方程;(2)点P (2,3),Q (2,-3)在椭圆上,A ,B 是椭圆上位于直线PQ 两侧的动点,当A ,B 运动时,满足∠APQ =∠BPQ ,试问直线AB 的斜率是否为定值,请说明理由. 解析:(1)设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0). ∵椭圆的一个顶点恰好在抛物线x 2=8y 的准线y =-2上, ∴-b =-2,解得b =2. 又c a =32,a 2=b 2+c 2, ∴a =4,c =2 3.可得椭圆C 的标准方程为x 216+y 24=1. (2)设A (x 1,y 1),B (x 2,y 2),∵∠APQ =∠BPQ ,则P A ,PB 的斜率互为相反数, 可设直线P A 的斜率为k ,则PB 的斜率为-k , 直线P A 的方程为:y -3=k (x -2), 联立⎩⎨⎧y -3=k (x -2),x 2+4y 2=16,化为(1+4k 2)x 2+8k (3-2k )x +4(3-2k )2-16=0,∴x 1+2=8k (2k -3)1+4k 2.同理可得:x 2+2=-8k (-2k -3)1+4k 2=8k (2k +3)1+4k 2,∴x 1+x 2=16k 2-41+4k 2,x 1-x 2=-163k1+4k 2, k AB =y 1-y 2x 1-x 2=k (x 1+x 2)-4k x 1-x 2=36. ∴直线AB 的斜率为定值36.4.如图,设P 是抛物线C 1:x 2=y 上的动点,过点P 作圆C 2:x 2+(y +3)2=1的两条切线,交直线l :y =-3于A ,B 两点.(1)求圆C 2的圆心M 到抛物线C 1准线的距离.(2)是否存在点P ,使线段AB 被抛物线C 1在点P 处的切线平分?若存在,求出点P 的坐标;若不存在,请说明理由.解析:(1)因为抛物线C 1的准线方程为y =-14,所以圆心M 到抛物线C 1准线的距离为⎪⎪⎪⎪⎪⎪-14-(-3)=114.(2)设存在满足题意的点P ,其坐标为(x 0,x 20),抛物线C 1在点P 处的切线交直线l 于点D . 再设A ,B ,D 的横坐标分别为x A ,x B ,x D ,过点P (x 0,x 20)的抛物线C 1的切线方程为y -x 20=2x 0(x -x 0).①当x 0=1时,过点P (1,1)的圆C 2的切线P A 为 y -1=158(x -1),可得x A =-1715,x B =1,x D =-1,x A +x B ≠2x D . 当x 0=-1时,过点P (-1,1)的圆C 2的切线PB 为y -1=-158(x +1),可得x A =-1,x B =1715,x D =1,x A +x B ≠2x D .所以x 20-1≠0,设切线P A ,PB 的斜率分别为k 1,k 2,则 P A :y -x 20=k 1(x -x 0),② PB :y -x 20=k 2(x -x 0).③ 将y =-3分别代入①②③得x D =x 20-32x 0(x 0≠0);x A =x 0-x 20+3k 1;x B =x 0-x 20+3k 2(k 1,k 2≠0).从而x A +x B =2x 0-(x 20+3)⎝ ⎛⎭⎪⎫1k 1+1k 2,又|-x 0k 1+x 20+3|k 21+1=1, 即(x 20-1)k 21-2(x 20+3)x 0k 1+(x 20+3)2-1=0, 同理,(x 20-1)k 22-2(x 20+3)x 0k 2+(x 20+3)2-1=0.所以k 1,k 2是方程(x 20-1)k 2-2(x 20+3)x 0k +(x 20+3)2-1=0的两个不相等的根,从而k 1+k 2=2(3+x 20)x 0x 20-1, k 1·k 2=(3+x 20)2-1x 20-1.因为x A +x B =2x D , 所以2x 0-(3+x 20)⎝ ⎛⎭⎪⎫1k 1+1k 2=x 20-3x 0,即1k 1+1k 2=1x 0.从而2(3+x 20)x 0(x 20+3)2-1=1x 0, 进而得x 40=8,x 0=±48.综上所述,存在点P 满足题意,点P 的坐标为(±48,22).5.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点为A ,P ⎝ ⎛⎭⎪⎫43,b 3是C 上的一点,以AP 为直径的圆经过椭圆C的右焦点F .(1)求椭圆C 的方程;(2)动直线l 与椭圆C 有且只有一个公共点,问:在x 轴上是否存在两个定点,它们到直线l 的距离之积等于1?如果存在,求出这两个定点的坐标;如果不存在,请说明理由. 解析:(1)F (c,0),A (0,b ),由题设可知F A →·FP →=0, ∴c 2-43c +b 23=0. ①又点P 在椭圆C 上,∴169a 2+b 29b 2=1,∴a 2=2. ② 又b 2+c 2=a 2=2, ③ 联立①③,解得c =1,b 2=1, 故所求椭圆的方程为x 22+y 2=1. (2)当直线l 的斜率存在时,设其方程为y =kx +m ,代入椭圆方程,消去y 整理得(2k 2+1)x 2+4kmx +2m 2-2=0,(*) 方程(*)有且只有一个实根,又2k 2+1>0, 所以Δ=0,得m 2=2k 2+1,假设存在M 1(λ1,0),M 2(λ2,0)满足题设, 则d 1·d 2=|(λ1k +m )(λ2k +m )|k 2+1=|λ1λ2k 2+(λ1+λ2)km +2k 2+1|k 2+1=⎪⎪⎪⎪⎪⎪(λ1λ2+2)k 2+(λ1+λ2)km +1k 2+1=1对任意的实数k 恒成立. 所以⎩⎨⎧ λ1λ2=-1,λ1+λ2=0,解得⎩⎨⎧λ1=1,λ2=-1或⎩⎨⎧λ1=-1,λ2=1.当直线l 的斜率不存在时,经检验符合题意.综上所述,存在两个定点M 1(1,0),M 2(-1,0),使它们到直线l 的距离之积等于1.6.(2017·湖北黄冈模拟)如图,已知点F 1,F 2是椭圆C 1:x 22+y 2=1的两个焦点,椭圆C 2:x 22+y 2=λ经过点F 1,F 2,点P 是椭圆C 2上异于F 1,F 2的任意一点,直线PF 1和PF 2与椭圆C 1的交点分别是A ,B 和C ,D .设AB ,CD 的斜率分别为k ,k ′.(1)求证:k ·k ′为定值; (2)求|AB |·|CD |的最大值.解析:(1)证明:因为点F 1,F 2是椭圆C 1的两个焦点,故F 1,F 2的坐标是F 1(-1,0),F 2(1,0). 而点F 1,F 2是椭圆C 2上的点,将F 1,F 2的坐标代入C 2的方程得,λ=12. 设点P 的坐标是(x 0,y 0),∵直线PF 1和PF 2的斜率分别是k ,k ′(k ≠0,k ′≠0) ∴kk ′=y 0x 0+1·y 0x 0-1=y 20x 20-1,①又点P 是椭圆C 2上的点,故x 202+y 20=12,② 联立①②两式可得kk ′=-12,即k ·k ′为定值. (2)直线PF 1的方程可表示为y =k (x +1)(k ≠0), 与椭圆C 1的方程联立, 得到方程组⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1,由方程组得(1+2k 2)x 2+4k 2x +2k 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.|AB |=1+k 2|x 1-x 2|= 1+k 2(x 1+x 2)2-4x 1x 2= 22(1+k 2)1+2k 2.同理可求得|CD |=2(1+4k 2)1+2k 2,则|AB |·|CD |=4(4k 4+5k 2+1)(1+2k 2)2=4⎝ ⎛⎭⎪⎪⎫1+11k 2+4k 2+4≤92, 当且仅当k =±22时等号成立. 故|AB |·|CD |的最大值等于92.微课视频 免费观看[内容包括:整个专题重点内容]。
福建省厦门市第二十四中学2018年高三数学理联考试题含解析
福建省厦门市第二十四中学2018年高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设集合,集合,则等于()A. B. C.D.参考答案:C2. 若过点的直线与圆x2+y2=4有公共点,则该直线的倾斜角的取值范围是()A.B.C.D.参考答案:B【考点】直线与圆的位置关系.【分析】当过点的直线与圆x2+y2=4相切时,设斜率为k,由圆心到直线的距离等于半径求得k的范围,即可求得该直线的倾斜角的取值范围.【解答】解:当过点的直线与圆x2+y2=4相切时,设斜率为k,则此直线方程为y+2=k(x+2),即 kx﹣y+2k﹣2=0.由圆心到直线的距离等于半径可得=2,求得k=0或 k=,故直线的倾斜角的取值范围是[0,],故选:B.【点评】本题主要考查直线和圆相切的性质,点到直线的距离公式的应用,属于基础题.3. 函数的部分图象如图所示,则函数表达式为()A. B.C. D.参考答案:A4. 已知是函数图象的一个最高点,是与相邻的两个最低点.若,则的图象对称中心可以是(A)(B)(C)(D)参考答案:C【命题意图】本小题考查三角函数的图象和性质、解三角形、二倍角公式等基础知识;考查学生的抽象概括能力、运算求解能力以及数据处理能力;考查数形结合思想、化归与转化思想以及函数与方程思想;考查数学抽象、直观想象和数学分析等.【试题简析】如图,取的中点,连结,则,设,则,由余弦定理可得,,解得,,的中点都是图象的对称中心.故选.【错选原因】错选A:平时缺乏训练,只记得正弦函数的对称中心是错选B:误把最高点的2当成了周期;错选D:这类同学可以求出函数的周期是6,但没注意到函数并未过原点.5. 已知k∈R,点P(a,b)是直线x+y=2k与圆x2+y2=k2﹣2k+3的公共点,则ab的最大值为()A.15 B.9 C.1 D.﹣参考答案:B【分析】先根据直线与圆相交,圆心到直线的距离小于等于半径,以及圆半径为正数,求出k的范围,再根据P(a,b)是直线x+y=2k与圆x2+y2=k2﹣2k+3的公共点,满足直线与圆方程,代入直线与圆方程,化简,求出用k表示的ab的式子,根据k的范围求ab的最大值.【解答】解:由题意,圆心(0.0)到直线的距离d=≤解得﹣3≤k≤1,又∵k2﹣2k+3>0恒成立∴k的取值范围为﹣3≤k≤1,由点P(a,b)是直线x+y=2k与圆x2+y2=k2﹣2k+3的公共点,得(a+b)2﹣a2﹣b2=2ab=3k2+2k﹣3=3(k+)2﹣,∴k=﹣3时,ab的最大值为9.故选B.【点评】本题主要考查了直线与圆相交位置关系的判断,做题时考虑要全面,不要丢情况.6. 下列函数中,定义域是R且为增函数的是()A.y=e﹣x B.y=x3 C.y=lnx D.y=|x|参考答案:B【考点】函数单调性的判断与证明.【分析】根据函数单调性的性质分别进行判断即可得到结论.【解答】解:对于选项A,y=e x为增函数,y=﹣x为减函数,故y=e﹣x为减函数,对于选项B,y′=3x2>0,故y=x3为增函数,对于选项C,函数的定义域为x>0,不为R,对于选项D,函数y=|x|为偶函数,在(﹣∞.0)上单调递减,在(0,∞)上单调递增,故选:B.7. 设,若,则=()A. B.1C. D.参考答案:C8. 若第一象限内的点,落在经过点且具有方向向量的直线上,则有A.最大值 B.最大值1 C.最小值D.最小值1参考答案:B9. 已知某运动物体的位移随时间变化的函数关系为,设物体第秒内的位移为,则数列是()A.公差为的等差数列B.公差为的等差数列C.公比为的等比数列D.公比为的等比数列参考答案:A10. 设函数f(x)=,若对任意给定的y∈(2,+∞),都存在唯一的x∈R,满足f(f(x))=2a2y2+ay,则正实数a的最小值是()A.2 B.C.D.4参考答案:C【考点】3H:函数的最值及其几何意义.【分析】由已知函数解析式得到函数值域,结合存在唯一的x∈R,满足f(f(x))=2a2y2+ay,可得f(f(x))>1,即f(x)>2,进一步转化为2a2y2+ay>1,y∈(2,+∞),求解不等式得到y的范围,进一步得到a的范围得答案.【解答】解:函数f(x)=的值域为R.∵f(x)=2x,(x≤0)的值域为(0,1];f(x)=log2x,(x>0)的值域为R.∴f(x)的值域为(0,1]上有两个解,要想f(f(x))=2a2y2+ay在y∈(2,+∞)上只有唯一的x∈R满足,必有f(f(x))>1 (2a2y2+ay>0).∴f(x)>2,即log2x>2,解得:x>4.当x>4时,x与f(f(x))存在一一对应的关系.∴问题转化为2a2y2+ay>1,y∈(2,+∞),且a>0.∴(2ay﹣1)(ay+1)>0,解得:y>或者y<﹣(舍去).∴≤2,得a.故选:C.二、填空题:本大题共7小题,每小题4分,共28分11. 函数f(x)=的定义域为______________.参考答案:略12. (14)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时。
【高三数学试题精选】2018届高考数学导数与复数单元验收试题(含答案)
2018届高考数学导数与复数单元验收试题(含答案)
5 2018—2018学年度上学期高三一轮复习
数学单元验收试题(12)【新人教】
命题范围导数与复数(理科加“积分”)
说明本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分;答题时间120分钟。
第Ⅰ卷
一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。
1.若,为虚数单位,且,则()
A., B.
c. D.
2.曲线在点P(1,12)处的切线与轴交点的纵坐标是()
A.―9 B.―3 c.9 D.15
3.(理)复数z= (为虚数单位)在复平面内对应的点所在象限为()
A.第一象限 B.第二象限 c.第三象限 D.第四象限
()如果函数的图像与函数的图像关于坐标原点对称,则的表达式为()
A. B. c. D.
4.i是虚数单位,若集合S= ,则()
A. B. c. D.
5.设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2006(x)=()
A.sinx B.-sinx c.csx D.-csx
6.函数在区间〔0,1〕上的图像如图所示,。
2018届高三数学第24练导数综合练
第24练 导数一、选择题1.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛1f (x )d x 等于( )A .-1B .-13C.13D .12.(2016·新余模拟)如图是函数f (x )=x 2+ax +b 的部分图象,则函数g (x )=ln x +f ′(x )的零点所在的区间是( )A.⎝ ⎛⎭⎪⎫14,12 B .(1,2) C.⎝⎛⎭⎪⎫12,1 D .(2,3)3.(2016·潍坊模拟)已知函数f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,f ′(x )为f (x )的导函数,则f ′(x )的图象是( )4.(2016·福建“四地六校”联考)已知曲线f (x )=23x 3-x 2+ax -1存在两条斜率为3的切线,且切点的横坐标都大于零,则实数a 的取值范围为( ) A .(3,+∞) B.⎝ ⎛⎭⎪⎫3,72C.⎝⎛⎦⎥⎤-∞,72 D .(0,3)5.(2017·沈阳质检)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x ≠0时,f ′(x )+f (x )x >0,若a =12f ⎝ ⎛⎭⎪⎫12,b =-2f (-2),c =ln 12·f (ln 12),则a ,b ,c 的大小关系是( ) A .a <c <b B .b <c <a C .a <b <c D .c <a <b二、填空题6.函数y =ln 2xx的极小值为________.7.某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为p 元,则销售量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2.问该商品零售价定为________元时毛利润最大(毛利润=销售收入-进货支出).8.对任意实数x 均有e 2x-(a -3)e x+4-3a >0,则实数a 的取值范围为________.9.已知函数f (x )=⎩⎪⎨⎪⎧(2x -x 2)e x,x ≤0,-x 2+4x +3,x >0,g (x )=f (x )+2k ,若函数g (x )恰有两个不同的零点,则实数k 的取值范围为________________. 三、解答题10.已知函数f (x )=ln 1+x1-x.(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33; (3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值.答案精析1.B [∵f(x)=x 2+2⎠⎛01f(x)d x ,∴⎠⎛01f (x )d x =[13x 3+2x ⎠⎛01f (x )d x ]10|=13+2⎠⎛01f (x )d x , ∴⎠⎛01f (x )d x =-13.]2.C [由函数f (x )=x 2+ax +b 的部分图象,得0<b <1,f (1)=0, 从而-2<a <-1.因为g (x )=ln x +f ′(x )在其定义域内单调递增,g ⎝ ⎛⎭⎪⎫12=ln 12+1+a <0,g (1)=ln 1+2+a =2+a >0,所以函数g (x )=ln x +f ′(x )的零点所在的区间是⎝ ⎛⎭⎪⎫12,1.故选C.]3.A [因为f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x =14x 2+cos x ,所以f ′(x )=12x -sin x ,其为奇函数,且f ′⎝ ⎛⎭⎪⎫π6<0.故选A.] 4.B [f (x )=23x 3-x 2+ax -1的导数为f ′(x )=2x 2-2x +a .由题意可得2x 2-2x +a =3,即2x 2-2x +a -3=0有两个不相等的正实数根,则Δ=4-8(a -3)>0,x 1+x 2=1>0,x 1x 2=12(a -3)>0,解得3<a <72.故选B.]5.A [设h (x )=xf (x ),∴h ′(x )=f (x )+xf ′(x ). ∵y =f (x )是定义在R 上的奇函数, ∴h (x )是定义在R 上的偶函数. 当x >0时,h ′(x )=f (x )+xf ′(x )>0, ∴函数h (x )在(0,+∞)上单调递增. ∵a =12f ⎝ ⎛⎭⎪⎫12=h ⎝ ⎛⎭⎪⎫12,b =-2f (-2)=2f (2)=h (2),c =ln 12·f ⎝⎛⎭⎪⎫ln 12=h ⎝⎛⎭⎪⎫ln 12=h (-ln 2)=h (ln 2).又∵2>ln 2>12,∴b >c >a .故选A.]6.0解析 函数的定义域为(0,+∞).令y =f (x ),f ′(x )=2ln x -ln 2x x 2=-ln x (ln x -2)x2. 令f ′(x )=0,解得x =1或x =e 2.f ′(x )与f (x )随x 的变化情况如下表:故当x =1时,函数y =ln x取到极小值0.7.30解析 由题意知,毛利润=销售收入-进货支出, 设该商品的毛利润为L (p ),则L (p )=pQ -20Q =Q (p -20)=(8 300-170p -p 2)(p -20) =-p 3-150p 2+11 700p -166 000, 所以L ′(p )=-3p 2-300p +11 700. 令L ′(p )=0,解得p =30或p =-130(舍去). 此时,L (30)=23 000.因为在p =30附近的左侧L ′(p )>0,右侧L ′(p )<0.所以L (30)是极大值,根据实际问题的意义知,L (30)是最大值. 8.(-∞,43]解析 e 2x-(a -3)e x +4-3a >0⇔(e x +3)a <e 2x +3e x+4⇔a <e 2x+3e x+4e x+3, 令t =e x,则a <e 2x +3e x +4e x+3⇔a <t 2+3t +4t +3(t >0), 令h (t )=t 2+3t +4t +3=t +4t +3(t >0),h ′(t )=1-4?t +3?2, 因为t >0,所以h ′(t )>0, 即当t >0时,h (t )>h (0)=43,所以a ≤43,即实数a 的取值范围为(-∞,43].9.⎝ ⎛⎭⎪⎫-72,-32∪⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,2+1e 2解析 由y =(2x -x 2)e x (x ≤0)求导,得y ′=(2-x 2)e x ,故y =(2x -x 2)e x(x ≤0)在(-2,0]上单调递增,在(-∞,-2)上单调递减,且当x <0时,恒有y =(2x -x 2)e x<0.又y =-x 2+4x +3(x >0)在(0,2)上单调递增,在(2,+∞)上单调递减,所以可作出函数y =f (x )的图象,如图.由图可知,要使函数g (x )恰有两个不同的零点,需-2k =0或-2k =-22-2e 2或3<-2k <7,即实数k 的取值范围为⎝ ⎛⎭⎪⎫-72,-32∪⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,2+1e 2. 10.(1)解 因为f (x )=ln(1+x )-ln(1-x ), 所以f ′(x )=11+x +11-x,f ′(0)=2.又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x .(2)证明 令g (x )=f (x )-2⎝ ⎛⎭⎪⎫x +x 33, 则g ′(x )=f ′(x )-2(1+x 2)=2x41-x2.因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33. (3)解 由(2)知,当k ≤2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立. 当k >2时,令h (x )=f (x )-k ⎝ ⎛⎭⎪⎫x +x 33, 则h ′(x )=f ′(x )-k (1+x 2)=kx 4-(k -2)1-x2. 所以当0<x <4k -2k时,h ′(x )<0,因此h (x )在区间⎝⎛⎭⎪⎫0,4k -2k 上单调递减.当0<x <4k -2k时,h (x )<h (0)=0,即f (x )<k ⎝ ⎛⎭⎪⎫x +x 33.所以当k >2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33并非对x ∈(0,1)恒成立. 综上可知,k 的最大值为2.。
2018届东北师范大学附属中学高三第一轮高考总复习阶段测试卷(第24周)理科数学试题及答案 精品推荐
时量 180分钟 总分180分 【测试目标:了解外地考卷命题形式】一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求的. 1. 如图:给定全集U 和集合A,B ,则如图阴影部分表示的集合是( ) A.)(B C A U B.BA C U )( C.B B AC U )(D.A B A C U )( 2. 函数xx x f 1ln )(-=的一个零点所在的区间是( ) A.)1,1(- B.)2,1( C.),2(e D.)3,(e 3. 化简对数式511log 3log 135+得到的值为( ) A. 1 B. 2 C. - 1 D. 31- 4. 已知三个向量)2cos,(A a =,)2cos ,(B b =,)2cos ,(Cc =共线,其中C B A c b a ,,,,,分别是ABC ∆的三条边和三个角,则ABC ∆的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 5.函数)2||,0,0)(sin()(πφωφω<>>+=A x A x f 的部分图象如图示,将()y f x =的图象向右平移6π个单位后得到函数)(x g y =的图像,则)(x g 的单调递增区间为( )A.]32,62[ππππ+-k k B.]652,32[ππππ++k kC.]3,6[ππππ+-k k D.]65,3[ππππ++k k6.设函数x x a a k x f --⋅=)((0>a 且1≠a )在),(+∞-∞上既是奇 函数A B CD7.设等差数列{}n a 的前n项和为nS 且满足,0,01615<>S S 则nn a S a S a S a S ,,,,332211 中最大的项为 .A 66a S.B 77a S.C88a S .D 99a S8.对于定义域为[0,1]的函数()f x ,如果同时满足以下三个条件:①对任意的]1,0[∈x ,总有0)(≥x f ②1)1(=f ③若0,021≥≥x x ,121≤+x x ,都有)()()(2121x f x f x x f +≥+ 成立; 则称函数)(x f 为理想函数. 下面有三个命题: (1)若函数)(x f 为理想函数,则0)0(=f ; (2)函数])1,0[(12)(∈-=x x f x 是理想函数;(3)若函数)(x f 是理想函数,假定存在]1,0[0∈x ,使得]1,0[)(0∈x f ,且00)]([x x f f =,则00)(x x f =;其中正确的命题个数有( ) A. 0个 B.1个 C.2个D.3个二、填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答题卡中对应题号后的横线上. (一)选作题(请考生在第9、18、 18三题中任选两题作答,如果全做,则按前两题记分 )9. 不等式521>-++x x 的解集为 . 18. 直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧+==242222t y t x (其中t 为参数),圆C 的极坐标方程为)4cos(2πθρ+=,过直线上的点向圆引切线,则切线长的最小值是 . 18. 如图,AB 是⊙O 的直径,P 是AB 延长线上的一点,过P 作⊙O 的切线,切点为C ,32=PC ,若︒=∠30CAP ,则⊙O的直径=AB .(二)必做题 18. 下面是关于复数iz +-=12的四个命题:(1)2=z ; (2)i z 22=; (3)z 的共轭复数为i +1; (4)z 的虚部为1-;其中所有正确的命题序号是 .18.如果一个随机变量ξ~)21,15(B ,则使得)(k P =ξ取得最大值的k的值为 .18. 如图是某几何体的三视图,则该几何体的外接球的体积为 .18. 采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为 . 18. 已知123{(,,,,)n n S A A a a a a ==,2012i a =或2013,1,2,}i n =(2)n ≥,对于,n U V S ∈,(,)d U V 表示U 和V 中相对应的元素不同的个数. (Ⅰ)令(2013,2013,2013,2013,2013)U =,存在m 个5V S ∈,使得(,)2d U V =,则m = ;(Ⅱ)令123(,,,,)n U a a a a =,若n V S ∈,则所有(,)d U V 之和为 .高三周考数学(理科)答卷 时量 180分钟 总分180分一 选择题:9. 18. 18.18. 18. 18.18. 18. .三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.18、(18分)已知βα,是三次函数),(22131(23R b a bx ax x x f ∈++=)的两个极值点,且()1,0∈α,()2,1∈β,求动点()b a ,所在的区域面积S .18、(18分)为迎接新年到来,某商场举办有奖竞猜活动,参与者需先后回答两道选择题,问题A 有四个选项,问题B 有五个选项,但都只有一个选项是正确的。
2018版高考数学理科专题复习:专题3 导数及其应用 第24练含解析
4.(2016·山东)已知 f(x)=a(x-lnx)+ (1)讨论 f(x)的单调性;
2x-1 ,a∈R. x2
3 (2)当 a=1 时,证明 f(x)>f′(x)+ 对于任意的 x∈1,2]成立. 2 5.已知函数 f(x)=xlnx 和 g(x)=m(x2-1)(m∈R). (1)m=1 时,求方程 f(x)=g(x)的实根; (2)若对任意的 x∈(1,+∞),函数 y=g(x)的图象总在函数 y=f(x)图象的上方,求 m 的取值范围;
ห้องสมุดไป่ตู้
f(x)在-1,0]上单调递减,在 0,1]上单调递增,故 f(x)在 x=0 处取得最小值.所以对于任意 x1,x2 ∈-1,1], |f(x1)-f(x2)|≤e-1 的充要条件是 即 em-m≤e-1, e-m+m≤e-1. ① f1-f0≤e-1, f-1-f0≤e-1,
设函数 g(t)=et-t-e+1, 则 g′(t)=et-1. 当 t<0 时,g′(t)<0;当 t>0 时,g′(t)>0. 故 g(t)在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又 g(1)=0,g(-1)=e-1+2-e<0,
训练目标
(1)导数的综合应用;(2)压轴大题突破.
训练题型
(1)导数与不等式的综合;(2)利用导数研究函数零点;(3)利用导数求参数范围.
解题策略
(1)不等式恒成立(或有解)可转化为函数的最值问题,函数零点可以和 函数图象相结合;(2)求参数范围可用分离参数法.
a 1.(2016·常州一模)已知函数 f(x)=lnx-x- ,a∈R. x (1)当 a=0 时,求函数 f(x)的极大值; (2)求函数 f(x)的单调区间.
单调增区间为(0, 综上所述, 1 当 a≤- 时, 4
高三数学-[整理]大连二十四中学2018年高三模拟考试-人
大连二十四中学2018年高三模拟考试数学试卷命题:大连市第二十四中学高三数学备课组本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
参考公式:如果事件,A B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件,A B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ⋅=⋅ 球的体积公式 如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中恰好发生k 次的概 343V R π=率()(1)k k n kn nP k C P P -=- 其中R 表示球的半径 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}2,1P x y x y R y ==∈>且,集合{}21,0Q y y x x R x ==+∈≠且, 则PQ 等于( )(A)∅ (B)Q (C)P (D)R2.设函数21,0()lg(1),0x x f x x x -⎧-=⎨+>⎩…,若()1f m >,则m 的取值范围是( )(A)(1,1)- (B)(1,)-+∞ (C)(,9)-∞ (D)(,1)(9,)-∞-+∞3.已知等差数列{}n a 的前n 项和为n S ,其中15512a a S +=且1120a =,则13S 等于( )(A)260 (B)160 (C)130 (D)604.设复数21(1)1iz i i+=+--,则7(1)z +展开式的第六项的虚部是( ) (A)21- (B)35- (C)21i - (D)35i -5.一种零件的加工由两道工序组成,第一道工序的废品率为p ,第二道工序的废品率为q ,则该种零件加工的成品率为( )(A)1p q -- (B)(1)(1)p q -- (C)1p q pq --- (D)1pq -6.若O 为坐标原点,抛物线22y x =与过其焦点的直线交于,A B 两点,则OA OB ⋅的值为( ) (A)34 (B)34- (C)3 (D)4-7.2cos553sin 5-的值为( )2 (D)18.已知离散型随机变量1(4,)3B ξ,则(33)D ξ+等于( )(A)9 (B)7 (C)11 (D)89.设曲线2:ln(1)C y x =+与直线1x =的交点为P ,曲线C 在P 点处的切线经过(,0)a 点,则实数a 的值为( )(A)2ln 2- (B)1ln 2- (C)12ln 2- (D)22ln 2-10.如图,正方体1111ABCD A BC D -中,,M N 分别是111,A B CC 的中点,P 为AD 上一动点,记α为异面直线PM 与1D N 所成的角,则α的取值集合是( )(A)62ππαα⎧⎫⎨⎬⎩⎭剟 (B)42ππαα⎧⎫⎨⎬⎩⎭?(C)2π⎧⎫⎨⎬⎩⎭ (D)32ππαα⎧⎫⎨⎬⎩⎭剟11.长方体的一个顶点上三条棱长分别是3,4,5,且它的八个顶点都在同一个球面上,则这个球的表面积是( ) (A)1252π(B)125π (C)50π (D)25π 12.有七名同学站成一排照毕业纪念相,其中甲必须站在正中间,并且乙丙两位同学要站在一起,则不同的站法有( )(A)240种 (B)192种 (C)96种 (D)48种ABC D P A 1B 1C 1D 1 N M第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.定义a *b min{,}a b =为集合中,a b 的较小者,若2()2,()f x x g x x =-=-, 则()f x *()g x 的最大值为___________.14.lim )1x x a →+∞+=-,则a =________.15.在平面直角坐标系中,若方程222(21)(23)m x y y x y +++=-+ 表示的曲线为椭圆,则实数m 的取值范围是_______________. 16.设正四面体A BCD-的棱,AB AC 的中点分别为,E F , 则DEF △在该四面体各面上的射影可能是______________.⑴ ⑵ ⑶ ⑷三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分12分)()f x =⋅a b ,其中(2sin ,cos()),(2cos ,4cos())44x x x x ππ=+=-a b ,[0,]2x π∈.⑴求()8f π的值;⑵求()f x 的最小值.18.(本小题满分12分)已知10件产品中有3件是次品,并且各产品均可区分,现从中逐件抽样检测不放回. ⑴求前3次抽样中,只抽到1件次品的概率; ⑵求到第6次抽样时,3件次品全被抽出的概率;A B C DEF⑶求前3次抽样中抽到次品个数ξ的分布列,并求其期望.19.(本小题满分12分)如图,在斜三棱柱111ABC A B C -中,侧面11AA B B ⊥底面ABC ,侧棱1AA 与底面ABC 成60°的角,12AA =,底面ABC 是边长为2的正三角形,其重心为G 点.E 是线段1BC 上一点,且113BE BC =.⑴求证:GE ∥侧面11AA B B ;⑵求平面1BGE 与底面ABC 所成锐角二面角的大小.20.(本小题满分12分)ABCC 1A 1B 1G E已知函数22()4()f x x ax a a R =-+∈.⑴若关于x 的不等式()f x x …的解集为R ,求实数a 的最大值;⑵设函数3()23()g x x af x =+,若()g x 在开区间(0,1)上存在极小值,求实数a 的取值范围.21.(本小题满分12分)已知椭圆22221(0)x y a b a b+=>>,(2,0)A 是长轴的一个端点,弦BC 过椭圆中心O ,且0,2AC BC OC OB BC BA ⋅=-=-.⑴求椭圆方程;⑵若AB 上一点F 满足23BO OA OF -+=0,求证:CF 平分BCA ∠;⑶对椭圆上两点,P Q ,PCQ ∠的平分线总垂直于x 轴时,是否存在实数λ,使得PQ AB λ=成立?证明你的结论.22.(本小题满分14分)设函数()f x 定义域为()0,+?,且对任意的实数,x y 有()()()f xy f x f y =+,已知(2)1f =且当1x >时,()0f x >. (1) 求1()2f 的值;(2) 试判断()y f x =在(0,)+?上的单调性,并证明;(3) 一个各项均为正数的数列{}n a 满足:()()(1)1(*)n n n f S f a f a n N =++-?,其中n S 是{}n a 的前n 项和,求{}n a 的通项; (4) 在⑶条件下,是否存在正数M ,使()121221)21(21)n n n a a a M a a a 鬃---L L …对一切*n N Î成立?若存在,求出M 的取值范围;若不存在,说明理由.2018年高三模拟考试数学试卷参考答案及评分标准一、选择题BDCBB BDDBC CB 二、填空题13.1- 14.0 15.5m > 16.⑴⑶⑷ 三、解答题 17.⑴(2sin ,cos()),(2cos ,4cos())44x x x x ππ=+=-a b()4sin cos 4cos()cos()44f x x x x x ππ∴=+-+2sin 22cos 2x x =+)4x π=+ -----------------------------------------(4分)()82f ππ∴==分)⑵ 由⑴知,())4f x x π=+,5[0,],2[,]2444x x ππππ∈∴+∈ -----(9分) 5244x ππ∴+=,即2x π=时,min ()2f x =-. ----------------------------(12分)18.⑴12373102140C C p C == ------------------------------------------------(3分) ⑵2353756112C C A p A == -------------------------------------------------(6分)⑶ 分)910E ξ=--------------------------------------------------(12分) 19.⑴延长1B E 交BC 于F ,111,2B EC FEB BE EC =△∽△, 1111,22BF B C BC ∴==从而F 为BC 的中点. ---------------------------(2分)G 为ABC △的重心,A ∴,,G F 三点共线,且11,3FG FE FAFB ==1,GE AB ∴∥又GE ⊄侧面11AA B B ,GE ∴∥侧面11AA B B . --------------------(6分) ⑵在侧面11AA B B 内,过1B 作1BH AB ⊥,垂足为H , 侧面11AA B B⊥底面ABC ,1B H ∴⊥底面ABC . 又侧棱1AA 与底面ABC 成60的角,1AA =2,1160,1,B BH BH B H ∴∠===在底面ABC 内,过H 作,HT AF ⊥垂足为T ,连1BT ,由三垂线定理有1BT AF ⊥, 又平面1BGE 与底面ABC 的交线为AF , 1BTH ∴∠为所求二面角的平面角 ---------------------------------------(9分) 3,30,AH AB BH HAT ∴=+=∠=3sin 30,2HT AH ∴==在1Rt B HT △中,11tan B H B TH∠==从而平面1BGE 与底面ABC 所成锐二面角的大小为arctan . -------(12分) 20.⑴()f x x …解集为R ,22(41)0x a x a ∴-++…恒成立.22(41)40a a ∆=+-…,即212810a a ++…,1126a --剟,故a 的最大值为16-. -----------(4分)⑵由已知得 3223()23123g x x ax a x a =+-+,则2222()66126(2)6()(2)g x x ax a x ax a x a x a '=+-=+-=-+令()0g x '=得 x a =或2x a =-. --------------------------------(6分) ① 若0a =,则()0g x '…,()g x ∴在R 上单调递增,在(0,1)上无极值. ---(7分) ② 若0a >,则当2x a <-或x a >时,()0g x '>;当2a x a -<<时,()0g x '<. ∴当x a =时,()g x 有极小值.()g x 在(0,1)上存在极小值,01a ∴<<. ---(9分) ③ 若0a <,则当x a <或2x a >-时,()0g x '>;当2a x a <<-时,()0g x '<. ∴当2x a =-时,()g x 有极小值.()g x 在(0,1)上存在极小值,021a ∴<-<,即102a -<<. ----------------------------------------------(11分)综上,当102a -<<或01a <<时,()g x 在(0,1)上存在极小值. -------(12分)21.⑴0,,90AC BC AC BC ACB ⋅=∴⊥∠=,又2,OC OB BC BA OC OB -=-=-,22OC AC ∴=,AOC ∴△为等腰直角三角形.(2,0),(1,1)A C ∴±,设椭圆方程为22214x y b+=,则221141,43b b +=∴=,故椭圆方程为221443x y +=. ----------------------(4分) ⑵不妨设(1,1)C ,则(1,1)B --,设00(,)F x y ,23BO OA OF -+=0,00330,1x x ∴-+=∴=.CF x ∴⊥轴,CF ∴平分BCA ∠. ----------------(8分)⑶设1122(,),(,)P x y Q x y ,设,PC QC 的方程分别为1(1)y k x -=-与1(1)y k x -=--,即(1)1y k x =-+与(1)1y k x =--+.由2234(1)1x y y k x ⎧+=⎨=-+⎩得 222(13)6(1)3610k x k k x k k +--+--= 2211223613611,1313k k k k x x k k ----⋅=∴=++, 同理,22236113k k x k +-=+.2212121212262()211312313PQ k k y y k x x k k k k x x x x k -⋅-+-+====---+.又13AB k =,PQ AB ∴∥. 故存在R λ∈,使PQ AB λ=成立.当(1,1)C -时,同理可证. ------------(12分) 22.⑴()()(),1f xy f x f y x y =+\==Q 令有(1)(1)(1)2(1),(1)0112,,(1)(2)()22f f f f f x y f f f =+=\====+再令有11()(1)(2)011,()122f f f f \=-=-=-\=-. -------------------(3分)⑵()1110,,(1)()(),().x y f f x f f f x x x x >==+\=-若令有1112220,1()0x xx x f x x >>>\>令有.()()()()()111212221()()0,x f f x f f x f x f x f x x x =+=->\>而.\()f x 在()0,+?为增函数. -------------------------------------(6分)⑶11()()(1)1[(1)]()[(1)]22n n n n n n n f S f a f a f a a f f a a =++-=++=+又()y f x =Q 在()0,x ??时为单调递增函数,0n S > 1(1)02n n a a +>,1(1)2n n n S a a \=+L L L L ① 在上式中,令1n =有,11a ∴=.当2n …时,有1111(1)2n n n S a a ---=+②①-②有11111(1)(1)22n n n n n n n S S a a a a a ----=+-+=,2211()0n n n n a a a a --∴--+=11()(1)0n n n n a a a a --+--=,又110101n n n n n a a a a a -->∴--=∴-=∴数列{}n a 构成以11a =为首项,公差1d =的等差数列.1(1)1(1)n a a n d n n ∴=+-=+-=. -----------------------------(10分)⑷12221232!n n n n n a n a a a n n =∴⋅⋅=⋅⋅⋅=⋅()1221(21)(21)135(21)n a a a n ---=⋅⋅-令1)(21)21135(21)n n n n b a n n ==-+⋅⋅⋅- 则11n n b ++=11n n b b +∴===>1n nb b +∴> ∴数列{}n b 为单调递增数列由题意n M b…恒成立 则只需min ()n M b …即11M b ==…M ⎛∴∈ ⎝⎦. ------------------------------------------(14分)。
2018年高考数学(理)总复习 双基过关检测“导数及其应用” Word版含解析
“导数及其应用”双基过关检测一、选择题.已知函数()=-,则′()=( ).-.-.--.-+解析:选′()=-()))′=( )′-′=-..已知函数()=(>且≠),若′()=-,则=( ).解析:选因为′()=),所以′()=)=-,所以=-,所以=..曲线=+-在点(,-)处的切线方程为( ).=-.=--.=+.=--解析:选因为′=++,所以曲线=+-在点(,-)处的切线的斜率=′=,∴切线方程为=-..已知曲线=-的一条切线的斜率为,则切点的横坐标为( )...解析:选已知曲线=-(>)的一条切线的斜率为,由′=-=,得=,故选..函数()=(-)的单调递增区间是( ).(-∞,) .().() .(,+∞)解析:选依题意得′()=(-)′+(-)()′=(-),令′()>,解得>,∴()的单调递增区间是(,+∞).故选..已知函数()=(-)在=处取得极小值,则实数=( )....解析:选()=(-+)=-+,所以′()=-+=(-)(-).由′()=可得=或=.当=时,′()=(-)(-),当<<时,′()<,当<或>时,′()>,此时在=处取得极大值,不合题意,∴=,此时′()=(-)(-),当< <时,′()<,当<或>时,′()>,此时在=处取得极小值.选..已知函数()=(\\(,-≤≤,+,<≤,))则()的值为( )...若函数()=(\\(-,≤,-+,>))的值域为[,+∞),则实数的取值范围是( ) .[].(].(-∞,] .(-∞,)解析:选当≤时,>()=-≥;当>时,()=-+,′()=-,当∈()时,′()<,()单调递减,当∈(,+∞)时,′()>,()单调递增,所以当=时,函数()取得最小值()=-+=-.由题意得≥-≥,解得≤≤,选.二、填空题.若函数()=+不是单调函数,则实数的取值范围是.解析:由题意知()的定义域为(,+∞),′()=+,要使函数()=+不是单调函数,则需方程+=在(,+∞)上有解,即=-,∴<.答案:(-∞,).已知函数()=-′(-)+-,则′()=.解析:∵′()=-′(-)+,′(-)=-+′(-)+,∴′(-)=-,∴′()=++=.答案:.已知函数()的图象在点(,())处的切线方程是=+,则()+′()=.解析:由题意知′()=,()=×+=,∴()+′()=+=.答案:.已知函数()满足()=′()--()+,且存在实数,使得不等式-≥()成立,则实数的取值范围为.解析:′()=′()--()+,令=时,得′()=′()-()+,∴()=,()=′()-=,。
2018年高考数学(理)总复习双基过关检测:“导数及其应用”含解析
“导数及其应用”双基过关检测一、选择题1.已知函数f (x )=sin x -12x ,则f ′(x )=( )A .sin x -12B .cos x -12C .-cos x -12D .-sin x +12解析:选B f ′(x )=⎝ ⎛⎭⎪⎫sin x -12x ′=(sin x )′-⎝ ⎛⎭⎪⎫12x ′=cos x -12. 2.已知函数f (x )=log a x (a >0且a ≠1),若f ′(1)=-1,则a =( ) A .e B.1eC.1e2 D.12解析:选B 因为f ′(x )=1x ln a ,所以f ′(1)=1ln a=-1,所以ln a =-1,所以a =1e.3.曲线y =x e x+2x -1在点(0,-1)处的切线方程为( ) A .y =3x -1 B .y =-3x -1 C .y =3x +1D .y =-2x -1解析:选A 因为y ′=e x+x e x+2,所以曲线y =x e x+2x -1在点(0,-1)处的切线的斜率k =y ′| x =0=3,∴切线方程为y =3x -1.4.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D.12解析:选A 已知曲线y =x 24-3ln x (x >0)的一条切线的斜率为12,由y ′=12x -3x =12,得x =3,故选A.5.函数f (x )=(x -3)e x的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4)D .(2,+∞)解析:选D 依题意得f ′(x )=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,∴f (x )的单调递增区间是(2,+∞).故选D.6.已知函数f (x )=x (x -m )2在x =1处取得极小值,则实数m =( ) A .0 B .1 C .2D .3解析:选B f (x )=x (x 2-2mx +m 2)=x 3-2mx 2+m 2x ,所以f ′(x )=3x 2-4mx +m 2=(x -m )(3x -m ).由f ′(1)=0可得m =1或m =3.当m =3时,f ′(x )=3(x -1)(x -3),当1<x <3时,f ′(x )<0,当x <1或x >3时,f ′(x )>0,此时在x =1处取得极大值,不合题意,∴m =1,此时f ′(x )=(x -1)(3x -1),当13<x <1时,f ′(x )<0,当x <13或x >1时,f ′(x )>0,此时在x =1处取得极小值.选B.7.已知函数f (x )=⎩⎪⎨⎪⎧x 2,-2≤x ≤0,x +1,0<x ≤2,则 f(x)d x 的值为( )A. 43 B .4 C .6D.2038.若函数f(x)=⎩⎪⎨⎪⎧1-2x,x ≤0,x 3-3x +a ,x >0的值域为[0,+∞),则实数a 的取值范围是( )A .[2,3]B .(2,3]C .(-∞,2]D .(-∞,2)解析:选A 当x≤0时,1>f (x )=1-2x≥0; 当x >0时,f (x )=x 3-3x +a ,f ′(x )=3x 2-3, 当x ∈(0,1)时,f ′(x )<0,f (x )单调递减, 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,所以当x =1时,函数f(x)取得最小值f (1)=1-3+a =a -2.由题意得1≥a -2≥0,解得2≤a ≤3,选A .二、填空题9.若函数f (x )=x +a ln x 不是单调函数,则实数a 的取值范围是________.解析:由题意知f (x )的定义域为(0,+∞),f ′(x )=1+a x,要使函数f (x )=x +alnx 不是单调函数,则需方程1+ax=0在(0,+∞)上有解,即x =-a ,∴a <0.答案:(-∞,0)10.已知函数f(x)=ln x -f′(-1)x 2+3x -4,则f′(1)=________. 解析:∵f′(x)=1x -2f′(-1)x +3,f′(-1)=-1+2f′(-1)+3,∴f′(-1)=-2,∴f′(1)=1+4+3=8. 答案:811.已知函数f(x)的图象在点M(1,f(1))处的切线方程是y =12x +3,则f(1)+f′(1)=________.解析:由题意知f ′(1)=12,f (1)=12×1+3=72,∴f (1)+f ′(1)=72+12=4.答案:412.已知函数g (x )满足g (x )=g′(1)ex -1-g (0)x +12x 2,且存在实数x 0,使得不等式2m -1≥g (x 0)成立,则实数m 的取值范围为________.解析:g ′(x )=g ′(1)ex -1-g (0)+x ,令x =1时,得g ′(1)=g ′(1)-g (0)+1, ∴g (0)=1,g (0)=g ′(1)e 0-1=1,∴g ′(1)=e ,∴g (x )=e x -x +12x 2,g ′(x )=e x-1+x ,当x<0时,g′(x)<0,当x>0时,g′(x)>0, ∴当x =0时,函数g(x)取得最小值g(0)=1. 根据题意得2m -1≥g(x)min =1,∴m≥1. 答案:[1,+∞) 三、解答题13.已知函数f(x)=x +ax+b(x≠0),其中a ,b ∈R.(1)若曲线y =f (x )在点P (2,f (2))处的切线方程为y =3x +1,求函数f (x )的解析式;(2)讨论函数f (x )的单调性;(3)若对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f (x )≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立,求b 的取值范围. 解:(1)f ′(x )=1-a x2(x ≠0),由已知及导数的几何意义得f ′(2)=3,则a =-8. 由切点P (2,f (2))在直线y =3x +1上可得-2+b =7,解得b =9,所以函数f (x )的解析式为f (x )=x -8x+9.(2)由(1)知f ′(x )=1-a x2(x ≠0).当a ≤0时,显然f ′(x )>0,这时f (x )在(-∞,0),(0,+∞)上是增函数. 当a >0时,令f ′(x )=0,解得x =±a , 当x 变化时,f ′(x ),f (x )的变化情况如下表:a )上是减函数.(3)由(2)知,对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f (x )≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立等价于⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫14≤10,f,即⎩⎪⎨⎪⎧b ≤394-4a ,b ≤9-a对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2成立,从而得b ≤74,所以满足条件的b 的取值范围是⎝⎛⎦⎥⎤-∞,74.14.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值.解:(1)对f (x )求导,得f ′(x )=14-a x 2-1x(x >0),由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2, 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数. 由此知函数f (x )在x =5时取得极小值f (5)=-ln 5,无极大值.。
辽宁大连市第二十四中学导数及其应用多选题试题含答案
辽宁大连市第二十四中学导数及其应用多选题试题含答案一、导数及其应用多选题1.对于定义城为R 的函数()f x ,若满足:①(0)0f =;②当x ∈R ,且0x ≠时,都有()0xf x '>;③当120x x <<且12||||x x <时,都有12()()f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( ) A .()321f x x x =-+B .()21xf x e x =--C .()3ln 1,0()2,0x x f x x x ⎧-+≤=⎨>⎩D .4()sin f x x x =【答案】BC 【分析】运用新定义,分别讨论四个函数是否满足三个条件,结合奇偶性和单调性,以及对称性,即可得到所求结论. 【详解】解:经验证,1()f x ,2()f x ,3()f x ,4()f x 都满足条件①;0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩;当120x x <<且12||||x x <时,等价于21120x x x x -<<<-<,即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增; A 中,()321f x x x =-+,()2132f x x x '=-+,则当0x ≠时,由()()321232230x x x x f x x =-+=-≤',得23x ≥,不符合条件②,故1()f x 不是“偏对称函数”;B 中,()21xf x e x =--,()21xf x e '=-,当0x >时,e 1x >,()20f x '>,当0x <时,01x e <<,()20f x '<,则当0x ≠时,都有()20xf x '>,符合条件②, ∴函数()21xf x e x =--在(),0-∞上单调递减,在()0,∞+上单调递增,由2()f x 的单调性知,当21120x x x x -<<<-<时,()2122()f x f x <-, ∴22212222222()()()()2x x f x f x f x f x e e x --<--=-++,令()2x x F x e e x -=-++,0x >,()220x x F x e e -'=--+≤-=, 当且仅当x x e e -=即0x =时,“=”成立,∴()F x 在[0,)+∞上是减函数,∴2()(0)0F x F <=,即2122()()f x f x <,符合条件③, 故2()f x 是“偏对称函数”; C 中,由函数()3ln 1,0()2,x x f x x x ⎧-+≤=⎨>⎩,当0x <时,31()01f x x =<-',当0x >时,3()20f x '=>,符合条件②,∴函数3()f x 在(),0-∞上单调递减,在()0,∞+上单调递增, 有单调性知,当21120x x x x -<<<-<时,()3132()f x f x <-, 设()ln(1)2F x x x =+-,0x >,则1()201F x x '=-<+, ()F x 在(0,)+∞上是减函数,可得()(0)0F x F <=,∴1222()()()()f x f x f x f x -<--()()222ln 1()0F x x f x =+-=<, 即12()()f x f x <,符合条件③,故3()f x 是“偏对称函数”;D 中,4()sin f x x x =,则()44()sin ()f x x x f x -=--=,则4()f x 是偶函数,而4()sin cos f x x x x '=+ ()x ϕ=+(tan x ϕ=),则根据三角函数的性质可知,当0x >时,4()f x '的符号有正有负,不符合条件②,故4()f x 不是“偏对称函数”; 故选:BC . 【点睛】本题主要考查在新定义下利用导数研究函数的单调性与最值,考查计算能力,考查转化与划归思想,属于难题.2.已知函数()xf x e =,()1ln22x g x =+的图象与直线y m =分别交于A 、B 两点,则( )A .AB 的最小值为2ln2+B .m ∃使得曲线()f x 在A 处的切线平行于曲线()g x 在B 处的切线C .函数()()f x g x m -+至少存在一个零点D .m ∃使得曲线()f x 在点A 处的切线也是曲线()g x 的切线 【答案】ABD 【分析】求出A 、B 两点的坐标,得出AB 关于m 的函数表达式,利用导数求出AB 的最小值,即可判断出A 选项的正误;解方程()12ln 2m f m g e -⎛⎫''= ⎪⎝⎭,可判断出B 选项的正误;利用导数判断函数()()y f x g x m =-+的单调性,结合极值的符号可判断出C 选项的正误;设切线与曲线()y g x =相切于点()(),C n g n ,求出两切线的方程,得出方程组,判断方程组是否有公共解,即可判断出D 选项的正误.进而得出结论. 【详解】令()xf x e m ==,得ln x m =,令()1ln22x g x m =+=,得122m x e -=,则点()ln ,A m m 、122,m B e m -⎛⎫⎪⎝⎭,如下图所示:由图象可知,122ln m AB e m -=-,其中0m >,令()122ln m h m em -=-,则()1212m h m em-'=-,则函数()y h m '=单调递增,且102h ⎛⎫'= ⎪⎝⎭,当102m <<时,0h m,当12m >时,0h m.所以,函数()122ln m h m e m -=-在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞⎪⎝⎭上单调递增, 所以,min 112ln 2ln 222AB h ⎛⎫==-=+⎪⎝⎭,A 选项正确; ()x f x e =,()1ln 22x g x =+,则()x f x e '=,()1g x x'=,曲线()y f x =在点A 处的切线斜率为()ln f m m '=,曲线()y g x =在点B 处的切线斜率为1212122m m g e e --⎛⎫'=⎪⎝⎭, 令()12ln 2m f m g e -⎛⎫''= ⎪⎝⎭,即1212m m e -=,即1221m me -=, 则12m =满足方程1221m me -=,所以,m ∃使得曲线()y f x =在A 处的切线平行于曲线()y g x =在B 处的切线,B 选项正确;构造函数()()()1ln22xx F x f x g x m e m =-+=-+-,可得()1x F x e x'=-, 函数()1xF x e x '=-在()0,∞+上为增函数,由于120F e e ⎛⎫'=< ⎪⎝⎭,()110F e -'=>,则存在1,12t ⎛⎫∈⎪⎝⎭,使得()10t F t e t '=-=,可得ln t t =-,当0x t <<时,()0F x '<;当x t >时,()0F x '>.()()min 1111ln ln ln 2ln 22222t t t F x F t e m e t m t m t ∴==-+-=-++-=+++-13ln 2ln 2022m m >+-=++>,所以,函数()()()F x f x g x m =-+没有零点,C 选项错误;设曲线()y f x =在点A 处的切线与曲线()y g x =相切于点()(),C n g n , 则曲线()y f x =在点A 处的切线方程为()ln ln my m ex m -=-,即()1ln y mx m m =+-,同理可得曲线()y g x =在点C 处的切线方程为11ln 22n y x n =+-, 所以,()111ln ln 22m nn m m ⎧=⎪⎪⎨⎪-=-⎪⎩,消去n 得()11ln ln 202m m m --++=,令()()11ln ln 22G x x x x =--++,则()111ln ln x G x x x x x-'=--=-, 函数()y G x '=在()0,∞+上为减函数,()110G '=>,()12ln 202G '=-<,则存在()1,2s ∈,使得()1ln 0G s s s'=-=,且1s s e =. 当0x s <<时,()0G x '>,当x s >时,()0G x '<.所以,函数()y G x =在()2,+∞上为减函数,()5202G =>,()17820ln 202G =-<, 由零点存在定理知,函数()y G x =在()2,+∞上有零点, 即方程()11ln ln 202m m m --++=有解. 所以,m ∃使得曲线()y f x =在点A 处的切线也是曲线()y g x =的切线. 故选:ABD. 【点睛】本题考查导数的综合应用,涉及函数的最值、零点以及切线问题,计算量较大,属于难题.3.函数ln ()xf x x=,则下列说法正确的是( )A .(2)(3)f f >B .ln π>C .若()f x m =有两个不相等的实根12x x 、,则212x x e <D .若25,x y x y =、均为正数,则25x y < 【答案】BD 【分析】求出导函数,由导数确定函数日单调性,极值,函数的变化趋势,然后根据函数的性质判断各选项.由对数函数的单调性及指数函数单调性判断A ,由函数()f x 性质判断BC ,设25xyk ==,且,x y 均为正数,求得252ln ,5ln ln 2ln 5x k y k ==,再由函数()f x 性质判断D . 【详解】由ln (),0x f x x x=>得:21ln ()xf x x -'=令()0f x '=得,x e =当x 变化时,(),()f x f x '变化如下表:故,()f x x=在(0,)e 上递增,在(,)e +∞上递减,()f e e =是极大值也是最大值,x e >时,x →+∞时,()0f x →,且x e >时()0f x >,01x <<时,()0f x <,(1)0f =,A .1132ln 2(2)ln 2,(3)ln 32f f ===66111133223232(3)(2)f f ⎛⎫⎛⎫>∴>∴> ⎪ ⎪⎝⎭⎝⎭,故A 错B .e e π<,且()f x 在(0,)e 单调递增ln f fe ππ∴<<<∴>,故:B 正确C .()f x m =有两个不相等的零点()()1212,x x f x f x m ∴==不妨设120x e x <<<要证:212x x e <,即要证:221222,()e e x x e ef x x x<>∴<在(0,)e 单调递增,∴只需证:()212e f x f x ⎛⎫< ⎪⎝⎭即:()222e f x f x ⎛⎫<⎪⎝⎭只需证:()2220e f x f x ⎛⎫-< ⎪⎝⎭……① 令2()(),()e g x f x f x e x ⎛⎫=-> ⎪⎝⎭,则2211()(ln 1)g x x e x '⎛⎫=-- ⎪⎝⎭ 当x e >时,2211ln 1,()0()x g x g x e x'>>∴>∴在(,)e +∞单调递增 ()22()0x e g x g e >∴>=,即:()2220e f x f x ⎛⎫-> ⎪⎝⎭这与①矛盾,故C 错D .设25x y k ==,且,x y 均为正数,则25ln ln log ,log ln 2ln 5k kx k y k ==== 252ln ,5ln ln 2ln 5x k y k ∴== 1152ln 2ln 5ln 2,ln 525==且1010111153222525⎛⎫⎛⎫⎛⎫ ⎪>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ln 2ln 52502525ln 2ln 5x y ∴>>∴<∴<,故D 正确. 故选:BD . 【点睛】关键点点睛:本题考查用导数研究函数的单调性、极值,函数零点等性质,解题关键是由导数确定函数()f x 的性质.其中函数值的大小比较需利用单调性,函数的零点问题中有两个变量12,x x ,关键是进行转化,利用零点的关系转化为一个变量,然后引入新函数进行证明.4.关于函数()2ln f x x x=+,下列判断正确的是( ) A .2x =是()f x 的极大值点 B .函数yf xx 有且只有1个零点C .存在正实数k ,使得()f x kx >恒成立D .对任意两个正实数1x ,2x ,且21x x >,若()()12f x f x =,则124x x +> 【答案】BD 【分析】对于A ,利用导数研究函数()f x 的极值点即可; 对于B ,利用导数判断函数y f xx 的单调性,再利用零点存在性定理即得结论;对于C ,参变分离得到22ln xk x x <+,构造函数()22ln x g x x x=+,利用导数判断函数()g x 的最小值的情况;对于D ,利用()f x 的单调性,由()()12f x f x =得到1202x x <<<,令()211x t t x =>,由()()12f x f x =得21222ln t x x t t-+=,所以要证124x x +>,即证2224ln 0t t t -->,构造函数即得. 【详解】A :函数()f x 的定义域为0,,()22212x f x x x x-'=-+=,当()0,2x ∈时,0f x,()f x 单调递减,当()2,x ∈+∞时,0fx,()f x 单调递增,所以2x =是()f x 的极小值点,故A 错误.B :()2ln y f x x x x x=-=+-,22221210x x y x x x -+'=-+-=-<,所以函数在0,上单调递减.又()112ln1110f -=+-=>,()221ln 22ln 210f -=+-=-<,所以函数yf xx 有且只有1个零点,故B 正确.C :若()f x kx >,即2ln x kx x +>,则22ln x k x x <+.令()22ln x g x x x=+,则()34ln x x xg x x-+-'=.令()4ln h x x x x =-+-,则()ln h x x '=-,当()0,1∈x 时,()0h x '>,()h x 单调递增,当()1,∈+∞x 时,()0h x '<,()h x 单调递减,所以()()130h x h ≤=-<,所以0g x,所以()22ln x g x x x=+在0,上单调递减,函数无最小值,所以不存在正实数k ,使得()f x kx >恒成立,故C 错误. D :因为()f x 在()0,2上单调递减,在2,上单调递增,∴2x =是()f x 的极小值点.∵对任意两个正实数1x ,2x ,且21x x >,若()()12f x f x =,则1202x x <<<. 令()211x t t x =>,则21x tx =,由()()12f x f x =,得121222ln ln x x x x +=+, ∴211222ln ln x x x x -=-,即()2121212ln x x x x x x -=,即()11121ln t x t x tx -=⋅,解得()121ln t x t t -=,()2121ln t t x tx t t-==,所以21222ln t x x t t-+=.故要证124x x +>,需证1240x x +->,需证22240ln t t t -->,需证2224ln 0ln t t tt t-->. ∵211x t x =>,则ln 0t t >, ∴证2224ln 0t t t -->.令()()2224ln 1H t t t t t =-->,()()44ln 41H t t t t '=-->,()()()414401t H t t t t-''=-=>>,所以()H t '在1,上是增函数.因为1t →时,()0H t '→,则()0H t '>,所以()H t 在1,上是增函数.因为1t →时,()0H t →,则()0H t >,所以2224ln 0ln t t tt t-->,∴124x x +>,故D 正确. 故选:BD . 【点睛】关键点点睛:利用导数研究函数的单调性、极值点,结合零点存在性定理判断A 、B 的正误;应用参变分离,构造函数,并结合导数判断函数的最值;由函数单调性,应用换元法并构造函数,结合分析法、导数证明D 选项结论.5.对于函数2ln ()xf x x =,下列说法正确的有( ) A .()f x在x =12eB .()f x 有两个不同的零点 C.(2)f f f <<D .若21()f x k x>-在(0,)+∞上有解,则2e k <【答案】ACD 【分析】利用导数求出函数的单调区间,进一步求出函数的极值可判断A ;利用函数的单调性和函数值的范围判断B ;利用函数的单调性比较出函数值的大小关系判断C ;利用不等式有解问题的应用判断D . 【详解】函数2ln ()x f x x =,所以2431ln 212ln ()(0)x x xx x f x x x x⨯-⨯-'==>, 令()0f x '=,即2ln 1x =,解得x =当0x <<()0f x '>,故()f x在上为单调递增函数.当x >()0f x '<,故()f x 在)+∞上为单调递减函数.所以()f x 在x =12f e=,故A 正确;当0x <<()0f x '>,()f x 在上为单调递增函数,因为()10f =,所以函数()f x 在上有唯一零点,当x ≥2ln ()0xf x x=>恒成立,即函数()f x 在)+∞上没有零点, 综上,()f x 有唯一零点,故B 错误.由于当x >()0f x '<,()f x 在)+∞上为单调递减函数,因为2>>>(2)f f f <<,故C 正确;由于21()f x k x>-在(0,)+∞上有解,故221ln 1()x k f x x x +<+=有解, 所以2ln 1()max x k x +<,设2ln 1()x g x x+=,则32ln 1()x g x x --'=, 令()0g x '=,解得x=当x>()0f x '<,故()f x 在)+∞上为单调递减函数. 当0x<<时,()0f x '>,故()f x 在上为单调递增函数. 所以()22max e eg x g e ==-=. 故2ek <,故D 正确. 故选:ACD . 【点睛】方法点睛:本题通过对多个命题真假的判断,综合考查导数的应用,这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.6.下列说法正确的是( )A .函数()23sin 0,42f x x x x π⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是1B .函数()cos sin tan 0,tan 2x f x x x x x π⎛⎫⎛⎫=⋅+∈ ⎪ ⎪⎝⎭⎝⎭的值域为(C .函数()1sin 2cos 2f x x a x =+⋅在()0,π上单调递增,则a 的取值范围是(],1-∞- D .函数()222sin 42cos tx x xf x x xπ⎛⎫+++ ⎪⎝⎭=+的最大值为a ,最小值为b ,若2a b +=,则1t = 【答案】ACD 【分析】化简函数解析式为()2cos 1f x x ⎛=--+ ⎝⎭,利用二次函数的基本性质可判断A 选项的正误;令sin cos t x x =+,可得()()3231t t f x g t t -==-,利用导数法可判断B 选项的正误;利用导数与函数单调性的关系可判断C 选项的正误;计算出()()2f x f x t +-=,利用函数的对称性可判断D 选项的正误. 【详解】 A 选项,()222311cos cos cos 1442f x x x x x x ⎛=--=-+=--+ ⎝⎭, 又0,2x π⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,则当cos 2x =时函数()f x 取得最大值1,A 对; B 选项,()2233sin cos sin cos cos sin sin cos x x x xf x x x x x+∴=+=⋅ ()()22sin cos sin cos sin cos sin cos x x x x x x x x++-⋅=⋅()()2sin cos sin cos 3sin cos sin cos x x x x x x x x⎡⎤++-⋅⎣⎦=⋅,设sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,则()22sin cos 12sin cos t x x x x =+=+,则21sin cos 2t x x -⋅=, 0,2x π⎛⎫∈ ⎪⎝⎭,3,444x πππ⎛⎫∴+∈ ⎪⎝⎭,sin 42x π⎛⎤⎛⎫∴+∈ ⎥⎪ ⎝⎭⎝⎦,(t ∴∈, 令()223221323112t t t t t g t t t ⎛⎫--⨯ ⎪-⎝⎭==--,(t ∈,()()422301t g t t --'=<-,()g t ∴在区间(上单调递减,()()32min1g t g ===-所以,函数()f x的值域为)+∞,B 错; C 选项,()1sin 2cos 2f x x a x =+⋅在区间()0,π上是增函数,()cos2sin 0f x x a x ∴=-⋅≥',即212sin sin 0x a x --⋅≥,令sin t x =,(]0,1t ∈,即2210t at --+≥,12a t t ∴≤-+,令()12g t t t =-+,则()2120g t t'=--<,()g t ∴在(]0,1t ∈递减,()11a g ∴≤=-,C 对;D 选项,()2222cos tx x x xf x x x⎫+++⎪⎝⎭=+ ()()2222cos sin sin 2cos 2cos t x x t x x t x x t x xx x++⋅+⋅+==+++, 所以,()()()()22sin sin 2cos 2cos t x x t x xf x t t x xx x --+-=+=-+⋅-+-,()()2f x f x t ∴+-=,所以,函数()f x 的图象关于点()0,t 对称,所以,22a b t +==,可得1t =,D 对. 故选:ACD. 【点睛】结论点睛:利用函数的单调性求参数,可按照以下原则进行:(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立; (2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立; (3)函数()f x 在区间D 上不单调()f x '⇔在区间D 上存在异号零点; (4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立; (5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立.7.设函数()()()1f x x x x a =--,则下列结论正确的是( ) A .当4a =-时,()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为194B .当1a =时,函数()f x 的图像与直线427y =有2个交点C .当2a =时,()f x 的图像关于点()1,0中心对称D .若函数()f x 有两个不同的极值点1x ,2x ,则当2a ≥时,()()120f x f x +≤ 【答案】BCD 【分析】运用平均变化率的定义可分析A ,利用导数研究()f x 的单调性和极值,可分析B 选项,证明()()20f x f x +-=可分析C 选项,先得出1x ,2x 为方程()23210x a x a -++=的两个实数根,结合韦达定理可分析D 选项. 【详解】对于A ,当4a =-时,()()()14f x x x x =-+,则()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为()()()119123192221412⎛⎫⨯-⨯--⨯-⨯ ⎪⎝⎭=---,故A 错误;对于B ,当1a =时,()()23212f x x x x x x =-=-+,()()()2341311f x x x x x '=-+=--,可得下表:因为327f ⎛⎫= ⎪⎝⎭,()10f =,()42227f =>,结合()f x 的单调性可知, 方程()427f x =有两个实数解,一个解为13,另一个解在()1,2上,故B 正确; 对于C ,当2a =时,()()()()()()()231211111f x x x x x x x x ⎡⎤=--=---=---⎣⎦, 则有()()()()()()33211110f x f x x x x x +-=---+---=,故C 正确; 对于D ,()()()1f x x x x a =--,()()()()()2121321f x x x a x x a x a x a '=--+--=-++,令()0f x '=,可得方程()23210x a x a -++=,因为()()22412130a a a ∆=-+=-+>,且函数()f x 有两个不同的极值点1x ,2x ,所以1x ,2x 为方程()23210x a x a -++=的两个实数根,则有()12122132x x a a x x ⎧+=+⎪⎪⎨⎪=⎪⎩,则()()()()()()1211122211f x f x x x x a x x x a +=--+--()()()()33221212121x x a x x a x x =+-++++()()()()()22212112212121212x x x x x x a x x x x a x x ⎡⎤=+-++++-++⎣⎦()()()22211221212221233a x x x x x x x x a ⎡⎤=+-+-+++⎢⎥⎣⎦ ()()()()()21242212113327a a a x x a a --⎡⎤=+-++=-+⋅⎢⎥⎣⎦因为2a ≥,所以()()120f x f x +≤,故D 正确; 故选:BCD . 【点睛】关键点点睛:本题考查利用导数研究函数的单调性,平均变化率,极值等问题,本题的关键是选项D ,利用根与系数的关系,转化为关于a 的函数,证明不等式.8.经研究发现:任意一个三次多项式函数32()(0)f x ax bx cx d a =+++≠的图象都只有一个对称中心点()()00,x f x ,其中0x 是()0f x ''=的根,()'f x 是()f x 的导数,()f x ''是()'f x 的导数.若函数32()f x x ax x b =+++图象的对称点为(1,2)-,且不等式(ln 1)x e e mx x -+32()3ef x x x e x ⎡⎤≥--+⎣⎦对任意(1,)x ∈+∞恒成立,则( )A .3a =B .1b =C .m 的值可能是e -D .m 的值可能是1e-【答案】ABC 【分析】求导得()62f x x a ''=+,故由题意得()1620f a ''=-+=-,()1112f a b -=-+-+=,即3,1a b ==,故()3231f x x x x =+++.进而将问题转化为()1ln 1e x x e x e m x --++<+,由于1x e x >+,故ln ln 1ee x x x x e e x e x --+=≥-+,进而得()1ln ln 1ln 1e x x e x e e x ee x x --++--≥=-++,即m e ≤-,进而得ABC 满足条件.【详解】由题意可得()1112f a b -=-+-+=,因为()2321x ax f x =++',所以()62f x x a ''=+,所以()1620f a ''=-+=-,解得3,1a b ==,故()3231f x x x x =+++.因为1x >,所以()()32ln []13xeee mx xf x x x e x -+≥--+等价于()1ln 1e x x e x e m x --++≤+. 设()()10xg x e x x =-->,则()10xg x e '=->,从而()g x 在()0,∞+上单调递增.因为()00g =,所以()0g x >,即1x e x >+, 则ln ln 1ee x xxx e e x e x --+=≥-+(当且仅当x e =时,等号成立),从而()1ln ln 1ln 1e x x e x e e x e e x x --++--≥=-++,故m e ≤-.故选:ABC. 【点睛】本题解题的关键在于根据题意得()3231f x x x x =+++,进而将不等式恒成立问题转化为()1ln 1e x x e x e m x --++≤+恒成立问题,再结合1x e x >+得ln ln 1ee x xxx e e x e x --+=≥-+,进而得m e ≤-.考查运算求解能力与化归转化思想,是难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛1f (x )d x 等于( )A .-1B .-13C.13D .12.(2016·新余模拟)如图是函数f (x )=x 2+ax +b 的部分图象,则函数g (x )=ln x +f ′(x )的零点所在的区间是( )A.⎝ ⎛⎭⎪⎫14,12 B .(1,2) C.⎝⎛⎭⎪⎫12,1 D .(2,3)3.(2016·潍坊模拟)已知函数f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,f ′(x )为f (x )的导函数,则f ′(x )的图象是( )4.(2016·福建“四地六校”联考)已知曲线f (x )=23x 3-x 2+ax -1存在两条斜率为3的切线,且切点的横坐标都大于零,则实数a 的取值范围为( ) A .(3,+∞) B.⎝ ⎛⎭⎪⎫3,72C.⎝⎛⎦⎥⎤-∞,72 D .(0,3)5.(2017·沈阳质检)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x ≠0时,f ′(x )+f (x )x >0,若a =12f ⎝ ⎛⎭⎪⎫12,b =-2f (-2),c =ln 12·f (ln 12),则a ,b ,c 的大小关系是( ) A .a <c <b B .b <c <a C .a <b <c D .c <a <b二、填空题6.函数y =ln 2xx的极小值为________.7.某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为p 元,则销售量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2.问该商品零售价定为________元时毛利润最大(毛利润=销售收入-进货支出).8.对任意实数x 均有e 2x-(a -3)e x+4-3a >0,则实数a 的取值范围为________.9.已知函数f (x )=⎩⎪⎨⎪⎧(2x -x 2)e x,x ≤0,-x 2+4x +3,x >0,g (x )=f (x )+2k ,若函数g (x )恰有两个不同的零点,则实数k 的取值范围为________________. 三、解答题10.已知函数f (x )=ln 1+x1-x.(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33; (3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值.答案精析1.B [∵f(x)=x 2+2⎠⎛01f(x)d x ,∴⎠⎛01f (x )d x =[13x 3+2x ⎠⎛01f (x )d x ]10|=13+2⎠⎛01f (x )d x , ∴⎠⎛01f (x )d x =-13.]2.C [由函数f (x )=x 2+ax +b 的部分图象,得0<b <1,f (1)=0, 从而-2<a <-1.因为g (x )=ln x +f ′(x )在其定义域内单调递增,g ⎝ ⎛⎭⎪⎫12=ln 12+1+a <0,g (1)=ln 1+2+a =2+a >0,所以函数g (x )=ln x +f ′(x )的零点所在的区间是⎝ ⎛⎭⎪⎫12,1.故选C.]3.A [因为f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x =14x 2+cos x ,所以f ′(x )=12x -sin x ,其为奇函数,且f ′⎝ ⎛⎭⎪⎫π6<0.故选A.] 4.B [f (x )=23x 3-x 2+ax -1的导数为f ′(x )=2x 2-2x +a .由题意可得2x 2-2x +a =3,即2x 2-2x +a -3=0有两个不相等的正实数根,则Δ=4-8(a -3)>0,x 1+x 2=1>0,x 1x 2=12(a -3)>0,解得3<a <72.故选B.]5.A [设h (x )=xf (x ),∴h ′(x )=f (x )+xf ′(x ). ∵y =f (x )是定义在R 上的奇函数, ∴h (x )是定义在R 上的偶函数. 当x >0时,h ′(x )=f (x )+xf ′(x )>0, ∴函数h (x )在(0,+∞)上单调递增. ∵a =12f ⎝ ⎛⎭⎪⎫12=h ⎝ ⎛⎭⎪⎫12,b =-2f (-2)=2f (2)=h (2),c =ln 12·f ⎝⎛⎭⎪⎫ln 12=h ⎝⎛⎭⎪⎫ln 12=h (-ln 2)=h (ln 2).又∵2>ln 2>12,∴b >c >a .故选A.]6.0解析 函数的定义域为(0,+∞).令y =f (x ),f ′(x )=2ln x -ln 2x x 2=-ln x (ln x -2)x2. 令f ′(x )=0,解得x =1或x =e 2.f ′(x )与f (x )随x 的变化情况如下表:故当x =1时,函数y =ln xx取到极小值0.7.30解析 由题意知,毛利润=销售收入-进货支出, 设该商品的毛利润为L (p ),则L (p )=pQ -20Q =Q (p -20)=(8 300-170p -p 2)(p -20) =-p 3-150p 2+11 700p -166 000, 所以L ′(p )=-3p 2-300p +11 700. 令L ′(p )=0,解得p =30或p =-130(舍去). 此时,L (30)=23 000.因为在p =30附近的左侧L ′(p )>0,右侧L ′(p )<0.所以L (30)是极大值,根据实际问题的意义知,L (30)是最大值. 8.(-∞,43]解析 e 2x-(a -3)e x +4-3a >0⇔(e x +3)a <e 2x +3e x+4⇔a <e 2x+3e x+4e +3, 令t =e x,则a <e 2x +3e x +4e x+3⇔a <t 2+3t +4t +3(t >0), 令h (t )=t 2+3t +4t +3=t +4t +3(t >0),h ′(t )=1-4?t +3?2, 因为t >0,所以h ′(t )>0, 即当t >0时,h (t )>h (0)=43,所以a ≤43,即实数a 的取值范围为(-∞,43].9.⎝ ⎛⎭⎪⎫-72,-32∪⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,2+1e 2解析 由y =(2x -x 2)e x (x ≤0)求导,得y ′=(2-x 2)e x ,故y =(2x -x 2)e x(x ≤0)在(-2,0]上单调递增,在(-∞,-2)上单调递减,且当x <0时,恒有y =(2x -x 2)e x<0.又y =-x 2+4x +3(x >0)在(0,2)上单调递增,在(2,+∞)上单调递减,所以可作出函数y =f (x )的图象,如图.由图可知,要使函数g (x )恰有两个不同的零点,需-2k =0或-2k =-22-2e 2或3<-2k <7,即实数k 的取值范围为⎝ ⎛⎭⎪⎫-72,-32∪⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,2+1e 2. 10.(1)解 因为f (x )=ln(1+x )-ln(1-x ), 所以f ′(x )=11+x +11-x,f ′(0)=2.又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x .(2)证明 令g (x )=f (x )-2⎝ ⎛⎭⎪⎫x +x 33, 则g ′(x )=f ′(x )-2(1+x 2)=2x41-x2.因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33. (3)解 由(2)知,当k ≤2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立. 当k >2时,令h (x )=f (x )-k ⎝ ⎛⎭⎪⎫x +x 33, 则h ′(x )=f ′(x )-k (1+x 2)=kx 4-(k -2)1-x2. 所以当0<x <4k -2k时,h ′(x )<0,因此h (x )在区间⎝⎛⎭⎪⎫0, 4k -2k 上单调递减.当0<x <4k -2k时,h (x )<h (0)=0,即f (x )<k ⎝ ⎛⎭⎪⎫x +x 33.所以当k >2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33并非对x ∈(0,1)恒成立. 综上可知,k 的最大值为2.。