七年级数学下册第六章频率初步6.2频率的稳定性6.2.2频率的稳定性同步检测新版北师大版

合集下载

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教学设计新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教学设计新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教学设计新版北师大版一. 教材分析本节课的内容是北师大版七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性。

这部分内容是学生在学习了频率和概率的基础知识后,对概率稳定性进行进一步的探究。

教材通过实例让学生理解概率的稳定性,并学会如何运用概率来解决问题。

本节课的内容对于学生来说是比较抽象的,需要通过大量的实例和实践活动来帮助学生理解和掌握。

二. 学情分析学生在学习本节课之前,已经学习了频率和概率的基础知识,对于频率和概率的概念有一定的了解。

但是,对于概率的稳定性这一概念,学生可能比较陌生,需要通过实例和实践活动来理解和掌握。

学生的思维方式以形象思维为主,需要通过具体的实例和实践活动来帮助学生理解和掌握。

三. 教学目标1.让学生理解概率的稳定性概念,并能够运用概率来解决问题。

2.通过实例和实践活动,培养学生的动手能力和思维能力。

3.培养学生对于数学的兴趣和信心,提高学生的学习积极性。

四. 教学重难点1.概率的稳定性概念的理解和运用。

2.如何通过实例和实践活动帮助学生理解和掌握概率的稳定性。

五. 教学方法采用讲授法和实践活动相结合的方法。

通过讲解实例和引导学生进行实践活动,帮助学生理解和掌握概率的稳定性。

六. 教学准备1.准备相关的实例和实践活动材料。

2.准备多媒体教学设备,如投影仪和计算机等。

七. 教学过程1.导入(5分钟)通过讲解一个简单的实例,引出概率的稳定性概念。

2.呈现(15分钟)讲解几个关于概率稳定性的实例,让学生观察和分析,引导学生理解概率的稳定性。

3.操练(20分钟)学生分组进行实践活动,运用概率的知识来解决实际问题。

教师巡回指导,解答学生的疑问。

4.巩固(15分钟)学生分组讨论,分享自己小组的实践活动成果,教师总结和点评。

5.拓展(10分钟)引导学生思考概率稳定性在实际生活中的应用,让学生举例说明。

6.小结(5分钟)教师对本节课的内容进行小结,强调概率的稳定性概念和运用。

北师大版初中数学七年级下册《6.2 频率的稳定性》同步练习卷(1)

北师大版初中数学七年级下册《6.2 频率的稳定性》同步练习卷(1)

北师大新版七年级下学期《6.2 频率的稳定性》同步练习卷一.解答题(共17小题)1.在一个不透明的袋子中装有20个球,其中红球6个,白球和黑球若干个,每个球除颜色外完全相同.(1)小明通过大量重复试验(每次将球搅匀后,任意摸出一个球,记下颜色后放回)发现,摸出的黑球的频率在0.4附近摆动,请你估计袋中黑球的个数.(2)若小明摸出的第一个球是白球,不放回,从袋中余下的球中再任意摸出一个球,摸出白球的概率是多少?2.在一个不透明的口袋里装有若干个质地相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,多次重复摸球.下表是多次活动汇总后统计的数据:(1)请估计:当次数S很大时,摸到白球的频率将会接近;假如你去摸一次,你摸到红球的概率是(精确到0.1).(2)试估算口袋中红球有多少只?3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸到白球的频率(1)完成上表;(2)“摸到白球”的概率的估计值是(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少只?4.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是0.;(2)当x=7时,请用列表法或树状图法计算“和为8”的概率;并判断x=7是否可能.5.一个不透明的袋子里装着6个黄球,10个黑球和14个红球,他们除了颜色外完全相同.(1)小明和小颖玩摸球游戏,规定每人摸球一次再将球放回为依次游戏,若摸到黑球则小明获胜,摸到黄球则小颖获胜,这个游戏公平吗?说说你的理由.(2)现在裁判向袋子中放入若干个红球,大量重复试验后,发现小明获胜的频率稳定在0.25附近,问裁判放入了多少个红球?6.在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)试估算口袋中白球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少?7.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:落在“可乐”区域的频率(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近,假如你去转动该转盘一次,你获得“可乐”的概率约是;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?8.在一个不透明的盒子中有2个白球和1个黄球,每个小球除颜色外,其余的都相同,每次从该盒中摸出1个球,然后放回,搅匀再摸,在摸球实验中得到下表中部分数据:(1)将数据表补充完整;(2)根据上表中的数据在下图中绘制折线统计图;(3)观察该图表可以发现,随着实验次数的增加,摸出黄色小球的频率有何特点?(4)请你估计从该盒中摸出1个黄色球的机会是多少.9.问题情景:某学校数学学习小组在讨论“随机掷二枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:随机掷二枚均匀的硬币,可以有“二正、一正一反、二反”三种情况,所以,P(一正一反)=;小颖反驳道:这里的“一正一反”实际上含有“一正一反,一反一正”二种情况,所以P(一正一反)=.(1)的说法是正确的.(2)为验证二人的猜想是否正确,小聪与小颖各做了100次实验,得到如下数据:计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的实验中,你能得到“一正一反”的概率是多少吗?(3)对概率的研究而言小聪与小颖两位同学的实验说明了什么?10.在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出A、B、C、D 四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.11.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,好将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率为;(3)求不透明的盒子里黑、白两种颜色的球各有多少只?12.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.13.某校九年级兴趣小组进行投针实验,在地面上有一组平行线,相邻两条平行线间的距离都为5cm,将一长为3cm的针任意投向这组平行线,下表是他们的实验数据.(1)计算出针与平行线相交的频率,并完成统计表;(2)估算出针与平行线相交的频率;(3)由表中的数据说明:在以上条件下相交于不相交的可能性相同吗?(4)能否利用列表或树形图法求出针与平行线相交的概率?14.某学习小组做摸球实验,在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)你能估算出学习小组做摸球实验的口袋中白球个数吗?(3)若摸球实验是从口袋里先摸出一球,不放回,再摸出一球;请用树状图或列表分析计算,这两只球颜色相同的概率是多少?15.某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了名学生;(2)补全条形统计图;(3)若该校共有1500名学生,估计爱好运动的学生有人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是.16.在一个不透明的箱子中装有2个红球、n个白球和1个黄球,这些球除颜色外无其他差别.(1)若每次摸球前先将箱子里的球摇匀,任意摸出一个球记下颜色后再放回箱子里,通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么估计箱子里白球的个数n为;(2)如果箱子里白球的个数n为1,小亮随机从箱子里摸出1个球不放回,再随机摸出1个球,请用画树状图或列表法求两次均摸到红球的概率.17.如图,两个转盘A,B都被分成了3个全等的扇形,在每一个扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)(1)用列表法(或树形图)表示两个转盘停止转动后指针所指扇形内的数字的所有可能结果;(2)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(3)根据(2),若0<x<y,试求出x与y的值.北师大新版七年级下学期《6.2 频率的稳定性》2019年同步练习卷参考答案与试题解析一.解答题(共17小题)1.在一个不透明的袋子中装有20个球,其中红球6个,白球和黑球若干个,每个球除颜色外完全相同.(1)小明通过大量重复试验(每次将球搅匀后,任意摸出一个球,记下颜色后放回)发现,摸出的黑球的频率在0.4附近摆动,请你估计袋中黑球的个数.(2)若小明摸出的第一个球是白球,不放回,从袋中余下的球中再任意摸出一个球,摸出白球的概率是多少?【分析】(1)根据摸出的黑球的频率在0.4附近摆动可估计摸出一球是黑球的概率为0.4,据此可得;(2)根据概率公式可得.【解答】解:(1)∵摸出的黑球的频率在0.4附近摆动,∴估计袋中黑球的个数约为20×0.4=8个;(2)由(1)知袋子中红球6个、黑球8个、白球6个,第一次摸出白球后袋子中还有白球5个,总的球数为19个,故摸出白球的概率是.【点评】本题主要考查频率估计概率和概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.2.在一个不透明的口袋里装有若干个质地相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,多次重复摸球.下表是多次活动汇总后统计的数据:(1)请估计:当次数S很大时,摸到白球的频率将会接近0.3;假如你去摸一次,你摸到红球的概率是0.7(精确到0.1).(2)试估算口袋中红球有多少只?【分析】(1)从表中的统计数据可知,摸到白球的频率稳定在0.3左右,而摸到红球的概率为1﹣0.3=0.7;(2)根据红球的概率公式得到相应方程求解即可;【解答】解:(1)当次数S很大时,摸到白球的频率将会接近0.3;假如你去摸一次,你摸到红球的概率是1﹣0.3=0.7;故答案为:0.3,0.7;(2)估算口袋中红球有x只,由题意得0.7=,解之得x=70,∴估计口袋中红球有70只;【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.组成整体的几部分的概率之和为1.3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸到白球的频率(1)完成上表;(2)“摸到白球”的概率的估计值是0.6(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少只?【分析】(1)利用频率=频数÷样本容量=频率直接求解即可;(2)根据统计数据,当n很大时,摸到白球的频率接近0.6;(3)根据利用频率估计概率,可估计摸到白球的概率为0.6,然后利用概率公式计算白球的个数.【解答】解:(1)填表如下:摸到白球的频率(2)“摸到白球”的概率的估计值是0.60;(3)由(2)摸到白球的概率为0.60,所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20﹣12=8(个).答:黑球8个,白球12个.故答案为:(1)0.59,0.58;(2)0.6.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.4.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是0.;(2)当x=7时,请用列表法或树状图法计算“和为8”的概率;并判断x=7是否可能.【分析】(1)根据实验次数越大越接近实际概率求出出现“和为8”的概率即可;(2)根据小球分别标有数字3、4、5、x,用列表法或画树状图法说明当x=7时,得出“和为8”的概率,即可得出答案.【解答】解:(1)利用图表得出:实验次数越大越接近实际概率,所以出现“和为8”的概率是.故答案为;(2)当x=7时,画树状图如下:则两个小球上数字之和为8的概率是:=≠,所以x的值不可以取7.【点评】此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.5.一个不透明的袋子里装着6个黄球,10个黑球和14个红球,他们除了颜色外完全相同.(1)小明和小颖玩摸球游戏,规定每人摸球一次再将球放回为依次游戏,若摸到黑球则小明获胜,摸到黄球则小颖获胜,这个游戏公平吗?说说你的理由.(2)现在裁判向袋子中放入若干个红球,大量重复试验后,发现小明获胜的频率稳定在0.25附近,问裁判放入了多少个红球?【分析】(1)根据概率公式分别计算小明获胜和小颖获胜的概率,比较即可得;(2)设向袋子中放入了x个红球,根据摸到黑球最终稳定的频率即为概率的估计值,列出方程求解可得.【解答】解:(1)不公平,∵袋子中共有30个小球,从中摸出一个小球,是黑球的概率为=,从中摸出一个小球,是黄球的概率为=,∴这个游戏不公平;(2)设裁判向袋子中放入了x个红球,根据题意可得:=0.25,解得:x=10,经检验:x=10是分式方程的解,∴裁判放入了10个红球.【点评】本题主要考查概率公式和频率估计概率,熟练掌握概率公式:概率等于所求情况数与总情况数之比是解题的关键.6.在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近0.6;(精确到0.1)(2)试估算口袋中白球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少?【分析】(1)根据统计数据,当n很大时,摸到白球的频率接近0.6;(2)根据利用频率估计概率,可估计摸到白球的概率为0.6,然后利用概率公式计算白球的个数;(3)先利用列表法展示所有20种等可能的结果数,再找出两只球颜色不同所占结果数,然后根据概率公式求解.【解答】解:(1)答案为:0.6;(2)由(1)摸到白球的概率为0.6,所以可估计口袋中白种颜色的球的个数=5×0.6=3(只);(3)画树状图为:共有20种等可能的结果数,其中两只球颜色不同占12种,所以两只球颜色不同的概率==.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.也考查了列表法与树状图法.7.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:落在“可乐”区域的频率(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?【分析】(1)根据频率的定义计算n=298时的频率和频率为0.59时的频数;(2)从表中频率的变化,可得到估计当n很大时,频率将会接近0.6,然后根据利用频率估计概率得“可乐”的概率约是0.6;(3)可根据获得“洗衣粉”的概率为1﹣0.6=0.4,然后根据扇形统计图的意义,用360°乘以0.4即可得到表示“洗衣粉”区域的扇形的圆心角.【解答】解:(1)298÷500≈0.6;0.59×800=472;(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;(3)(1﹣0.6)×360°=144°,所以表示“洗衣粉”区域的扇形的圆心角约是144°.故答案为0.6,0.6.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.8.在一个不透明的盒子中有2个白球和1个黄球,每个小球除颜色外,其余的都相同,每次从该盒中摸出1个球,然后放回,搅匀再摸,在摸球实验中得到下表中部分数据:(1)将数据表补充完整;(2)根据上表中的数据在下图中绘制折线统计图;(3)观察该图表可以发现,随着实验次数的增加,摸出黄色小球的频率有何特点?(4)请你估计从该盒中摸出1个黄色球的机会是多少.【分析】(1)根据频数与频率的关系,频数等于频率与样本容量的积,代入数据可得答案,(2)根据(1)的数据,进而可以制折线统计图,(3)由(2)的折线图,观察可得结论,(4)观察折线统计图可知,出现黄色小球的频率逐渐稳定在0.34附近,进而可得答案.【解答】解:(1)根据频数与频率的关系,频数等于频率与样本容量的积,第二行第7列应填的数据为240×0.36=86.4≈86,第三行第3列应填的数据为24÷80=0.3,故答案为:86,0.3.(2)根据(1)的数据,绘制折线统计图如图所示(3)从折线统计图可以看出,随着实验次数的增加,出现黄色小球的频率逐渐平稳;(4)观察折线统计图可知,出现黄色小球的频率逐渐稳定在0.34附近,故摸出黄球的机会约为34%.【点评】用到的知识点为:频率=所求情况数与总情况数之比.部分的具体数目=总体数目×相应频率.大量实验得到的频率接近于概率.9.问题情景:某学校数学学习小组在讨论“随机掷二枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:随机掷二枚均匀的硬币,可以有“二正、一正一反、二反”三种情况,所以,P(一正一反)=;小颖反驳道:这里的“一正一反”实际上含有“一正一反,一反一正”二种情况,所以P(一正一反)=.(1)小颖的说法是正确的.(2)为验证二人的猜想是否正确,小聪与小颖各做了100次实验,得到如下数据:计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的实验中,你能得到“一正一反”的概率是多少吗?(3)对概率的研究而言小聪与小颖两位同学的实验说明了什么?【分析】(1)要判断谁说的正确只要看他们说的情况有没有漏掉的即可.(2)根据频率=所求情况数与总情况数之比,即可得出结果.(3)在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.【解答】解:(1)“一正一反”实际上含有“一正一反,一反一正”二种情况,共四种,所以小颖的说法是正确的(2)小明得到的“一正一反”的频率是50÷100=0.50小颖得到的“一正一反”的频率是47÷100=0.47据此,我得到“一正一反”的概率是(3)对概率的研究不能仅仅通过有限次实验得出结果,而是要通过大量的实验得出事物发生的频率去估计该事物发生的概率.我认为小聪与小颖的实验都是合理的,有效的.(8分)【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.10.在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出A、B、C、D 四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.【分析】(1)先求出D型号轿车所占的百分比,再利用总数1000辆即可求出答案;(2)利用C型号轿车销售的成交率为50%,求出C型号轿车的售出量,补充统计图即可;(3)分别求出各种型号轿车的成交率即可作出判断;(4)先求出已售出轿车的总数,利用售出的A型号车的数量即可求出答案.【解答】解:(1)∵1﹣35%﹣20%﹣20%=25%,∴1000×25%=250(辆).答:参加销展的D型轿车有250辆;(2)如图,1000×20%×50%=100;(3)四种型号轿车的成交率:A:×100%=48%;B:×100%=49%;C:50%;D:×100%=52%∴D种型号的轿车销售情况最好.(4)∵.∴抽到A型号轿车发票的概率为.【点评】利用统计图解决问题时,要善于从图中寻找各种信息.当一个事件的频率具有稳定性时,可以用该事件发生的频率来估计这一事件发生的概率.用到的知识点为:概率=所求情况数与总情况数之比.部分数目=总体数目乘以相应概率.11.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,好将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近0.6;(精确到0.1)(2)假如你摸一次,你摸到白球的概率为0.60;(3)求不透明的盒子里黑、白两种颜色的球各有多少只?【分析】(1)求出所有试验得出来的频率的平均值即可;(2)摸一次的概率和大量实验得出来的概率相同;(3)根据频数=总数×频率进行计算即可.【解答】解:(1)摸到白球的频率=(0.63+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,∴当实验次数为5000次时,摸到白球的频率将会接近0.6.(2)摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.。

【精品】七年级数学下册第六章频率初步6.2频率的稳定性6.2.1频率的稳定性教案

【精品】七年级数学下册第六章频率初步6.2频率的稳定性6.2.1频率的稳定性教案

6.2.1频率的稳定性
结论:在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性
学生通过小组之间的合作、交流,绘制折线统计图,使学生学会独
则绿豆发芽的概率估计值是( )
(A)0.96 (B)0.95 (C)0.94 (D)0.90
成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解答下列问题:
这种树苗成活的频率稳定在____,成活的概率估计值为____.
该地区已经移植这种树苗5万棵.
少万棵?
(1)请你估计第一小组和第二小组所得的概率分别是多少?
(2)你认为哪一个小组的结果更准确?为什么?
5.某校九年级一班的暑假活动安排中,有一项是小制作评比.作品上交时限为8月1日至30日,班委会把同学们交来的作品按时间顺序每天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图。

七年级数学下册第六章频率初步2频率的稳定性6.2.1频率的稳定性说课稿新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.1频率的稳定性说课稿新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.1频率的稳定性说课稿新版北师大版一. 教材分析教材是北师大版七年级数学下册,第六章是关于频率初步的内容。

本节课是6.2.1频率的稳定性。

这部分内容是在学生已经学习了概率的初步知识,以及掌握了如何进行实验和收集数据的基础上进行的。

教材通过具体的实验和数据,引导学生探究频率的稳定性,让学生理解频率在大量实验中趋向于一个固定的数值。

二. 学情分析七年级的学生已经具备了一定的实验操作能力和数据收集能力,对于概率的初步知识也有了一定的了解。

但是,学生可能对于频率的稳定性这个概念还比较陌生,需要通过具体的实验和数据,让学生感受到频率在大量实验中趋向于一个固定的数值。

三. 说教学目标1.知识与技能目标:学生能够理解频率的稳定性概念,知道频率在大量实验中趋向于一个固定的数值。

2.过程与方法目标:学生通过具体的实验和数据分析,探究频率的稳定性。

3.情感态度与价值观目标:学生通过实验和数据分析,培养对数学的兴趣,提高学生分析问题和解决问题的能力。

四. 说教学重难点重点是让学生理解频率的稳定性概念,知道频率在大量实验中趋向于一个固定的数值。

难点是如何引导学生通过实验和数据分析,探究频率的稳定性。

五. 说教学方法与手段本节课采用实验教学法,分组合作学习的方式进行。

教师引导学生进行实验,收集数据,然后进行分析。

同时,利用多媒体教学手段,展示实验过程和数据分析的过程,帮助学生更好地理解频率的稳定性。

六. 说教学过程1.导入:通过一个简单的实验,让学生感受频率的稳定性。

比如,让学生投掷一个均匀的骰子,记录出现的频率,然后引导学生思考,如果进行大量的实验,出现的频率是否会趋向于一个固定的数值。

2.新课导入:介绍频率的稳定性概念,让学生知道频率在大量实验中趋向于一个固定的数值。

3.分组实验:让学生分组进行实验,收集数据,然后进行分析和讨论。

4.教师讲解:根据学生的实验结果,进行讲解和分析,让学生理解频率的稳定性。

七年级下册数学北师版 第6章 概率初步6.2 频率的稳定性6.2.2 用频率估计概率【教学设计】

七年级下册数学北师版 第6章  概率初步6.2  频率的稳定性6.2.2  用频率估计概率【教学设计】

用频率估计概率【教材分析】《用频率估计概率》是北师版七年级下册第六章《概率初步》的第二节第2课时。

它是学习了前两节的基础上,即学习了理论概率后,进一步从试验的角度来估计概率,让学生再次体会频率与概率间的关系,通过这部分内容的学习可以帮助学生进一步理解试验频率和理论概率的关系。

概率与人们的日常生活密切相关,应用十分广泛。

纵观近几年的中考题,概率已是考查的热点,同时,对此内容的学习,也是为高中深入研究概率的相关知识打下坚实基础。

【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。

因此,我把本节课的教学目标确定为以下三个方面:知识目标:1.理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。

2.进一步理解概率与频率之间的联系与区别,培养学生根据频率集中趋势估计概率的能力。

方法与过程目标:1.选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系.2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.情感态度与价值观目标:1.利用生活实例,介绍数学史,激发学生学习数学的热情和兴趣。

2.结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。

【重点与难点】重点:1.体会用频率估计概率的必要性和合理性。

2.学会依据问题特点,用频率来估计事件发生的概率。

难点:1.理解频率与概率的关系,2.用频率估计概率解决实际问题。

【教学过程的设计】。

七年级数学下册第六章频率初步2频率的稳定性6.2.1频率的稳定性教学设计新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.1频率的稳定性教学设计新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.1频率的稳定性教学设计新版北师大版一. 教材分析本节课的内容是北师大版七年级数学下册第六章频率初步的2频率的稳定性6.2.1频率的稳定性。

这部分内容是学生在学习了频率的概念和性质之后,进一步探究频率的稳定性。

教材通过具体的案例和实验,让学生感受频率的稳定性,并学会如何用频率来估计事件的概率。

二. 学情分析学生在学习本节课之前,已经掌握了频率的概念和性质,能够理解频率是事件发生的次数与总次数的比值。

但是,对于频率的稳定性,可能还存在一定的疑惑。

因此,在教学过程中,需要通过具体的案例和实验,让学生感受频率的稳定性,并引导学生运用频率来估计事件的概率。

三. 教学目标1.让学生理解频率的稳定性,学会用频率来估计事件的概率。

2.培养学生的观察能力和实验能力,提高学生的数学思维能力。

3.通过对频率稳定性的学习,激发学生对数学的兴趣和好奇心。

四. 教学重难点1.教学重点:让学生理解频率的稳定性,学会用频率来估计事件的概率。

2.教学难点:如何引导学生理解和感受频率的稳定性。

五. 教学方法1.采用问题驱动的教学方法,通过提问引导学生思考和探究频率的稳定性。

2.利用具体的案例和实验,让学生感受频率的稳定性。

3.采用小组合作的学习方式,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备具体的案例和实验材料,如硬币、骰子等。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备学习任务单,引导学生进行自主学习和合作学习。

七. 教学过程1.导入(5分钟)通过提问引导学生回顾频率的概念和性质,为新课的学习做好铺垫。

2.呈现(15分钟)利用具体的案例和实验,呈现频率的稳定性。

例如,抛硬币实验,让学生观察和记录硬币正面朝上的频率,并进行数据分析,引导学生发现频率的稳定性。

3.操练(15分钟)让学生进行小组合作,运用频率来估计事件的概率。

例如,掷骰子实验,让学生计算各种情况下的频率,并尝试用频率来估计事件的概率。

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教案新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教案新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教案新版北师大版一. 教材分析本节课为人教版七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性。

这部分内容是在学生已经掌握了频率的概念和计算方法的基础上进行教学的。

本节课主要让学生了解概率的稳定性,理解概率与频率之间的关系,并通过实例让学生体会概率的稳定性在实际问题中的应用。

二. 学情分析学生在学习本节课之前,已经掌握了频率的概念和计算方法,对实验结果的波动性也有了一定的了解。

但学生在理解概率与频率之间的关系,以及如何运用概率的稳定性解决实际问题方面还有一定的困难。

因此,在教学过程中,需要结合具体实例,引导学生理解概率的稳定性,并学会运用概率的稳定性解决实际问题。

三. 教学目标1.让学生了解概率的稳定性,理解概率与频率之间的关系。

2.培养学生运用概率的稳定性解决实际问题的能力。

3.培养学生进行合作交流,发展学生的数学思维。

四. 教学重难点1.重点:概率的稳定性,概率与频率之间的关系。

2.难点:如何运用概率的稳定性解决实际问题。

五. 教学方法采用问题驱动法,结合具体实例,引导学生探究概率的稳定性,并通过小组合作交流,让学生体会概率的稳定性在实际问题中的应用。

六. 教学准备1.准备相关实例,用于讲解概率的稳定性。

2.准备练习题,用于巩固所学知识。

3.准备PPT,用于辅助教学。

七. 教学过程1.导入(5分钟)通过一个简单的实验,让学生观察实验结果的波动性,引出概率的稳定性。

2.呈现(15分钟)呈现相关实例,引导学生探究概率的稳定性。

通过实例让学生理解概率与频率之间的关系。

3.操练(15分钟)让学生进行小组讨论,运用概率的稳定性解决实际问题。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)出示练习题,让学生独立完成,巩固所学知识。

教师选取部分学生的作业进行点评。

5.拓展(10分钟)让学生结合生活实际,寻找其他概率稳定性的事例,并进行交流分享。

北师大版七下数学第6章频率初步6.2.2频率的稳定性教学设计

北师大版七下数学第6章频率初步6.2.2频率的稳定性教学设计

北师大版七下数学第6章频率初步6.2.2频率的稳定性教学设计一. 教材分析北师大版七下数学第6章频率初步6.2.2频率的稳定性,主要让学生了解频率的概念,探究频率的稳定性。

通过本节课的学习,学生能够理解频率的概念,掌握频率的稳定性,并能运用频率解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了概率的基础知识,对概率有一定的理解。

但频率的概念和稳定性对于学生来说可能较为抽象,需要通过实例让学生感受和理解。

三. 教学目标1.知识与技能:理解频率的概念,掌握频率的稳定性,能运用频率解决实际问题。

2.过程与方法:通过实例探究频率的稳定性,培养学生的探究能力。

3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:频率的概念,频率的稳定性。

2.难点:频率的稳定性的理解与应用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,培养学生的动手实践能力和团队协作精神。

六. 教学准备1.准备相关案例和实例,以便引导学生进行探究。

2.准备课件,以便辅助教学。

七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生思考:为什么在多次实验中,某个事件的频率会趋于稳定?从而引出频率的概念和稳定性。

2.呈现(10分钟)呈现相关案例和实例,让学生观察和分析,引导学生探究频率的稳定性。

在此过程中,适时给出频率的定义和稳定性。

3.操练(10分钟)让学生进行小组讨论,尝试运用频率的稳定性解决实际问题。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)通过一些练习题,让学生巩固频率的概念和稳定性。

教师及时给予反馈,提高学生的理解。

5.拓展(10分钟)引导学生思考:频率的稳定性在实际生活中的应用。

让学生举例说明,从而加深对频率稳定性的理解。

6.小结(5分钟)对本节课的内容进行简单总结,强调频率的概念和稳定性。

7.家庭作业(5分钟)布置一些有关频率的练习题,让学生课后巩固。

七年级数学 第六章《概率初步》6.2 频率的稳定性 第2课时 认识不确定事件发生的概率习题

七年级数学 第六章《概率初步》6.2 频率的稳定性 第2课时 认识不确定事件发生的概率习题
(1)你认为小红的猜测( C ) A.一定正确 B.一定不正确 C.有可能正确 (2)谈谈你判断的根据.
12/9/2021
第十一页,共二十三页。
解:有可能正确,但不一定正确,因为对于每一次 试验,出现反面这种结果都是不确定的,当进行大量重 复试验时,出现反面这种结果的频率会稳定在概率左右, 但小红的试验次数太少.
12/9/2021
第十二页,共二十三页。
◎基础训练 1. (2018·呼和浩特)某学习小组做“用频率估计概率” 的试验时,统计了某一结果出现的频率,绘制了如下折 线统计图,则符合这一结果的试验最有可能的是( D )
12/9/2021
第十三页,共二十三页。
A.袋中装有大小和质地都相同的 3 个红球和 2 个 黄球,从中随机取一个,取到红球
12/9/2021
第八页,共二十三页。
摸球的次数 100 200 300 500 800 1000 3000
n
摸到白球的 65 124 178 302 481 599 1803
次数 m
摸到白球的 0.65 0.62 0.593 0.604 0.601 0.599 0.601
频率
若从这一箱塑料球中随机摸出一个球,求这个球是
12/9/2021
第五页,共二十三页。
知识点 :频率估计概率 3. 某地区林业局要考察一种树苗移植的成活率,对 该地区这种树苗移植成活情况进行调查统计,并绘制了 如图所示的统计图,根据统计图提供的信息解答下列问 题: (1)这种树苗成活的概率约为多少? (2)该地区已经移植这种树苗 5 万棵,估计这种树苗 成活了多少棵?
12/9/2021
第六页,共二十三页。
解:(1)0.9; (2)4.5 万棵.

七年级数学下册第六章频率初步6.2频率的稳定性6.2.2频率的稳定性导学案无答案新版北师大版

七年级数学下册第六章频率初步6.2频率的稳定性6.2.2频率的稳定性导学案无答案新版北师大版

七年级数学下册第六章频率初步6.2频率的稳定性6.2.2频率的稳定性导学案无答案新版北师大版----67dc1368-6ea6-11ec-90b4-7cb59b590d7d6.2.2频率的稳定性一、预览和查询(课前学习区)(I)预览内容:p143-p145(III)预览目标:经历抛掷硬币试验和对试验数据处理的过程,通过自己探索与合作交流,体会到抛掷硬币中两种结果出现的等可能性.(四)学习建议:1.教学重点:通过实验感受不确定事件发生的频率的稳定性.2.教学难点:通过实验进一步体验不确定事件的特点和事件发生的可能性(5)预习测试:1.不等可能性事件发生的频率可以用_______得到数据来计算.2.事件a发生的频率=________________________________________.3.在试验次数很大时,事件发生的频率具有______性.活动一:自主学习:1.单独掷硬币20次,并将数据记录在教科书第143页的表(1)中2、刻画事件a发生的可能性大小的数值,称为事件a发生的______,记为________.3、在大量重复的试验中,常用不确定事件a发生的______来估计事件a发生的______.4、事件a发生的概率p(a)的取值范围是_______________,必然事件发生的概率是_____,不可能事件发生的概率是______.5.小凡已经做了五次抛硬币的测试,包括三次正面朝上和两次正面朝下。

因此,他认为正面朝上的概率约为35,正面朝下的概率约为25。

你同意他的观点吗?你认为他做了更多的实验,结果还是一样的吗?(六)生成问题:通过预习和做检测题你还有哪些疑惑请写在下面。

活动二:合作探究:1.累积全班的测试结果,并将测试数据汇总到教材第143页的表(2)中。

2.根据上表,分组完成教材第143页的折线统计图。

3.观察上面的折线统计图。

你发现了什么规律?在试验次数很大时,正面朝上的频率都会在一个常数附近摆动,这就是频率的______性.1.正面朝上抛硬币的次数100452001103001494000199500252600301 III.检测和反馈(课堂完成)1、小刚掷一枚均匀的硬币时,连续3次掷出了正面.小丽说下次一定是反面,你认为小丽的判断正确吗?2.如果你均匀地掷硬币,正面朝上的概率是12。

2019版七年级数学下册 第六章 频率初步 6.2 频率的稳定性一课一练 基础闯关 (新版)北师大版

2019版七年级数学下册 第六章 频率初步 6.2 频率的稳定性一课一练 基础闯关 (新版)北师大版

频率的稳定性一课一练·基础闯关题组频率的稳定性1.(2017·兰州中考)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )A.20B.24C.28D.30【解析】选D.由题意可知×100%=30%,易解得n=30.2.(2017·营口中考)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球试验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个. 世纪金榜导学号45574140【解析】根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.答案:153.(2017·黔东南州中考)黔东南下司“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg. 世纪金榜导学号45574141【解析】由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560(kg).答案:5604.公园里有一人设了个游戏摊位,游客只需掷一枚正方体骰子,如果出现3点,就可获得价值10元的奖品,每抛掷1次骰子只需付1元的费用.小明在摊位前观察了很久,记下了游客的中奖情况:看了小明的记录,你有什么看法?【解析】对于一个普通的正方体骰子,3点出现的频率应为,小明记录的抛掷次数为159次,中奖的次数应为27次左右,而实际中奖次数只有4次,于是可以怀疑摆摊人所用的骰子质量分布不均匀,要进一步证实这种怀疑,可以通过更多的试验来完成.题组用频率估计概率1.为了看图钉落地后钉尖着地的概率有多大,小明做了大量重复试验,发现钉尖着地的次数是试验总次数的40%,下列说法错误的是世纪金榜导学号45574142( )A.钉尖着地的频率是0.4B.随着试验次数的增加,钉尖着地的频率稳定在0.4附近C.钉尖着地的概率约为0.4D.前20次试验结束后,钉尖着地的次数一定是8次【解析】选D.A.钉尖着地的频率是0.4,故此选项正确,不符合题意;B.随着试验次数的增加,钉尖着地的频率稳定在0.4,故此选项正确,不符合题意;C.因为钉尖着地的频率是0.4,所以钉尖着地的概率大约是0.4,故此选项正确,不符合题意;D.前20次试验结束后,钉尖着地的次数应该在8次左右,故此选项错误,符合题意.2.某种小麦播种的发芽概率约是95%,1株麦芽长成麦苗的概率约是90%,一块试验田的麦苗数是8 550株,该麦种的一万粒质量为350千克,则播种这块试验田需麦种约为千克.【解析】设播种这块试验田需麦种x千克,根据题意得x·95%·90%=8 550,解得x=350.答案:3503.如图是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为. 世纪金榜导学号45574143【解析】依题意得击中靶心的频率逐渐稳定在0.600附近,估计这名射手射击一次,击中靶心的概率约为0.600.答案:0.6004.表格记录了一名球员在罚球线上罚篮的结果.这名球员投篮一次,投中的概率约是.【解析】由表可知,随着投篮次数的增加,投中的频率逐渐稳定到常数0.6附近,故这名球员投篮一次,投中的概率约是0.6.答案:0.65.某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”“花开富贵”“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10 000张奖券的抽奖结果如下: 世纪金榜导学号45574144(1)求“紫气东来”奖券出现的频率.(2)请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?并说明理由.【解析】(1)=或5%.(2)平均每张奖券获得的购物券金额为100×+50×+20×+0×=14(元).因为14>10,所以选择抽奖更合算.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共30个,某小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近.(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是.(3)试估算口袋中黑、白两种颜色的球各有多少个?【解析】(1)根据题意可得当n很大时,摸到白球的频率将会接近0.60.答案:0.60(2)因为当n很大时,摸到白球的频率将会接近0.60,所以摸到白球的概率是0.6.摸到黑球的概率是0.4.答案:0.6 0.4(3)因为摸到白球的概率是0.6,摸到黑球的概率是0.4,所以白球有30×0.6=18(个),黑球有30×0.4=12(个).【母题变式】[变式一]2015年榕城区从区中随机调查了5所初中九年级学生的数学考试成绩,学生的考试成绩情况如表(数学考试满分120分)(1)这5所初中九年级学生的总人数有多少人?(2)统计时,老师漏填了表中空白处的数据,请你帮老师填上.(3)从这5所初中九年级学生中随机抽取一人,恰好是108分以上(不包括108分)的概率是多少? 【解析】(1)这5所初中九年级学生的总人数为368÷0.2=1 840(人).(2)因为81-95分的频率为1-(0.2+0.25+0.2)=0.35,则81-95分的频数为1 840×0.35=644,所以109-119分的频数为1 840-(368+460+644+184+54)=130.答案:644 0.35 130(3)随机抽取一人,恰好是108分以上的概率为=.[变式二]某批足球的质量检测结果如下:合格的频率(1)填写表中的空格.(结果保留0.01)(2)画出合格的频率折线统计图.(3)从这批足球中任意抽取的一个足球是合格品的概率估计值是多少?并说明理由.【解析】(1)完成表格如下:合格的频率(2)如图所示:(3)从这批足球中任意抽取的一个足球是合格品的概率估计值是0.95,因为从折线统计图中可知,随着试验次数的增大,频率逐渐稳定到常数0.95附近, 所以从这批足球中任意抽取的一个足球是合格品的概率估计值是0.95.。

北师大版七年级(下)数学6.2.1频率的稳定性同步检测(原创)

北师大版七年级(下)数学6.2.1频率的稳定性同步检测(原创)

北师大版七年级(下)数学6.2.1频率的稳定性同步检测(原创)学校:___________姓名:___________班级:___________考号:___________一、单选题1.小胡将一枚质地均匀的硬币抛掷了10次,正面朝上的情况出现了6次,若用A表示正面朝上这一事件,则事件A发生的()A.频率是0.4B.频率是0.6C.频率是6D.频率接近0.62.小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表:则通话时间不超过15 min的频率为()A.0.1B.0.4C.0.5D.0.93.掷一枚质地均匀的正方体骰子(每个面上的点数分别为1、2、3、4、5、6),前5次朝上的点数恰好是1~5(含1和5)中任意一个数,则第6次朝上的点数()A.一定是6B.一定不是6C.是6的可能性大小小于是1~5(含1和5)的任意一个数的可能性D.是6的可能性大小等于是1~5(含1和5)的任意一个数的可能性4.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D.用2,3,4三个数字随机排成一个三位数,排出的数是偶数5.一组数据,在整理频率分布时,将所有频率相加,其和是( )A.0.01B.0.02C.0.1D.16.在一个不透明的盒子里装着若干个白球,小明想估计其中的白球数,于是他放入10个黑球,搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,得到如下数据:估计盒子里白球的个数为()A.8B.40C.80D.无法估计7.在抛掷一枚硬币的实验中,某小组做了1000次实验,最后出现正面的频率为49.6%,此时出现正面的频数为( )A.496B.500C.516D.不能确定8.小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的概率约是, ,A.38%B.60%C.63%D.无法确定9.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( ) A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率二、填空题10.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.试验数据如下表.(1)10次试验“和为8”出现的频率是_________,20次试验“和为8”出现的频率是______,450次试验“和为8”出现的频率是__________;(2)如果试验继续进行下去,根据上表数据,估计出现“和为8”的频率是_____________. 11.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______。

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教案新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教案新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教案新版北师大版一. 教材分析本节课的主要内容是频率的稳定性,这是学生在掌握了概率的基础上进一步深入理解概率特性的重要内容。

通过本节课的学习,学生能够理解频率稳定性概念,了解概率与频率之间的关系,能够运用频率稳定性分析实际问题。

二. 学情分析学生在进入七年级之前,已经初步掌握了概率的基本概念和方法,对于概率的计算和应用已经有了一定的了解。

但是,对于频率稳定性这一概念,学生可能比较陌生,需要通过具体的实例和活动来帮助学生理解和掌握。

三. 教学目标1.知识与技能:学生能够理解频率稳定性的概念,能够运用频率稳定性分析实际问题。

2.过程与方法:通过具体实例和活动,学生能够体验频率稳定性,培养学生的数据处理和分析能力。

3.情感态度价值观:学生能够认识到数学与实际生活的紧密联系,增强学生学习数学的兴趣和信心。

四. 教学重难点1.重点:频率稳定性的概念和运用。

2.难点:频率稳定性的理解和运用。

五. 教学方法采用问题驱动法和案例教学法,通过具体的实例和活动,引导学生探究频率稳定性,培养学生的数据处理和分析能力。

六. 教学准备1.教师准备:准备好相关的实例和活动,制作好PPT。

2.学生准备:学生需要预习相关内容,了解概率的基本概念和方法。

七. 教学过程1.导入(5分钟)通过一个简单的抛硬币实验,引导学生思考:抛硬币实验中,正面朝上的概率是多少?引导学生回顾概率的概念和方法。

2.呈现(10分钟)教师通过PPT呈现频率稳定性的事例,如掷骰子实验、抽奖活动等,引导学生观察和分析频率稳定性。

3.操练(10分钟)学生分组进行实践活动,每组选择一个事例,进行频率稳定性实验,记录数据,分析频率稳定性。

4.巩固(10分钟)教师通过PPT呈现一些实际问题,引导学生运用频率稳定性进行分析,巩固学生对频率稳定性的理解和运用。

5.拓展(10分钟)学生分组讨论:如何运用频率稳定性解决实际问题?每组选择一个实际问题,进行讨论和展示。

七年级数学下册第六章频率初步2频率的稳定性练习新版北师大版12041

七年级数学下册第六章频率初步2频率的稳定性练习新版北师大版12041

6.2频率的稳定性一.选择题:(四个选项中只有一个是正确的,选出正确选项填在题目的括号内)1.下列说法正确的是()①不可能事件的可能性为0;②确定事件的可能性不是0就是1;③必然事件的可能性为1;④不确定事件的可能性大于0而小于1;A.1个 B.2个 C.3个 D.4个2.关于频率与概率的关系,下列说法正确的是()A.频率等于概率 B.当试验次数很多时,频率稳定在概率附近C.当试验次数很多时,概率稳定在频率附近 D.试验得到的频率与概率不可能相等3.在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表,由表估计该麦种的发芽概率是()A.0.8B.0.9C.0.95D.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24B.18C.16D.65.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱;通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A. 12 B.9C. 4D. 36.某单位要在两名射击队员中推出一名参加比赛,已知同等条件下,甲射中某物的可能性大于乙,则所推出的人中应()A.选甲B.选乙C.都可以D.不能确定7.下列说法正确的是( )A.如果一件事情发生的可能性达到99.9999%,说明这件事必然发生;B.如果一事件不是不可能事件,说明此事件是不确定事件;C.可能性的大小与不确定事件有关;D.如果一事件发生的可能性为百万分之一,那么这事件是不可能事件..8.一个口袋里有5个红球,3个黄球,2个绿球,任意摸一个,摸到()的可能性最小;A.红球B.黄球C.绿球D.以上都不对9.从一副扑克牌中则下列事件中可能性最大的是( )A.抽出一张红心B.抽出一张红色老KC.抽出一张梅花JD.抽出一张不是Q的牌10. 一个不透明口袋中有9个球,其中4个红球,3个蓝球,2个白球,在下列事件中,发生的可能性为1的是()A.从口袋中拿一个球恰为红球B.从口袋中拿出2个球都是白球C.拿出6个球中至少有一个球是红球D.从口袋中拿出的5个球恰为3红2白二.填空题:(将正确答案填在题目的横线上)11.在一个不透明的袋中,红色、白色、黄色的球共有40个,这些球除颜色外其它完全相同,通过摸球实验后发现,其中摸到红球、白球的频率分别稳定在15%和45%附近,则袋中黄色球的个数约为________个;12.目前,我国农村人口A与非农村人口B的比例如图所示,当转盘停止转动时,指针停在_______区域的可能性较大;13.掷一枚质地均匀的硬币,正面朝上的概率是12,如果前5次出现反面朝上,那么第6次出现正面朝上的概率是__________;14.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球个;15.掷一枚质地均匀的骰子,会出现的可能结果是____________________;掷出的点数为1与掷出点数为2的可能性_______;掷出的点数大于3与掷出点数小于3的可能性________;(填“相同”或“不相同”)三.解答题:(写出必要的说明过程,解答步骤)16.已知一个不透明的袋中装有仅颜色不同的玻璃球6个,其中红球2个、黑球3个、白球1个;从中任取1个球,取得红球、黑球、白球的可能性相同吗?为什么?17.某商场设了一个可以自由转动的转盘如图,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:(2)请估计,当n很大时,频率将会接近多少?18.在一个不透明的口袋里装有黑、白两色的球共20个,这些球除颜色外其它都相同,将球搅匀后从中随机摸出一个球,记下颜色,再放回袋中,不断重复;下表是一组统计数据:(1)由此估计,当n很大时,摸到白球的频率会接近__________;(2)现在摸一次球,摸到白球的概率是_________,摸到黑球的概率是________;(3)试估算袋中的白球、黑球各有多少个?19.下表是某篮球运动员在进行定点罚球的记录:(1)根据上表,估计该运动员罚球命中的概率;(2)根据上表,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),大约能得多少分?6.2频率的稳定性参考答案:1~10 DBCCA ACCDC11.16;12.A;13.12; 14.8;15.点数为1,2,3,4,5,6;相同;不相同;16.从中任取1个球,取得红球、黑球、白球的可能性不相同,因为三种球的个数不相等;17.(1)(2)∵落在钢笔上的频率为:(0.680.740.680.690.7050.701)60.70+++++÷≈∴当n很大时,频率将会接近0.7;18.(1)当n很大时,摸到白球的频率会接近(0.580.640.580.590.6050.601)60.60+++++÷≈(2)摸到白球的概率是0.60,摸到黑球的概率是1-0.60=0.40;(3)白球有20×0.6=12(个),黑球有20-12=8(个);19.(1)由题可知,罚球命中的频率从左到右分别为:0.7,0.8,0.8,0.8,0.82,0.8;当罚球次数增多时,频率稳定在0.8附近;由此估计该运动员罚球命中的概率为0.8;(2)由10×2×0. 8=16,∴该运动员此次比赛罚球大约能得16分;。

北师大版七下数学第6章频率初步6.2.1频率的稳定性教案

北师大版七下数学第6章频率初步6.2.1频率的稳定性教案

北师大版七下数学第6章频率初步6.2.1频率的稳定性教案一. 教材分析北师大版七下数学第6章频率初步6.2.1频率的稳定性教案主要讲述了频率的稳定性概念。

通过本节课的学习,学生能够了解频率稳定性的含义,掌握频率稳定性的判断方法,并能够运用频率稳定性解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了概率基础知识,对频率有一定的了解。

但学生对频率稳定性的理解可能存在一定的困难,需要通过实例和练习来加深对频率稳定性的认识。

三. 教学目标1.知识与技能目标:学生能够理解频率稳定性的概念,掌握频率稳定性的判断方法。

2.过程与方法目标:学生能够通过实例分析和练习,运用频率稳定性解决实际问题。

3.情感态度与价值观目标:学生能够培养对数学的兴趣,提高解决问题的能力。

四. 教学重难点1.重点:频率稳定性的概念及判断方法。

2.难点:频率稳定性在实际问题中的应用。

五. 教学方法1.情境教学法:通过实例分析,引导学生理解频率稳定性的概念。

2.实践教学法:通过练习和问题解决,让学生掌握频率稳定性的判断方法。

3.互助合作学习:学生分组讨论,共同解决问题,培养团队合作精神。

六. 教学准备1.教学素材:准备相关实例和练习题,以便进行教学分析和练习。

2.教学工具:准备黑板、粉笔等教学用具,以便进行板书和讲解。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,例如:“在一个袋子里有5个红球和4个蓝球,随机取出一个球,取出红球的频率是否稳定?”引导学生思考频率稳定性的概念。

2.呈现(15分钟)讲解频率稳定性的概念,并用实例进行说明。

例如,抛硬币实验中,硬币正反面出现的频率在大量实验中趋于稳定。

引导学生理解频率稳定性的含义。

3.操练(15分钟)让学生进行一些练习题,以加深对频率稳定性的理解。

例如,让学生计算一些简单事件的频率,并判断频率是否稳定。

4.巩固(10分钟)通过一些实际问题,让学生运用频率稳定性进行解决问题。

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教案新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教案新版北师大版
3、今天是星期天,昨天必定是星期六
课后反思
课程讲授
第五环节新知的应用过程
(一)学以致用。
由学生利用刚刚学习的概率的知识解决教材中掷硬币的问题
题目内容:
1、由上面的实验,请你估计抛掷一枚均匀的 硬币,正面朝上和正面朝下的概率分别是多少?他们相等吗?
(二)牛刀小试。
学生利用刚刚学习的由事件发生的频率来估概率解决实际问题,使学生体会数学来源于生活又能 解决生活中的实际问题。
概率的稳定性
课题
6、2、2概率的稳定性
课型
教学目标
1、知识与技能:学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力;
2、过程与方法:通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法;
3、情感态度与价值观:通过对实际问题的分析 ,培养使用数学的良好意识,激发学习兴趣,体验 数学的应用价值;进一步体会“数学就在我们身边”,发展学生的应用数 学的能力
(三)是“玩家”就玩出水平。
通过让学生自由选择任务难度,实现分层次教学。在好学生的引领下,逐步突出本节课的重点知识
题目内容:
智慧版1、下列事件发生的可能性为 0的是( )
A、掷两枚骰子,同时出现数字“6”朝上
B、小明从家里到学校用了10分钟,从学校回到家里却用了15分钟
C、今天是星期天,昨天必定是星期六
D、小明步行的速度是每小时40千米
2、口袋中有9个球,其中4个红球,3个蓝球,2个白球,在下列事件中,发生的可能性为1的 是()
A、从口袋中拿一个球恰为红球
B、从口袋中拿出2个球都是白球
C、拿出6个球中至少有一个球是红球
D、从口袋中拿出的球恰为3红2白
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2.2频率的稳定性同步检测
一、选择题
1.下列事件中可能性是0的是( )
A .已知b a =,则c
b c a =(c b a ,,是有理数) B .一年有14个月 C .明天下雨 D .2008年奥运会在中国举办
2.掷一枚硬币,正面朝上的可能性为( )
A .21
B .3
1 C .1 D .0 3.甲、乙两个工厂生产相同的产品,甲厂的立品出现次品的可能性是10%,乙厂产品出现次品的可能性为7%,请问哪一个厂的产品更让人放心一些( )
A .买甲厂的
B .买乙厂的
C .买哪一个都一样
D .不确定
二、填空题
4.“苹果不抓住会从空中掉下来”这一事件的可能性为___________.
5.“一条射线有两个端点”发生的可能性为__________.
6.(1)必然事件的概率是_________;
(2)不可能事件的概率是___________;
(3)如果A 是不确定事件,则0_________)(A P _________1.
7.一不透明的盒子里放有编号为1,2,3的3张完全相同的卡片,任意抽出一张,抽到1号的可能性为_________.
三、解答题
8.指出下列事件中,哪些是不确定事件,哪些是必然事件,哪些是不可能事件.
(1)树上的苹果掉到人头上; (2)树上的苹果掉到月球上;
(3)小明在教室里坐着; (4)骰子的每个面的点数不超过6;
(5)小亮数学测验得满分; (6)小林语言测验不及格.
9.投掷一枚骰子,出现1点、2点、3点、4点、5点、6点的概率各是多少?出现点数不超过3的概率是多少?
10.小丽和小芳都想参加志愿者活动,但现要只有一个名额,小丽想了一个办法,他将一个转盘(均质的)均匀分成6份如图所示,游戏规定:随意转动转盘,若指针指到3,则小丽去,指针指到2则小芳去,若你是小芳,你会同意这个办法吗?为什么?
11.分别标有:“1”、“2”、“3”、“4”、“5”的五张卡片,任选两张,求:(1)两张的号数之和为5的概率;
(2)它们互质(没有大于1的公因数)的概率;
(3)它们乘积超过5的概率;
(4)它们乘积超过10的概率.
参考答案
一、选择题
1.B
2.A
3.B
二、填空题
4.1
5.0
6.(1)1 (2)0 (3)<,<
7.3
1 三、解答题
8.(1)不确定事件 (2)不可能事件 (3)不确定事件 (4)必然事件 (5)不确定事件 (6)不确定事件
9.61,61,61,61,61,61,2
1 10.不同意.理由是指针指向3的可能性为
3162 ,指向2的可能性为61,所以小丽赢的可能性大,游戏不公平.要想公平可以将一个3改为6或将1改为2.(改法不惟一)
11.(1)
51 (2)109 (3)53 (4)103。

相关文档
最新文档