时序逻辑电路(1)
第6章 时序逻辑电路
J 和 K 接为互反,相当于一个D触发器。时钟相连 是同步时序电路。
电路功能: 有下降沿到来时,所有Q端更新状态。
2、移位寄存器 在计算机系统中,经常要对数据进行串并转换,移 位寄存器可以方便地实现这种转换。
左移移位寄存器
•具有左右移位功能的双向移位寄存器
理解了前面的左移移位寄存器,对右移移位寄存器 也就理解了,因位左右本身就是相对的。实际上,左右 移位的区别在于:N触发器的D端是与 Q N+1相连,还是 与Q N-1相连。
第六章 时序逻辑电路
如前所述,时序逻辑电路的特点是 —— 任一时刻 的输出不仅与当前的输入有关,还与以前的状态有关。
时序电路以触发器作为基本单元,使用门电路加以 配合,完成特定的时序功能。所以说,时序电路是由组 合电路和触发器构成的。
与学习组合逻辑电路相类似,我们仍从分析现成电 路入手,然后进行时序逻辑电路的简单设计。
状态化简 、分配
用编码表示 给各个状态
选择触发器 的形式
确定各触发器 输入的连接及 输出电路
NO 是否最佳 ?
YES
设计完成
下面举例说明如何实现一个时序逻辑的设计:
书例7-9 一个串行输入序列的检测电路,要求当序
列连续出现 4 个“1”时,输出为 1,作为提示。其他情 况输出为 0。
如果不考虑优化、最佳,以我们现有的知识可以很
第二步: 状态简化
前面我们根据前三位可能的所有组合,设定了 8 个
状态A ~ H,其实仔细分析一下,根本用不了这么多状态。
我们可以从Z=1的可能性大小的角度,将状态简化为
4 个状态:
a
b
c
d
A 000
B 100
D 110
时序逻辑电路
时序逻辑电路时序逻辑电路是一种在电子数字电路领域中应用广泛的重要概念,它主要用于解决电路中的时序问题,如时钟同步问题、时序逻辑分析等。
本文将详细介绍时序逻辑电路的基础概念、工作原理以及应用。
一、时序逻辑电路的基础概念1、时序逻辑和组合逻辑的区别组合逻辑电路是一类基于组合逻辑门的电路,其输出仅取决于输入信号的当前状态,不受先前的输入状态所影响。
而时序逻辑电路的输出则受到先前输入信号状态的影响。
2、时序逻辑电路的组成时序逻辑电路通常由时钟、触发器、寄存器等组成。
时钟信号被用于同步电路中的各个部分,触发器将输入信号存储在内部状态中,并在时钟信号的作用下用来更新输出状态。
寄存器则是一种特殊类型的触发器,它能够存储多个位的数据。
3、时序逻辑电路的分类根据时序逻辑电路的时序模型,可将其分为同步和异步电路。
同步电路按照时钟信号的周期性工作,这意味着电路通过提供时钟信号来同步所有操作,而操作仅在时钟上升沿或下降沿时才能发生。
异步电路不同,它不依赖时钟信号或时钟信号的上升和下降沿,所以在一次操作完成之前,下一次操作可能已经开始了。
二、时序逻辑电路的工作原理时序逻辑电路的主要工作原理基于触发器的行为和时钟电路的同步机制。
在时序逻辑电路中使用了一些触发器来存储电路状态,待时钟信号到达时更新输出。
时钟信号提供了同步的机制,确保电路中所有部分在时钟信号到达时同时工作。
触发器的基本工作原理是将输入信号存储到内部状态中,并在时钟信号的作用下,用来更新输出状态。
时钟信号的边沿触发触发器,即在上升沿或下降沿时触发触发器状态的更新。
这意味着在更新之前,电路的状态保持不变。
三、时序逻辑电路的应用1、时序电路在计算机系统中的应用时序逻辑电路在计算机系统中有着广泛的应用。
例如,计算机中的时钟信号可用来同步处理器、主存储器和其他外设间的工作。
此外,电路中的寄存器和触发器也被用于存储和更新信息,这些信息可以是计算机程序中的指令、运算结果或其他数据。
时序逻辑电路的概念及特点
时序逻辑电路的概念及特点
时序逻辑电路是指在电路中添加了存储功能的一种电路,它能够根据输入信号的时序变化来决定输出信号的状态。
时序逻辑电路的特点包括以下几点:
1. 存储功能:时序逻辑电路具有存储功能,可以存储先前的输入信号和输出信号状态。
这些状态会影响电路的后续运算和输出。
2. 时序依赖:时序逻辑电路的输出状态取决于输入信号的时序变化。
不同的输入信号序列会导致不同的输出结果。
3. 时钟信号:时序逻辑电路通常需要一个时钟信号来控制存储功能的读写操作。
时钟信号会规定电路的工作时序和节拍。
4. 时序逻辑电路常见的元件包括锁存器、触发器和计数器等。
这些元件都是基于存储功能的设计,能够存储和处理输入信号的时序信息。
5. 时序逻辑电路的输出结果不仅仅取决于当前的输入信号,还和之前的输入信号以及存储的状态有关。
因此,时序逻辑电路通常需要通过状态转移函数或计数器等实现具体的逻辑运算。
总的来说,时序逻辑电路通过添加存储功能,能够根据输入信号的时序变化来决定输出信号的状态。
它是在组合逻辑电路的基础上进一步发展而来的,可以实现更加复杂的逻辑功能和处理能力。
时序逻辑电路名词解释
时序逻辑电路名词解释一、时序逻辑电路名词解释所谓时序电路,是指各个元器件的时间参数与电路的工作状态之间存在着有机联系的电路。
可以用分立元件组成的各种实用电路来模拟电子电路中常见的时序关系。
二、时序逻辑电路的组成和特点1。
多谐振荡器:根据周期性排列的规律,在每个周期内有个谐振点,并按此排列规律而形成的多谐振荡器称为多谐振荡器。
2。
由“多谐振荡器”构成的电路:根据“多谐振荡器”的特点,利用与非门和或非门将“多谐振荡器”接成不同的电路。
3。
“石英晶体振荡器”的特点: 1)稳定性高; 2)频率特性好;3)工作范围宽; 4)石英晶体发生器电路的简化。
石英晶体振荡器包括下面几部分:输入回路、反馈网络、放大器、振荡电路及整流、滤波、稳压电路等。
石英晶体振荡器是利用单片石英晶体调节某些电容,使它的电压与频率跟随变化,从而产生出变化的电信号。
为了提高石英晶体振荡器的品质因数,要求负载电阻R_0和电容c_0较小。
4。
存储器: 1)存储器有存储信息的功能,只需少量电能就能保持所存储的信息。
它主要由存储单元和控制单元两部分组成。
2)用单一的半导体材料制成,具有记忆功能。
3)结构简单,体积小。
4)需要电源激励工作。
5)只读存储器。
4。
集成逻辑电路:是一种由许多单独的半导体器件组成的具有专门功能的集成电路。
这些半导体器件包括:门电路、触发器、存储器和微处理器。
1)复合逻辑电路:由“触发器”和“门电路”组成的一种逻辑电路。
2) TTL电路:由双极型三极管和逻辑门构成的一种逻辑电路。
3) CMOS电路:由双极型三极管和逻辑门构成的一种逻辑电路。
4) MIS电路:由“双极型三极管”和“逻辑门”构成的一种逻辑电路。
5)混合逻辑电路:由“门电路”和“触发器”构成的一种逻辑电路。
6) TTL电路加上高阻器后称为TTL集成逻辑电路。
7)将两个或更多的TTL电路加上高阻器后称为TTL门电路。
8)将两个或更多的CMOS电路加上高阻器后称为CMOS集成逻辑电路。
【电工基础知识】时序逻辑电路
【电⼯基础知识】时序逻辑电路时序逻辑电路定义时序逻辑电路主要由触发器构成。
在理论中,时序逻辑电路是指电路任何时刻的稳态输出不仅取决于当前的输⼊,还与前⼀时刻输⼊形成的状态有关。
这跟相反,组合逻辑的输出只会跟⽬前的输⼊成⼀种函数关系。
换句话说,时序逻辑拥有储存器件()来存储信息,⽽组合逻辑则没有。
从时序逻辑电路中,可以建出两种形式的::输出只跟内部的状态有关。
(因为内部的状态只会在时脉触发边缘的时候改变,输出的值只会在时脉边缘有改变):输出不只跟⽬前内部状态有关,也跟现在的输⼊有关系。
时序逻辑因此被⽤来建构某些形式的的,延迟跟储存单元,以及有限状态⾃动机。
⼤部分现实的电脑电路都是混⽤组合逻辑跟时序逻辑。
按“功能、⽤途”分为:1. 寄存器;2. 计数(分频)器;3. 顺序(序列)脉冲发⽣器;4. 顺序脉冲检测器;5. 码组变换器;寄存器定义寄存器:能够暂时存放数码、指令、运算结果的数字逻辑部件,称为寄存器。
寄存器的功能是存储,它是由具有存储功能的组合起来构成的。
⼀个触发器可以存储1位⼆进制代码,故存放n位⼆进制代码的寄存器,需⽤n个触发器来构成。
[1]按照功能的不同,可将寄存器分为基本寄存器和两⼤类。
基本寄存器只能并⾏送⼊数据,也只能并⾏输出。
移位寄存器中的数据可以在移位脉冲作⽤下依次逐位右移或左移,数据既可以并⾏输⼊、并⾏输出,也可以串⾏输⼊、串⾏输出,还可以并⾏输⼊、串⾏输出,或串⾏输⼊、并⾏输出,⼗分灵活,⽤途也很⼴。
[1]知识点概述:1、寄存器,就是能够记忆或存储0和1数码的基本部件。
通常都是由各种触发器和门电路来构成的。
2、寄存器分为仅能存储0和1数码的数码寄存器,和既能存储数码同时也能实现数码的左移或右移的寄位移寄存器。
3、在实际中,通常使⽤集成寄存器。
本节讲解了寄存器的电路构成、⼯作原理、对74LS194双向移位寄存器的使⽤进⾏了介绍。
4、有点寄存器具有左移右移的功能寄存器电路如下:(1)由四个D触发器构成,因为每⼀个D触发器可以存放1位⼆进制信息,所以上述电路的寄存器可存放⼀个4位⼆进制数码,⼀般也把这种寄存器称为数码寄存器。
第六章 时序电路
二、时序逻辑电路的分类:
按 动 作 特 点 可 分 为
同步时序逻辑电路
所有触发器状态的变化都是在 同一时钟信号操作下同时发生。
异步时序逻辑电路
触发器状态的变化不是同时发生。
按 输 出 特 点 可 分 为
米利型时序逻辑电路(Mealy)
输出不仅取决于存储电路的状态,而且还 决定于电路当前的输入。
Q2 Q1 Q0
/Y
/0 /0 000→001→011 /1↑ ↓/0
CP Q0 010 Q1 Q2 Y
/0 101 /1 (b) 无效循环
100←110←111 /0 /0 (a) 有效循环
有效循环的6个状态分别是0~5这6个十进制数
字的格雷码,并且在时钟脉冲CP的作用下,这6个
状态是按递增规律变化的,即: 000→001→011→111→110→100→000→… 所以这是一个用格雷码表示的六进制同步加法 计数器。当对第6个脉冲计数时,计数器又重新从 000开始计数,并产生输出Y
Q=0时
LED亮
RD Q0 Q1 D1 Q2 D2 D3 Q3 S1
DIR D0 D1D2D3S0 DIL CLK +5V
74LS194
DIR D0
S0 DIL CLK +5V
清0按键 1秒
S1=0,S0=1
CLK 右移控制
本节小结:
寄存器是用来存放二进制数据或代
码的电路,是一种基本时序电路。任何
画状态转换图
Q3Q2Q1 /Y
000
/1 /1 111
/0
001
/0
010
/0
011 /0
名词解释时序逻辑电路
时序逻辑电路介绍时序逻辑电路是现代电子技术中非常重要的一部分,它在数字电子系统中起着至关重要的作用。
本文将深入探讨时序逻辑电路的定义、原理、应用以及设计方法。
什么是时序逻辑电路时序逻辑电路是一种根据输入信号和时钟信号的状态改变来控制输出的电路。
它是由触发器和组合逻辑电路组成的。
触发器是一种具有两个稳定状态(SET和RESET)的多稳态器件,它存储并传递信息。
组合逻辑电路是由逻辑门构成的,用于根据输入信号产生输出信号。
时序逻辑电路的原理时序逻辑电路的行为取决于触发器的状态和输入信号的变化。
触发器的状态可以通过时钟信号进行改变,时钟信号非常重要,因为它将输入信号的改变与触发器的状态转换参数分离开来。
触发器的状态变化遵循一定的时钟信号规律。
比如,典型的触发器有边沿触发器和电平触发器。
前者在时钟的上升沿或下降沿发生状态变化,而后者在时钟的高电平或低电平期间保持状态。
这种状态变化和输入信号的改变相结合,可以实现各种复杂的逻辑功能。
时序逻辑电路的应用时序逻辑电路广泛应用于数字电子系统中,如计算机、通信系统、控制系统等等。
以下是一些常见的应用场景:时钟分频器时序逻辑电路可用于实现时钟分频器,将高频率的时钟信号分频为低频率的信号。
这在很多数字系统中是必需的,例如将高速输入信号转换为适合处理的低速信号。
计数器是一种常见的时序逻辑电路,它用于对输入信号进行计数。
它可以根据时钟信号和触发器的状态,实现二进制、十进制等不同进制的计数。
状态机状态机是一种基于时序逻辑电路的控制器,用于对系统状态的转换和控制。
它可以根据输入信号和当前状态来确定下一状态和输出信号。
状态机广泛应用于数字控制系统、通信系统、自动化系统等领域。
存储器时序逻辑电路可用于构建各种类型的存储器,如寄存器、RAM(Random Access Memory)以及ROM(Read-Only Memory)。
这些存储器用于存储和读取数据,是计算机系统中必不可少的组成部分。
时序逻辑电路
3 . 异步减 法计 数器
(1)3位递减计数器的状态
(2)电路组成
二 、 十进制计数器
十进制递减计数器的状态
1.电路组成
异步十进制加法计数器
2.工作原理
(1)计数器输入0~9个计数脉冲时,工作过程与4位二进制异步加法计数器完 全相同,第9个计数脉冲后,Q3Q2Q1Q0状态为1001。 (2)第10个计数脉冲到来后,此时计数器状态恢复为0000,跳过了1010~1111 的6个状态,从而实现842lBCD码十进制递增计数的功能。
④ 最 高 位 触 发 器 FF 3 是 在 Q 0 、 Q 1 、 Q 2 同 时 为 1 时 触 发 翻 转 , 即 FF 0 ~ FF 2 原均为 1 ,作加 l 计数时,产生进位使 FF 3 翻转为 l 。
(2)电路组成
4位二进制同步加法计数器逻辑图
工
程
应
用
计数不正常的故障检测 第一步,先查工作电源是否正常;第二步,检查触 发器的复位端是否被长置成复位状态;第三步,用示波器观测计数脉冲是否加到 了触发器的CP端;第四步,替换触发器,以确定集成电路是否损坏。
第二节 计数器
在数字系统中,能统计输入脉冲个数的电路称为计数器。
一 、二进 制计 数器 1 . 异步二 进制 加法计 数器
每输入一个脉冲,就进行一次加 1 运算的计数器称为加法 计数器,也称为递增计数器。 4 个 JK 触发器构成的异步加 法计数器如下图所示。
图中 FF 0 为最低位触发器,其控制端 C l 接收输入脉冲,输 出信号 Q 0 作为触发器 FF 1 的 CP , Q 1 作为触发器 FF 2 的 CP , Q 2 作为 FF 3 的 CP 。各触发器的 J 、 K 端均悬空,相当于 J = K =1 ,处于计数状态。各触发器接收负跳变脉冲信号时 状态就翻转,它的时序图见下图。
数字电路第6章(1时序逻辑电路分析方法)
数字电路第6章(1时序逻辑电路分析方法)1、第六章时序规律电路本章主要内容6.1概述6.2时序规律电路的分析方法6.3若干常用的时序规律电路6.4时序规律电路的设计方法6.5时序规律电路中的竞争-冒险现象1.时序规律电路的特点2.时序规律电路的分类3.时序规律电路的功能描述方法§6.1概述一、时序规律电路的特点1、功能:任一时刻的输出不仅取决于该时刻的输入;还与电路原来的状态有关。
例:串行加法器:两个多位数从低位到高位逐位相加一、时序规律电路的特点2.电路结构①包含存储电路和组合电路,且存储电路必不行少;②存储电路的输出状态必需反馈到组合电路输入端,与输入变量共同确定组合规律的输出。
yi:输出信号xi:输2、入信号qi:存储电路的状态zi:存储电路的输入可以用三个方程组来描述:Z=G(X,Q)二、时序电路的分类1.依据存储电路中触发器的动作特点不同时序电路存储电路里全部触发器有一个统一的时钟源;触发器状态改变与时钟脉冲同步.同步:异步:没有统一的时钟脉冲,电路中要更新状态的触发器的翻转有先有后,是异步进行的。
二、时序电路的分类2.依据输出信号的特点不同时序电路输出信号不仅取决于存储电路的状态,而且还取决于输入变量。
Y=F(X,Q)米利(Mealy)型:穆尔(Moore)型:输出状态仅取决于存储电路的状态。
犹如步计数器Y=F(Q)三、时序规律电路的功能描述方法描述方法3、规律方程式状态转换表状态转换图时序图三、时序规律电路的功能描述方法(1)规律方程式:写出时序电路的输出方程、驱动方程和状态方程。
输出方程反映电路输出Y与输入X和状态Q之间关系表达式;驱动方程反映存储电路的输入Z与电路输入X和状态Q之间的关系状态方程反映时序电路次态Qn+1与驱动函数Z和现态Qn之间的关系三、时序规律电路的功能描述方法(2)状态〔转换〕表:反映输出Z、次态Qn+1和输入X、现态Qn间对应取值关系的表格。
(3)状态〔转换〕图:(4)时序图:反映时序规律电路状态转换规律及相应输入、输出取值关系的有向图形。
常用的时序逻辑电路
常用的时序逻辑电路时序逻辑电路是数字电路中一类重要的电路,它根据输入信号的顺序和时序关系,产生对应的输出信号。
时序逻辑电路主要应用于计时、控制、存储等领域。
本文将介绍几种常用的时序逻辑电路。
一、触发器触发器是一种常见的时序逻辑电路,它具有两个稳态,即SET和RESET。
触发器接受输入信号,并根据输入信号的变化产生对应的输出。
触发器有很多种类型,常见的有SR触发器、D触发器、JK 触发器等。
触发器在存储、计数、控制等方面有广泛的应用。
二、时序计数器时序计数器是一种能按照一定顺序计数的电路,它根据时钟信号和控制信号进行计数。
时序计数器的输出通常是一个二进制数,用于驱动其他电路的工作。
时序计数器有很多种类型,包括二进制计数器、BCD计数器、进位计数器等。
时序计数器在计时、频率分频、序列生成等方面有广泛的应用。
三、时序比较器时序比较器是一种能够比较两个信号的大小关系的电路。
它接受两个输入信号,并根据输入信号的大小关系产生对应的输出信号。
时序比较器通常用于判断两个信号的相等性、大小关系等。
常见的时序比较器有两位比较器、四位比较器等。
四、时序多路选择器时序多路选择器是一种能够根据控制信号选择不同输入信号的电路。
它接受多个输入信号和一个控制信号,并根据控制信号的不同选择对应的输入信号作为输出。
时序多路选择器常用于多路数据选择、时序控制等方面。
五、时序移位寄存器时序移位寄存器是一种能够将数据按照一定规律进行移位的电路。
它接受输入信号和时钟信号,并根据时钟信号的变化将输入信号进行移位。
时序移位寄存器常用于数据存储、数据传输等方面。
常见的时序移位寄存器有移位寄存器、移位计数器等。
六、状态机状态机是一种能够根据输入信号和当前状态产生下一个状态的电路。
它由状态寄存器和状态转移逻辑电路组成,能够实现复杂的状态转移和控制。
状态机常用于序列识别、控制逻辑等方面。
以上是几种常用的时序逻辑电路,它们在数字电路设计中起着重要的作用。
第六章 时序逻辑电路(一)
一个多位的数码寄存器,可以看作是多个触发器的并行使用。
4位数码寄存器
Q1
D1 D D2 D
Q2
D3 D
Q3
D4 D
Q4
CP
在CP的上升沿,将输入并行四位数码D1 D2 D3 D4存入到4级D触发器中。
6.2
时序逻辑电路的分析
例1:分析下图所示的时序电路。
&
1J C1 1
Q1 Q1
& 1J C1 2 1K
Q2 Q2
& 1J C1 3 1K
Q3 Q3
&
Z
CP
&
1K
解: 题意分析 ☆ 本电路三级触发器有统一时钟CP,是同步时序电路, 时钟方程可以不写。 ☆ 三级JK触发器是在CP下降沿动作。 ☆ 电路输入信号CP,次态和输出只取决于存储器的初态, 属于摩尔型时序电路。
西安邮电学院“校级优秀课程”
数字电路与逻辑设计
第六章 时序逻辑电路
第六章
目的与要求:
时序逻辑电路
1.掌握时序逻辑电路的定义、特点 2.掌握时序逻辑电路的分析方法 3.掌握时序逻辑电路的设计方法 重点与难点: 1.中、小规模时序逻辑电路的分析
2.中、小规模时序逻辑电路的设计
第六章
时序逻辑电路
6.1时序电路概述
6.3 寄存器、移位寄存器
作用:寄存器是数字系统中用来存储代码或数据的逻辑部件 功能:保存数码-接收、寄存、清除;读出数码 实现:主体是触发器且以D触发器居多 一个触发器只能存储1位二进制代码,存储n位二进制 代码的寄存器需要用 n 个触发器组成,所以寄存器实际上 是若干触发器的集合。
(完整word版)数字逻辑第六章
第六章时序逻辑电路1 :构成一个五进制的计数器至少需要()个触发器A:5B:4C:3D:2您选择的答案: 正确答案: C知识点:n个触发器可构成一个不大于2n进制的计数器。
A -————-————-——-——--——------——--——----——--———-——-—-———————--—-—————-——--————-—2 :构成一个能存储五位二值代码的寄存器至少需要()个触发器A:5B:4C:3D:2您选择的答案:正确答案: A知识点:一个触发器能储存1位二值代码,所以用n个触发器组成的寄存器能储存n位二值代码。
—-————-—---—---—-—-——--—-—-—----————---—---———--—---—--——---—-------—-——--——3 : 移位寄存器不具有的功能是()A:数据存储B:数据运算C:构成计数器D:构成译码器您选择的答案: 正确答案: D知识点:移位寄存器不仅可以存储代码,还可以实现数据的串行—并行转换、数值的运算、数据处理及构成计数器。
-—-—————---—--——--—-——---——-———-—--—---——---————-————-----——-—--—-————--————4 :下列说法不正确的是()A:时序电路与组合电路具有不同的特点,因此其分析方法和设计方法也不同B:时序电路任意时刻的状态和输出均可表示为输入变量和电路原来状态的逻辑函数C:用包含输出与输入逻辑关系的函数式不可以完整地描述时序电路的逻辑功能D:用包含输出与输入逻辑关系的函数式可以完整地描述时序电路的逻辑功能您选择的答案:正确答案: D知识点:时序逻辑电路的逻辑关系需用三个方程即输出方程、驱动方程及状态方程来描述。
——---—-——-—————--—-——----—---—-—---—-——--—-—------————-——--——--———--—-------5 : 下列说法正确的是( )A:时序逻辑电路某一时刻的电路状态仅取决于电路该时刻的输入信号B:时序逻辑电路某一时刻的电路状态仅取决于电路进入该时刻前所处的状态C:时序逻辑电路某一时刻的电路状态不仅取决于当时的输入信号,还取决于电路原来的状态D:时序逻辑电路通常包含组合电路和存储电路两个组成部分,其中组合电路是必不可少的您选择的答案: 正确答案: C知识点:时序逻辑电路的特点:时序逻辑电路中,任意时刻的输出不仅取决于该时刻的输入,还取决于电路原来的状态.时序逻辑电路通常包含组合电路和存储电路两个组成部分,其中存储电路是必不可少的。
时序逻辑电路知识要点复习总结
《时序逻辑电路》知识要点复习一、时序逻辑电路1、时序逻辑电路:电路的输出状态不仅与同一时刻的输入状态有关,也与电路原状态有关。
时序逻辑电路具有记忆功能。
2、时序逻辑电路分类:可分为两大类:同步时序电路与异步时序电路。
(1)同步时序电路:各触发器都受到同一时钟脉冲控制,所有触发器的状态变化都在同一时刻发生。
(2)异步时序电路:各触发器没有统一的时钟脉冲(或者没有时钟脉冲), 各触发器状态变化不在同一时刻发生。
计数器、寄存器都属于时序逻辑电路。
3、时序逻辑电路由门电路和触发器组成,触发器是构成时序逻辑电路的基本单元。
二、计数器1、计数器概述:(1)计数器:能完成计数,具有分频、定时和测量等功能的电路。
(2)计数器的组成:由触发器和门电路组成。
2、计数器的分类:按数制分:二进制计数器、十进制计数器、N 进制(任意进制)计数器; 按计数方式分:加法计数器、减法计数器、可逆计数器; 按时钟控制分:同步计数器、异步计数器。
3、计数器计数容量(长度或模):计数器能够记忆输入脉冲的数目,就称为计数器的计数容量(或计数长度或计数模),用M 表示。
3位二进制同步加法计数器:M=2^8,n 位4、二进制计数器(1)异步二进制加法计数器:如下图电路中,四个JK 触发器顺次连接起来,把上一触发器的Q 端输出作为下一个触发器的时钟信号,CP 0=CP CP F Q OJ1-K1-IJ2—K2—1J3—K3—1Qq’QQ 。
为计数输出,Q ;i 为进位输出,Rd 为异步复位(清0)二进制同步加法计数器:M=2n, n 位二进制计数器需要用n 个触发器。
C?2=Q1 CP3= Q2,Jo =Ko-l这样构成了四位异步二进制加计数器。
30,Qy。
U在计数前清零,QAQ1Q 产0000;第一个脉冲输入后,Q3Q 2Q I Q O =OOO1;第二个脉冲输入后,Q3Q 2Q I Q O =OO1O ;第三个脉冲输入后,Q3Q 2Q>Q O =OO11,……,第15个脉冲输入后,Q3Q 2QiQo=lllb第16个脉冲输入后,Q3Q-QQ°=0000,并向高位输出一个进位信号,当下一个脉冲来时,进 入新的计数周期。
第3章第4节 常用时序逻辑电路模块(1)
Q7
2011/11/9 Qinwenhu
3
2.移位寄存器(Shift Register)
定义:
所存放的数据能移动位置的寄存器
分析下图
Q3
Q2
Q1
Q0
X
1D
C1 CP
2011/11/9 Qinwenhu
1D C1
1D
1D
C1
Q
C1
Q
4
上图状态方程:
Q0n+1= Q1n ; Q1n+1= Q2n Q2n+1= Q3n; Q3n+1=Xn
Q1 Q2 Q3 Q4 0000
1000 0001
1100
0011
1110
0111
1111
23
问题:如何构成5分频器?
画出逻辑图、波形图、状态图
2011/11/9 Qinwenhu
24
(4)构成顺序存取存储器
& 1 B00 B01 01 …
D0
数
& 1
据 输
D1
入
& 1
D2 读出
写入2011/11/9 Qinwenhu
0001
0010
1111
1110
1101
1100
1011
2011/11/9 Qinwenhu
1010
Q3 Q2 Q1 Q0
0011
0100
1001
0101
0110
0111 1000
41
反馈置数实现模6图
Q0 Q1 Q2 Q3 Co
EN
LD
CI CP
CR
D0 D1 D2 D3
时序逻辑电路练习及答案(1)
时序逻辑电路模块6-1一、填空题(每空2分,共18分)1、时序逻辑电路通常包含_______电路和_________电路两部分组成。
2、时序逻辑电路的基本构成单元是____________。
3、构造一个模6计数器,电路需要个状态,最少要用个触发器,它有个无效状态。
4、四位扭环形计数器的有效状态有个。
5、移位寄存器不但可_________ ,而且还能对数据进行 _________。
二、判断题(每题2分,共10分)1、时序逻辑电路的输出状态与前一刻电路的输出状态有关,还与电路当前的输入变量组合有关。
2、同步计数器的计数速度比异步计数器快。
3、移位寄存器不仅可以寄存代码,而且可以实现数据的串-并行转换和处理。
4、双向移位寄存器既可以将数码向左移,也可以向右移。
5、由四个触发器构成的计数器的容量是16三、选择题(每题3分,共18分)1、同步时序电路和异步时序电路比较,其差异在于后者()。
A.没有触发器 B.没有统一的时钟脉冲控制C.没有稳定状态 D.输出只与内部状态有关2、时序逻辑电路中一定是含()A. 触发器B. 组合逻辑电路C. 移位寄存器D. 译码器3、8位移位寄存器,串行输入时经( )个脉冲后,8位数码全部移入寄存器中。
A.1B.2C.4D.84、计数器可以用于实现()也可以实现()。
A .定时器B .寄存器C .分配器D .分频器5、用n个触发器构成扭环型计数器,可得到最大计数长度是()。
A、nB、2nC、2nD、2n-16、一个 4 位移位寄存器可以构成最长计数器的长度是()。
A.8B.12C.15D.16四、时序逻辑电路的分析(34分)分析下图所示时序逻辑电路,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路实现的的逻辑功能。
A为输入变量。
五、计数器的分析题(20分)集成4位二进制加法计数器74161的连接图如图所示,LD是预置控制端;D0、D1、D2、D3是预置数据输入端;Q3、Q2、Q1、Q0是触发器的输出端,Q0是最低位,Q3是最高位;LD为低电平时电路开始置数,LD为高电平时电路计数。
时序逻辑电路的定义
时序逻辑电路的定义时序逻辑电路是一种基于时钟信号进行操作的电路,它根据输入信号的状态变化和时钟信号的边沿触发,在特定的时刻产生相应的输出信号。
时序逻辑电路在数字系统设计中起着重要的作用,它能够实现复杂的计算、存储和控制功能。
本文将从时序逻辑电路的基本概念、设计原则和应用范围等方面进行详细介绍。
一、时序逻辑电路的基本概念时序逻辑电路由触发器、计数器、状态机等基本元件组成。
触发器是最基本的时序逻辑电路元件,它能够存储一个比特的信息,并在时钟信号的作用下按照一定的规则进行状态转换。
计数器是一种特殊的触发器,它能够根据时钟信号的边沿触发,在每个时钟周期内对计数器的值进行加一或减一的操作。
状态机是由一组触发器和组合逻辑电路组成的复杂时序逻辑电路,它能够根据输入信号的变化和时钟信号的触发,在不同的状态之间进行切换,并产生相应的输出信号。
二、时序逻辑电路的设计原则时序逻辑电路的设计需要遵循以下原则:1. 合理选择触发器类型:触发器有很多种类型,如D触发器、JK 触发器、T触发器等。
在选择触发器类型时,需要考虑电路的功能需求、时钟频率和面积等因素,并综合考虑时序逻辑电路的性能和成本等因素。
2. 确定时钟信号:时序逻辑电路的运行是基于时钟信号的,因此选择合适的时钟信号是非常重要的。
时钟信号的频率和占空比需要根据电路的工作频率和响应时间进行合理的设计,以确保电路的稳定性和可靠性。
3. 确定状态转换规则:状态转换规则是时序逻辑电路的关键,它决定了电路在不同状态之间如何切换,并产生相应的输出信号。
在确定状态转换规则时,需要考虑输入信号的变化和时钟信号的触发,以确保电路能够正确地响应输入信号的变化。
4. 进行时序分析和优化:时序逻辑电路的设计需要进行时序分析和优化,以确保电路的正确性和性能。
时序分析主要包括时序约束分析和时序验证,通过对电路的传输延迟、时钟频率和时序关系等进行分析,以确保电路的稳定性和可靠性。
时序优化主要包括时钟树优化、时序合并和时序缩减等,通过对电路的布局、时钟分配和时序逻辑优化,以提高电路的性能和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.1 触发器
一、序言
时序逻辑电路(简称时序电路)的输出不仅决定于 该时刻的输入,而且还和电路的初始状态有关。
触发器的代号:FF→Flip-Flop
触发器输出有0、1两种稳定状态,故称为双稳态触发器。
按电路结构与动作特点,触发器可分为: 基本SR触发器,钟控(同步)触发器,主从触发器,边沿触发器 触发器按逻辑功能可分为: SR触发器,JK触发器,D型触发器,T触发器,T′触发器
J
K
Q
4、维持阻塞型D触发器
1)逻辑符号 2)逻辑功能表
D 0 1
Q n1
0 1
3)集成芯片74LS74的内部引脚图
4)集成芯片74LS74的外部管脚图
5)触发方式—正脉冲触发
在CP=1时,触发器接收信号,
在CP由0上升至1时刻输出相应的状态 又称之为上升沿触发或前沿触发。
6)举例:画出上升沿触发D触发器的输出波形图。
D
Q
D
Q
D
Q
D
Q
CP
>F0
>F1
>F2
>F3
Q
2)扭环形移位计数器
1
DIR
Q0 Q1 Q2 Q3
CP RD D0
74LS194
D1 D2 D3
DIL S1 S0
0 1
N位移位寄存器可组成
0000 1000
0001 1100
0011 1110
0111 1111
模为2N的扭环形计数 器,只需将末级输出
0
0
1 0 1
RD
1 & 4
R
S
& 3
1
SD
0 1 1
1 0 不定状态
R
0
1
输入高电平有效!
CP
S
例:画出高电平触发的SR触发器的输出波形。
初始状态 Qn 0
CP
置1
置0
保持
R S
0 1
10 00
0 0
0 0
Q
Q
3、主从型JK触发器
1)逻辑符号
2)逻辑功能表
J 0 0 1 1
K 0 1 0 1
应用举例:一、环形移位寄存器
DIR
Q0 Q1 Q2 Q3 74LS194 D2 D3
CP RD D0 D1
DIL S1 S0
0 1
1000 0001
0100 0010
环形计数器的特点:
N位移位寄存器可以计N个数, 实现模N计数器。状态为1的输 出端的序号等于计数脉冲的个 数,通常不需要译码电路。
二、扭环形计数器 1)扭环形移位工作模式
二、触发器
1、基本SR触发器 反馈线 互补输出端 基本SR触发器逻辑符号 Q Q
Q
& 2 &
Q
1
RD
SD
两个输入端
SD R D
Q 0,Q 1 称触发器为0态,又称复位状态。 Q 1,Q 0 称触发器为1态,又称置位状态。
Q
Q
基本SR触发器状态表 (低电平有效状态
Q n1
Qn
保持 置0 置1 翻转
0 1
Qn
3)集成芯片74LS112的内部引脚图
4)集成芯片74LS112的外部管脚图
5)触发方式—负脉冲触发
在CP=1时,触发器接收信号, 在CP由1下降至0时刻输出相应的状态 又称之为下降沿触发或后沿触发。
6) 工作时序图举例 设初态:Qn 0
CP
反相后,接到串行输
入端即可。
谢谢观看!
0
0
0
1 0 1
0 1
Qn
SD R D
RD 置0端 , 也 称 复 位 端 ; SD 置 1端 , 也 称 置 位 端 。
1 1
Qn—触发器接收输入信号之前的状态,称为初态; Qn+1—触发器接收输入信号之后的状态,称为次态。
需要特别指出:当RD SD 0时,有Qn 1 Qn 1 1 1、此时触发器的对称输出状态被破坏; 2、当输入同时撤消时,次态输出无法事先确定, 即出现了所谓的不定态。
Q
& 2
1
1
Q
1
&
0
0
RD
SD
触发器应该禁止出现此种情形!
2、钟控(同步)双稳态触发器
为协调各触发器的动作,加时钟脉冲信号CP。
Q
& &
Q
2
1
R、S为输入信号
RD
SD
& 4 &
直接置位端
3
时钟脉冲
R
CP
S
CP=0时
Q
& 2 & 1
Q
触发器保持原态 CP=1时 允许接收信号 R S
Q n1 Qn
设初态Qn 0
CP
D
Q
Q
11.2 寄存器
寄存器是计算机及数字系统的主要部件 之一,主要用于暂时存放数据或指令。 1、数码寄存器
1)原理电路图 Q3
&
Q C
Q2
& &
Q1
&
Q
Q0 取数 脉冲
Q C
清零 脉冲 CR
Q D
Q D
Q
C
Q D
C
Q D
D3
D2
D1
D0
接收 脉冲 CP
1 Q3
&
Q C
1 Q2
&
0 Q1
&
Q C
1 Q0
&
Q C
取数 脉冲
清零 脉冲 CR
Q D
Q D
Q C
Q D
Q D
D 1 1
C 0
B
1
A Q3-Q0:输出数据
接收 脉冲 CP
D3-D0:待寄存数据
2)工作过程: 1)接收脉冲到达前,将待寄存数据送至各D触发器; 2)取数脉冲加入后将所寄存的数据送出。
2、移位寄存器
所谓“移位”,就是将寄存器所存各位数据,在每 次移位脉冲的作用下,向左或向右移动一位。根据移位 方向,具体分为左移寄存器、右移寄存器 和 双向移位 寄存器三种:
左移 寄存器 (a)
右移
寄存器 (b)
双向 移位 寄存器 (c)
3)双向移位寄存器—74LS194
①实现功能:既可左移又能右移。 ②功能框图:
③移位方式控制: S1S0=10时左移; S1S0=01时右移。
④芯片管脚图
⑤逻辑功能表
⑥应用: 数据显示锁存器、 序列脉冲发生器、 顺序脉冲发生器等。