新课标高考数学公式(精华版)

合集下载

新高考数学公式知识点汇总

新高考数学公式知识点汇总

新高考数学公式知识点汇总在新高考改革背景下,学生们在数学考试中将会遇到更加注重能力培养和实际运用的题目。

而数学公式作为数学学习的重要基础,对于学生而言也是必备的知识点。

下面将为大家整理一份新高考数学公式的知识点汇总,希望能够对大家的学习有所帮助。

一、平面解析几何公式平面解析几何公式是数学中的重要内容,建立在笛卡尔坐标系的基础上,主要用于描述平面上的几何关系。

1. 点到直线的距离公式设直线的方程为Ax+By+C=0,点的坐标为(x0, y0),则点到直线的距离为:d = |Ax0 + By0 + C| / √(A^2 + B^2)2. 直线的斜率公式设直线上两点的坐标分别为(x1, y1)和(x2, y2),则直线的斜率为:k = (y2 - y1) / (x2 - x1)3. 直线的点斜式和斜截式设直线通过点(x0, y0),斜率为k,则直线的点斜式和斜截式分别为:点斜式:y - y0 = k(x - x0)斜截式:y = kx + b二、立体几何公式立体几何公式主要涉及到空间中的几何图形的计算,是解决空间几何问题的基础。

1. 球体积公式设球体半径为r,则球体积为:V = (4/3)πr^32. 圆柱体体积公式设圆柱体的底面半径为r,高为h,则圆柱体体积为:V = πr^2h3. 圆锥体体积公式设圆锥体的底面半径为r,高为h,则圆锥体体积为:V = (1/3)πr^2h三、数列与级数公式数列与级数是数学中的重要概念,它们有着广泛的应用,特别是在数学建模等领域。

1. 等差数列通项公式设等差数列的首项为a1,公差为d,则第n项为:an = a1 + (n-1)d2. 等差数列求和公式设等差数列的首项为a1,末项为an,项数为n,则等差数列的和为:Sn = (n/2)(a1 + an)3. 等比数列通项公式设等比数列的首项为a1,公比为q,则第n项为:an = a1 * q^(n-1)四、微积分基本公式微积分是数学中的重要分支,研究函数的变化规律和求解曲线下的面积等问题。

新高中数学之新高考数学公式大全

新高中数学之新高考数学公式大全

焦距 离心率
焦点 长轴长:
|F1F2|=2c e=ac(0<e<1) F1(-c,0),F2(c,0)
长轴长:2a,
焦距 离心率 渐近线 实轴长
|F1F2|=2c
e=ac ( e 1)
y=±bax
2a
焦点到渐近线的距离:b
短轴长:
短轴长:2b
椭圆离心率: 常用的三角函数值
度 0°
弧度 0
sin α 0
F0,-2p
y=p2 |PF|=-y0+p2
椭圆定义 标准方程 a,b,c
|MF1|+|MF2|=2a ax22+by22=1(a>b>0)
c2=a2-b2
双曲线定义 标准方程 a,b,c
|MF1-MF2|=2a ax22-by22=1(a>0,b>0)
c2=a2+b2
结论
通径:
2b2 a
短轴到焦点的距离:a
古典概率 5分
第 4 页 (共 4 页)
公式三: sin(-α)=-sin α
公式四: sin(π-α)=sin α
公式五: 公式六:
sinπ2-α=cos α sinπ2+α=cos α
cos(α+k·2π)=cos α(k∈Z) tan(α+k·2π)=tan α(k∈Z)
cos (π+α)=-cos α
tan(π+α)=tanα
cos (-α)=cos α
sin 2α=2sinαcosα
降次公式:
cos 2α=cos2α-sin2α cos2α=1+c2os 2α
cos 2α=2cos2α-1 sin2α=1-c2os 2α
cos 2α=1-2sin2α sin αcos α=12sin 2α

高中高考数学公式大全

高中高考数学公式大全

高中高考数学公式大全1.代数公式- 二次方程根公式:若ax^2+bx+c=0 (a≠0),则 x=(-b±√(b^2-4ac))/(2a)。

-二次三项全解公式:若知二次三项完全分解为(x-a)(x-b)(x-c)=0,则x=a,b,c。

- 余弦和公式:cos(A±B)=cosAcosB∓sinAsinB。

- 余弦差公式:cos(A-B)=cosAcosB+sinAsinB。

- 正弦和公式:sin(A±B) = sinAcosB±cosAsinB。

- 正弦差公式:sin(A-B) = sinAcosB-cosAsinB。

- 二项式定理:(a+b)^n = C(n,0)a^n b^0+C(n,1)a^(n-1)b+C(n,2)a^n^(n-2)b^2+…+C(n,n)na^0 b^n。

2.几何公式-长方形面积公式:面积=长×宽。

-正方形面积公式:面积=边长×边长。

-圆面积公式:面积=πr^2-平行四边形面积公式:面积=底边×高。

-梯形面积公式:面积=(上底+下底)×高÷2-三角形面积公式:面积=底边×高÷2- 三角形余弦定理:c^2 = a^2 + b^2 - 2abcosC。

- 三角形正弦定理:sinA/a = sinB/b = sinC/c。

- 三角形正弦面积公式:面积 = (1/2)abSinC。

-三角形内切圆半径公式:r=面积/半周长。

3.数列和数列项公式-等差数列通项公式:an = a1 + (n-1)d。

-等差数列前n项和公式:Sn = (n/2)(a1 + an)。

-等差数列等差公式:dn = an+1 - an。

-等差数列求和公式:Sn=(2a1+(n-1)d)n/2-等比数列通项公式:an = a1 * q^(n-1)。

-等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。

新课标高考数学公式(精华版)

新课标高考数学公式(精华版)

高考数学公式(精华版)1.子集个数:n 元集合有2n 个子集,有21n个真子集,21n个非空子集,22n个非空真子集;2.常见数集:自然数集:N正整数集:*NN 、整数集:Z 有理数集:Q实数集:R3.集合间的基本运算:(1)交集:公共元素;BA (2)并集:全部元素(不能重复);BA(3)补集:除去公共元素而剩余的元素;AC U 4.二次函数:2()(0)f x ax bx c a :判别式ac b42;(1)0时,图像与x 轴有两个交点;(2)0时,图像与x 轴有一个交点;(3)0时,图像与x 轴没有交点;5.韦达定理:若21x x 、是一元二次方程)0(02a c bx ax的两个根,则:ab x x 21,ac x x 21.6.单调性:设1x ,2[,]x a b ,且12x x ,那么:(1)1212()()()x x f x f x 1212()()0(),f x f x f x a b x x 在上是增函数;(2)1212()()()x x f x f x 1212()()0(),f x f x f x a b x x 在上是减函数;(3)如果0)(x f ,则)(x f 为增函数;0)(x f ,则)(x f 为减函数;(4)增函数增函数增函数;减函数减函数减函数;增函数减函数增函数;减函数增函数减函数;7.奇偶性:(1)()()f x f x ()f x 是奇函数()f x 的图像关于原点对称(0)0f (若在0x 有定义)(2)()()f x f x ()f x 是偶函数()f x 的图像关于y 轴对称;(3)奇函数奇函数奇函数;偶函数偶函数偶函数奇函数奇函数偶函数偶函数偶函数;奇函数偶函数奇函数8.对称性:(1)函数()y f x 的图象关于直线xa 对称()()f a x f a x (2)()f a x f x .(2)函数()y f x 的图象关于直线2a bx对称()()f amx f bmx 9.周期性:(1)()()f x f x a 或1()()f x f x a ()f x 是2T a 的周期函数;(2)()()f x f x a b 或()()f x f x a b (0b)()f x 是2Ta 的周期函数;10.分数指数幂:nmnma a(0,,am n N ,且1n ).1m nm naa(0,,a m n N ,且1n ).11.对数运算规律:(1)指数与对数互换标准:log ba Nb aN (2)常用两个对数等式:②01log a ③1log a a(3)对数运算法则:log ()log log a a a MN MN ;log log log aa a M MN N;log log na a Mn M(4)对数的换底公式:log log log m a m N Na(log log m na a n bb m)12.常见函数的导函数:(1)0C(C 为常数);(2)'1()()n n x nxn Q ;(3)x x cos )(sin ;(4)x x sin )(cos ;(5)xx 1)(ln ;ea xxa log 1)(log ;(6)xxe e )(;a a a xxln )(;(7)'''()()()()f x g x f x g x ;(8)'''()()()()()()f xg x f x g x f x g x (9)'''2()()()()()(()0)()()f x f xg x f x g x g x g x g x ;(10))()()]([x g x f x g f (11)''()()cf x cf x (常数与函数的积的导数,等于常数乘函数的导数);13.曲线的切线方程:函数)(x f y在点0x 处的导数是曲线)(x f y在))(,(00x f x P 处的切线的斜率为)(0x f ,相应的切线方程是))((000x xx f y y .14.角度制与弧度制互化标准:3602rad ,180rad ,10.01745rad ,'157.35718rad 15.扇形面积公式:1=2S rl 扇(其中r 为半径,l 为扇形的弧长)16.同角三角函数基本关系式:(1)平方关系:1cossin22;(2)商数关系:tancossin ;17.诱导公式:(奇变偶不变,符号看象限)212(1)sin,(sin()2(1)s ,nn n n co n 为偶数)(为奇数),212(1)s ,cos()2(1)sin ,nn co n n n (为偶数)(为奇数)eg :cos )2sin(s i n )2c o s(s i n)si n (c o s)c o s(c o s)2s i n (18.两角和与差的正余弦,正切公式:cos()cos cos sin sin cos()cos cossin sin;s i n ()s i n c o s c o s s s i n ()s i nc o sc o ss i ntantan1tan tan )tan(;tantan1tan tan)tan(19.二倍角公式:cossin22sin 2tan1tan 22tan 2222sin 211cos 2sin cos 2cos 20.降次(幂)公式:21c o s 2s i n221cos2cos21sin cos sin 2221.辅助角公式:22sin cos sin()a x b xa b x,其中tanb a 特别的,有:sin cos 2sin()4xxx ,sin cos 2sin()4x x x 3sin cos 2sin()6x x x ,3sin cos 2sin()6xx x sin 3cos 2sin()3xxx,sin 3cos 2sin()3xxx22.三角函数的图像与性质:sin yxcos y xtan y x定义域RR{|x xR 且1}2xk值域[1,1][1,1]R周期性22奇偶性奇函数偶函数奇函数单调性[2,2]22kk上为增函数3[2,2]22kk上为减函数(kZ )[2,2]k k 上为增函数[2,2]k k 上为减函数(kZ )(,)22kk上为增函数(kZ )对称性对称轴:2xk对称中心:(,0)k (kZ )对称轴:x k对称中心:(,0)2k (kZ )无对称轴对称中心为(,0)2k (k Z )23.三角函数图像的变换:(1)左右平移:左加右减;(2)周期变换:伸长缩短;24.正弦定理:在ABC 中,R Cc Bb Aa 2sin sin sin .25.余弦定理:2222cos abcbc A ,222bc cos 2aAbc;2222cos bacac B ,222cos 2acbBac ;2222cos cabab C ,222cos 2abcCab;26.三角形中的恒等式:(1)sin()sin A B C ,cos()cos A B C ,(CB A ,即三角形内角和为180)(2)若ABC 是锐角三角形,则sin cos AB 27.面积公式:111sin ()222ABCSahab Ca bc r (r 为ABC 内切圆半径)28.平面向量的基本运算:设11(,)ax y ,22(,)bx y ;(1)1212(,)a b x x y y ,1212(,)a b x x y y ;1212a b x x y y (2)若a ∥b01221y x y x ,若ab12120a bx x y y (3)cos ,cos,a b a ba b a ba ba b2121yxa29.平面向量的基本定理:已知OP xOA yOB ,若A 、P 、B 三点共线1x y 30.若G 为ABC 的重心,则0GA GB GC,且(,)33A B C AB Cx x x y y y G 31.数列中n a 与n S 的关系:2111n n S S S a nnn32.等差数列及其性质:(1)通项公式:1(1)()n ma a n da n m d ;(2)前n 项和:1()2n nn a a S 1(1)2n n na d ;(3)若c b a 、、依次成等差数列,则有:b ca2;(4)若m n pq ,则mn p q a a a a ;特别地,若2m nt ,则2mn t a a a ;(5)n S ,2n n S S ,32n n S S 成等差数列,且公差为2n d ;33.等比数列及其性质:(1)通项公式:11n n mn m a a qa q;(2)前n 项和:11(1),11,1nna q q S q na q (3)若cb a 、、依次成等比数列,则有:2b c a ;(4)若m n pq ,则m np q a a a a ;特别地,若2m nt ,则2m nta a a ;(5)n S ,2n n S S ,32nn S S 成等比数列,且公比为nq ;34.均值不等式:222abab (当且仅当ab 时等号成立)ab b a 2(当且仅当ab 时等号成立)“一正、二定、三相等”35.常见几何体表面积公式:(1)圆柱:222S rl r(2)圆锥:2S rl r(3)圆台:'22'()S rrr lrl (4)球:24SR36.常见几何体体积公式:(1)柱体的体积公式V Sh (其中S 为底面面积,h 为高)(2)锥体的体积公式13V Sh (其中S 为底面面积,h 为高)(3)台体的体积公式''1()3V SSSS h (其中'S ,S 分别为上、下底面面积,h 为高)(4)球的体积公式343VR (其中R 为球半径)37:空间线面关系证明思路:(1)线线平行:①三角形中位线平行于第三边(且等于第三边的一半);②平行四边形对边平行;③两平行平面的垂线平行;(2)线面平行:①(平面外)直线与平面内一直线平行,则这条直线与平面平行;②两平面平行,其中一平面内一直线平行于另一平面;(3)面面平行:其中一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行,这两个平面平行;(4)线线垂直:①等腰三角形底边的中线垂直于底边(即是高线);②矩形的邻边垂直、菱形的对角线垂直;③直线垂直于平面则垂直于平面内的任意直线;④三垂线定理:平面内一直线与该平面的一条斜线在平面内的射影垂直,则这条直线与这条斜线垂直;三垂线逆定理也成立;(5)线面垂直:①一条直线垂直于平面内的两条相交直线,则垂直于这个平面;②两个平面垂直,其中一个平面内一直线垂直于两个平面的相交直线,则这条直线垂直于另一个平面;(6)面面垂直:其中一个平面内一直线垂直于另一个平面,则两平面垂直。

高考数学公式大全(完整版)

高考数学公式大全(完整版)

高中数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a bx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.30.分数指数幂(1)m na =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数. 推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2log log log 2a a am nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).48.二倍角公式sin22sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=.51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)22(||||)()OAB S OA OB OA OB ∆=⋅-⋅.54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ; (2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式 ,A B d=||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式 (1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π. 82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下. 若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±.92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b ⇔+>. 95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y ya b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.过焦点弦长p x x px p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2 y py 或或)2,2(2pt pt P P (,)x y ,其中22y px =.102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->.104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212|||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD 共线且AB CD 、不共线⇔AB tCD =且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD x AB y AC =+⇔(1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---;(3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =,222(,,)b x y z =,则a b ⇔(0)a b b λ=≠⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥⇔0a b ⋅=⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ==21||||||a b a b x ⋅=⋅+(其中θ(090θ<≤)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量).129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB =⋅=135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ).136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式2cos d mn θ=.',d EA AF =.d =('E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a ,. 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++. 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯. 151.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.152.排列恒等式(1)1(1)m m n n A n m A -=-+;(2)1mmn n n A A n m -=-; (3)11m m n n A nA --=;(4)11n n nn n n nA A A ++=-; (5)11m m m n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.153.组合数公式m nC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).154.组合数的两个性质 (1)mn C =mn nC - ; (2) m n C +1-m nC =mn C 1+.注:规定10=n C .155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-;(3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r n r r r r r rC C C C C . (6)nn n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9)rn m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)nn n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系m m n n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh hh A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +. 158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--.(3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m =⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!!...211c b a m C C C N m m n n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n =1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!!...21211m n n n n p n p n n n p C C C N m m =⋅=-.159.“错位问题”及其推广。

高三数学必背公式大全

高三数学必背公式大全

高三数学必背公式大全高三数学是一门考验学生记忆和理解能力的学科,其中公式的掌握是非常重要的。

下面是一份高三数学必背公式大全的相关参考内容:1. 代数与函数- 平方差公式:$a^2 - b^2 = (a+b)(a-b)$- 二次项完全平方公式:$a^2 + 2ab + b^2 = (a+b)^2$- 一元二次方程求根公式:对于$ax^2 + bx + c = 0$,其根的公式为$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$- 比例公式:$\frac{a}{b} = \frac{c}{d} = \frac{a+c}{b+d}$- 平方差公式:$(a+b)^2 = a^2 + 2ab + b^2$2. 三角函数- 正弦定理:$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$- 余弦定理:$a^2 = b^2 + c^2 - 2bc\cos A$- 正弦和余弦的和差化积公式:$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$,$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$- 二倍角公式:$\sin 2A = 2\sin A \cos A$,$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$3. 解析几何- 点到直线的距离公式:设直线方程为$Ax + By + C = 0$,点$P(x_0, y_0)$到直线的距离为$\frac{|Ax_0 + By_0 +C|}{\sqrt{A^2 + B^2}}$- 两点间距公式:两点$A(x_1, y_1)$和$B(x_2, y_2)$间的距离为$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$- 直线的斜率公式:设直线过点$A(x_1, y_1)$和$B(x_2, y_2)$,斜率为$m = \frac{y_2 - y_1}{x_2 - x_1}$- 直线的点斜式公式:设直线过点$P(x_0, y_0)$,斜率为$m$,直线方程为$y - y_0 = m(x - x_0)$4. 微积分- 导数定义:函数$f(x)$在$x_0$处的导数定义为$f'(x) =\lim_{\Delta x \to 0}\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$- 导函数公式:- 常数函数导数为0:$(k)' = 0$- 幂函数导数:$(x^n)' = nx^{n-1}$- 指数函数导数:$(a^x)' = a^x \ln a$- 对数函数导数:$(\log_a x)' = \frac{1}{x \ln a}$- 三角函数导数:$(\sin x)' = \cos x$,$(\cos x)' = -\sin x$,$(\tan x)' = \sec^2 x$- 反函数的导数公式:设函数$f^{-1}(x)$是函数$f(x)$的反函数,则$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$以上仅列举了高三数学中的一些重要公式,这些公式在解题过程中非常有用。

高中数学公式大全完整版

高中数学公式大全完整版

高中数学公式大全完整版1.代数公式:a)二次方程求根公式:对于二次方程ax²+bx+c=0,其解为:x = (-b±√(b²-4ac))/(2a)b)平方差公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²c)三次方差公式:(a+b)(a²-ab+b²) = a³+b³d)和差化积公式:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA± tanB)/(1 ∓ tanAtanB) e)二项式定理:(a+b)ⁿ=nC₀aⁿb⁰+nC₁aⁿ⁻¹b¹+nC₂aⁿ⁻²b²+...+nCₙa⁰bⁿ2.几何公式:a)三角形:面积公式:S=1/2*底边*高正弦定理:sinA/a = sinB/b = sinC/c余弦定理:c² = a² + b² - 2abcosCb)圆:周长公式:C=2πr面积公式:A=πr²弧长公式:L=2πr(θ/360)c)立体图形:容积公式:立方体:V=a³正方体:V=a³圆柱体:V=πr²h圆锥体:V=1/3πr²h球体:V=4/3πr³d)平移、旋转、缩放公式:平移:(x,y)→(x+a,y+b)旋转:逆时针旋转θ度:(x,y) → (xcosθ - ysinθ, xsinθ + ycosθ)缩放:横向缩放k倍,纵向缩放k倍:(x,y) → (kx, ky)3.概率公式:a)排列组合公式:排列:A(n,m)=n!/(n-m)!组合:C(n,m)=n!/(m!(n-m)!)b)期望公式:对于离散型随机变量X,期望值E(X)=Σ(x*p(x)),其中x为X的可能取值,p(x)为对应x的概率对于连续型随机变量X,期望值E(X) = ∫(x*f(x))dx,其中f(x)表示X的概率密度函数c)标准差公式:方差σ²=Σ(x-μ)²*p(x),其中μ为随机变量X的期望值标准差σ=√σ²d)独立事件公式:P(A∩B)=P(A)P(B)4.数列与级数公式:a)等差数列通项公式:aₙ=a₁+(n-1)db)等比数列通项公式:aₙ=a₁*r^(n-1)c)等差数列求和公式:Sn=(n/2)(a₁+aₙ)d)等比数列求和公式:Sn=a₁*(rⁿ-1)/(r-1)以上是高中数学公式的一个完整版,涵盖了代数、几何、概率、数列与级数等多个方面的公式。

新高考数学知识点公式汇总

新高考数学知识点公式汇总

新高考数学知识点公式汇总数学是一门既有逻辑性又有创造性的学科,在新高考中扮演着重要的角色。

掌握数学知识点和公式是学生取得好成绩的关键之一。

本文将对新高考数学中的一些重要知识点和公式进行系统的汇总,帮助学生更好地备考。

一. 几何1. 直角三角形直角三角形的边长关系:勾股定理a² + b² = c²2. 距离公式两点之间的距离:已知坐标(x₁,y₁)和(x₂,y₂)d = √((x₂ - x₁)² + (y₂ - y₁)²)3. 向量向量的模:已知向量(x,y)|v| = √(x² + y²)4. 平行四边形相邻两边相等:已知边长a和高hA = a × h5. 圆周长公式:已知半径rC = 2πr面积公式:已知半径rA = πr²二. 代数1. 一元二次方程解一元二次方程:已知方程ax² + bx + c = 0 x = (-b ± √(b² - 4ac)) / 2a2. 指数与对数指数的性质:aⁿ × aᵐ = a^(n+m)(aⁿ)ᵐ= a^(n×m)a⁰ = 1aⁿ / aᵐ = a^(n-m)对数的性质:logₐ(xy) = logₐx + logₐylogₐ(x/y) = logₐx - logₐylogₐ(x^m) = mlogₐxlogₐ₁₀x = logₐx / logₐ₁₀3. 等比数列通项公式:已知首项a₁和公比raₙ = a₁ × r^(n-1)求和公式:Sₙ = a₁(1 - rⁿ) / (1 - r)4. 复数复数的运算:加法:(a + bi) + (c + di) = (a + c) + (b + d)i 减法:(a + bi) - (c + di) = (a - c) + (b - d)i乘法:(a + bi) × (c + di) = (ac - bd) + (ad + bc)i除法:(a + bi) ÷ (c + di) = (ac + bd)/(c² + d²) + (bc - ad)i/(c² + d²)三. 概率与统计1. 随机事件随机事件发生的几率:已知样本空间S和随机事件EP(E) = E的可能性数 / S的可能性数2. 概率的计算加法原理:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)乘法原理:P(A ∩ B) = P(A) × P(B|A)3. 排列与组合排列公式:从n个不同的元素中取出m个元素A(n,m) = n! / (n-m)!组合公式:从n个不同的元素中取出m个元素,不考虑顺序C(n,m) = n! / (m!(n-m)!)四. 数列与数集1. 等差数列通项公式:已知首项a₁和公差daₙ = a₁ + (n-1)d求和公式:Sₙ = (a₁ + aₙ) × n / 22. 集合并集:A ∪ B 表示A和B中的元素组成的集合交集:A ∩ B 表示A和B共有的元素组成的集合差集:A - B 表示在A中但不在B中的元素组成的集合以上仅是新高考数学中的一部分重要知识点和公式汇总,希望能对广大学生备考有所帮助。

高考公式大全数学

高考公式大全数学

以下是高考数学常用的一些公式大全:
二次方程:
二次方程的根公式:对于 ax^2 + bx + c = 0,根的公式为x = (-b ±√(b^2 - 4ac)) / (2a)。

三角函数:
正弦定理:a/sinA = b/sinB = c/sinC,其中 a、b、c 分别为三角形的边长,A、B、C 分别为对应的角度。

余弦定理:c^2 = a^2 + b^2 - 2abcosC,其中 c 为三角形的边长,A、B、C 分别为对应的角度。

正切的定义:tanθ = sinθ/cosθ。

几何图形:
三角形面积公式:S = 1/2 * 底 * 高。

矩形面积公式:S = 长 * 宽。

圆的面积公式:S = πr^2,其中 r 为半径。

概率统计:
排列公式:A(n, k) = n! / (n - k)!,表示从 n 个元素中选取 k 个元素进行排列的方法数。

组合公式:C(n, k) = n! / (k!(n - k)!),表示从 n 个元素中选取 k 个元素进行组合的方法数。

这些只是高考数学中常用的一部分公式,具体的公式使用和应用还需根据题目的要求进行灵活运用。

建议学生在备考过程中充分掌握这些公式,并通过大量的练习题加深对公式的理解和应
用能力。

高考数学必背公式整理

高考数学必背公式整理

高考数学必背公式整理一、平面几何公式1. 直线的一般方程:Ax + By + C = 02. 两点间的距离公式:AB = √[(x2 - x1)² + (y2 - y1)²]3. 点到直线的距离公式:d = |Ax0 + By0 + C| / √(A² + B²)4. 两直线夹角的余弦公式:cosθ = (A₁A₂ + B₁B₂) / (√(A₁² + B₁²) √(A₂² + B₂²))5. 两直线平行的条件:A₁ / A₂ = B₁ / B₂ ≠ C₁ / C₂6. 两直线垂直的条件:A₁A₂ + B₁B₂ = 07. 两直线交点的坐标:x = (B₁C₂ - B₂C₁) / (A₁B₂ - A₂B₁),y = (A₂C₁ - A₁C₂) / (A₁B₂ - A₂B₁)二、立体几何公式1. 体积公式:长方体的体积 V = lwh,正方体的体积V = a³,圆柱的体积V = πr²h,圆锥的体积V = (1/3)πr²h,球体的体积 V = (4/3)πr³2. 表面积公式:长方体的表面积 S = 2lw + 2lh + 2wh,正方体的表面积 S = 6a²,圆柱的表面积S = 2πrh + 2πr²,圆锥的表面积S = πrl + πr²,球体的表面积S = 4πr²三、三角函数公式1. 余弦定理:c² = a² + b² - 2abcosC2. 正弦定理:a / sinA = b / sinB = c / sinC3. 三角恒等式:sin²θ + cos²θ = 1,1 + tan²θ = sec²θ,1 + cot²θ = csc²θ四、导数公式1. 基本导数:(xⁿ)' = nxⁿ⁻¹,(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec²x,(cotx)' = -csc²x,(lnx)' = 1/x,(ex)' = ex2. 乘法法则:(uv)' = u'v + uv'3. 除法法则:(u/v)' = (u'v - uv') / v²4. 链式法则:(f(g(x)))' = f'(g(x)) * g'(x)五、积分公式1. 基本积分:∫xⁿdx = (xⁿ⁺¹) / (n⁺¹),∫sinxdx = -cosx,∫cosxdx = sinx,∫sec²xdx = tanx,∫csc²xdx = -cotx,∫1/xdx = ln|x|,∫exdx = ex2. 乘法法则:∫uvdx = ∫u'vdx + ∫uv'dx3. 替换法则:∫f(g(x))g'(x)dx = ∫f(u)du六、概率统计公式1. 排列公式:Aₙₙ = n! / (n - m)!2. 组合公式:Cₙₙ = n! / (m!(n - m)!)3. 二项式定理:(a + b)ⁿ = Cⁿ₀aⁿb⁰ + Cⁿ₁aⁿ⁻¹b¹ + ... + Cⁿₙa⁰bⁿ4. 期望公式:E(X) = Σ(xP(x))5. 方差公式:Var(X) = Σ(x²P(x)) - [E(X)]²以上是高考数学中常用的必背公式。

新高考数学必背公式

新高考数学必背公式

一、代数部分平方差公式:公式:a² - b² = (a + b)(a - b)全平方公式:公式:a²± 2ab + b² = (a ± b)²立方和与立方差公式:立方和公式:a³ + b³ = (a + b)(a² - ab + b²)立方差公式:a³ - b³ = (a - b)(a² + ab + b²)因式分解公式:a² - b² = (a + b)(a - b),a³ + b³ = (a + b)(a² - ab + b²),等等。

集合运算性质:并集:A∪B=B∪A,A∪A=A,A∪∅=∅∪A=A交集:A∩B=B∩A,A∩A=A,A∩∅=∅∩A=∅德·摩根定律:(A∩B)=(A)∪(B)(A∪B)=(A)∩(B)不等式性质:如果a<b,c<d,那么a+c<b+d如果a<b,c>0,那么ac<bc如果a<b,c<0,那么ac>bc基本不等式:a+b≥2(a,b∈R+),当且仅当a=b时等号成立柯西不等式:二维柯西不等式:(a+b)(c+d)≥(ac+bd),当且仅当ad=bc时成立伯努利不等式:对于实数x>-1,n≥1时,有(1+x)n≤1+nx成立,当且仅当n=0,1,或x=0时,等号成立。

二、三角函数部分正弦、余弦、正切的定义:sin = 对边/斜边cosθ = 邻边/斜边tanθ = 对边/邻边三角函数的和差公式:sin(α + β) = sinαcosβ + cosαsinβcos(α + β) = cosαcosβ - sinαsinβtan(α + β) = (tanα + tanβ) / (1 - tanαtanβ)三角函数的倍角公式:sin2α = 2sinαcosαcos2α = cos²α - sin²αtan2α = 2tanα / (1 - tan²α)三、几何部分圆的周长和面积公式:周长:C = 2πr面积:S = π*r²三角形的面积公式:S = 1/2 * 底 * 高平行四边形的面积公式:S = 底 * 高四、微积分部分导数的定义:(x) = lim(Δx→0) [f(x + Δx) - f(x)] / Δx 积分的基本公式:∫f(x)dx = f(x) + C(C为常数)。

高考数学所有公式大全

高考数学所有公式大全

高考数学所有公式大全一、集合。

1. 集合的基本运算。

- 交集:A∩ B = {xx∈ A且x∈ B}- 并集:A∪ B={xx∈ A或x∈ B}- 补集:∁_U A={xx∈ U且x∉ A}(U为全集)2. 集合间的关系。

- 若A⊆ B,则A中的元素都在B中,n(A)≤ n(B)(n(A)表示集合A的元素个数)- 若A = B,则A⊆ B且B⊆ A二、函数。

1. 函数的定义域。

- 分式函数y = (f(x))/(g(x)),其定义域为g(x)≠0的x的取值范围。

- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),其定义域为f(x)≥0的x的取值范围。

2. 函数的单调性。

- 设x_1,x_2∈[a,b]且x_1 < x_2- 增函数:f(x_1),则y = f(x)在[a,b]上是增函数,其导数f^′(x)≥0(x∈(a,b))。

- 减函数:f(x_1)>f(x_2),则y = f(x)在[a,b]上是减函数,其导数f^′(x)≤0(x∈(a,b))。

3. 函数的奇偶性。

- 奇函数:f(-x)= - f(x),图象关于原点对称。

- 偶函数:f(-x)=f(x),图象关于y轴对称。

4. 一次函数y = kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)5. 二次函数y=ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})- 当a>0时,函数图象开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a < 0时,函数图象开口向下,在x=-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。

6. 指数函数y = a^x(a>0,a≠1)- 指数运算法则:a^m× a^n=a^m + n,frac{a^m}{a^n}=a^m - n,(a^m)^n=a^mn,(ab)^n=a^nb^n,((a)/(b))^n=frac{a^n}{b^n}- 当a > 1时,函数在R上单调递增;当0 < a<1时,函数在R上单调递减。

新课标高考数学公式精华版3篇

新课标高考数学公式精华版3篇

新课标高考数学公式精华版第一篇:数列与数学归纳法数列是数学中一个重要的概念,在高中数学中,数列是必须掌握的内容。

以下是与数列相关的公式:1. 等差数列的通项公式:an=a1+(n-1)d,其中a1为首项,d为公差。

2. 等比数列的通项公式:an=a1*q^(n-1),其中a1为首项,q为公比。

3. 等差数列的前n项和公式:Sn=(a1+an)*n/2,其中an 为第n项。

4. 等比数列的前n项和公式:Sn=a1*(1-q^n)/(1-q),其中q≠1。

除了上述公式,数学归纳法也是解决数列问题的重要方法。

数学归纳法的基本步骤如下:1. 证明当n=1时,命题成立;2. 假设当n=k(k为任意正整数)时,命题成立;3. 证明当n=k+1时,命题也成立。

数学归纳法的思想在解决许多数学问题中都有应用,例如证明数学定理,论证不等式等。

第二篇:函数与极限函数在高中数学中也是必须掌握的重要概念。

以下是与函数相关的公式:1. 一次函数的一般式:y=kx+b,其中k为斜率,b为截距。

2. 一次函数的解析式:y=ax+b,其中a为斜率,b为截距。

3. 二次函数的一般式:y=ax^2+bx+c,其中a≠0。

4. 二次函数的顶点坐标公式:(h,k),其中h=-b/2a,k=c-b^2/4a。

5. 反比例函数的解析式:y=k/x,其中k为常数,x≠0。

极限是高等数学中的重要概念,也是高中数学中必须掌握的内容。

以下是与极限相关的公式:1. 无穷小量的定义:设f(x)为定义在点x0附近的函数,若当x→x0时,f(x)的极限为0,则称f(x)为x→x0时的无穷小量。

2. 极限的定义:设函数f(x)在x0的某个去心邻域内有定义,若对于任何给定的正数ε,总存在另一个正数δ,使得当0<|x-x0|<δ时,有|f(x)-A|<ε成立,则称函数f(x)当x→x0时的极限为A。

3. 常用极限公式:lim(sin x)/x=1lim(1-cos x)/x=0lim(1+x)^1/x=elim(1+1/n)^n=elim(1/n)=0第三篇:导数与微积分导数是微积分的重要内容,也是数学的重要工具之一。

高考数学必备核心公式

高考数学必备核心公式

高考数学必备核心公式等差数列(1)通项公式:1(1)naa n d =+-(其中首项是1a ,公差是d )(2)前n 项和公式:11()(1)22n nn a a n n Sna d +-==+ (3)等差中项:若A 是a b 与的等差中项,则=2a b A +等比数列(1)通项公式:11n n a a q -=(其中首项是1,a q 公比是)(2)前n 项和公式:111 (q=1)=(1) (1)11n n n na S a a q a q q q q ⎧⎪--⎨=≠⎪--⎩(3)等比中项:若G 是a b 与的等比中项,则G ba G=,即2(G ab G ==或中项有两个)同角三角函数的基本关系式22sin sin cos 1 tan =cos ααααα+= 诱导公式公式一:sin(2)sin ()k k Z απα+⋅=∈cos(2)cos ()k k Z απα+⋅=∈ tan(2)tan ()k k Z απα+⋅=∈公式二:sin()sin cos(+)=cos tan(+)=tan πααπααπαα+=-- 公式三:sin()sin cos()=cos tan()=tan αααααα-=---- 公式四:sin()sin cos()=cos tan()=tan πααπααπαα-=----公式五:sin cos cos sin 22ππαααα⎛⎫⎛⎫-=-=⎪ ⎪⎝⎭⎝⎭两角和与差的正弦、余弦和正切():sin()sin cos +cos sin S αβαβαβαβ++=():sin()sin cos cos sin S αβαβαβαβ--=- ():cos()cos cos sin sin C αβαβαβαβ++=- ():cos()cos cos sin sin C αβαβαβαβ--=-()tan tan :tan()1tan tan T αβαβαβαβ+++=-()tan tan :tan()1tan tan T αβαβαβαβ---=+辅助角公式sin cos a x b x x x ⎫+=⎪⎭cos cos sin )x x ϕϕ⋅+⋅sin()tan b x a ϕϕ⎛⎫=+= ⎪⎝⎭其中二倍角公式(1)2:sin 22sin cos S αααα=22222:cos 2cos sin 12sin 2cos 1C αααααα=-=-=-222tan :tan 21tan T a ααα=- (2)降次公式:21cos 211sin cos 2222ααα-==-+ 21cos 211cos cos 2222ααα+==+解三角形(1)三角形面积公式:S △ABC =111sin sin B=sin 222ab C ac bc A = (2)正弦定理:2sin sin sin a b cR A B C=== 用角表示边:2sin b=2Rsin B c=2RsinC a R A =(3)余弦定理:2222222cos b =a +c 2cos a b c bc A ac B =+-- 2222cos c a b ab C =+-求角:222222222cos cosB= cosC=222b c a a c b a b c A bc ac ab+-+-+-=导数(1)基本初等函数的导数公式 ①C′=0(C 为常数) ②1()'(*)a a x ax a Q -=∈ ③(sin )'cos x x =④(cos )'sin x x =- ⑤1(ln )'x x=⑥1(log )'(01)ln a x a a x a=>≠且 ⑦()'xxe e =⑧()'ln (0)xxa a a a =>(2)导数的运算法则①[]()()''()'()f x g x f x g x ±=±②[()()]''()()()'()f x g x f x g x f x g x ⋅=+③2()'()()()'()'[()0]()[()]f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦三角函数多面体和旋转体的面积、体积公式设h 为高,h′为斜高,c 为底面的周长,l 为母线长,r 为圆柱、圆锥的底面半径,R 为球的距离公式(1)点到直线的距离:点000(,)P x y 到直线:0l Ax By C ++=的距离d =(2)两平行线间的距离:两条平行线1200Ax By C Ax By C ++=++=与间的距离d =向量的长度公式、夹角公式(1)向量的长度:设(,)a x y =,则22222||,||;a x y a x y =+=+若11(,)A x y ,22(,)B x y ,则(AB x =(2)两个向量的夹角:设,a b 都是非零向量,1122(,),(,)a x y b x y ==,夹角为θ,则21cos ||||a b a b x θ⋅==+椭圆的几何性质椭圆方程22221(0),x y a b a b +=>>其中222,a b c =+离心率1c e a=<双曲线的几何性质双曲线方程22221(0,0)x y a b a b -=>>,其中222c a b =+,离心率1c e a=>,渐近线方程为0()x y b y x a b a±==±即 抛物线的几何性质抛物线方程22(0)y px p =>,离心率e =1,焦点02P F ⎛⎫⎪⎝⎭,,准线方程为2p x =-弦长公式12|l x x =-=[其中12,x x 为直线与圆(或圆锥曲线)相交所得两交点的横坐标]。

高考数学必背公式整理(衡水中学高中数学组)

高考数学必背公式整理(衡水中学高中数学组)

高考数学必背公式整理一、平面几何公式1. 直线方程- 一般式:Ax + By + C = 0- 斜截式:y = kx + b- 截距式:x/a + y/b = 1- 两点式:(y-y₁)/(x-x₁) = (y₂-y₁)/(x₂-x₁)2. 圆的方程- 标准方程:(x-a)² + (y-b)² = r²- 一般方程:x² + y² + Dx + Ey + F = 0 - 中心半径方程:(x-h)² + (y-k)² = r²3. 直角三角形- 勾股定理:a² + b² = c²- 正弦定理:a/sinA = b/sinB = c/sinC - 余弦定理:c² = a² + b² - 2abcosC- 正切定理:tanA = b/a4. 圆锥曲线- 椭圆:x²/a² + y²/b² = 1- 双曲线:x²/a² - y²/b² = 1- 抛物线:y² = 2px二、空间几何公式1. 空间中的直线- 参数方程:x = x₁ + at, y = y₁ + bt, z = z₁ + ct - 对称式:(x-x₁)/l = (y-y₁)/m = (z-z₁)/n2. 空间中的平面- 一般方程:Ax + By + Cz + D = 0- 点法式:A(x-x₁) + B(y-y₁) + C(z-z₁) = 0- 三点式:[ABCD] = 03. 空间中的球面- 标准方程:(x-a)² + (y-b)² + (z-c)² = r²- 一般方程:x² + y² + z² + Dx + Ey + Fz + G = 0 - 中心半径方程:(x-h)² + (y-k)² + (z-l)² = r²4. 空间向量- 点积:a·b = |a| |b| cosθ- 叉积:a×b = |a| |b| sinθn- 混合积:[a,b,c] = a·(b×c)三、解析几何公式1. 直线和平面- 平面方程:Ax + By + Cz + D = 0- 直线方程:(x-x₁)/l = (y-y₁)/m = (z-z₁)/n- 点到直线距离:d = |Ax₀ + By₀ + Cz₀ + D|/√(A² + B² + C²) - 点到平面距离:d = |Ax₀ + By₀ + Cz₀ + D|/√(A² + B² + C²)2. 点、向量和运算- 点积:a·b = |a| |b| cosθ- 叉积:a×b = |a| |b| sinθn3. 曲线和曲面- 曲线斜率:y‘ = f'(x) = dy/dx- 曲面切面:z = f(x, y)- 曲线弧长:L = ∫√(1 + (dy/dx)²)dx四、数列与级数公式1. 数列- 等差数列通项公式:aₙ = a₁ + (n-1)d- 等比数列通项公式:aₙ = a₁qⁿ⁻¹- 通项公式求和:Sₙ = (a₁+aₙ)n/22. 级数- 等差级数求和:Sₙ = n(a₁+aₙ)/2- 等比级数求和:Sₙ = a₁(1-qⁿ)/(1-q)3. 数学归纳法- 数学归纳法证明- 数学归纳法应用五、概率统计公式1. 概率- 事件概率:P(A) = n(A)/n(Ω)- 加法公式:P(A∪B) = P(A) + P(B) - 条件概率:P(A|B) = P(A∩B)/P(B)2. 统计- 样本均值:μ = Σxᵢ/n- 样本方差:σ²= Σ(xᵢ-μ)²/n- 标准差:σ = √σ²3. 随机变量- 期望:E(X) = ΣxᵢP(X=xᵢ)- 方差:Var(X) = E(X²) - [E(X)]²- 协方差:Cov(X,Y) = E((X-E(X))(Y-E(Y)))六、函数与导数公式1. 基本函数- 幂函数:f(x) = xⁿ- 指数函数:f(x) = aⁿ- 对数函数:f(x) = logₐx- 三角函数:f(x) = sinx, cosx, tanx2. 函数性质- 奇函数和偶函数- 单调性和极值- 函数图像和性态3. 导数与微分- 导数定义:f'(x) = lim(h→0)(f(x+h)-f(x))/h - 函数求导:(xⁿ)’ = nxⁿ⁻¹- 链式法则:(f(g(x)))’ = f’(g(x))·g’(x)- 微分运算:dy = f’(x)dx七、积分公式1. 不定积分- 基本积分公式 - 定积分计算 - 变限积分求导2. 定积分- 定积分性质 - 定积分应用 - 变限积分求导3. 微分方程- 微分方程定解 - 微分方程解法 - 微分方程应用八、高等代数公式1. 行列式- 二阶行列式 - 三阶行列式 - 克拉默法则2. 矩阵运算- 矩阵相加- 矩阵相乘- 矩阵转置3. 线性方程组- 高斯消元法- 矩阵法解方程组- 克拉默法则以上是高考数学必背公式的整理,希望同学们能够认真学习并灵活运用这些公式,提高数学应用能力,取得优异的成绩。

高中数学新课标公式汇总

高中数学新课标公式汇总

高中数学新课标公式汇总在高中数学新课标中,公式是解决问题的基础工具。

以下是一些重要的高中数学公式汇总:1. 指数公式- a^m * a^n = a^(m+n)- (a^m)^n = a^(m*n)- a^0 = 1 (a ≠ 0)2. 对数公式- log_a(a^x) = x- log_a(b) + log_a(c) = log_a(bc)- log_a(b) - log_a(c) = log_a(b/c)3. 三角函数基本公式- sin^2(x) + cos^2(x) = 1- sin(-x) = -sin(x)- cos(-x) = cos(x)- tan(x) = sin(x) / cos(x)4. 两角和与差的三角函数公式- sin(x + y) = sin(x)cos(y) + cos(x)sin(y)- sin(x - y) = sin(x)cos(y) - cos(x)sin(y)- cos(x + y) = cos(x)cos(y) - sin(x)sin(y)- cos(x - y) = cos(x)cos(y) + sin(x)sin(y)- tan(x + y) = (tan(x) + tan(y)) / (1 - tan(x)tan(y))- tan(x - y) = (tan(x) - tan(y)) / (1 + tan(x)tan(y))5. 双曲函数公式- sinh(x) = (e^x - e^(-x)) / 2- cosh(x) = (e^x + e^(-x)) / 2- tanh(x) = sinh(x) / cosh(x)6. 圆的面积公式- A = πr^27. 圆的周长公式- C = 2πr8. 勾股定理- a^2 + b^2 = c^2 (直角三角形中,c为斜边)9. 一元二次方程求根公式- x = (-b ± √(b^2 - 4ac)) / 2a10. 平面几何中的面积公式- 矩形:A = lw- 正方形:A = a^2- 梯形:A = (a + b)h / 2- 椭圆:A = πab11. 函数的极值和导数- f'(x) = lim(h→0) [(f(x+h) - f(x)) / h]12. 定积分公式- ∫[a, b] f(x) dx = F(b) - F(a) (如果F是f的一个原函数)这些公式涵盖了高中数学的多个领域,包括代数、几何、三角学和微积分。

高中数学必背公式大全高考必考数学公式

高中数学必背公式大全高考必考数学公式

高中数学必背公式大全高考必考数学公式1.二次方程的根与系数之间的关系:设二次方程 ax^2 + bx + c = 0(a ≠ 0)的根为 x1 和 x2,那么有以下关系式:x1+x2=-b/ax1*x2=c/a2.一元二次不等式的求解:设二次不等式 ax^2 + bx + c > 0(a ≠ 0)的解集为 S,那么有以下关系式:a>0时,S={x,x<x1或x>x2}a<0时,S={x,x1<x<x2}3.二次函数的顶点坐标:设二次函数 y = ax^2 + bx + c 的顶点坐标为 (h, k)那么有 h = -b/2a,k = f(h) = (4ac - b^2)/4a4.一次函数的斜率与函数图像的关系:设一次函数 y = mx + c 的斜率为 m,那么有以下关系式:m>0时,函数图像上升;m<0时,函数图像下降;m=0时,函数图像水平。

5.三角函数和三角公式:sin(A + B) = sinA * cosB + cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)sin^2A + cos^2A = 1sin²θ + cos²θ = 16.幂函数的性质:若 a > 0 且a ≠ 1,则函数 y = ax^n (n 是整数)的性质如下:n>0时,函数图像单调递增;n<0时,函数图像单调递减;n为偶数时,函数图像关于y轴对称;n为奇数时,函数图像关于原点对称。

7.对数函数的性质:若 a > 0 且a ≠ 1,则函数 y = log_a(x) 的性质如下:a>1时,函数图像单调递增;0<a<1时,函数图像单调递减;函数图像过点(1,0),且以x轴为渐近线;log_a(a^b) = b8.指数函数的性质:若a>0且a≠1,则函数y=a^x的性质如下:a>1时,函数图像单调递增;0<a<1时,函数图像单调递减;函数图像过点(0,1),且a^0=1a^m*a^n=a^(m+n)9.排列组合公式:将n个物体排成一列,有以下公式:排列公式:从n个物体中任选m个物体的排列数为A(n,m)=n!/(n-m)!组合公式:从n个物体中任选m个物体的组合数为C(n,m)=n!/(m!*(n-m)!)10.三角函数的和差化积:sin(A + B) = sinA * cosB + cosA * sinBsin(A - B) = sinA * cosB - cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBcos(A - B) = cosA * cosB + sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)tan(A - B) = (tanA - tanB) / (1 + tanA * tanB)这些公式是高中数学中的常用公式,掌握并熟练运用它们对于高考数学考试非常重要。

高中高考数学公式大全

高中高考数学公式大全

高中高考数学公式大全1.代数公式:- 二次方程的根公式:对于二次方程ax²+bx+c=0,其根的公式为x=(-b±√(b²-4ac))/2a;- 韦达定理:对于三次方程ax³+bx²+cx+d=0,其根之和为-S₁/a,其根之积为S₃/a;-分式的倒数:若x是不等于0的实数,则x的倒数为1/x;- 二项式定理:(a+b)ⁿ的展开式为aⁿ+naⁿ⁻¹b+...+bⁿ;2.几何公式:-直角三角形的勾股定理:若a、b、c分别为直角三角形的两条直角边和斜边的长度,则a²+b²=c²;- 正弦定理:在三角形ABC中,a/sinA=b/sinB=c/sinC,其中a、b、c分别是三角形中对应的边,A、B、C分别是相对的角;- 余弦定理:在三角形ABC中,c²=a²+b²-2abcosC,其中a、b、c分别是三角形中对应的边,C是夹角;-长方形面积公式:长方形的面积等于长乘以宽;-圆的面积公式:圆的面积等于πr²,其中r为圆的半径;3.数列公式:-等差数列通项公式:如果数列{an}是等差数列,公差为d,首项为a₁,则其通项公式为an=a₁+(n-1)d;-等差数列前n项和公式:如果数列{an}是等差数列,公差为d,首项为a₁,前n项和为Sn,则其公式为Sn=(a₁+an)n/2;-等比数列通项公式:如果数列{an}是等比数列,公比为q,首项为a₁,则其通项公式为an=a₁qⁿ⁻¹;-等比数列前n项和公式:如果数列{an}是等比数列,公比为q≠1,首项为a₁,前n项和为Sn,则其公式为Sn=a₁(qⁿ-1)/(q-1);4.概率公式:-事件A的概率:P(A)=A事件发生的可能性/所有可能性;-互斥事件的概率:P(A或B)=P(A)+P(B);-相关事件的概率:P(A且B)=P(A)×P(B,A),其中P(B,A)为在事件A发生的条件下事件B发生的概率;5.导数公式:-基本函数的导数:-常数函数的导数为0;- 幂函数f(x)=xⁿ的导数为f'(x)=nxⁿ⁻¹;-指数函数f(x)=eˣ的导数为f'(x)=eˣ;- 对数函数f(x)=ln(x)的导数为f'(x)=1/x;-基本运算法则:-f(x)=u(x)±v(x)的导数为f'(x)=u'(x)±v'(x);-f(x)=c·u(x)的导数为f'(x)=c·u'(x),其中c为常数;-f(x)=u(x)·v(x)的导数为f'(x)=u'(x)·v(x)+u(x)·v'(x);-f(x)=u(x)/v(x)的导数为f'(x)=(u'(x)·v(x)-u(x)·v'(x))/v²(x);这仅仅是高中高考数学公式的部分内容,还有很多其他的公式。

高考数学必背公式最新(完整版)

高考数学必背公式最新(完整版)

高考数学必背公式最新(完整版)高考数学必背公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f0】高中必背88个数学公式——椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。

高中必背88个数学公式——两角和公式1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb) 4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga) 高中必背88个数学公式——倍角公式1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a高中必背88个数学公式——半角公式1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))高中必背88个数学公式——和差化积1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb高中必背88个数学公式——等差数列1、等差数列的通项公式为:an=a1+(n-1)d (1)2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N__,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)__项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1高中必背88个数学公式——等比数列1、等比数列的通项公式是:An=A1__q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N__,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap__aq;②在等比数列中,依次每 k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.高中必背88个数学公式——抛物线1、抛物线:y=ax__+bx+c就是y等于ax的平方加上bx再加上c。

新课标高考数学公式(精华版)

新课标高考数学公式(精华版)

3 sin x cos x 2sin( x ) , 3 sin x cos x 2sin( x ) 6 6 sin x 3 cos x 2sin( x ) , sin x 3 cos x 2sin( x ) 3 3
22.三角函数的图像与性质:

2 sin( x ) , sin x cos x 2 sin( x ) 4 4
f ( x1 ) f ( x2 ) 0 f ( x)在 a, b 上是增函数; x1 x2 f ( x1 ) f ( x2 ) 0 f ( x)在 a, b 上是减函数; x1 x2
(3)如果 f ( x) 0 ,则 f ( x) 为增函数; f ( x) 0 ,则 f ( x) 为减函数; (4)增函数 增函数 增函数;减函数 减函数 减函数; 增函数 减函数 增函数;减函数 增函数 减函数; 7.奇偶性: (1) f ( x) f ( x) f ( x) 是奇函数 f ( x) 的图像关于原点对称 f (0) 0 (若在 x 0 有定义) (2) f ( x) f ( x) f ( x) 是偶函数 f ( x) 的图像关于 y 轴对称; (3)奇函数 奇函数 奇函数;偶函数 偶函数 偶函数 奇函数 奇函数 偶函数 偶函数 偶函数;奇函数 偶函数 奇函数 8.对称性: (1)函数 y f ( x) 的图象关于直线 x a 对称 f (a x) f (a x) f (2a x) f ( x) . (2)函数 y f ( x) 的图象关于直线 x 9.周期性: 认真,可以把事情做对
2
2 若 x1、x2 是一元二次方程 ax bx c 0(a 0) 的两个根,则: x1 x2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学公式(精华版)1.子集个数:n 元集合有2n个子集,有21n -个真子集,21n -个非空子集,22n-个非空真子集;2.常见数集:自然数集:N 正整数集:*N N 、+ 整数集:Z 有理数集:Q 实数集:R 3.集合间的基本运算:(1)交集:公共元素;B A (2)并集:全部元素(不能重复);B A (3)补集:除去公共元素而剩余的元素;A C U4.二次函数:2()(0)f x ax bx c a =++≠:判别式ac b 42-=∆; (1)0>∆时,图像与x 轴有两个交点; (2)0=∆时,图像与x 轴有一个交点; (3)0<∆时,图像与x 轴没有交点; 5.韦达定理:若21x x 、是一元二次方程)0(02≠=++a c bx ax 的两个根,则:a b x x -=+21,ac x x =21. 6.单调性:设1x ,2[,]x a b ∈,且12x x ≠,那么: (1)[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数;(2)[]1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数;(3)如果0)(>'x f ,则)(x f 为增函数;0)(<'x f ,则)(x f 为减函数; (4)增函数+增函数=增函数;减函数+减函数=减函数; 增函数-减函数=增函数;减函数-增函数=减函数; 7.奇偶性:(1)()()f x f x -=-⇔()f x 是奇函数⇔()f x 的图像关于原点对称⇒(0)0f =(若在0x =有定义) (2)()()f x f x -=⇔()f x 是偶函数⇔()f x 的图像关于y 轴对称; (3)奇函数±奇函数=奇函数;偶函数±偶函数=偶函数奇函数⨯奇函数=偶函数⨯偶函数=偶函数;奇函数⨯偶函数=奇函数 8.对称性:(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=. (2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- 9.周期性:(1)()()f x f x a =-+或1()()f x f x a =+⇔()f x 是2T a =的周期函数;(2)()()f x f x a b ++=或()()f x f x a b ⋅+=(0b ≠)⇔()f x 是2T a =的周期函数; 10.分数指数幂:n m nm a a =(0,,a m n N *>∈,且1n >).1m nm naa-=(0,,a m n N *>∈,且1n >).11.对数运算规律:(1)指数与对数互换标准:log b a N b a N =⇔= (2)常用两个对数等式:②01log =a ③1log =a a (3)对数运算法则:log ()log log a a a MN M N =+;log log log a a a MM N N=-;log log n a a M n M = (4)对数的换底公式:log log log m a m N N a=(log log m na a nb b m =)12.常见函数的导函数:(1)0='C (C 为常数);(2)'1()()n n x nx n Q -=∈; (3)x x cos )(sin =';(4)x x sin )(cos -='; (5)x x 1)(ln =';e a x xa log 1)(log ='; (6)x x e e =')(; a a a xx ln )(='; (7)[]'''()()()()f x g x f x g x ±=±; (8)[]'''()()()()()()f x g x f x g x f x g x ⋅=+(9)[]'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦; (10)())()()]([x g x f x g f '⋅'='(11) []''()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数);13.曲线的切线方程:函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率为)(0x f ',相应的切线方程是))((000x x x f y y -'=-.14.角度制与弧度制互化标准:3602rad π︒=,180rad π︒=,10.01745rad ︒≈,'157.35718rad ︒︒≈= 15.扇形面积公式:1=2S rl 扇(其中r 为半径,l 为扇形的弧长) 16.同角三角函数基本关系式:(1)平方关系:1cos sin 22=+αα;(2)商数关系:αααtan cos sin =; 17.诱导公式:(奇变偶不变,符号看象限)212(1)sin ,(sin()2(1)s ,n n n n co n απαα-⎧-⎪+=⎨⎪-⎩为偶数)(为奇数),212(1)s ,cos()2(1)sin ,nn co n n n απαα+⎧-⎪+=⎨⎪-⎩(为偶数)(为奇数)eg :ααπcos )2sin(=- ααπs i n)2c o s (=- ααπs i n )s i n (=- ααπc o s )c o s(-=- ααπc o s )2s i n (=+ 18.两角和与差的正余弦,正切公式:cos()cos cos sin sin cos()cos cos sin sin αβαβαβαβαβαβ+=-⎧⎨-=+⎩; s i n ()s i nc o sc o s ss i n ()s i n c o s c o s s i nαβαβαβαβαβαβ+=+⎧⎨-=-⎩ βαβαβαtan tan 1tan tan )tan(-+=+; βαβαβαtan tan 1tan tan )tan(+-=- 19.二倍角公式:αααcos sin 22sin = ααα2tan 1tan 22tan -=ααααα2222sin 211cos 2sin cos 2cos -=-=-=20.降次(幂)公式:21c o s 2s i n 2αα-=21cos 2cos 2αα+= 1sin cos sin 22ααα= 21.辅助角公式:sin cos )a x b x x ϕ±=±,其中tan baϕ=特别的,有:sin cos )4x x x π+=+,sin cos )4x x x π-=-cos 2sin()6x x x π+=+cos 2sin()6x x x π-=-sin 2sin()3x x x π+=+,sin 2sin()3x x x π-=-2223.三角函数图像的变换:(1)左右平移:左加右减;(2)周期变换:伸长缩短;24.正弦定理:在ABC ∆中,R CcB b A a 2sin sin sin ===. 25.余弦定理:2222cos a b c bc A =+-,222b c cos 2a A bc+-=;2222cos b a c ac B =+-,222cos 2a c b B ac+-=;2222cos c a b ab C =+-,222cos 2a b c C ab+-=;26.三角形中的恒等式:(1)sin()sin A B C +=,cos()cos A B C +=-,(π=++C B A ,即三角形内角和为︒180) (2)若ABC ∆是锐角三角形,则sin cos A B >27.面积公式:111sin ()222ABC S ah ab C a b c r ∆===++(r 为ABC ∆内切圆半径) 28.平面向量的基本运算:设11(,)a x y = ,22(,)b x y =;(1)1212(,)a b x x y y +=++ ,1212(,)a b x x y y -=-- ;1212a b x x y y ⋅=+(2)若a ∥b ⇔01221=-y x y x ,若a b ⊥ ⇔12120a b x x y y ⋅=+=(3)cos ,cos ,a b a b a b a b a b a b⋅⋅=<>⇔<>=2121y x +=29.平面向量的基本定理:已知OP xOA yOB =+,若A 、P 、B 三点共线1x y ⇔+= 30.若G 为ABC ∆的重心,则0GA GB GC ++= ,且(,)33AB C A B Cx x x y y y G ++++ 31.数列中n a 与n S 的关系:2111≥=-⎩⎨⎧=-n n S S S a n n n32.等差数列及其性质:(1)通项公式:1(1)()n m a a n d a n m d =+-=+-;(2)前n 项和:1()2n n n a a S +=1(1)2n n na d -=+; (3)若c b a 、、依次成等差数列,则有:b c a 2=+;(4)若m n p q +=+,则m n p q a a a a +=+;特别地,若2m n t +=,则2m n t a a a +=;(5)n S ,2n n S S -,32n n S S -成等差数列,且公差为2n d ;33.等比数列及其性质:(1)通项公式:11n n m n m a a q a q --==;(2)前n 项和:11(1),11,1n n a q q S q na q ⎧-≠⎪=-⎨⎪=⎩(3)若c b a 、、依次成等比数列,则有:2b c a =⋅;(4)若m n p q +=+,则m n p q a a a a ⋅=⋅;特别地,若2m n t +=,则2m n t a a a ⋅=; (5)n S ,2n n S S -,32n n S S -成等比数列,且公比为nq ;34.均值不等式:222a b ab +≥(当且仅当a b =时等号成立)ab b a 2≥+(当且仅当a b =时等号成立) “一正、二定、三相等” 35.常见几何体表面积公式:(1)圆柱:222S rl r ππ=+ (2)圆锥:2S rl r ππ=+ (3)圆台:'22'()S r r r l rl π=+++ (4)球:24S R π= 36.常见几何体体积公式:(1)柱体的体积公式V Sh =(其中S 为底面面积,h 为高)(2)锥体的体积公式13V Sh =(其中S 为底面面积,h 为高) (3)台体的体积公式'1()3V S S h =(其中'S ,S 分别为上、下底面面积,h 为高)(4)球的体积公式343V R π=(其中R 为球半径)37:空间线面关系证明思路:(1)线线平行:①三角形中位线平行于第三边(且等于第三边的一半);②平行四边形对边平行;③两平行平面的垂线平行;(2)线面平行:①(平面外)直线与平面内一直线平行,则这条直线与平面平行;②两平面平行,其中一平面内一直线平行于另一平面;(3)面面平行:其中一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行,这两个平面平行; (4)线线垂直:①等腰三角形底边的中线垂直于底边(即是高线);②矩形的邻边垂直、菱形的对角线垂直;③直线垂直于平面则垂直于平面内的任意直线;④三垂线定理:平面内一直线与该平面的一条斜线在平面内的射影垂直,则这条直线与这条斜线垂直;三垂线逆定理也成立;(5)线面垂直:①一条直线垂直于平面内的两条相交直线,则垂直于这个平面;②两个平面垂直,其中一个平面内一直线垂直于两个平面的相交直线,则这条直线垂直于另一个平面;(6)面面垂直:其中一个平面内一直线垂直于另一个平面,则两平面垂直。

相关文档
最新文档