2017高考数学知识点复习(易丢分的33个知识点)
高考数学最容易丢分的知识点总结
高考数学最容易丢分的知识点总结高考数学是考生们备战高考的重中之重,不仅占据了数学科目的一半分数,而且是考生综合实力的重要体现。
然而,也有一些知识点容易使考生们失分。
本文将从高考数学的各个章节进行总结,总结高考数学最容易丢分的知识点,希望能够对考生们有所帮助。
一、函数与方程1. 初等函数的性质和图像:在函数与方程中,容易丢分的是对于初等函数的性质和图像的理解不清。
对于一些常见的初等函数(如线性函数、二次函数、幂函数等),考生们需要理解函数的定义域、值域、单调性、奇偶性等性质,并且要能准确地画出函数的图像。
2. 函数的复合与反函数:在函数的复合与反函数的相关知识点里,容易丢分的是对于复合函数和反函数的运算不熟悉。
考生们需要掌握复合函数的求值方法和计算规则,以及反函数的定义和求解方法,同时要能够对复合函数和反函数的图像进行分析。
3. 二次函数方程与一元二次方程:在解题过程中,容易丢分的是对于二次函数方程和一元二次方程的解法不熟悉。
考生们需要掌握配方法、因式分解和公式求解三种方法,并能够根据题目的要求选择合适的解法进行求解,同时要注意解方程时的细节和计算的准确性。
二、数形结合1. 数列的概念与性质:在数形结合中,容易丢分的是对于数列的概念和性质的理解不深。
考生们需要掌握数列的定义、通项公式、前n项求和公式等重要概念和性质,并能够灵活运用数列的相关知识解决实际问题。
2. 平面向量的概念与运算:在平面向量的概念与运算中,容易丢分的是对于平面向量的加法、减法、数量积和向量积的计算不熟悉。
考生们需要掌握平面向量的基本性质和计算规则,并能够利用平面向量解决几何问题。
3. 图形的性质与变换:在图形的性质与变换中,容易丢分的是对于图形的性质和变换方法的理解不清。
考生们需要熟悉常见的几何图形的性质和特点,掌握旋转、平移、镜像和对称等变换方法,并能够根据题目的要求进行图形的变换和证明。
三、概率与统计1. 概率的基本概念与计算:在概率的基本概念与计算中,容易丢分的是对于事件的概率和条件概率的计算方法和规律不熟悉。
高考数学最易丢分的20个知识点
高考数学最易丢分的20个知识点高考数学是很多学生头疼的问题,尤其是一些易丢分的知识点更是需要我们特别关注。
以下是高考数学中最易丢分的20个知识点:知识点一:函数的定义域和值域在理解函数的定义域和值域时,很多学生容易混淆,导致在选择答案时出现错误。
知识点二:直线与平面的交点在求直线与平面的交点时,很多学生容易出现计算错误或者解方程错误的情况。
知识点三:函数的奇偶性在判断函数的奇偶性时,很多学生容易忽视符号取值规律,从而出现判断错误的情况。
知识点四:平移、旋转和对称变换在进行平移、旋转和对称变换时,很多学生容易出现计算错误的情况,尤其是在计算坐标时容易混淆。
知识点五:函数的极值与最值在求函数的极值和最值时,很多学生容易出现求导错误、计算错误等问题。
知识点六:数列的通项公式在推导数列的通项公式时,很多学生容易出现计算错误或者漏项的情况。
知识点七:平方根和立方根的计算在进行平方根和立方根的计算时,很多学生容易出现计算错误的情况,尤其是多次开根时更容易出错。
知识点八:二次函数的图像在画出二次函数的图像时,很多学生容易忽略平移和缩放的特征,从而导致图像绘制错误。
知识点九:概率与统计在概率与统计中的概念理解和计算中,很多学生容易出现混淆和计算错误的情况。
知识点十:数列与函数的综合应用在数列与函数的综合应用题中,很多学生容易迷失在繁杂的信息中,导致无法理清思路。
知识点十一:复数的运算在进行复数的加减乘除运算时,很多学生容易出现计算错误或者混淆实部与虚部的概念。
知识点十二:立体几何题在解立体几何题时,很多学生容易出现计算错误或者对几何图形的性质理解不透彻的情况。
知识点十三:勾股定理和余弦定理在运用勾股定理和余弦定理解决三角形问题时,很多学生容易出现运算错误或者无法正确应用相应的定理。
知识点十四:解三角函数的方程在解三角函数的方程时,很多学生容易出现计算错误或者解方程错误的情况。
知识点十五:圆与圆的位置关系在判断圆与圆的位置关系时,很多学生容易出现计算错误或者判断错误的情况,尤其是在应用相切和相交的性质时更容易出错。
17年数学高考知识点
17年数学高考知识点2017年的数学高考,是每个学生都备受期待和紧张的一场考试。
这次考试的数学试题涵盖了多个知识点和能力要求,考察了学生的逻辑思维能力和解题技巧。
在这篇文章中,我们将讨论一些17年数学高考的重点知识点,帮助学生准备和复习这些内容。
一、函数与方程函数与方程是数学高考中最基础、最重要的一部分。
在17年的数学高考试题中,函数与方程的知识点主要包括函数的定义、性质与图像、一次函数、二次函数、指数函数、对数函数、幂函数、反函数、特殊函数方程等。
学生需要掌握这些知识点的概念和性质,能够根据函数的图像、表达式等来求解相关的问题。
二、几何与图形几何与图形是另一个重要的知识点。
17年数学高考中,几何与图形的内容主要包括平面几何、立体几何和解析几何。
学生需要掌握平行线、垂直线、等腰三角形、相似三角形、勾股定理、解三角形等基本概念和定理,能够灵活运用这些知识解决实际问题。
三、概率与统计概率与统计是考查学生分析和解决实际问题能力的重要内容。
在17年数学高考中,概率与统计的知识点主要包括样本调查、事件与概率、统计图表的分析和应用、抽样调查与总体参数的估计等。
学生需要熟悉概率的概念、性质和计算方法,能够读懂和分析统计图表,灵活运用统计方法解决实际问题。
四、数列与数学归纳法数列与数学归纳法是数学高考中的常见考点。
17年数学高考中,数列与数学归纳法的知识点主要包括等差数列、等比数列、递推数列、通项公式、递归公式、数列的极限、数学归纳法等。
学生需要熟练掌握这些知识点的概念和性质,能够根据数列的特点找出其通项公式或递推公式,并能够应用数学归纳法解决一些证明问题。
五、微积分微积分是高考中比较复杂的知识点之一。
17年数学高考中,微积分的知识点主要包括导数、微分、极值、最值、不等式证明等。
学生需要掌握导函数的概念和性质,能够求解函数的导数、极值和最值,能够应用导数解决实际问题。
六、线性规划与向量线性规划与向量是数学高考中的综合应用题。
2017高考数学高频考点-2017高考数学
2017高考数学高频考点:2017高考数学高考数学复习应重点突出紧扣考纲,缕清考点,下面是小编给大家带来的2017高考数学高频考点,希望对你有帮助。
高考数学高频考点直线方程1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.注:①当或时,直线垂直于轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点的直线束.②当为定值,变化时,它们表示一组平行直线.3. ⑴两条直线平行:∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.推论:如果两条直线的倾斜角为则∥.⑵两条直线垂直:两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在.4. 直线的交角:⑴直线到的角;直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.5. 过两直线的交点的直线系方程为参数,不包括在内)轨迹方程一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
17高考数学总复习知识点大全
17年高考数学总复习知识点大全高三在我们的关注中如约而至,征战高考的号角已经吹响,时间不容置疑地把我们推到命运的分水岭。
小编为大家搜集了高考数学总复习知识点,一起来看看吧。
考数学解答题部分主要考查七大主干知识:第一,函数与导数。
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计。
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。
是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。
针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。
以不变应万变。
对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。
对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。
考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。
训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。
精心整理,仅供学习参考。
2017年高考数学热点、难点知识汇总
2017年高考数学热点、难点知识汇总第一、立体几何 知识要点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向)二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图). (二面角的取值范围[) 180,0∈θ)(直线与直线所成角(] 90,0∈θ)(斜线与平面成角() 90,0∈θ)(直线与平面所成角[] 90,0∈θ) (向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)12方向相同12方向不相同[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立. 直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行) ②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面) ③垂直于同一平面的两条直线平行.(√)5. ⑪垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑫射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.P O AaP αβM AB证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos 2222mn d n m l +++=(θ为锐角取加,θ为钝取减,综上,都取加则必有⎥⎦⎤ ⎝⎛∈2,0πθ) 7. ⑪最小角定理:21cos cos cos θθθ=(1θ为最小角,如图)⑫最小角定理的应用(∠PBN 为最小角) 简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.五、 棱锥、棱柱. 1. 棱柱.⑪①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑫{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}.{直四棱柱}⋂{平行六面体}={直平行六面体}.⑬棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.⑭平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则1cos cos cos 222=++γβα. 推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2c o s c o s c o s 222=++γβα.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)图1θθ1θ2图2④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.⑪①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形.②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α) 附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --. 则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别多个三角形的方法).⑫棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑬特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径; ⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等) ii. 简证:AB ⊥CD ,AC ⊥BD ⇒ BC ⊥AD. 令===,, l ab cB F E D得c a c b AD BC c AD a b AB AC BC -=⋅⇒=-=-=,,已知()()0,0=-⋅=-⋅0=-⇒则0=⋅AD BC . iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形.iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则EFGH FG EF ⇒=为正方形.3. 球:⑪球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. ⑫纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高)4. ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧 得a a a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅. 注:球内切于四面体:h S R S 313R S 31V 底底侧AC D B ⋅=⋅+⋅⋅⋅=- ②外接球:球外接于正四面体,可如图建立关系式.六. 空间向量.1. (1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合. 注:①若a 与b 共线,b 与c 共线,则a 与c 共线.(×) [当0=b 时,不成立]②向量c b a ,,共面即它们所在直线共面.(×) [可能异面]③若∥,则存在小任一实数λ,使λ=.(×)[与=不成立]④若为非零向量,则0=⋅.(√)[这里用到)0(≠b b λ之积仍为向量](2)共线向量定理:对空间任意两个向量)0(≠a ,a ∥b 的充要条件是存在实数λ(具有唯一性),使b a λ=.O r OR(3)共面向量:若向量使之平行于平面α或在α内,则与α的关系是平行,记作∥α.(4)①共面向量定理:如果两个向量,不共线,则向量与向量,共面的充要条件是存在实数对x 、y 使b y a x P +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x z y x 是PABC 四点共面的充要条件.(简证:→+==++--=z y z y z y )1(P 、A 、B 、C 四点共面)注:①②是证明四点共面的常用方法.2. 空间向量基本定理:如果三个向量....,,不共面...,那么对空间任一向量,存在一个唯一的有序实数组x 、y 、z ,使z y x ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 z y x ++=(这里隐含x+y+z≠1). 注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心,则向量)(31c b a AQ ++=用MQ AM AQ +=3. (1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标).①令=(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a ±±±=+))(,,(321R a a a ∈=λλλλλ332211b a b a b a ++=⋅ ∥)(,,332211R b a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a b a 222321a a a ++==(a a =⋅=)232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅⋅>=< ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.(2)法向量:若向量所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥,如果α⊥那么向量a 叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中DBα∈A ,则点B 到平面α||n ②利用法向量求二面角的平面角定理:设21,n 分别是二面角βα--l 中平面βα,的法向量,则21,n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使CE CD AB μλ+=.(常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).ABII. 竞赛知识要点一、四面体.1. 对照平面几何中的三角形,我们不难得到立体几何中的四面体的类似性质:①四面体的六条棱的垂直平分面交于一点,这一点叫做此四面体的外接球的球心;②四面体的四个面组成六个二面角的角平分面交于一点,这一点叫做此四面体的内接球的球心; ③四面体的四个面的重心与相对顶点的连接交于一点,这一点叫做此四面体的重心,且重心将每条连线分为3︰1;④12个面角之和为720°,每个三面角中任两个之和大于另一个面角,且三个面角之和为180°.2. 直角四面体:有一个三面角的三个面角均为直角的四面体称为直角四面体,相当于平面几何的直角三角形. (在直角四面体中,记V 、l 、S 、R 、r 、h 分别表示其体积、六条棱长之和、表面积、外接球半径、内切球半径及侧面上的高),则有空间勾股定理:S 2△ABC +S 2△BCD +S 2△ABD =S 2△ACD.3. 等腰四面体:对棱都相等的四面体称为等腰四面体,好象平面几何中的等腰三角形.根据定义不难证明以长方体的一个顶点的三条面对角线的端点为顶点的四面体是等腰四面体,反之也可以将一个等腰四面体拼补成一个长方体.(在等腰四面体ABCD 中,记BC = AD =a ,AC = BD = b ,AB = CD = c ,体积为V ,外接球半径为R ,内接球半径为r ,高为h ),则有①等腰四面体的体积可表示为22231222222222c b a b a c a c b V -+⋅-+⋅-+=; ②等腰四面体的外接球半径可表示为22242c b a R ++=;③等腰四面体的四条顶点和对面重心的连线段的长相等,且可表示为22232c b a m ++=; ④h = 4r.二、空间正余弦定理.空间正弦定理:sin∠ABD/sin∠A -BC-D=sin∠ABC/sin∠A -BD-C=sin∠CBD/sin∠C -BA-DO A BCD空间余弦定理:cos∠ABD=cos∠ABCcos∠CBD+sin∠ABCsin∠CBDcos∠A-BC-D立体几何知识要点一、知识提纲(一)空间的直线与平面⒈平面的基本性质⑪三个公理及公理三的三个推论和它们的用途.⑫斜二测画法.⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.⑪公理四(平行线的传递性).等角定理.⑫异面直线的判定:判定定理、反证法.⑬异面直线所成的角:定义(求法)、范围.⒊直线和平面平行直线和平面的位置关系、直线和平面平行的判定与性质.⒋直线和平面垂直⑪直线和平面垂直:定义、判定定理.⑫三垂线定理及逆定理.5.平面和平面平行两个平面的位置关系、两个平面平行的判定与性质.6.平面和平面垂直互相垂直的平面及其判定定理、性质定理.(二)直线与平面的平行和垂直的证明思路(见附图)(三)夹角与距离7.直线和平面所成的角与二面角⑪平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平面所成的角、直线和平面所成的角.⑫二面角:①定义、范围、二面角的平面角、直二面角.②互相垂直的平面及其判定定理、性质定理.8.距离⑪点到平面的距离.⑫直线到与它平行平面的距离.⑬两个平行平面的距离:两个平行平面的公垂线、公垂线段.⑭异面直线的距离:异面直线的公垂线及其性质、公垂线段.(四)简单多面体与球9.棱柱与棱锥⑪多面体.⑫棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.⑬平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、正方体;平行六面体的性质、长方体的性质.⑭棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.⑮直棱柱和正棱锥的直观图的画法.10.多面体欧拉定理的发现⑪简单多面体的欧拉公式.⑫正多面体.11.球⑪球和它的性质:球体、球面、球的大圆、小圆、球面距离.⑫球的体积公式和表面积公式.二、常用结论、方法和公式1.从一点O 出发的三条射线OA 、OB 、OC ,若∠AOB=∠AOC ,则点A 在平面∠BOC 上的射影在∠BOC 的平分线上;2. 已知:直二面角M -AB -N 中,AE ⊂ M ,BF ⊂ N,∠EAB=1θ,∠ABF=2θ,异面直线AE 与BF 所成的角为θ,则;cos cos cos 21θθθ=3.立平斜公式:如图,AB 和平面所成的角是1θ,AC 在平面内,BC 和AB 的射影BA 1成2θ,设∠ABC=3θ,则cos 1θcos 2θ=cos 3θ; 4.异面直线所成角的求法:(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;5.直线与平面所成的角斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。
2017年高考数学最易失分知识点总结_知识点总结
2017年高考数学最易失分知识点总结_知识点总结01.遗忘空集致误由于空集是任何非空集合的真子集,因此B=?时也满足B?A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
02.忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
03.混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
04.充分条件、必要条件颠倒致误对于两个条件A,B,如果A?B成立,则A是B的充分条件,B是A的必要条件;如果B?A 成立,则A是B的必要条件,B是A的充分条件;如果A?B,则A,B互为充分必要条件。
解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。
05.“或”“且”“非”理解不准致误命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∨q真?p 真且q真,命题p∨q假?p假或q假(概括为一假即假);绨p真?p假,绨p假?p真(概括为一真一假)。
求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。
06.函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。
对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
07.判断函数奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
2017高考数学知识点 高考数学易错知识点
2017高考数学知识点第一部分:选择与填空1、集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);2、常用逻辑用语(充要条件,全称量词与存在量词的判定);3、函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);4、幂、指、对函数式运算及图像和性质5、函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);6、空间体的三视图及其还原图的表面积和体积;7、空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;8、直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;9、算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);10、古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;11、三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;12、向量数量积、坐标运算、向量的几何意义的应用;13、正余弦定理应用及解三角形;14、等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;15、线性规划的应用;会求目标函数;16、圆锥曲线的性质应用(特别是会求离心率);17、导数的几何意义及运算、定积分简单求法18、复数的概念、四则运算及几何意义;19、抽象函数的识别与应用;第二部分:解答题第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;第18题:(文)概率与统计(概率与统计相结合型)(理)离散型随机变量的概率分布列及其数字特征;第19题:立体几何①证线面平行垂直;面与面平行垂直②求空间中角(理科特别是二面角的求法)③求距离(理科:动态性)空间体体积;第20题:解析几何(注重思维能力与技巧,减少计算量)①求曲线轨迹方程(用定义或待定系数法)②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)③求定点、定值、最值,求参数取值的问题;第21题:函数与导数的综合应用这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和数学素质为目标的压轴题。
高考数学易丢分的三十三个知识点(二)
微信扫码关注公众号高中全科资料库免费领取更多高考九科资料!高考数学最容易丢分的三十三个知识点(二)12.an 与Sn关系不清致误在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。
这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
13.对数列的定义、性质理解错误等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列。
14.数列中的最值错误数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。
数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一。
在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。
15.错位相减求和项处理不当致误错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。
基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理。
16.不等式性质应用不当致误在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误。
24个高考数学最容易失分的知识点 看看有你不会的吗-
24个高考数学最容易失分的知识点看看有你不会的吗数学是一切科学的基础,今天我们整理了24个高考数学最容易失分的知识点,同学们赶快看看有没有你不会的,有不会的赶快学习。
01.遗忘空集致误由于空集是任何非空集合的真子集,因此B=?时也满足B?A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
02.忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
03.混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
04.充分条件、必要条件颠倒致误对于两个条件A,B,如果A?B成立,则A是B的充分条件,B是A的必要条件;如果B?A成立,则A是B的必要条件,B是A的充分条件;如果A?B,则A,B互为充分必要条件.解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。
05.“或”“且”“非”理解不准致误命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q假?p假或q假(概括为一假即假);綈p真?p假,綈p假?p真(概括为一真一假).求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。
06.函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法.对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
07.判断函数奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
2017高考数学易丢分知识点汇总
2017高考数学易丢分知识点汇总2017高考数学易丢分知识点汇总1、遗忘空集致误由于空集是任何非空集合的真子集,因此B=?时也满足B?A。
解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
2、忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
3、混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
4、充分条件、必要条件颠倒致误对于两个条件A,B,如果A?B成立,则A是B的充分条件,B是A的必要条件;如果B?A成立,则A是B的必要条件,B是A的充分条件;如果A?B,则A,B互为充分必要条件。
解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。
5、“或”“且”“非”理解不准致误命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q 假?p假或q假(概括为一假即假);p真?p假;p假?p真(概括为一真一假)。
求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。
6、函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。
对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
7、判断函数奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
2017高考数学易错知识点
2017高考数学易错知识点:集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?2017高考数学易错知识点:不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22. 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23. 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>02017高考数学易错知识点:数列24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
十个高考数学最容易丢分的知识点
十个高考数学最容易丢分的知识点十个高考数学最容易丢分的知识点高考数学要想拿到高分,掌握平时考试中的易错点是相当重要的,这样到具体问题的时候,就能做到心中有数,尽量避免。
下面是为大家整理的十个高考数学最容易丢分的知识点,希望同学们看后能避免这些错误。
错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。
基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理。
在研究函数问题时要时时刻刻想到函数的图像,学会从函数图像上去分析问题、寻找解决问题的方法。
对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)0时,不能否定函数y=f(x)在(a,b)内有零点。
函数的零点有变号零点和不变号零点,对于不变号零点函数的零点定理是无能为力的,在解决函数的零点问题时要注意这个问题。
对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。
高考数学最易失分的知识点高考数学知识点归纳总结
高考数学最易失分的知识点高考数学知识点归纳总结1.遗忘空集致误由于空集是任何非空集合的真子集,因此B=?时也满足B?A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况.2.忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求.3.混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条也要否定结论.4.充分条、必要条颠倒致误对于两个条A,B,如果A?B成立,则A是B的充分条,B是A 的必要条;如果B?A成立,则A是B的必要条,B是A的充分条;如果A?B,则A,B互为充分必要条.解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条和必要条的概念作出准确的判断.5.“或”“且”“非”理解不准致误命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q假?p假或q假(概括为一假即假);綈p真?p假,綈p假?p真(概括为一真一假).求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解.6.函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法.对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可.7.判断函数奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条是这个函数的定义域关于原点对称,如果不具备这个条,函数一定是非奇非偶函数.8.函数零点定理使用不当致误如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0 y=“f(x)在区间(a,b)内有零点,但f(a)f(b)”>0时,不能否定函数y=f(x)在(a,b)内有零点.函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题.9.导数的几何意义不明致误函数在一点处的导数值是函数图像在该点处的切线的斜率.但在许多问题中,往往是要解决过函数图像外的一点向函数图像上引切线的问题,解决这类问题的基本思想是设出切点坐标,根据导数的几何意义写出切线方程.然后根据题目中给出的其他条列方程(组)求解.因此解题中要分清是“在某点处的切线”,还是“过某点的切线”10.导数与极值关系不清致误f′(x0)=0只是可导函数f(x)在x0处取得极值的必要条,即必须有这个条,但只有这个条还不够,还要考虑是否满足f′(x)在x0两侧异号.另外,已知极值点求参数时要进行检验.11.三角函数的单调性判断致误对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin?x的单调性相同,故可完全按照函数y=sin?x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sin?x的单调性相反,就不能再按照函数y=sin?x的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决.对于带有绝对值的三角函数应该根据图像,从直观上进行判断.12.图像变换方向把握不准致误函数y=Asin(ωx+φ)(其中A>0,ω>0,x∈R)的图像可看作由下面的方法得到:(1)把正弦曲线上的所有点向左(当φ>0时)或向右(当φ<02=“”>1时)或伸长(当0<ω<11=“” 3=“” a=“”>1时)或缩短(当0 13.忽视零向量致误零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线.它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视.14.向量夹角范围不清致误解题时要全面考虑问题.数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况.15.an与Sn关系不清致误在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2.这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点.16.对数列的定义、性质理解错误等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列.17.数列中的最值错误数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题.数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一.在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定.18.错位相减求和项处理不当致误错位相减求和法的适用条:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和.基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理.19.不等式性质应用不当致误在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条,如果忽视了不等式性质成立的前提条就会出现错误.20.忽视基本不等式应用条致误利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条.对形如y=ax+bx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到.21.解含参数的不等式分类不当解形如ax2+bx+c>0的不等式时,首先要考虑对x2的系数进行分类讨论.当a=0时,这个不等式是一次不等式,解的时候还要对b,c进一步分类讨论;当a≠0且Δ>0时,不等式可化为a(x-x1)(x-x2)>0,其中x1,x2(x122.不等式恒成立问题致误解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法.通过最值产生结论.应注意恒成立与存在性问题的区别,如对任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立问题,但对存在x∈[a,b],使f(x)≤g(x)成立,则为存在性问题,即f(x)min≤g(x)max,应特别注意两函数中的最大值与最小值的关系23.忽视三视图中的实、虚线致误三视图是根据正投影原理进行绘制,严格按照“长对正,高平齐,宽相等”的规则去画,若相邻两物体的表面相交,表面的交线是它们的原分界线,且分界线和可视轮廓线都用实线画出,不可见的轮廓线用虚线画出,这一点很容易疏忽.24.面积体积计算转化不灵活致误面积、体积的计算既需要学生有扎实的基础知识,又要用到一些重要的思想方法,是高考考查的重要题型.因此要熟练掌握以下几种常用的思想方法.(1)还台为锥的思想:这是处理台体时常用的思想方法.(2)割补法:求不规则图形面积或几何体体积时常用.(3)等积变换法:充分利用三棱锥的任意一个面都可作为底面的特点,灵活求解三棱锥的体积.(4)截面法:尤其是关于旋转体及与旋转体有关的组合问题,常画出轴截面进行分析求解.25.随意推广平面几何中结论致误平面几何中有些概念和性质,推广到空间中不一定成立.例如“过直线外一点只能作一条直线与已知直线垂直”“垂直于同一条直线的两条直线平行”等性质在空间中就不成立.26.对折叠与展开问题认识不清致误折叠与展开是立体几何中的常用思想方法,此类问题注意折叠或展开过程中平面图形与空间图形中的变量与不变量,不仅要注意哪些变了,哪些没变,还要注意位置关系的变化.27.点、线、面位置关系不清致误关于空间点、线、面位置关系的组合判断类试题是高考全面考查考生对空间位置关系的判定和性质掌握程度的理想题型,历来受到命题者的青睐,解决这类问题的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,但要注意定理应用准确、考虑问题全面细致.28.忽视斜率不存在致误在解决两直线平行的相关问题时,若利用l1∥l2?k1=k2来求解,则要注意其前提条是两直线不重合且斜率存在.如果忽略k1,k2不存在的情况,就会导致错解.这类问题也可以利用如下的结论求解,即直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0平行的必要条是A1B2-A2B1=0,在求出具体数值后代入检验,看看两条直线是不是重合从而确定问题的答案.对于解决两直线垂直的相关问题时也有类似的情况.利用l1⊥l2?k1·k2=-1时,要注意其前提条是k1与k2必须同时存在.利用直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0垂直的充要条是A1A2+B1B2=0,就可以避免讨论.29.忽视零截距致误解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式.因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况.30.忽视圆锥曲线定义中条致误利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|.如果不满足第一个条,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支.31.误判直线与圆锥曲线位置关系过定点的直线与双曲线的位置关系问题,基本的解决思路有两个:一是利用一元二次方程的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零,当二次项系数为零时,直线与双曲线的渐近线平行(或重合),也就是直线与双曲线最多只有一个交点;二是利用数形结合的思想,画出图形,根据图形判断直线和双曲线各种位置关系.在直线与圆锥曲线的位置关系中,抛物线和双曲线都有特殊情况,在解题时要注意,不要忘记其特殊性.32.两个计数原理不清致误分步加法计数原理与分类乘法计数原理是解决排列组合问题最基本的原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提,在解题时,要分析计数对象的本质特征与形成过程,按照事的结果来分类,按照事的发生过程来分步,然后应用两个基本原理解决.对于较复杂的问题既要用到分类加法计数原理,又要用到分步乘法计数原理,一般是先分类,每一类中再分步,注意分类、分步时要不重复、不遗漏,对于“至少、至多”型问题除了可以用分类方法处理外,还可以用间接法处理.33.排列、组合不分致误为了简化问题和表达方便,解题时应将具有实际意义的排列组合问题符号化、数学化,建立适当的模型,再应用相关知识解决.建立模型的关键是判断所求问题是排列问题还是组合问题,其依据主要是看元素的组成有没有顺序性,有顺序性的是排列问题,无顺序性的是组合问题.34.混淆项系数与二项式系数致误在二项式(a+b)n的展开式中,其通项Tr+1=Crnan-rbr是指展开式的第r+1项,因此展开式中第1,2,3,…,n项的二项式系数分别是C0n,C1n,C2n,…,Cn-1n,而不是C1n,C2n,C3n,…,Cnn.而项的系数是二项式系数与其他数字因数的积.35.循环结束判断不准致误控制循环结构的是计数变量和累加变量的变化规律以及循环结束的条.在解答这类题目时首先要弄清楚这两个变量的变化规律,其次要看清楚循环结束的条,这个条由输出要求所决定,看清楚是满足条时结束还是不满足条时结束.36.条结构对条判断不准致误条结构的程序框图中对判断条的分类是逐级进行的,其中没有遗漏也没有重复,在解题时对判断条要仔细辨别,看清楚条和函数的对应关系,对条中的数值不要漏掉也不要重复了端点值.37.复数的概念不清致误对于复数a+bi(a,b∈R),a叫做实部,b叫做虚部;当且仅当b=0时,复数a+bi(a,b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数.解决复数概念类试题要仔细区分以上概念差别,防止出错.另外,i2=-1是实现实数与虚数互化的桥梁,要适时进行转化,解题时极易丢掉“-”而出错.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017高考数学知识点复习(易丢分的33个知识点)2017高考数学知识点复习(易丢分的33个知识点)33个最易失分知识点汇总1、遗忘空集致误由于空集是任何非空集合的真子集,因此B=∅时也满足B⊆A。
解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
2、忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
3、混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
4、充分条件、必要条件颠倒致误对于两个条件A,B,如果A⇒B成立,则A是B的充分条件,B是A的必要条件;如果B⇒A成立,则A是B的必要条件,B是A的充分条件;如果A⇔B,则A,B互为充分必要条件。
解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。
5、“或”“且”“非”理解不准致误命题p∨q真⇔p真或q真,命题p∨q假⇔p假且q假(概括为一真即真);命题p∧q真⇔p真且q真,命题p∧q假⇔p假或q假(概括为一假即假);綈p真⇔p假,綈p假⇔p真(概括为一真一假)。
求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。
6、函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。
对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
7、判断函数奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
8、函数零点定理使用不当致误如果函数y=f(x)在区间a,b]上的图像是一条连续的曲线,并且有f(a)f(b)0时,不能否定函数y=f(x)在(a,b)内有零点。
函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。
9、三角函数的单调性判断致误对于函数y=Asin(ωxφ)的单调性,当ω>0时,由于内层函数u=ωxφ是单调递增的,所以该函数的单调性和y=sinx的单调性相同,故可完全按照函数y=sinx的单调区间解决;但当ωφ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。
对于带有绝对值的三角函数应该根据图像,从直观上进行判断。
10、忽视零向量致误零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。
它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。
11、向量夹角范围不清致误解题时要全面考虑问题。
数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b12、an与Sn关系不清致误在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。
这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
13、对数列的定义、性质理解错误等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2bnc(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列。
14、数列中的最值错误数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。
数列的通项an与前n项和Sn 的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一。
在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。
15、错位相减求和项处理不当致误错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。
基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理。
16、不等式性质应用不当致误在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误。
17、忽视基本不等式应用条件致误利用基本不等式ab≥2ab以及变式ab≤ab22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a b其中之一应是定值,特别要注意等号成立的条件。
对形如y=axbx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到。
18、不等式恒成立问题致误解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法。
通过最值产生结论。
应注意恒成立与存在性问题的区别,如对任意x∈a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立问题,但对存在x∈a,b],使f(x)≤g(x)成立,则为存在性问题,即f(x)min≤g(x)max,应特别注意两函数中的最大值与最小值的关系。
19、忽视三视图中的实、虚线致误三视图是根据正投影原理进行绘制,严格按照“长对正,高平齐,宽相等”的规则去画,若相邻两物体的表面相交,表面的交线是它们的原分界线,且分界线和可视轮廓线都用实线画出,不可见的轮廓线用虚线画出,这一点很容易疏忽。
20、面积体积计算转化不灵活致误面积、体积的计算既需要学生有扎实的基础知识,又要用到一些重要的思想方法,是高考考查的重要题型.因此要熟练掌握以下几种常用的思想方法。
(1)还台为锥的思想:这是处理台体时常用的思想方法。
(2)割补法:求不规则图形面积或几何体体积时常用。
(3)等积变换法:充分利用三棱锥的任意一个面都可作为底面的特点,灵活求解三棱锥的体积。
(4)截面法:尤其是关于旋转体及与旋转体有关的组合问题,常画出轴截面进行分析求解。
21、随意推广平面几何中结论致误平面几何中有些概念和性质,推广到空间中不一定成立.例如“过直线外一点只能作一条直线与已知直线垂直”“垂直于同一条直线的两条直线平行”等性质在空间中就不成立。
22、对折叠与展开问题认识不清致误折叠与展开是立体几何中的常用思想方法,此类问题注意折叠或展开过程中平面图形与空间图形中的变量与不变量,不仅要注意哪些变了,哪些没变,还要注意位置关系的变化。
23、点、线、面位置关系不清致误关于空间点、线、面位置关系的组合判断类试题是高考全面考查考生对空间位置关系的判定和性质掌握程度的理想题型,历来受到命题者的青睐,解决这类问题的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,但要注意定理应用准确、考虑问题全面细致。
24、忽视斜率不存在致误在解决两直线平行的相关问题时,若利用l1∥l2⇔k1=k2来求解,则要注意其前提条件是两直线不重合且斜率存在。
如果忽略k1,k2不存在的情况,就会导致错解。
这类问题也可以利用如下的结论求解,即直线l1:A1xB1yC1=0与l2:A2xB2yC2=0平行的必要条件是A1B2-A2B1=0,在求出具体数值后代入检验,看看两条直线是不是重合从而确定问题的答案。
对于解决两直线垂直的相关问题时也有类似的情况。
利用l1⊥l2⇔k1·k2=-1时,要注意其前提条件是k1与k2必须同时存在。
利用直线l1:A1xB1yC1=0与l2:A2xB2yC2=0垂直的充要条件是A1A2B1B2=0,就可以避免讨论。
25、忽视零截距致误解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式。
因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况。
26、忽视圆锥曲线定义中条件致误利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件。
如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a27、误判直线与圆锥曲线位置关系过定点的直线与双曲线的位置关系问题,基本的解决思路有两个:一是利用一元二次方程的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零,当二次项系数为零时,直线与双曲线的渐近线平行(或重合),也就是直线与双曲线最多只有一个交点;二是利用数形结合的思想,画出图形,根据图形判断直线和双曲线各种位置关系。
在直线与圆锥曲线的位置关系中,抛物线和双曲线都有特殊情况,在解题时要注意,不要忘记其特殊性。
28、两个计数原理不清致误分步加法计数原理与分类乘法计数原理是解决排列组合问题最基本的原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提,在解题时,要分析计数对象的本质特征与形成过程,按照事件的结果来分类,按照事件的发生过程来分步,然后应用两个基本原理解决.对于较复杂的问题既要用到分类加法计数原理,又要用到分步乘法计数原理,一般是先分类,每一类中再分步,注意分类、分步时要不重复、不遗漏,对于“至少、至多”型问题除了可以用分类方法处理外,还可以用间接法处理。
29、排列、组合不分致误为了简化问题和表达方便,解题时应将具有实际意义的排列组合问题符号化、数学化,建立适当的模型,再应用相关知识解决.建立模型的关键是判断所求问题是排列问题还是组合问题,其依据主要是看元素的组成有没有顺序性,有顺序性的是排列问题,无顺序性的是组合问题。
30、混淆项系数与二项式系数致误在二项式(ab)n的展开式中,其通项Tr1=Crnan-rbr是指展开式的第r1项,因此展开式中第1,2,3,...,n项的二项式系数分别是C0n,C1n,C2n,...,Cn-1n,而不是C1n,C2n,C3n,...,Cnn。