地震反应谱-PPT文档资料

合集下载

地震反应谱、设计反应谱与地震影响系数谱曲线

地震反应谱、设计反应谱与地震影响系数谱曲线

地震反应谱、设计反应谱与地震影响系数谱曲线一直对反应谱这个东西,进来在听完一些免费结构讲座之后,自己总结了一下,梳理了一下几个概念,当然理解这些概念还需要对地震动的一些基本概念有一定理解,下次有机会再将地震动的东西总结一下,希望对初学者有点作用,文中所用图均来自网上。

1.地震反应谱可理解为一个确定的地面运动,通过一组阻尼比相同但自振周期各不相同的单自由度体系,所引起的各体系最大反应与相应体系自振周期间的关系曲线。

但是,不同场地类别和震中距对反应谱有影响,因而不能直接用于抗震设计,需专门研究可供结构抗震设计用的反应谱,称为设计反应谱。

2.设计反应谱由结构动力学地震系数,该参数可将地震动幅值对地震反应谱的影响分离出来。

地震系数与基本烈度的关系基本烈度6789地震系数k0.050.10(0.15)0.20(0.30)0.40(另:本人对其结果很是不解,由后文可知,地震影响系数最大值等于2.25倍的地震系数,而《抗震规范》2010 表5.1.4-1除以2.25后应该为基本烈度6789地震系数k0.0170.0355(0.0533)0.071(0.106)0.142欢迎大家讨论!)动力系数,是体系最大绝对加速度的放大系数特点:a.是一种规则化的地震反应谱,且动力系数不受地震动振幅的影响。

b.与地震反应谱具有相同的性质,受到体系阻尼比,以及地震动频谱(场地条件和震中距)的影响。

调整:1、为了消除阻尼比的影响由于大多数实际建筑结构的阻尼比在0.05左右,取确定的阻尼比然后不同建筑物根据公式相应调整。

2、按场地震中距将地震动记录分类,消除地震动频谱对地震动的影响。

3、计算每一类地震动记录动力系数的平均值考虑类别相同的不同地震动记录动力系数的变异性。

经过上述三条措施后,再将计算得到的β(T)平滑化后,可得到抗震设计采用的动力系数谱曲线。

3.地震影响系数谱曲线反应谱的局限性:不能反映地震的持续时间(加速度幅值)不能考虑多点激励的影响(刚性地基)不能反映建筑物质量和刚度分布的不均匀不能反映多个阻尼的情况不能反映场地条件和卓越周期的影响不能反映低周疲劳的影响不能反映结构周期不确定性的影响。

地震反应谱

地震反应谱

有阻尼自由振动
振动方程为 简化为
mx cx kx 0 2hwx w2 x 0 x c / m 2hw
xe
(9) (10)
其解为
k/mw
hwt
2
( A cos wd t B sin wd t )
(11)
速度表达式: x ehwt (hwAsin wd t wd B cos wd t ) (12)
地震反应谱
汇报者:董艳博
地震反应谱 • 单自由度体系在给定的地震作用下某个(位移、速度、加 速度)最大反应与体系无阻尼自振周期的关系曲线称为该 反应的地震反应谱。
单质点系的振动
• 1、水平方向的振动时的运动方程的建立
x g (t ) :地面(基础)的水平位移
x(t ) :质点对地面的的相对位移
x g ( t ) x( t )
t
THANKS
t
F ( )d h (t ) x(t ) e hw sin d (t ) d cos d (t )d 0 md
地震动反应
单质点系受地震作用时的运动方程式 mx cx kx my
x y 2hwx w2 x
m( g ) x x
cx
m
x(t ):质点的总Fra bibliotek移mkx
xg (t )
x g ( t ) x( t ) :质点的绝对加速度
取质点为隔离体,作用在质点上的力惯性力:
I m x g ( t ) x( t ) 弹性恢复力: S kx(t ) 阻尼力:(粘滞阻尼理论) R cx(t )



根据达朗贝尔原理, 运动方程为:

地震动特性与反应谱ppt课件

地震动特性与反应谱ppt课件

整理版课件
26
与时域中的上述自相关函数描述相对应,在频 域中最重要的二阶统计数字特征是功率谱密度
函数(简称功率谱或谱密度),这一函数定义为自 相关函数的傅里叶变换,即:
Sx()
Rx
(
)ei
d
Rx
(
)
1
2
S
()ei
d
S(w)表示过程方差在频律w及其邻域内的分布 强度;或者过程功率在频率域内的分布函数。
振频率。
地震仪与强震加速度仪在原理上的差别就是在这 两个系数的不同。适当选择这两个系数可以使上式 中左端三项中的某一项远大于其它两项,从而使仪 器记录摆的相对位移分别代表地面运动的位移、速 度和加速度。
整理版课件
12
4.1.2 强震观测现状
强震观测是地震工程学的基础之一。自强震加速度仪出 现50余年来,强震观测记录有力地推动了地震工程学的发 展,正是在强震记录的基础上,产生了地震反应谱理论, 发展了随机振动理论,加深了对地震动特性的认识,促进 了结构动力反应分析技术的形成和振动台试验技术的实现。
整理版课件
25
随机过程x(t)的自相关函数定义为任意两个 不同状态x(t1)和x(t2)的原点相关距:
Rx(t1,t2)Ex(t1)x(t2)
二维概率分
布密度
x1x2px(x,t1;x2,t2)dx1dx2
相关函数描述了随机过程两个状态之间在时域 上的相关程度。一般,如果过程中不考虑周期份 量,则相关函数是时间差[t2-t1]的衰减函数。
3
探测地球与探测西瓜
整理版课件
4
全球地震台网分布
目前,全球已经建立了覆盖比较良好的地震观测网 络,可以实时监测确定地球任何角落发生的地震。

地震作用计算——地震反应分析 PPT

地震作用计算——地震反应分析 PPT
在特定的干扰作用下,单自由度弹性体系的最大反应与 自振周期T的变化关系曲线即反应谱。
基本思路:实际应用时根据结构体系的自振周期找到对 应的加速度反应峰值,在结合结构上的质量(或重力荷载) 求出结构所受地震作用力和结构变形。计算出的结构体系的 最大反应随自振周期的变化曲线就是反应谱。
fR cx (t) C —阻尼系数
*惯性力 fI
——质量与绝对加速度的乘积
fIm [ x g(t) x (t)]
§4.2 结构动力学方法——弹性解答
4.2.2 振动微分方程及解答
一、单自由度体系
Famk tc x x tm x txt a xt xt 质点m的绝对加速度:
g ( ) ( )
xg (t) x(t)
fR
fI
fS
假定地基 完全刚性
xg (t) x(t)
——地面水平位移,可由地震
时地面运动实测记录求得。
——质点对于地面的相对弹性 位移或相对位移反应。
作用在质点上的三种力:
*弹性恢复力 fs
——使质点从振动位置回到平衡位置的力
fs kx(t)k —刚度系数
*阻尼力 fR
——使结构振动衰减的力,由外部介质阻力、 构件和支座部分连接处的摩擦和材料的非弹性 变形以及通过地基散失能量(地基振动引起) 等原因引起
例:若为两个自由度,令n=2,则有
将求出的w1、w2分别代回方程,可求出X1 、X2的相对值。
对应于w1为第一振型:
X11 X12
k12
k1112m2
对应于w2为第二振型:
X21 k12
X22 k11 22m1
§4.2 结构动力学方法——弹性解答
4.2.2 振动微分方程及解答

第二节 反应谱

第二节 反应谱

绝对加速度反应谱 相对速度反应谱
相对位移反应谱
地震反应谱总结:
4、结构的最大地震反应,对于 低频结构主要取决于地面运动 最大位移。
绝对加速度反应谱 相对速度反应谱
相对位移反应谱
五、设计反应谱
设计反应谱:
地震反应谱直接用于结构的抗震设计有一定的困难,
而需专门研究可供结构抗震设计用的反应谱,称之为设计反应谱
2
T
(t
)d
max
Sa
xg max
2 1 T xg max
t 0
2 (t )
xg ( )e T
sin
2
T
(t
)d
max
yg (t ) (ms 2 )
t (s)
Elcentro 1940 (N-S) 地震记录
相对速度反应谱
Sv

x(t) max
t 0
xg ( )e (t )
sin (t
)d
max
yg (t ) (ms 2 )
Elcentro 1940 (N-S) 地震记录
t (s)
绝对加速度反应谱
2
Sa x(t) xg max T
t 0
2 (t )
xg ( )e T
sin
max
Sa x(t) xg max
t 0
xg ( )e
(t )
sin (t

)d
max
对比上两个公式,可以看出,地面最大加速度 xg (t) 对于给
定的地震时个常数,所以β—T的曲线形式与拟加速度反应谱
曲线的形状是完全一致的,只是纵坐标数值不相同。β—T 曲

反应谱

反应谱

) x y 此时结构加速度为 (
x m
kx
k
c
) m( x y cx
(t ) y
绝对位移:x+y,相对位移:x
) cx kx 0 m( x y
地震反应振动方程
cx kx m m x y
先看没有地面运动,称为阻尼自由振动
cx kx 0 m x
改写方程,引入自振频率和阻尼常数
0 k / m, c / 20m c / 2 km
得到
(c / m) x (k / m) x x
2 x 2 0 x 0 x 0
代入解
x Ce
得到
位移反应谱; 速度反应谱; 加速度反应谱(绝对)
反应谱计算公式:
u t 1
0 t u e sin t d g 0 t t

0 t u u e g 0 0 t u g t u
EPV Rv / 2.5
Ra为阻尼5%的加速度反应谱在2~10Hz频率范围内 平滑化的平均值 ,Rv为1Hz附近平滑化的速度反应
谱的幅值,
反应谱的数值计算方法(不讲):

单步逐步递归法; 两步逐步递归法; 中心差分法; 纽马克广义加速度法; 威尔逊θ法。
cos 1 sin 1
2

2 2 0u 0 g 由u u u 2 u g (2 0 u 0 u u)
02

t
0
g (t )e i0 ( t ) {2 cos[ (t ) ] sin (t )}d u

《地震反应谱》课件

《地震反应谱》课件

新材料与新结构
随着新型材料和结构的出现,研究其在地震作用下的反应 特性,对于完善地震反应谱理论具有重要意义。
多维地震动输入
目前地震反应谱主要考虑水平地震动输入,未来研究可以 扩展到多维地震动输入,包括竖向和扭转分量,以更全面 地评估结构的抗震性能。
跨学科合作
加强地震工程学与其他相关学科(如物理学、数学、生物 学等)的合作,从多角度深入研究地震反应谱的内在机制 和影响因素。
人工智能技术
人工智能技术在数据处理、模式识别 等方面具有优势,未来可以应用于地 震反应谱的计算和分析中,提高计算 效率和准确性。
复杂结构体系的研究
高层建筑
随着城市化进程的加速,高层建 筑的数量不断增加,对高层建筑 的地震反应谱研究将更加深入。
地下结构
地下结构如地铁、隧道等在地震 作用下的反应与地面结构有所不 同,未来将加强这方面的研究。
详细描述
在结构抗震设计中,地震反应谱用于描述结 构在地震作用下的反应特性,包括加速度、 位移、速度和加速度谱等。这些数据可以帮 助工程师评估结构的抗震性能,并优化结构 的设计,提高其抵抗地震的能力。
结构健康监测
总结词
结构健康监测是另一个地震反应谱的重要应 用领域,通过实时监测结构的反应谱数据, 可以及时发现结构的损伤和异常,保障结构 的安全。
地震反应谱的重要性
总结词
地震反应谱是抗震设计的基础,有助于确定结构在地震作用下的响应和破坏程度。
详细描述
地震反应谱在抗震设计中扮演着至关重要的角色。通过分析地震反应谱,工程师可以了解结构在不同频率的地震 作用下的响应特性,从而有针对性地进行结构设计和优化。这对于确保结构在地震发生时能够保持稳定,避免或 减少破坏具有重要意义。

el centro地震反应谱

el centro地震反应谱

el centro地震反应谱
地震反应谱是描述地震力对结构物的作用的一种方法。

它是一种函数,通过将地震力与不同频率下的结构响应相联系。

地震反应谱可以用来评估建筑物、桥梁、堤坝等结构在地震中的受力情况和抗震性能。

El Centro地震反应谱是根据1940年5月18日在美国加利福尼亚州埃尔塞浦附近发生的 El Centro地震记录得出的反应谱。

该地震具有强烈的地震动力特性,因此被广泛用于结构物的抗震设计和评估中。

El Centro地震反应谱通常以加速度作为纵轴,频率作为横轴
进行绘制。

它描述了结构物在不同频率下受到的地震加速度的大小。

利用El Centro地震反应谱,可以确定结构物在地震中
的关键频率和最大地震反应。

El Centro地震反应谱在工程设计中起着重要的作用,特别是
在抗震设计中。

它可以帮助工程师确定结构物的最大地震反应,从而设计出更安全可靠的建筑物。

地震加速度反应谱

地震加速度反应谱

一、地震反应谱的概念在给定的地震输入下,不同固有周期的地层或结构物将有不同的振动位移反应,这种反应的时程曲线是由多种频率成分组成的振动曲线叫地震反应谱,取对应于不同固有周期的位移时程曲线的最大值作为纵坐标,取所对应的固有的周期为横坐标,由此绘成曲线,供抗震设计中选用在设计周期下的相应振动幅值。

二、地震反应谱在结构地震反应分析理论发展中的作用1940年,美国比奥特(M.A.Biot)教授通过对强地震动记录的研究,首先提出反应谱这一概念,为抗震设计理论进人一个新的发展阶段奠定了基础,20世纪504代初,美网豪斯纳(G.W.Housener)等人发展了这一理论,并在美国加州抗震设计规范中首先采用反复谱概念作为抗震设计理论,以取代静力法。

这一理论至今仍然是我国和世界上许多国家工程结构设计规范中地震作用计算的理论基础。

反应谱理论考虑了结构的动力特性与地震动特性之间的动力关系,并保持了原有的静力理论的简单形式。

按照反应谱理论,单自由度弹性体系的结构物所受的最大地震基底剪力或地震作用为F=FEk=k⋅ββ⋅G式中G——结构的重力荷载代表值k——地震系数β——动力系数,与结构自振周期和阻尼比有关因而上式表明:结构地震作用的大小不仅与地震强度有关,还与结构的动力特性有关。

这也是地震作用区别于一般作用(荷载)的主要特征。

随着震害经验的积累和研究的不断深人,人们逐步认识到建筑场地(包括表层土的动力特性和覆盖层厚度)、震级和震中距对反应谱的影响。

考虑到这些因素,一般抗震规范中都规定了不同的反应谱形状。

利用振型分解原理,可有效地将上述概念用于多质点体系的抗震计算,这就是抗震设计规范中给出的振型分解反应谱法。

它以结构自由振动的N个振型为厂义坐标,将多质点体系的振动分解成n个独立的等效单质点体系的振动,然后利用反应谱概念求出各个(或前几个)振型的地震作用,并按一定的法则进行组合,即可求出结构总的地震作用。

三、从地震动响应推导出地震反应谱曲线对于单自由度弹性体系,通常把惯性力看作一种反映地震对结构体系影响的等效作用,即把动态作用转化为静态作用,并用其最大值来对结构进行抗震验算。

地震响应与谱分析PPT精选文档

地震响应与谱分析PPT精选文档
的参与系数 i, i 是衡量该模态在那个方向上 的参与程度(ANSYS在所有的模态分析中都 进行这一步的考虑,不管是否有响应谱的输入) 接着,按Ai=Si i *计算每一个模态的模态系数Ai, 其中Si 指的是模态 i的频谱值 *对于加速度,速度和作用力谱,使用的是不同的公式,参见ANSYS理论手册
ANSYS的谱分析有: • A.单点响应谱分析(SPRS):只在模型的一个点
集上定义一条或一组响应谱曲线。单一的响应谱激 励模型中指定的多个点。响应谱是位移、速度、加 速度和力等响应与频率之间的关系。
15
• B.多点响应谱分析(MPRS):在模型不同的 点集上定义不同响应谱曲线。不同的多个响 应谱分别激励模型中不同的点。
力的数值来改变比例
典型命令: FREQ,… SV,...
28
响应谱分析步骤
模态组合
模态组合法:
• 确定单个模态响应如何组合 • 有五种方法可以采用:
– CQC法 (完全平方组合法) – GRP法 (分组法) – DSUM法 (双和法) – SRSS (均方根法) – NRLSUM法 (美国海军实验室法)
• 分析选项:后面讨论
• 阻尼:后面讨论
典型命令: FINISH ! 退出求解器 /SOLU ANTYPE,SPECTR
24
响应谱分析步骤
谱分析选项(接上页)
分析选项: • 频谱类型:单点 • 模态数:如果选项是0或空缺,所有的扩展模
态都被用于求解
典型命令: SPOPT,SPRS,...
25
阻尼 • 可用的阻尼形式有: ß(刚度)阻尼 恒定阻尼比: 依赖于频率的阻尼比(模态
获得模态解(接上页)
• 模态的提取: – 有效的方法只有Block Lanczos,子空间法

《反应谱理论》课件

《反应谱理论》课件

桥梁结构的抗震设计是桥梁工程中的重要部分,反应谱理论的应用能够为桥梁结构的抗震设计提供科学依据。
在桥梁结构的抗震设计中,需要根据不同的地震动输入和桥梁的重要性、使用功能等因素,进行结构抗震分析和设计。
反应谱理论能够综合考虑地震动输入的特性、桥梁的动力特性和地震反应,为桥梁结构的抗震设计提供更加准确和可靠的计算和分析方法。
详细描述
时程分析法与反应谱法结合应用是将时程分析法和反应谱法结合起来,用于更准确地模拟结构的地震响应。时程分析法能够模拟地震动的时域历程和结构的非线性行为,而反应谱法可以快速计算结构的反应谱。通过结合两种方法,可以更全面地了解结构在不同地震动输入下的响应特性。该方法广泛应用于高层建筑、大跨桥梁等重要结构的抗震设计。
在地下结构的抗震设计中,需要根据不同的地震动输入和地下结构的重要性、使用功能等因素,进行结构抗震分析和设计。
反应谱理论能够综合考虑地震动输入的特性、地下结构动力特性和地震反应,为地下结构的抗震设计提供更加准确和可靠的计算和分析方法。
地下结构的抗震设计是地下工程中的重要部分,反应谱理论的应用能够为地下结构的抗震设计提供科学依据。
地震反应谱的形成机制
01
02核心,可用于评估结构的抗震性能和进行抗震设计。
01
结构反应计算是指根据地震动输入和结构动力特性,计算结构在地震作用下的位移、速度、加速度等响应。
02
结构反应计算可以采用数值模拟方法,如有限元、有限差分等方法。
反应谱分析方法
反应谱理论的发展趋势与展望
总结词
研究复杂结构体系在地震作用下的反应谱特性,包括高层建筑、大跨度结构等。
详细描述
随着城市化进程的加速,高层建筑和大跨度结构等复杂结构体系越来越多地出现在工程实践中。这些结构的抗震性能对于保障人民生命财产安全具有重要意义。因此,研究复杂结构体系在地震作用下的反应谱特性,对于提高结构的抗震性能和保障结构安全具有重要的理论意义和实际应用价值。

地震反应谱、设计反应谱与地震影响系数谱曲线

地震反应谱、设计反应谱与地震影响系数谱曲线

地震反应谱、设计反应谱与地震影响系数谱曲线一直对反应谱这个东西,进来在听完一些免费结构讲座之后,自己总结了一下,梳理了一下几个概念,当然理解这些概念还需要对地震动的一些基本概念有一定理解,下次有机会再将地震动的东西总结一下,希望对初学者有点作用,文中所用图均来自网上。

1.地震反应谱可理解为一个确定的地面运动,通过一组阻尼比相同但自振周期各不相同的单自由度体系,所引起的各体系最大反应与相应体系自振周期间的关系曲线。

但是,不同场地类别和震中距对反应谱有影响,因而不能直接用于抗震设计,需专门研究可供结构抗震设计用的反应谱,称为设计反应谱。

2.设计反应谱由结构动力学地震系数,该参数可将地震动幅值对地震反应谱的影响分离出来。

地震系数与基本烈度的关系基本烈度6789地震系数k0.050.10(0.15)0.20(0.30)0.40(另:本人对其结果很是不解,由后文可知,地震影响系数最大值等于2.25倍的地震系数,而《抗震规范》2010 表5.1.4-1除以2.25后应该为基本烈度6789地震系数k0.0170.0355(0.0533)0.071(0.106)0.142欢迎大家讨论!)动力系数,是体系最大绝对加速度的放大系数特点:a.是一种规则化的地震反应谱,且动力系数不受地震动振幅的影响。

b.与地震反应谱具有相同的性质,受到体系阻尼比,以及地震动频谱(场地条件和震中距)的影响。

调整:1、为了消除阻尼比的影响由于大多数实际建筑结构的阻尼比在0.05左右,取确定的阻尼比然后不同建筑物根据公式相应调整。

2、按场地震中距将地震动记录分类,消除地震动频谱对地震动的影响。

3、计算每一类地震动记录动力系数的平均值考虑类别相同的不同地震动记录动力系数的变异性。

经过上述三条措施后,再将计算得到的β(T)平滑化后,可得到抗震设计采用的动力系数谱曲线。

3.地震影响系数谱曲线反应谱的局限性:不能反映地震的持续时间(加速度幅值)不能考虑多点激励的影响(刚性地基)不能反映建筑物质量和刚度分布的不均匀不能反映多个阻尼的情况不能反映场地条件和卓越周期的影响不能反映低周疲劳的影响不能反映结构周期不确定性的影响。

抗震设计反应谱

抗震设计反应谱

抗震设计反应谱
抗震设计反应谱是已发生地震地面运动记录计算的结果。

在统计实际地震记录的反应谱时,对部分美国软弱场地(近似于中国的IV类场地)的地震记录的反应谱形状进行了对比分析,精选了其中的部分地震记录。

采用美国西部基岩场地的地震记录用作输入,进行土层地震反应分析。

在统计反应谱平均值时,在高频段、中频段和低频段分别采用记录的峰值加速度、峰值速度和峰值位移来标定加速度反应谱,使得在周期0~10秒范围内谱值变异系数均匀且最小,解决了长周期部分反应谱用单一参数标定的离散性。

第二节 反应谱

第二节 反应谱

设防烈度I 地震系数k
6
7
8
9
0.05
0.10(0.15) 0.20(0.30)
0.40
括号内的数字分别用于设计基本加速度0.15g和0.30g地区内的建筑
Sa
t 0
xg ( )e(t )
sin (t
)d
max
Sa 2 1
xg max
T xg max
x(t) max

t 0
xg ( )e
(t )
sin (t
)d
max
最大加速度 Sa x(t) xg max
t 0
xg ( )e
(t )
sin (t
)d
max
在阻尼比 、地面运动 xg 确定后,最大反应只是结
构自振周期(T, ω)的函数。

)
sin
d
(t

)d
一般结构阻尼比较小 d
T 2
则:水平地震作用的最大绝对值:
F kx(t) m2 x(t) m max
t 0
xg ( )e(t )
sin (t
)d
max
Sa
t 0
xg ( )e(t )
sin (t
线的纵坐标为 Sa , xg (t) max
而拟加速度(加速度最大值)反应谱的纵坐标是Sa 。
地震反应谱是现阶段计算地震作用的基 础,通过反应谱把随时程变化的地震作用 转化为最大的等效侧向力。
对于单自由度体系,把惯性力看作反 映地震对结构体系影响的等效力,用它对 结构进行抗震验算。
结构在地震持续过程中经受的最大地震作用为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
for k=1:600; t(k)=0.01*k; w=6.283185/t(k);
t_ni=0:0.02:(length(ni)-1)*0.02; Hw=exp(-1*d*w*t_ni).*sin(w*t_ni); y1=conv(ni,Hw).*(0.02*w);y1=max(abs(y1)); c(k)=y1*10; end;plot(t,c,'blue') hold on; d=0.1; for k=1:600; t(k)=0.01*k; w=6.283185/t(k); t_ni=0:0.02:(length(ni)-1)*0.02; Hw=exp(-1*d*w*t_ni).*sin(w*t_ni); y1=conv(ni,Hw).*(0.02*w);y1=max(abs(y1)); c(k)=y1*10; end;plot(t,c,'red');grid on; ylabel('Acceleration(mm/s^2)'); xlabel('T(s)'); title(' NINGHE绝对加速度反应谱'); legend(‘\zeta=0’,’\zeta=0.05’,’\zeta=0.1’)
地震反应谱的意义
地震反应谱表示的是在一定的地震动下结构的最大反应,是 结构进行抗震分析与设计的重要工具。我们可以将具有普遍特性
记录的反应谱进行平均和平滑处理,以用于抗震设计。
地震反应谱的计算方法
反应谱的计算方法涉及到时域分析方法和频域分析方法。 时域分析方法中的Duhamel积分,是现在公认精度最高的方法。
绝对加速度反应谱公式如下:(详细推导见教材P171)
实际结构系统的阻尼比ξ通常都小于0.1
2 S S S a v d
画出位移、速度、加速度谱
最大惯性力
Fmax mS a
最大位移反应



Sa——T曲线绘制示意图
用matlab绘制时程曲线及加速度反应谱
以NINGHE地震波为例 Code:
%NINGHE地震波时程曲线
% 加载前用notepad对数据进行规整 load NINGHE.txt; % 数据放在安装文件的work目录下 NUMERIC=transpose(NINGHE); % matlab read the data by column ni=reshape(NUMERIC,numel(NUMERIC),1);% make the date one column t_ni=0:0.002:(length(ni)-1)*0.002; % determine the time plot(t_ni,ni); ylabel('Acceleration'); xlabel('time'); title(' NINGHE')
%NINGHE绝对加速度反应谱 load NINGHE.txt; NUMERIC=transpose(NINGHE); ni=reshape(NUMERIC,numel(NUMERIC),1);%make the date one column d=0;%d is damping ratio for k=1:600; t(k)=0.01*k;%规范的加速度反应谱只关心前6秒的值 w=6.283185/t(k); t_ni=0:0.02:(length(ni)-1)*0.02; Hw=exp(-1*d*w*t_ni).*sin(w*t_ni); y1=conv(ni,Hw).*(0.02*w);y1=max(abs(y1));%卷积积分 c(k)=y1*10; end;plot(t,c,'black')
相关文档
最新文档