人教版数学七上4.2直线、射线、线段
人教版七年级数学上册同步备课4.2直线、射线、线段(第1课时)认识直线、射线、线段(教学设计)
4.2 直线、射线、线段(第1课时)认识直线、射线、线段教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第四章“几何图形初步”4.2直线、射线、线段第1课时,内容包括两点确定一条直线;直线、射线、线段的表示方法.2.内容解析“两点确定一条直线”是人们在长期生产生活实践中总结出来的基本事实,这个事实很好地刻画了直线的特性,是数学知识抽象性与实用性的典型体现.“两点确定一条直线”是图形与几何领域首次用“公理”的方式确定的一个结论,是公理化思想的起点.直线、射线、线段都是重要而基本的几何图形,它们之间既有密切的联系,又有着本质区别.它们的概念、性质、表示方法、画法、计算等,都是重要的几何基础知识,是学习后续图形与几何以及其他数学知识必备的基础.直线、射线、线段的表示,是“图形语言→文字语言→符号语言”层层抽象的数学语言的运用的一个典型例子,掌握这些表示方法是学好图形与几何知识的必备条件.基于以上分析,可以确定本节课的教学重点为:探究“两点确定一条直线”;直线、射线、线段的示方法.二、目标和目标解析1.目标(1)掌握“两点确定一条直线”的基本事实.(2)进一步认识直线、射线、线段,掌握直线、射线、线段的表示方法.(3)初步体会几何语言的应用.2.目标解析达成目标(1)的标志是:通过动手实践自主探索得出基本事实,理解“确定”含义中的存在性与唯一性;经过两点肯定有一条直线,且经过两点只有一条直线;能举出一些实例,说明这一事实在生产生活中的应用.达成目标(2)的标志是:能够根据表示方法正确画出直线、射线、线段;能够恰当选择大写或小写字母表示直线、射线、线段,并认识表示方法的合理性.达成目标(3)的标志是:学生能够根据图形选择恰当的文字或符号,准确描述点与直线、直线与直线的位置关系;能够理解文字或符号所表达的图形及关系.三、教学问题诊断分析虽然在小学阶段,学生对于直线、射线、线段已经有了初步的感性认识,但都是形象化的,比较粗浅的,需要通过进一步学习提高到理性认识.其中直线、射线、线段的表示方法是首次用符号来表示几何图形,学生没有相关经验,再加上直线、射线、线段的表示方法多,容易混淆,学生会感到困难.几何语言的学习,学生要经历“几何模型→图形→文字→符号”逐步加深的抽象过程,尤其符号语言是对文字语言的简化和再次抽象,是七年级学生未曾经历过的体验.除此以外,本课学生还会经历“符号语言→文字语言→图形语言”的转换,既要理解几何语句的意义并能建立几何语句与图形之间的联系,又要将它们用图形直观地表示出来,也是比较困难的学习任务.教学中,教师通过讲解示范并安排形式多样的练习,帮助学生在解决问题的过程中,达到“符号语言→文字语言→图形语言”三种数学语言的自如转换,融会贯通.基于以上分析,确定本节课的教学难点为:直线、射线、线段的表示方法及三种几何语言之间的转换.四、教学过程设计(一)以旧悟新,探求新知我们已经学习了平面图形、立体图形、体等概念,让我们对周围世界有了新的认识.这节课,我们要着重研究直线、射线、线段,学习它们的表示方法、性质特点、实际应用等,使我们对这些基本几何图形加深认识.问题1:我们在小学学过直线、射线、线段,你能说出它们的联系与区别吗?师生活动:学生独立思考后交流.【设计意图】从学生原有的知识出发,激活学生原有的认知结构中的有关知识.问题2:探究并回答下面的问题:(1)如图1,经过一点O画直线,能画几条?经过两点A,B呢?动手试一试.图 1(2)经过两点画直线有什么规律?怎样用简练的语言概括呢?师生活动:学生画图后在小组内讨论交流,然后派学生代表在全班交流,教师点评.师生共同归纳:经过两点有一条直线,并且只有一条直线,简单说成:两点确定一条直线.【设计意图】通过动手实践,由学生自主发现“两点确定一条直线”的基本事实,有利于学生对这一基本事实的理解和接受;让学生经历“动手实践→抽象概括”的认知过程,将感性认识上升到理性认识,体会知识的产生和发展.(3)如果经过两点任意画曲线或折线,试一试能画几条?想一想这又说明什么?师生活动:学生画图后相互交流.【设计意图】与“两点确定一条直线”形成鲜明对比,让学生理解这个基本事实是对“直线”特性的刻画,从而更准确把握直线的性质.(4)怎样理解“确定”一词的含义?师生活动:学生独立思考后讨论交流,并尝试阐述.教师明确:“确定”可以解释为“有且仅有”,“有”意味着存在;“仅有”意味着唯一.【设计意图】“确定”是具有特定数学意义的词汇,要让学生准确把握它的双重意义:“存在”且“唯一”.(5)想一想,生产生活中还有哪些应用“两点确定一条直线”原理的例子,与同学交流一下.师生活动:教师参与学生讨论交流,举出生活中的实例:用两个钉子可以将木条固定在墙上;把墨盒两端固定,木工师傅就可以弹出一条笔直的墨线;植树时只要定出两个树坑的位置,就能使同一行树坑在一条直线上(图2)……图 2【设计意图】加深学生对“两点确定一条直线”的理解,并体会这一事实的应用价值.(二)学习语言,丰富新知问题3:为了便于说明和研究,几何图形一般都要用字母来表示.用字母表示图形,要符合图形自身的特点,并且要规范.通过以往的学习,我们知道可以用一个大写字母表示点,那么结合直线自身的特点,请同学们想一想,该怎样用字母表示一条直线呢?师生活动:结合以上问题,请同学们阅读教科书,然后独立完成下面的任务:(1)用不同的方法表示图3中的直线:图3(2)判断下列语句是否正确,并把错误的语句改正过来:①一条直线可以表示为“直线A”;②一条直线可以表示为“直线ab”;③一条直线既可以记为“直线AB”又可以记为“直线BA”,还可以记为“直线m”.①×;一条直线可以表示为“直线a”;②×;一条直线可以表示为“直线AB”;③√(3)归纳出直线的表示方法.学生独立完成后,进行小组内讨论、纠正,教师参与学生讨论,并明确直线的表示方法.【设计意图】自主探索与合作交流相结合得出直线的表示方法,教师再结合学生易犯的错误加以规范,利于学生准确掌握.(4)想一想,用两个点表示直线合理吗?为什么?师生活动:学生独立思考后讨论交流,并尝试阐述:用两个点表示直线符合“两点确定一条直线”的基本事实,所以表示方法是合理的.【设计意图】使学生理解表示方法的合理性.教师:学习图形与几何知识,不仅要认识图形的形状,还要学习图形之间的位置关系.问题4:(1)观察图4,然后选择恰当的词语填空:①点A在直线l(上,外);直线l(经过,不经过)点A.②点B在直线l(上,外);直线l(经过,不经过)点B.总结点与直线的位置关系,与同学交流一下.图4师生活动:学生完成后尝试回答,教师点评纠正,并明确点与直线的位置关系.(2)如图5,尝试描述直线a和直线b的位置关系,与同学交流一下.图 5师生活动:学生讨论交流,教师在点评的基础上明确:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点.(3)根据下列语句画出图形:①直线AB与直线CD相交于点P;②三条直线m,n,l相交于一点E.师生活动:学生完成画图并相互纠正,教师板书示范.【设计意图】发挥学生的主体作用,自主探索并掌握点与直线的位置关系、直线与直线相交的概念.(三)针对训练1. 按语句画图:(1)直线EF经过点C;(2)点A在直线m外.2. 建筑工人在砌墙时,如何拉参照线?请用学过的几何知识解析他们这样做的道理.3. 木工师傅木板时,怎样用墨盒弹墨线?请用学过的几何知识解析他们这样做的道理.【设计意图】通过及时练习,学习图形语言、文字语言和符号语言的转化,培养学生运用几何语言的能力.(四)类比迁移,拓展新知问题5:射线和线段都是直线的一部分,类比直线的表示方法,想一想应怎样表示射线、线段?师生活动:学生阅读教科书,自主探索射线、线段的表示方法,然后回答下列问题:(1)如图6,类比直线的表示方法,想一想射线该如何表示?图 6(2)“一条射线既可以记为射线AB又可以记为射线BA”的说法对吗?为什么?(3)如图7,类比直线的表示方法,想一想线段该如何表示?图7(4)如图8,怎样由线段AB得到射线AB和直线AB?图8教师检查学生学习情况,强调表示射线时应注意字母的顺序.【设计意图】以直线的表示方法为基础进行类比迁移,明确射线、线段的表示方法,培养运用几何语言的能力.(五)针对训练按下列语句画出图形:(1)经过点O的三条线段a,b,c;(2)线段AB,CD相交于点B.参考答案:(1)经过点O的三条线段a,b,c;(2)线段AB,CD相交于点B.(六)当堂巩固1. 在同一平面内有三个点A,B,C,过其中任意两个点做直线,可以画出的直线的条数是( C )A. 1B. 2C. 1或3D. 无法确定2. 下列表示方法正确的是( C )A. 线段LB. 直线abC. 直线mD. 射线Oa3. 下列语句准确规范的是( B )A. 延长直线ABB. 直线AB,CD相交于点MC. 延长射线AO到点BD. 直线a,b相交于一点m4. 如图,A,B,C三点在一条直线上,(1)图中有几条直线,怎样表示它们?(2)图中有几条线段,怎样表示它们?(3)射线AB 和射线AC 是同一条射线吗?(4)图中有几条射线?写出以点B为端点的射线.解:(1)1条,直线AB或直线AC或直线BC;(2)3条,线段AB,线段BC,线段AC;(3)是;(4)6条.以B为端点的射线有射线BC、射线BA.5. 如图,在平面上有四个点A,B,C,D,根据下列语句画图:(1)做射线BC;(2)连接线段AC,BD交于点F;(3)画直线AB,交线段DC的延长线于点E;(4)连接线段AD,并将其反向延长.参考答案:【设计意图】通过综合练习,巩固学生对直线、射线、线段表示方法的掌握;着重练习文字语言向图形语言的转化,提高几何语言的理解与运用能力.(七)能力提升往返于A、B两地的客车,中途停靠三个站,每两站间的票价均不相同,问:(1)有多少种不同的票价?(2)要准备多少种车票?解:画出示意图如下:(1)图中一共有10条线段,故有10种不同的票价.(2)来回的车票不同,故有10×2=20(种)不同的车票.(八)感受中考(3分)(2021•河北1/26)如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A.a B.b C.c D.d【解答】解:利用直尺画出图形如下:可以看出线段a与m在一条直线上.故答案为:a.故选:A.【设计意图】通过对最近几年的中考真题的训练,使学生提前感受中考考什么,进一步了解考点.(九)课堂小结回顾本节课的学习,回答下列问题:(1)你掌握了关于直线的哪一个基本事实?(2)简单陈述一下直线、射线、线段的表示方法.【设计意图】引导学生对本节课的重点和难点进行回顾,以突出重要的知识技能;帮助学生把握知识要点,理清知识脉络,以利于良好学习习惯的养成.(十)布置作业P129:习题4.2:第2、3、4题.五、教学反思对于直线的基本事实是这样突破的:①直线的基本事实:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.这个基本事实又被称为“直线公理”.②这个基本事实是对直线的一个重要刻画,对这个基本事实的表述方法,学生不太熟悉,要使学生清楚“确定”包含两层意思:一层意思是经过两点有一条直线(“有”──存在性),另一层意思是经过两点只有一条直线(“只有”──唯一性).教学中,学生通过动手实践自主探索得出直线的基本事实,理解“确定”的含义中的存在性与唯一性,并能举出一些实例,说明这一事实在生产生活中的应用.为进一步理解此基本事实,也可以与经过两点的曲线有无数条的事实作比较,在比较中加深对基本事实的认识.对于直线、射线、线段的联系与区别是这样突破的:直线、射线、线段是相近的概念,学生容易混淆,要在复习前面知识的基础上,说明射线和线段是直线的一部分,指出它们的联系;再从端点个数和延伸情况等方面来分析它们的区别.教学直线、射线、线段的画法时,要让学生掌握:在画线段时,不要向任何一边延伸;画射线时,要向一旁延伸;画直线时,要向两边延伸.对于图形与语句间的转换是这样突破的:图形与语句间的转换是学习几何知识的基本能力.要做到:能按给出的语句画出图形、能用适当的语句表述已给图形.本课时除了要掌握直线、射线、线段的表示外,还需要掌握点和直线的位置关系以及两条直线相交的表示等.。
人教版七年级上数学第4章:4.2直线、射线、线段(含答案)
4.2直线、射线、线段知识要点:1.定义:一点在空间沿着一个方向及它的相反方向运动,所形成的图形就是直线.2.直线性质(1)经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.(2)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了3.定义:直线上的一点和它一旁的部分叫做射线.4.特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长5.定义:直线上两个点和它们之间的部分叫做线段.6.特征:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.一、单选题1.如图所示,已知线段AD>BC,则线段AC与BD的关系是()A.AC>BD B.AC=BD C.AC<BD D.不能确定2.下列说法:①过一点可以作无数条直线;②两点确定一条直线;③两直线相交,只有一个交点;④过平面内三点只能画一条直线.其中正确的个数是( )A.4个B.3个C.2个D.1个3.下列画图语句中正确的是()A.画射线OP=5cm B.画射线OA的反向延长线C.画出A、B两点的中点D.画出A、B两点的距离4.已知点P在直线a上,也在直线b上,但不在直线c上,且直线a,b,c两两相交.符合以上条件的图形是()A. B. C. D.5.若点B在直线AC上,AB=10,BC=5,则A、C两点间的距离是()A.5 B.15 C.5或15 D.不能确定6.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=7cm,那么BC的长为()A.3cm B.3.5cm C.4cm D.4.5cm7.下列说法错误的是()A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.同一个平面上,经过一点有且只有一条直线与已知直线垂直8.下列说法正确的是( )A.射线PA和射线AP是同一条射线B.射线OA的长度是12cmC.直线ab、cd相交于点MD.两点确定一条直线9.下列表示线段的方法中,正确的是( )A.线段A B.线段AB C.线段ab D.线段Ab10.在开会前,工作人员进行会场布置,如图为工作人员在主席台上由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线二、填空题11.如图,使用直尺作图,看图填空:延长线段______ 到______,使BC=2AB.12.已知线段AB与直线CD互相垂直,垂足为点O,且AO=5 cm,BO=3 cm,则线段AB 的长为______________.13.下列说法中①两点之间,直线最短;②经过直线外一点,能作一条直线与这条直线平行;③和已知直线垂直的直线有且只有一条;④在平面内过一点有且只有一条直线垂直于已知直线.正确的是__________.(只需填写序号)14.如图,线段AB的长为8厘米,C为线段AB上任意一点,若M为线段AC的中点,N 为线段CB的中点,则线段MN的长是________三、解答题15.已知:线段a、b.求作:线段AB,使AB=2b-a.16.已知∠1和线段a,b,如图(1)按下列步骤作图(不写作法,保留作图痕迹)①先作∠AOB,使∠AOB=∠1.②在OA边上截取OC,使OC=a.③在OB边上截取OD,使OD=b.(2)利用刻度尺比较OC+OD与CD的大小.17.如图.B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.18.如图,已知线段AB,反向延长AB到点C,使AC=12AB,D是AC的中点,若CD=2,求AB的长.答案1.A2.B3.B4.D5.C6.A7.B8.D9.B10.B11.AB, C.12.8 cm或2 cm.13.②、④.14.4cm15.解:在直线l上顺次截取AD=b,DC=b,在线段AC上截取CB=a,则线段AB为所求作的线段.16.解:(1)根据以上步骤可作图形,如图,(2)通过利用刻度尺测量可知OC+OD>CD.17.设AB=3x,则BC=2x,CD=5x,∵E、F分别是AB、CD的中点,∴BE=32x,CF=52x,∵BE+BC+CF=EF,且EF=24,∴32x+2x+52x=24,解得x=4,∴AB=12,BC=8,CD=20.18.∵D是AC的中点,∴AC=2CD,∵CD=2cm,∴AC=4cm,∵AC= 12 AB,∴AB=2AC,∴AB=2×4 cm =8cm。
人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解
4.2 直线、射线、线段1.直线(1)概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始的概念,直线常用“一根拉得很紧的细线”,“一张纸的折痕”等实际事物进行描述.(2)特点:直线向两方无限延伸,不可度量,没有粗细;并且同一平面内的两条相交直线只有一个交点.(3)直线的基本性质:经过两点有一条直线,并且只有一条直线.即“两点确定一条直线”.(4)直线的两种表示法:一是用一个小写字母表示:如直线a,b,c或直线l等.另一个是用直线上两个点的大写字母表示,如:直线AB或直线BA.如图:表示为直线l或直线AB(点的字母位置可以交换).(5)直线与点的位置关系:一是点在直线上,也叫做直线经过这点;另一种是点在直线外,也叫做直线不经过这个点.【例1-1】下面几种表示直线的写法中,错误的是().A.直线a B.直线MaC.直线MN D.直线MO解析:直线的表示法有两种,一种是用一个小写字母表示,另一种是用直线上两个点的大写字母表示,所以直线Ma这种表示法不正确,故选B.答案:B【例1-2】如图,下列说法错误的是().A.点A在直线m上B.点A在直线l上C.点B在直线l上D.直线m不经过B点解析:点与直线有两种位置关系,一是点在直线上,也称作直线过这点,另一种是点在直线外.所以C错误.答案:C2.射线(1)定义:直线上一点和它一旁的部分,叫做射线.它是直线的一部分.如图就是一条射线,其中O是射线的端点.(2)表示法:同直线一样,射线也有两种表示方法,一种是用一个小写字母表示:如射线a,b,c或射线l等,另一个是用射线上两个点的大写字母表示,其中前面的字母表示的点必须是端点.如图:表示为射线l或射线OA.注意:表示射线端点的字母一定要写在前面.(3)特点:射线只有1个端点,向一方无限延伸,因此不可度量.【例2-1】如图,若射线AB上有一点C,下列与射线AB是同一条射线的是().A.射线BA B.射线ACC.射线BC D.射线CB解析:端点相同,在同一条直线上,且方向一致,就是同一条射线,所以B正确.答案:B3.线段(1)定义:直线上两点和它们之间的部分,叫做线段.它是直线的一部分.(2)特点:有两个端点,不能向两方无限延伸,因此它有长度,有大小.(3)表示法:同直线一样,线段也有两种表示法,一种是用一个小写字母表示,如线段a,b,c.另一种是用线段两个端点的大写字母表示.如图:可以表示为:线段AB或线段BA,或线段a.(4)线段的基本性质:两点的所有连线中,线段最短,简单的说成:“两点之间,线段最短.”意义:选取最短路线的原则和依据.(5)两点间的距离:连接两点的线段的长度,叫做这两点间的距离.破疑点线段的表示表示线段的两端点的字母可以交换,如线段AB也是线段BA,但端点字母不同线段就不一样.【例3】如图有几条直线?几条射线?几条线段?并写出.分析:直线主要看有几条线向两方无限延伸,图中只有一条;射线主要看端点,再看延伸方向,3个端点,所以有6条,线段主要是看端点,3个端点,所以有3条.解:有一条直线AB(或AC,AD,AE,BE,BD,CD,…);射线有6条:CA,CB,DA,DB,EA,EB.线段有3条:CD,CE,DE.4.线段的画法(1)画一条线段等于已知线段画法:①测量法:用刻度尺先量出已知线段的长度,画一条等于这个长度的线段;②尺规法:如图:画一条射线AB,在这条射线上截取(用圆规)AC=a.(2)画线段的和差测量法:量出每一条线段的长度,求出它们的和差,画一条线段等于计算结果的长度.如:已知线段a,b(a>b),画线段AB=a-b,就是计算出a-b的长度,画出线段AB等于a-b 的长度即可.尺规法:如图,已知线段a,b,画一条线段,使它等于2b-a.画法:如图,①画一条射线AB,在这条射线上连续截取(用圆规)AC=2b,②再以A为一个端点,截取AD=a,那么DC=2b-a.【例4】如图,已知线段a,b,c,画一条线段,使它等于a+b-c(用尺规法).画法:如图,①画射线(直线也可)AB,在射线AB上分别截取AC=a,CD=b.②以D为一个端点在AD上截取DE=c,线段AE即为所求.5.线段的比较(1)测量法:就是用刻度尺测量出两条线段的长度,再比较它们的大小.(2)叠合法:把两条线段的一端对齐,放在一起进行比较.如图:①若C 点落在线段AB 内,那么AB >AC ;②若C 点落在线段AB 的一个端点上,那么AB =AC ;③若C 点落在线段AB 外(准确的说是AB 的延长线上),那么AB <AC .谈重点 线段的比较 用叠合法比较两条线段的大小,一端一定要对齐,看另一个端点的落点,测量法要注意单位的统一.【例5】 已知:如图,完成下列填空:(1)图中的线段有________、________、________、________、________、________共六条.(2)AB =________+________+________;AD =________+________;CB =_______+__________.(3)AC =AB -__________;CD =AD -__________=BC -__________;(4)AB =__________+__________.解析:根据图形和线段间的和差关系填空,注意(4)题有两种可能.答案:(1)AC AD AB CD CB DB(2)AC CD DB AC CD CD DB(3)CB AC DB(4)AD DB 或AC CB6.线段中点、线段等分点(1)定义:点M 把线段AB 分成相等的两条线段AM 与MB ,点M 叫做线段AB 的中点.(2)拓展:把一条线段分成相等的三条线段的点叫做这条线段的三等分点….(3)等量关系:在上图中:AM =BM =12AB ;2AM =2BM =AB . 【例6】 如图,点C 是线段AB 的中点.(1)若AB =6 cm ,则AC =__________cm.(2)若AC =6 cm ,则AB =__________cm.解析:若AB =6 cm ,那么AC =12AB =3(cm). 若AC =6 cm ,那么AB =2AC =2×6=12(cm).答案:3 127.关于延长线的认识延长线是重要的,也是应用较多的几何术语,是初学者最易错,最不好理解的地方,下面介绍几种关于延长线的术语:如图(1)延长线段AB ,就是由A 往B 的方向延长,并且延长线一般在作图中都用虚线表示;如图(2)叫做反向延长线段AB ,就是由B 向A 的方向延长;如图(3)延长AB 到C ,就是到C 不再延长;如图(4)延长AB 到C ,使AB =BC ;如图(5)点C 在AB 的延长线上等.几种常见的错误,延长射线AB 或延长直线AB ,都是错误的,图(6)中只能反向延长射线AB .【例7-1】 若AC =12AB ,那么点C 与AB 的位置关系为( ). A .点C 在AB 上 B .点C 在AB 外C .点C 在AB 延长线上D .无法确定答案:D【例7-2】 画线段AB =5 cm ,延长AB 至C ,使AC =2AB ,反向延长AB 至E ,使AE =13CE ,再计算: (1)线段AC 的长;(2)线段AE ,BE 的长.分析:按要求画图.由画图过程可知:AC =2AB ,且C 在AB 的延长线上,所以AB =BC =12AC ,E 在AB 的反向延长线上,且AE =13CE ,所以AB =BC =AE =5 c m.解:如图:(1)因为AC =2AB ,所以BC =AB =5 cm ,所以AC =AB +BC =5+5=10 (cm).(2)因为AE =13CE ,所以AE =AB =BC =5 cm , 所以BE =AB +AE =5+5=10 (cm).8.线段的计数公式及应用一条直线上有n 个点,如何不重复不遗漏地数出该直线上分布着多少条线段呢?以下图为例:为避免重复,我们一般可以按以下方法来数线段的条数:即A →AB ,AC ,AD ,B →BC ,BD ,C →CD ,线段总数为3+2+1=6,若是更多的点,由以A 为顶点的线段的条数可以看出,每个点除了自身以外,和其他任何一个点都能组成一条线段,因此当有n 个点时,以A 为顶点的线段就有(n -1)条,同样以B 为顶点的线段也有(n -1)条,因此n 个顶点共有n (n -1)条线段;但由A 到B 得到的线段AB 和由B 到A 得到的线段BA 是同一条,而每条线段的数法都是如此,这样对于每一条线段都数了2次,所以除以2就是所得线段的实际条数,即当一条直线上有n 个点时,线段的总条数就等于12n (n -1). 【例8-1】 从秦皇岛开往A 市的特快列车,途中要停靠两个站点,如果任意两站之间的票价都不相同,那么有多少种不同的票价?有多少种车票?分析:这个问题相当于一条直线上有4个点,求这条直线上有多少条线段.因为任意两站之间的票价都不相同,因此有多少条线段就有多少种票价,根据公式我们很快可以得出有6种不同的票价,因为任意两站往返的车票不一样,所以,从秦皇岛到达目的地有12种车票.解:当n =4时,有n (n -1)2=4×(4-1)2=6(种)不同的票价.车票有6×2=12(种).答:有6种不同的票价,有12种车票.【例8-2】 在1,2,3,…,100这100个不同的自然数中任选两个求和,则不同的结果有多少种?分析:本题初看似乎和线段条数的计数规律无关,但事实上,若把每个数都看成直线上的点,而把这两个数求和得到的结果看成是1条线段,则其中的道理就和直线上线段的计数规律是完全一致的,因而解法一样,直接代入公式计算即可求出结果.解:不同的结果共有:12n (n -1)=12×100×(100-1)=4 950(种). 答:共有4 950种不同的结果. 9.与线段有关的计算和线段有关的计算主要分为以下三种情况:(1)线段的和差及有关计算,一般比较简单,根据线段间的和差由已知线段求未知线段.(2)有关线段中点和几等分点的计算,是本节的重点,其中以中点运用最多,这也是用数学推理的方式进行运算的开始.(3)综合性的运算,既有线段的和差,也有线段的中点,综合运用和差倍分关系求未知线段.解技巧 线段的计算 有关线段的计算都是由已知,经过和差或中点进行转化,求未知的过程,因此要结合图形,分析各段关系,找出它们的联系,通过加减倍分的运算解决.【例9-1】 如图,线段AB =8 cm ,点C 是AB 的中点,点D 在CB 上且DB =1.5 cm ,求线段CD 的长度.分析:根据中点关系求出CB ,再根据CD =CB -DB 求出CD .解:CB =12AB =12×8=4(cm),CD =CB -DB =4-1.5=2.5(cm). 答:线段CD 的长度为2.5 cm.【例9-2】 如图所示,线段AB =4,点O 是线段AB 上一点,C ,D 分别是线段OA ,OB 的中点,求线段CD 的长.解:由于C ,D 分别是线段OA ,OB 的中点,所以OC =12OA ,OD =12OB ,所以CD =12(OA +OB )=12AB =12×4=2. 答:线段CD 的长为2.10.直线相交时的交点数两条直线相交有1个交点,三条直线两两相交最多有3个交点,那么n 条直线两两相交最多有多少个交点?下面以5条直线两两相交最多有多少个交点为例研究:如图,当有5条直线时,每条直线上有4个交点,共计有(5-1)×5个交点,但图中交点A ,既在直线e 上也在直线a 上,因而多算了一次,其他交点也是如此,因而实际交点数是(5-1)×5÷2=10个,同样的道理,当有n 条直线时,在没有共同交点的情况下,每条直线上有(n -1)个交点,共有n 条直线,交点总数就是n (n -1)个,但由于每一个点都数了两次,所以交点总数是12n (n -1)个. 【例10-1】 三条直线a ,b ,c 两两相交,有__________个交点( ).A .1B .2C .3D .1或3解析:三条直线a ,b ,c 两两相交的情形有两种,如图.答案:D【例10-2】 同一平面内的12条直线两两相交,(1)最多可以有多少个交点?(2)是否存在最多交点个数为10的情况?分析:(1)将n =12代入12n (n -1)中求出交点个数.(2)交点个数为10,也就是12n (n -1)=10,即n (n -1)=20,没有两个相邻整数的积是20,所以不存在最多交点个数是10的情况.解:(1)12条直线两两相交,最多可以有:12n (n -1)=12×12×(12-1)=66(个)交点. (2)不存在最多交点个数为10的情况.11.最短路线选择“两点之间,线段最短”是线段的一条重要性质,运用这个性质,可以解决一些最短路线选择问题.这类问题一般分两类:一类是选择路线,选择从A 到B 的最短路线,连接AB 所得到的线段就是;另一类是选择一个点,使这个点到A ,B 的距离之和最小,根据“两点之间,线段最短”这条线段上的任一点到A 到B 的距离之和都等于这条线段的长度,所以这条线段上的任一点都符合要求.但这类问题往往还有附加条件,如:这点还要在某条公路上,某条河上等,所以要满足所有条件.解技巧 求最短路线 对于第一类问题,只要将A ,B 放到同一个平面上,连接AB 即可得到所需线路.对于第二类问题,连接AB ,它们的交点一般就是所求的点.【例11】 如图(1),一只壁虎要从圆柱体A 点沿着表面尽可能快的爬到B 点,因为B 点处有它要吃的一只蚊子,则它怎样爬行路线最短?分析:要想求最短路线,必须将AB 放置到一个平面上,根据“两点之间,线段最短”,连接AB ,所得路线就是所求路线,因此将圆柱体的侧面展开如图(2)所示,连接AB ,则AB 是壁虎爬行的最短路线.解:在圆柱上,标出A ,B 两点,将圆柱的侧面展开(如图(2)),连接AB ,再将圆柱复原,会得到围绕圆柱的一条弧线,这条线就是所求最短路线.析规律 立体图形中的最短路线 在立体图形中研究两点之间最短路径问题时,通常把立体图形展开成平面图形,转化为平面图形中的两点间的距离问题,再用平面内“两点之间,线段最短”求解.。
人教版数学七年级上册4.2《直线、射线与线段》教学设计1
人教版数学七年级上册4.2《直线、射线与线段》教学设计1一. 教材分析《直线、射线与线段》是人教版数学七年级上册第4章第2节的内容。
这一节主要介绍直线、射线和线段的定义及其性质。
直线没有端点,无限延伸;射线有一个端点,无限延伸;线段有两个端点,有限长度。
本节内容是学生初步认识几何图形的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析七年级的学生已经初步掌握了实数的概念,具备了一定的抽象思维能力。
但学生在几何方面的知识较为薄弱,对于直线、射线和线段的直观理解尚需加强。
此外,学生的空间想象力有待提高,因此,在教学过程中,需要注重培养学生的空间想象能力和逻辑思维能力。
三. 教学目标1.理解直线、射线和线段的定义及其性质。
2.能够正确识别直线、射线和线段,并运用它们解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.直线、射线和线段的定义及其性质。
2.直线、射线和线段的识别和运用。
五. 教学方法1.采用直观演示法,通过教具展示直线、射线和线段的特征,帮助学生建立直观的认识。
2.采用讲授法,讲解直线、射线和线段的性质,引导学生理解并掌握知识点。
3.采用实践操作法,让学生动手操作,巩固对直线、射线和线段的理解。
4.采用问题驱动法,引导学生思考和探讨直线、射线和线段在实际问题中的应用。
六. 教学准备1.教具:直线、射线和线段的模型或图片。
2.教学PPT:包含直线、射线和线段的定义、性质及应用实例。
3.练习题:包括选择题、填空题和解答题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用教具展示直线、射线和线段的模型或图片,引导学生观察和思考它们的特征。
提问:你们认为直线、射线和线段有什么区别和联系?2.呈现(10分钟)通过PPT呈现直线、射线和线段的定义及其性质。
讲解直线的定义:直线没有端点,无限延伸。
讲解射线的定义:射线有一个端点,无限延伸。
讲解线段的定义:线段有两个端点,有限长度。
人教版七年级数学上册4.2:直线、射线、线段
(2)连接线段AC,并将其延长;
(3)连接线段AD,并将其反向延长; (4)作射线BC.
练习
1.下列给线段取名正确的是( C)
A.线段M B.线段Mm
C.线段m D.线段mn
2.用适当的语句表述图中 点与直线的关系
P A
l B
3.下面图形的表示方法是否正确?
若错误,请改正.
①a
在同一平面内有三个点 A,B,C,过其中任意两个点画直线,可以画出
条直线.
(3)点与直线的位置关系
②要准备多少种车票? 如图,其中线段有 条,
线段向一端无限延长形成射线,向两端无限延长形成直线
下面图形的表示方法是否正确?
解:画出示意图如下: 例2 如图,平面上有四个点A,B,C,D,根据下列语句画图:
直线、射线、线段的区别与联系:
射线、线段都是直线的一部分.
类型 端点数 延伸
度量
线段 2个
可度量
射线 直线
1个 无端点
向一个方 向无限延
不可度量
向两个伸方向无 限延伸
不可度量
联系:线段向一端无限延长形成射线,向两端无限延长形成直线
想一想
生活中有哪些物体可以近似 地看成线段、射线、直线?
直线
线段
掌握“两点确定一条直线”的基本事实,了解点和直线的位置关系. (4)直线与直线的位置关系
联系与区别吗? (2)如何由一条线段得到一条射线或一条直线?
认真看课本第125页、126页. (3)点与直线的位置关系 联系:
理解直线、射线、线段的区别与联系. 经过一个点能画几条直线?经过两个点呢?动手试一试. 认真看课本第125页、126页. 记作:射线PO ( ) (2)连接线段AC,并将其延长; 记作:线段BA ( ) 怎么样能保证我种的树都在一条直线上?
人教版七年级数学上册 4.2直线、射线、线段 知识点归纳
人教版七年级数学上册4.2直线、射线、线段过两点有且只有一条直线。
简称:两点确定一条直线。
直线、射线、线段都是直的,都由无数个点构成。
直线、射线、线段的特征:①直线:没有端点,向两端无限延长,长度无法测量。
②射线:有一个端点,从这个端点开始向另一端无限延长,长度无法测量。
③线段:有两个端点,从一个端点连向另一个端点,长度可以测量。
线段向一个方向无限延长,就成了射线;线段向两个方向无限延长,就成了直线。
点的表示方式:用一个大写字母表示。
如点A、点M、点P。
直线、射线、线段的表示方式:①直线用一个小写字母或两个大写字母表示,例如直线a或直线AB 。
温馨提示:直线AB和直线BA是同一条直线。
②射线用一个小写字母或两个大写字母表示,例如射线a或射线AB 。
温馨提示:射线AB指从A射向B,射线BA指从B射向A,不是同一条射线。
③线段用一个小写字母或两个大写字母表示,例如线段a或线段AB 。
温馨提示:线段AB和线段BA是同一条线段。
点与直线的位置关系有两种:①点在直线上。
这时我们也可以说,这条直线经过这个点。
②点在直线外。
这时我们也可以说,这条直线不经过这个点。
当两条不同的直线有一个公共点时,我们就说这两条直线相交。
这个公共点叫做它们的交点。
用无刻度的直尺和圆规作图,叫做尺规作图。
尺规作图:作一条线段AB等于已知线段a。
步骤①:用直尺画一条射线AC 。
步骤②:用圆规在射线AC上截取AB=a 。
比较两条线段长短的方法:①度量法。
用刻度尺测量它们的长度,再进行比较。
②叠合法。
用圆规把其中一条线段移到另一条线段上,再进行比较。
把一条线段分为两条相等线段的点,叫做这条线段的中点。
线段的中点到线段两端的距离相等。
如图,点P是AB的中点写法规范如下:∵点P是AB中点∴PA=PB=1AB2把一条线段平均分成三份的点,叫做这条线段的三等分点;把一条线段平均分成四份的点,叫做这条线段的四等分点;把一条线段平均分成五份的点,叫做这条线段的五等分点;…依次类推。
人教版数学七年级上册4.2《直线、射线、线段》教案2
人教版数学七年级上册4.2《直线、射线、线段》教案2一. 教材分析《直线、射线、线段》是人教版数学七年级上册第四章第二节的内容,本节内容是在学生已经掌握了直线、射线、线段的定义的基础之上进行进一步的深入学习。
通过本节的学习,使学生能进一步理解直线、射线、线段的性质,能正确的运用直线、射线、线段解决一些几何问题。
二. 学情分析学生在之前的学习中已经接触过直线、射线、线段,对于它们的定义和性质有一定的了解,但还需要通过实例来进一步巩固和理解。
此外,学生对于几何图形的认识和理解还不够深入,需要通过大量的实践活动来提高。
三. 教学目标1.知识与技能:掌握直线、射线、线段的性质,能够运用直线、射线、线段解决一些几何问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间观念和几何思维。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:直线、射线、线段的性质。
2.难点:直线、射线、线段的运用。
五. 教学方法采用“引导发现法”、“情境教学法”、“实践操作法”等多种教学方法,引导学生自主探究,合作交流,实践操作,从而达到理解掌握直线、射线、线段的性质。
六. 教学准备1.教具:直尺、三角板、多媒体设备。
2.学具:每人一套直尺、三角板、练习本。
七. 教学过程1. 导入(5分钟)教师通过提问方式引导学生回顾直线、射线、线段的定义,为新课的学习做好铺垫。
2. 呈现(10分钟)教师通过多媒体展示直线、射线、线段的图片,让学生观察并说出它们的特征。
3. 操练(15分钟)教师提出问题,让学生用直线、射线、线段的知识解决问题。
如:“在平面上有三个点A、B、C,请画出直线AB、射线AC、线段BC。
”4. 巩固(10分钟)教师给出一些练习题,让学生独立完成,检验学生对直线、射线、线段的掌握程度。
5. 拓展(10分钟)教师引导学生思考:在实际生活中,我们何时会用到直线、射线、线段?让学生举例说明,进一步拓宽学生的知识视野。
4.2直线、射线、线段
4.2 直线、射线、线段
栏目索引
例4 已知,如图4-2-4,B、C两点把线段AD分成2∶4∶3的三部分,M是 AD的中点,CD=6,求线段MC的长. 图4-2-4
解析 设AB=2k,则BC=4k,CD=3k, AD=2k+3k+4k=9k. 因为CD=6,即3k=6,所以k=2, 所以AB=4,BC=8,AD=18. 因为M为AD的中点,
4.2 直线、射线、线段
例1 根据图4-2-1填空:
栏目索引
图4-2-1 (1)点B在直线AD (2)点E是直线 直线CD的交点; (3)过A点的直线有
;点C在直线AD
,直线CD过点
;
与直线
的交点,点
是直线AD与
条,分别是 .
解析 根据图形进行分析,即可完成各题,同一直线的表示方法不唯一.
答案 (1)上;外;E (2)AE;CD;D (3)3;直线AD、直线AE、直线AC
知识点三 线段
定义
表示 方法 线段的 中点
4.2 直线、射线、线段
栏目索引
内容
图例
直线上两点及两点间的部分
(1)用表示端点的两个大写字母表示; (2)用一个小写字母表示
线段AB或线段BA或线段a
把一条线段分成两条相等线段的点,叫做这条
线段的中点
点M是线段AB的中点,
AM=BM= 1 AB,即AB=2AM=2BM
重要 解读
(1)对直线的基本事实的理解,应抓住其中的“有”“只有”两个关键词,“有”表示存在,“只有”表示唯一,即 过两点一定能画出一条直线,并且这样的直线只有一条. (2)用两个大写字母表示直线时,这两个字母的位置可以交换,如直线AB和直线BA表示的是同一条直线;用小写字 母表示直线时,只能用一个小写字母表示,如“直线a”或“直线b”. (3)两条不同的直线不能有两个或两个以上的公共点,如果有两个公共点,那么这两条直线重合. (4)直线没有长短,不能说直线AB长为5 cm,直线也没有粗细
人教版数学七年级上册4.2线段、直线、射线-课件
AB是同一条射线的是(B )
(A)射线BA (B)射线AC A
(C )射线BC (D)射线CB
BC
3.图中的几何体有多 少条棱?请写出这些 表示棱的线段。
4.请写出图中以O为 端点的各条射线。
A
B
D
C
•A B•
O• C
5.用两种方式表示图中的两条直线。
m
o
A
n 第一种:直线 AO,
直线 BO
B
第二种:直线 m ,
⑴要把准备好的一根硬纸条固定在 硬纸板上,至少需要几个图钉?
两点确定一条直线
⑵ 经过一点O画直线,能画出几条? 经过两点A、B 呢?
O
A
B
经过两点有且只有一条直线
存在
唯一
生活中我们常常用到两点确定一条 直线,你能举几个例子吗?
两点确定一条直线的应用:
植树时,只要定出两个树坑的位置就 能确定同一行的树坑所在的直线。
练习
读下列语句,并分别画出图形:
(1)直线 l 经过A、B、C三点,
并且点C在点A与B之间; (2)两条线段m与n相交于点P; (3) p是直线外一点,过点p有一条
直线b与直线a相交于点Q;
n (4)直线 l、m、 相交于点Q。
l
A
C
B
m n
p
p
Q
b
a
l
m
Q
n
直线的基本性质:
. 经过两点有且只有一条直线 存在性 唯一性
(1)延长直线MN到点C (错)
(2)直线A与直线B交于一点M (错 ) (3)三点决定一条直线 ( 错 )
(4)无数条直线可能交于一点 (对)
2、下图(1)中的线段可表示为 线段AB 或 线段m 。 (2)中的直线可表示为 直线EF 或 直线n 。 (3)中的射线可表示为 射线HE 。
人教版-数学-七年级上册-4.2 直线、射线、线段 课件 比较线段的长短
点滴记忆:
线段公理:
两点之间的所有连线中,线段最短。 即两点之间,线段最短
两点的距离
连接两点间的线段的长度,叫做这两点 的距离
1、作射线(直尺) 2、量线段(圆规) 3、画弧取线段(圆规)
4、∴线段即为所求.
见词想性:
中点的概念:
• 如图,点M把线段AB分成相等的
两条线段AM和BM,点M叫做线段
3.已知线段AB=2㎝,延长AB到C,使 BC=2AB,若D为AB的中点,E为AC的中点, 求线段CE的长.
本节课的主要内容:
• 1、线段的性质:两点之间的所有连线中,线 段最短。
• 2、连接两点之间线段的长度叫做这两点之间 的距离。
• 3、线段中点的定义和运用。 • 4、比较线段大小的方法:叠合法和度量法。
AB的A 中点。 M
B
AM = BM = -21 AB AB=2AM AB=2BM
判断:
• 若AM=BM,则M为线段AB的中点。
M
A
B
线段中点的条件:
1、在已知线段上。
2、把已知线段分成两条相等线段的点
用尺子度量 通过折绳找到中点。
自己画一条线段CD,想一想,你 用什!
例1. 在直线a上顺次截取A,B,C三点, 使得 AB=4cm,BC=3cm.如果o是 线段AC的中点,求线段OB的长。
递进式
在直线a上截取A,B,C三点,使得 AB=4cm,BC=3cm.如果o是线段AC 的中点,求线段OB的长。
回归训练
• 已知直线L上顺次三个点A、B、C,已知 AB=10cm,BC=4cm。
(1)如果D是AC的中点,那么AD= 7 cm. (2)如果M是AB的中点,那么MD= 5 cm.
人教版数学七年级上册4.2《 直线、射线、线段(1)》教案
人教版数学七年级上册4.2《直线、射线、线段(1)》教案一. 教材分析《直线、射线、线段(1)》是人教版数学七年级上册第四章第二节的内容。
本节课主要让学生认识直线、射线和线段的特点,理解它们之间的联系和区别。
教材通过生活实例引入直线、射线和线段的概念,接着介绍它们的性质和表示方法,最后运用它们解决实际问题。
本节课的内容是学生学习几何的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析七年级的学生已经掌握了实数的基础知识,具备了一定的逻辑思维能力和空间想象能力。
但学生在学习过程中,可能对直线、射线和线段的概念理解不深,容易混淆。
因此,在教学过程中,教师需要通过具体的生活实例和操作活动,帮助学生深入理解这些概念,并能够运用它们解决实际问题。
三. 教学目标1.了解直线、射线和线段的概念及特点。
2.掌握直线、射线和线段的性质和表示方法。
3.能够运用直线、射线和线段解决实际问题。
4.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.直线、射线和线段的概念及其特点。
2.直线、射线和线段的性质和表示方法。
五. 教学方法1.情境教学法:通过生活实例引入直线、射线和线段的概念,让学生在具体的情境中感受和理解这些概念。
2.动手操作法:让学生亲自动手画直线、射线和线段,观察和总结它们的性质,提高学生的实践能力。
3.小组合作学习:引导学生分组讨论和探究直线、射线和线段的特点,培养学生的团队协作能力。
4.归纳总结法:在教学过程中,引导学生总结直线、射线和线段的性质,加深学生对这些知识的理解。
六. 教学准备1.教学课件:制作精美的课件,展示直线、射线和线段的图片和实例。
2.教学道具:准备一些直线、射线和线段的模型,方便学生直观地观察和操作。
3.练习题:准备一些有关直线、射线和线段的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的直线、射线和线段的实例,如电线、射线等,引导学生思考:这些图形有什么共同的特点?怎样用数学语言来表示它们?2.呈现(10分钟)讲解直线、射线和线段的概念,让学生明确它们的定义和特点。
人教版数学七年级上册4.2《 直线、射线、线段(1)》教学设计
人教版数学七年级上册4.2《直线、射线、线段(1)》教学设计一. 教材分析人教版数学七年级上册4.2《直线、射线、线段(1)》是学生在学习了平面几何基本概念的基础上进一步深入学习直线、射线、线段的性质和特点。
本节内容通过实例让学生理解直线、射线、线段的定义,掌握它们之间的联系和区别,能够正确地识别和运用直线、射线、线段解决实际问题。
二. 学情分析学生在小学阶段已经接触过直线、射线、线段的概念,但对其本质特征和应用可能理解不深。
因此,在教学过程中,教师需要从学生的实际出发,通过生动形象的实例,引导学生深入理解直线、射线、线段的内涵和外延,提高他们的空间想象能力和解决问题的能力。
三. 教学目标1.了解直线、射线、线段的定义,掌握它们之间的联系和区别。
2.能够识别和运用直线、射线、线段解决实际问题。
3.培养学生的空间想象能力和解决问题的能力。
四. 教学重难点1.直线、射线、线段的定义及其特性。
2.直线、射线、线段在实际问题中的应用。
五. 教学方法1.采用实例教学法,通过生动的实例让学生理解直线、射线、线段的定义和特性。
2.采用问题驱动法,引导学生运用直线、射线、线段解决实际问题。
3.采用小组合作学习法,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的实例和图片,用于讲解直线、射线、线段的概念和特性。
2.准备一些实际问题,让学生练习运用直线、射线、线段解决。
3.准备黑板和粉笔,用于板书重点内容。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如交通指示灯、射线枪等,引导学生思考直线、射线、线段的概念和特点。
2.呈现(10分钟)讲解直线、射线、线段的定义和特性,用图片和实例进行说明,让学生清晰地理解它们之间的联系和区别。
3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,运用直线、射线、线段解决。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)选取一些实际问题,让学生独立解决,检验他们对直线、射线、线段的理解和运用能力。
七年级数学上册(人教版)4.2直线、射线、线段(第1课时)认识直线、射线、线段优秀教学案例
1.通过观察、操作、思考、交流等活动,让学生自主探究直线、射线、线段的特征。
2.利用教具、模型、多媒体等工具,帮助学生直观地理解直线、射线、线段的概念。
3.引导学生通过小组合作,共同探讨直线、射线、线段的表示方法,培养学生的团队协作能力。
4.设计具有层次性的练习题,让学生在解决实际问题的过程中,巩固对直线、射线、线段的理解。
七年级数学上册(人教版)4.2直线、射线、线段(第1课时)认识直线、射线、线段优秀教学案例
一、案例背景
本节课为人教版七年级数学上册第4.2节“直线、射线、线段”,是学生初步接触几何概念的重要一课。直线、射线、线段是基本的几何元素,对于学生理解几何图形、构建几何体系具有重要意义。然而,由于这些概念较为抽象,学生可能难以理解和掌握。因此,本节课的教学旨在让学生通过观察、操作、思考、交流等过程,深入理解直线、射线、线段的特征和区别,提高空间想象能力和逻辑思维能力。
2.问题导向:本节课通过设计具有挑战性和探究性的问题,引导学生主动思考、独立解决问题。这种教学策略能够培养学生的独立思考能力,提高他们的解决问题的能力。同时,教师在问题导向的过程中,能够及时发现学生的思考情况,针对性地进行引导和帮助,提高了教学效果。
3.小组合作:组织学生进行小组讨论和合作活动,让学生共同探讨直线、射线、线段的特征和表示方法。这种教学方式培养了学生的团队合作能力,提高了学生的沟通能力。同时,小组合作活动能够激发学生的学习积极性,提高学生的学习效果。
人教版初中数学七年级上册第四章4.2.1直线、射线、线段的概念
运动场爬竿 探照灯光
跑道线
输 油 管
画一条线段、射线、直线,你发现三者有什 么联系吗?又有什么区别呢?
A
B
A
B
A
B
线段 图形
表示 几个端点 能否延伸 能否度量
射线
直线
• 已知一条线段,你能由它得到一条射线和一 条直线吗?
线直射段线线AAABBB
A
B
线段和射线都是直线的一部分.
针对训练
判断:
1、射线是直线的一部分。 2、线段是射线的一部分。 3、画一条射线,使它的长度为3cm。 4、线段AB和线段BA是同一条线段。 5、射线OP和射线PO是同一条射线。 6、如图,画一条线段ab。
a
b
(√ ) (√ )
(× )
(√ )
(× ) (× )
例1、已知平面上四个点A、B、C、D 读下列语句,并画出相应的图形
B A
C
AB C
(1)可以画三条直线 (2)只能画一条直线
如果你想将一根小木条固定在木 板上, 至少需要几个钉子?
1、建筑工人在砌墙时会在墙的两头分别固 定两根木桩,然后在木桩之间拉一条绳子, 定出一条直的参照线,这样砌出的墙就是直 的。这其中的道理是:
经过两点有且只有一条直线
• 练习
• 1、判断: • ①延长直线MN到点C( ) • ②直线A与直线B交于一点M。( ) • ③三点决定一条直线。( ) • ④无数条直线可能会交于一点。( ) • ⑤射线是直线的一半。( ) • 2、种树时,只要定出两个树坑的位置,就能
确定同一行的树所在的直线,这是因为 _______________ ___。
• 3、按下列语句画出图形: • (1)直线EF经过点C. • (2)经过点O的三条线段. • (3)如图已知四点A、B、C、D
人教版数学七年级上册4.2《直线、射线、线段》教学设计1
人教版数学七年级上册4.2《直线、射线、线段》教学设计1一. 教材分析《直线、射线、线段》是人教版数学七年级上册第四章第二节的内容。
本节内容是在学生已经掌握了线段的概念和特征的基础上进行教学的。
通过本节课的学习,使学生能够理解直线、射线和线段的含义,掌握它们的特征,能够正确地运用直线、射线和线段解决实际问题。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对线段的概念和特征有一定的了解。
但学生在学习过程中,可能对直线、射线和线段的区别和联系难以理解,需要通过大量的实例和练习来进行巩固。
三. 教学目标1.知识与技能目标:使学生理解直线、射线和线段的含义,掌握它们的特征,能够正确地运用直线、射线和线段解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 教学重难点1.教学重点:直线、射线和线段的含义及其特征。
2.教学难点:直线、射线和线段的区别和联系。
五. 教学方法采用情境教学法、直观演示法、小组合作学习法、引导发现法等,引导学生通过观察、操作、思考、交流等活动,理解直线、射线和线段的含义,掌握它们的特征。
六. 教学准备1.教师准备:对本节课的内容进行深入研究,了解学生的学情,准备相关的教学材料和实例。
2.学生准备:预习本节课的内容,了解直线、射线和线段的概念。
七. 教学过程1.导入(5分钟)教师通过向学生展示一些生活中的直线、射线和线段的实例,如街道、射线枪等,引导学生回顾线段的概念,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体课件,向学生介绍直线、射线和线段的定义和特征,同时结合具体的实例进行讲解,使学生能够直观地理解它们的概念。
3.操练(10分钟)教师设计一些练习题,让学生通过实际的操作和思考,进一步理解和掌握直线、射线和线段的特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六、合作交流,再获新知
问题11 观察图形,下列说法中正确的个数是( B ). (1)直线BA和直线AB是同一条直线; (2)射线AC和射线AD是同一条射线; (3)线段BD和DB是两条不同的线段; (4)三条直线两两相交时,一定有三个交点.
A.1个
B.2个
C.3个
D.4个
六、合作交流,再获新知
问题12 按下列语句画出图形: ①点A在线段MN上;③经过O点的三条线段a,b,c; a b O c
· O
A·
· B
二、动手操作
基本事实:
探究新知
经过两点有一条直线,并且只有一条直线. 简单说成:两点确定一条直线.
三、生活实例ຫໍສະໝຸດ 应用新知问题3 你还能举出一些实际生活中应用“两点确 定一条直线”的实例吗?
四、归纳完善,丰富新知
问题4 结合直线自身的特点,请同学们想一想, 我们该怎样表示一条直线呢?这样表示有什么道理? 直线有两种表示方法: (1)可以用一个小写字母表示 直线: 直线l. (2)因为两点确定一条直线, 所以也可以用直线上的两点表 示直线: 直线AB.
l
A
●
B
●
四、归纳完善,丰富新知
问题5 当点与直线、直线与直线同时在一个图形 中出现的时候,我们应怎样描述它们之间的关系呢? 如图,试着描述图中点与直线、直线与直线的关系.
l b
●
●
P O
O
●
a
四、归纳完善,丰富新知
归纳: (1)点与直线的位置关系: 点O在直线l上(直线O经过点l); 点P在直线l外(直线l不经过点P). (2)当两条不同的直线a与b有一个公共点O时,我 们称这两条直线相交,这个公共点叫做它们的交点. l O P · b
·
②
·· A
③
C
·
①
六、合作交流,再获新知
问题7 射线和线段都是直线的一部分,类比直 线的表示方法,你认为应怎样恰当地表示射线和线段 呢?请你举出一些生活中能看成射线、线段的实例.
问题8 (1)已知线段AB,你能由线段AB得到直线AB和 射线AB吗? (2)能否用几何语言简要描述一下直线、射线、 线段?
第四章 几何图形初步 4.2直线、射线、线段
安徽省无为县刘渡中心学校
丁浩勇
一、以旧悟新,探求新知
问题1 我们在小学,已经学习过直线、射线和 线段,请同学们回忆一下它们的形状,并分别画出一 条直线、射线和线段.
二、动手操作
探究新知
问题2 如图,经过一点O画直线,能画几条?经 过两点A、B呢?动手试一试.
· 射线 A
线段 A
·
1.线段AB 不可延 可度 可度 ( 或线段 BA ) 2 个 2 个 · 伸 量量 B 2.线段a
六、合作交流,再获新知
问题10 如图,经过刨平的木板上的两个点,能弹出一条 笔直的墨线,此操作的依据是( D ).
A.线段有两个端点; B.两条直线相交,只有一个交点; C.直线是向两边无限延伸的; D.两点确定一条直线.
·
O
a
五、即时练习,巩固新知
问题6 (1)用恰当的语句描述图中点与直线,直线与直线 的关系. l A · a A B C b c
P·
Q
·
五、即时练习,巩固新知
(2)按下列语句画出图形: ①直线EF经过点C; ②点A在直线 l 外; ③直线AB与直线CD相交于点A.
E· A · l D
B·
C· F
六、合作交流,再获新知
问题9 填写表格,归纳直线、射线、线段的联系与 区别.
名称
直线
图形
表示
延伸
端点 度量
A
·
1.直线AB l (或直线BA) · B 2.直线l l 1.射线AB · B 2.射线l a
向两端 不可 不可 0 个 0 个 无限延 度量 度量 伸
向一端 不可 不可 1个 无限延 1个 度量 度量 伸
M
A
N
②射线AB不经过点P;④线段AB、CD相交于点B.
●
P
D A C B
A
B
七、课堂小结,布置作业
问题13 通过本节课的学习,你知道了什么? 学会了什么?领悟了什么?
作业:教科书
习题4.2
第1、2、3、4题.