2017年辽宁省鞍山市铁西区中考数学五模试卷
答案2017年辽宁省鞍山市中考数学试卷(附答案解析版)
2017年辽宁省鞍山市中考数学试卷一、选择题(共8小题,每小题3分,共24分)1.(3分)(2017?鞍山)下列各数中,比﹣3小的数是()A .﹣2 B .0 C .1 D .﹣42.(3分)(2017?鞍山)如图所示几何体的左视图是()A .B .C .D .3.(3分)(2017?鞍山)函数y=√+2中自变量x 的取值范围是()A .x ≥﹣2 B .x >﹣2 C .x ≤﹣2 D .x <﹣24.(3分)(2017?鞍山)一组数据2,4,3,x ,4的平均数是3,则x 的值为()A .1B .2C .3D .45.(3分)(2017?鞍山)在平面直角坐标系中,点P (m+1,2﹣m )在第二象限,则m 的取值范围为()A .m <﹣1B .m <2C .m >2D .﹣1<m <26.(3分)(2017?鞍山)某班有若干个活动小组,其中书法小组人数的3倍比绘画小组的人数多15人,绘画小组人数的2倍比书法小组的人数多5人,问:书法小组和绘画小组各有多少人?若设书法小组有x 人,绘画小组有y 人,那么可列方程组为()A .{-3??=15-2??=5B .{??-3??=152??-??=5C .{3??-??=15-2??=5D .{3??-??=152??-??=57.(3分)(2017?鞍山)分式方程5-2=1-??2-??﹣2的解为()A .x=2 B .x=﹣2 C .x=1 D .无解8.(3分)(2017?鞍山)如图,在矩形ABCD 中,点E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②DF=DC ;③S △DCF =4S △DEF ;④tan ∠CAD=√22.其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题(共8小题,每小题3分,共24分)9.(3分)(2017?鞍山)长城的总长大约为6700000m,将数6700000用科学记数法表示为.10.(3分)(2017?鞍山)分解因式2x2y﹣8y的结果是.11.(3分)(2017?鞍山)有5张大小、背面都相同的卡片,正面上的数字分别为1,﹣√2,0,π,﹣3,若将这5张卡片背面朝上洗匀后,从中任意抽取1张,那么这张卡片正面上的数字为无理数的概率是.12.(3分)(2017?鞍山)如图,在□ABCD中,分别以点A和点C为圆心,大于1AC的长为半径作弧,两弧相交于M,N两点,作直线MN,分别交AD,BC于点E,2F,连接AF,∠B=50°,∠DAC=30°,则∠BAF等于.13.(3分)(2017?鞍山)若一个圆锥的底面圆半径为1cm,其侧面展开图的圆心角为120°,则圆锥的母线长为cm.14.(3分)(2017?鞍山)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C 落在点E处),连接BD,则四边形AEDB的面积为.15.(3分)(2017?鞍山)如图,在平面直角坐标系中,正方形ABOC和正方形DOFE的顶点B,F在x轴上,顶点C,D在y轴上,且S△ADF=4,反比例函数y=(x >0)的图象经过点E,则k= .16.(3分)(2017?鞍山)如图,在△ABC中,AB=AC=6,∠A=2∠BDC,BD交AC 边于点E,且AE=4,则BE?DE= .三、解答题(共2小题,每小题8分,共16分)17.(8分)(2017?鞍山)先化简,再求值:(1﹣1+2)÷??2+2??+12??+4,其中x=√2﹣1.18.(8分)(2017?鞍山)如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,BA的延长线于点E,F,交边BC,AD于点H,G.(1)求证:四边形AECF是平行四边形.(2)若AB=5,BC=8,求AF+AG的值.四、解答题(共2小题,每小题10分,共20分)19.(10分)(2017?鞍山)某校要了解学生每天的课外阅读时间情况,随机调查了部分学生,对学生每天的课外阅读时间x(单位:min)进行分组整理,并绘制了如图所示的不完整的统计图表,根据图中提供的信息,解答下列问题:(1)本次调查共抽取名学生.(2)统计表中a= ,b= .(3)将频数分布直方图补充完整.(4)若全校共有1200名学生,请估计阅读时间不少于45min的有多少人.课外阅读时间x/min频数/人频率0≤x <1560.115≤x <30120.230≤x <45a 0.2545≤x <6018b 60≤x <7590.1520.(10分)(2017?鞍山)为增强学生环保意识,某中学举办了环保知识竞赛,某班共有5名学生(3名男生,2名女生)获奖.(1)老师若从获奖的5名学生中选取一名作为班级的“环保小卫士”,则恰好是男生的概率为.(2)老师若从获奖的5名学生中任选两名作为班级的“环保小卫士”,请用画树状图法或列表法,求出恰好是一名男生、一名女生的概率.五、解答题(共2小题,每小题10分,共20分)21.(10分)(2017?鞍山)如图,建筑物C 在观测点A 的北偏东65°方向上,从观测点A 出发向南偏东40°方向走了130m 到达观测点B ,此时测得建筑物C 在观测点B 的北偏东20°方向上,求观测点B 与建筑物C 之间的距离.(结果精确到0.1m .参考数据:√3≈1.73)22.(10分)(2017?鞍山)如图,△ACE ,△ACD 均为直角三角形,∠ACE=90°,∠ADC=90°,AE 与CD 相交于点P ,以CD 为直径的⊙O 恰好经过点E ,并与AC ,AE 分别交于点B 和点F .(1)求证:∠ADF=∠EAC .(2)若PC=23PA ,PF=1,求AF 的长.六、解答题(共2小题,每小题10分,共20分)23.(10分)(2017?鞍山)某网络经销商销售一款夏季时装,进价每件60元,售价每件130元,每天销售30件,每销售一件需缴纳网络平台管理费4元.未来30天,这款时装将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该时装单价每降1元,每天销售量增加5件,设第x 天(1≤x ≤30且x 为整数)的销量为y 件.(1)直接写出y 与x 的函数关系式;(2)在这30天内,哪一天的利润是6300元?(3)设第x 天的利润为W 元,试求出W 与x 之间的函数关系式,并求出哪一天的利润最大,最大利润是多少.24.(10分)(2017?鞍山)如图,一次函数y=34x+6的图象交x 轴于点A 、交y 轴于点B ,∠ABO 的平分线交x 轴于点C ,过点C 作直线CD ⊥AB ,垂足为点D ,交y 轴于点E .(1)求直线CE 的解析式;(2)在线段AB 上有一动点P (不与点A ,B 重合),过点P 分别作PM ⊥x 轴,PN ⊥y 轴,垂足为点M 、N ,是否存在点P ,使线段MN 的长最小?若存在,请直接写出点P 的坐标;若不存在,请说明理由.七、解答题(本大题共1小题,共12分)25.(12分)(2017?鞍山)如图,∠MBN=90°,点C 是∠MBN 平分线上的一点,过点C 分别作AC ⊥BC ,CE ⊥BN ,垂足分别为点C ,E ,AC=4√2,点P 为线段BE 上的一点(点P 不与点B 、E 重合),连接CP ,以CP 为直角边,点P 为直角顶点,作等腰直角三角形CPD ,点D 落在BC 左侧.(1)求证:=;(2)连接BD ,请你判断AC 与BD 的位置关系,并说明理由;(3)设PE=x ,△PBD 的面积为S ,求S 与x 之间的函数关系式.八、解答题(本大题共1小题,共14分)26.(14分)(2017?鞍山)如图,抛物线y=﹣122+32x+2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)试探究△ABC的外接圆的圆心位置,求出圆心坐标;(2)点P是抛物线上一点(不与点A重合),且S△PBC=S△ABC,求∠APB的度数;(3)在(2)的条件下,点E是x轴上方抛物线上一点,点F是抛物线对称轴上一点,是否存在这样的点E和点F,使得以点B、P、E、F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.2017年辽宁省鞍山市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,共24分)1.(3分)(2017?鞍山)下列各数中,比﹣3小的数是()A.﹣2 B.0 C.1 D.﹣4【考点】18:有理数大小比较.【分析】根据0大于负数,负数比较大小绝对值大的反而小,即可解答.【解答】解:∵﹣4<﹣3<﹣2<0,∴比﹣3小的数是﹣4,故选:D.【点评】本题考查了有理数的大小比较,解决本题的关键是熟记0大于负数,负数比较大小绝对值大的反而小.2.(3分)(2017?鞍山)如图所示几何体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】从左面观察结合体,能够看到的线用实线,看不到的线用虚线.【解答】解:图中几何体的左视图如图所示:故选:C.【点评】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.3.(3分)(2017?鞍山)函数y=√+2中自变量x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x≤﹣2 D.x<﹣2【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由x+2≥0可得x≥﹣2,故选:A.【点评】本题主要考查函数自变量的取值范围,掌握二次根式的被开方数是非负数是解题的关键.4.(3分)(2017?鞍山)一组数据2,4,3,x,4的平均数是3,则x的值为()A.1 B.2 C.3 D.4【考点】W1:算术平均数.【分析】根据平均数的定义列出方程,解方程可得答案.【解答】解:根据题意,得:2+4+3+??+45=3,解得:x=2,故选:B【点评】本题主要考查算术平均数,解题的关键是熟练掌握算术平均数的定义.5.(3分)(2017?鞍山)在平面直角坐标系中,点P(m+1,2﹣m)在第二象限,则m的取值范围为()A.m<﹣1 B.m<2 C.m>2 D.﹣1<m<2【考点】CB:解一元一次不等式组;D1:点的坐标.【分析】根据第二象限内点的横坐标为负、纵坐标为正得出关于m的不等式组,解之可得.【解答】解:根据题意,得:{+1<02-??>0,解得m<﹣1,故选:A.【点评】本题主要考查解一元一次不等式组的能力,解题的关键是根据点的坐标特点列出关于m的不等式组.6.(3分)(2017?鞍山)某班有若干个活动小组,其中书法小组人数的3倍比绘画小组的人数多15人,绘画小组人数的2倍比书法小组的人数多5人,问:书法小组和绘画小组各有多少人?若设书法小组有x人,绘画小组有y人,那么可列方程组为()A.{-3??=15-2??=5B.{??-3??=152??-??=5C.{3??-??=15-2??=5D.{3??-??=15 2??-??=5【考点】99:由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:书法小组人数×3﹣绘画小组的人数=15;绘画小组人数×2﹣书法小组的人数=5,根据等量关系列出方程组即可.【解答】解:若设书法小组有x人,绘画小组有y人,由题意得:{3??-??=15 2??-??=5,故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.7.(3分)(2017?鞍山)分式方程5-2=1-??2-??﹣2的解为()A .x=2 B .x=﹣2 C .x=1 D .无解【考点】B3:解分式方程.【分析】本题需先根据解分式方程的步骤,先乘以最简公分母,再去掉分母,即可求出x 的值,再进行检验即可求出答案.【解答】解:两边同时乘以(x ﹣2)得:5=(x ﹣1)﹣2(x ﹣2),解得:x=﹣2,检验:当x=﹣2时,x ﹣2≠0,∴x=﹣2是原方程的根.故选B .【点评】本题主要考查了解分式方程,在解题时要注意把分式方程转化为整式方程进行解答是本题的关键.8.(3分)(2017?鞍山)如图,在矩形ABCD 中,点E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②DF=DC ;③S △DCF =4S △DEF ;④tan ∠CAD=√22.其中正确结论的个数是()A .4B .3C .2D .1【考点】S9:相似三角形的判定与性质;LB :矩形的性质;T7:解直角三角形.【分析】①正确.只要证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可;②根据已知条件得到四边形BMDE 是平行四边形,求得BM=DE=12BC ,根据线段垂直平分线的性质得到DM 垂直平分CF ,于是得到结论,③根据三角形的面积公式即可得到结论;④设AE=a ,AB=b ,则AD=2a ,根据相似三角形的性质即可得到结论.【解答】解:如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,S △DCF =4S △DEF∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;②∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM=DE=12BC ,∴BM=CM ,∴CN=NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DM 垂直平分CF ,∴DF=DC ,故②正确;③∵点E 是AD 边的中点,∴S △DEF =12S △ADF ,∵△AEF ∽△CBA ,∴AF :CF=AE :BC=12,∴S △CDF =2S △ADF =4S △DEF ,故③正确;④设AE=a ,AB=b ,则AD=2a ,由△BAE ∽△ADC ,有=2????,即b=√2a ,∴tan ∠CAD==??2??=√22.故④正确;故选A .【点评】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.二、填空题(共8小题,每小题3分,共24分)9.(3分)(2017?鞍山)长城的总长大约为6700000m ,将数6700000用科学记数法表示为 6.7×106.【考点】1I :科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:6 700 000=6.7×106,故答案为:6.7×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.(3分)(2017?鞍山)分解因式2x 2y ﹣8y 的结果是2y (x+2)(x ﹣2).【考点】55:提公因式法与公式法的综合运用.【专题】11 :计算题;44 :因式分解.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=2y(x+2)(x﹣2).故答案为:2y(x+2)(x﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.(3分)(2017?鞍山)有5张大小、背面都相同的卡片,正面上的数字分别为1,﹣√2,0,π,﹣3,若将这5张卡片背面朝上洗匀后,从中任意抽取1张,那么这张卡片正面上的数字为无理数的概率是25.【考点】X4:概率公式;26:无理数.【分析】根据所有等可能的结果数有5种,其中任取一张,这张卡片上的数字为无理数的结果有2种,根据概率公式即可得出答案.【解答】解:∵在1,﹣√2,0,π,﹣3中,无理数有﹣√2,π,共2个,∴这张卡片正面上的数字为无理数的概率是2 5;故答案为:2 5.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.(3分)(2017?鞍山)如图,在□ABCD中,分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于M,N两点,作直线MN,分别交AD,BC于点E,F,连接AF,∠B=50°,∠DAC=30°,则∠BAF等于70°.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据∠BAF=∠BAD﹣∠CAD﹣∠CAF,想办法求出∠BAD、∠CAD、∠CAF 即可.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD=180°﹣∠B=130°,∠ACF=∠CAD=30°,由作图痕迹可知EF是AC的垂直平分线,∴AF=CF,∴∠CAF=∠ACF=30°,∴∠BAF=∠BAD﹣∠CAD﹣∠CAF=70°.故答案为70°.【点评】本题考查基本作图、线段的垂直平分线等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.(3分)(2017?鞍山)若一个圆锥的底面圆半径为1cm ,其侧面展开图的圆心角为120°,则圆锥的母线长为 3 cm .【考点】MP :圆锥的计算.【分析】利用圆锥的底面周长等于圆锥的侧面展开图的弧长即可求解.【解答】解:设母线长为l ,则120??????180=2π×1解得:l=3.故答案为:3.【点评】考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.(3分)(2017?鞍山)如图,在△ABC 中,∠ACB=90°,AC=4,BC=3,将△ABC 绕点A 顺时针旋转得到△ADE (其中点B 恰好落在AC 延长线上点D 处,点C落在点E 处),连接BD ,则四边形AEDB 的面积为272.【考点】R2:旋转的性质.【分析】通过勾股定理计算出AB 长度,利用旋转性质求出各对应线段长度,利用面积公式解答即可.【解答】解:∵在△ABC 中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,∴AD=AB=5,∴CD=AD ﹣AC=1,∴四边形AEDB 的面积为2×12×4×3+12×1×3=272,故答案为:272.【点评】题目考查勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.15.(3分)(2017?鞍山)如图,在平面直角坐标系中,正方形ABOC 和正方形DOFE 的顶点B ,F 在x 轴上,顶点C ,D 在y 轴上,且S △ADF =4,反比例函数y=(x>0)的图象经过点E ,则k= 8 .【考点】G5:反比例函数系数k 的几何意义.【分析】设正方形ABOC 和正方形DOFE 的边长分别是m 、n ,则AB=OB=m ,DE=EF=OF=n ,BF=OB+OF=m+n ,然后根据S △ADF =S 梯形ABOD +S △DOF ﹣S △ABF =4,得到关于n 的方程,解方程求得n 的值,最后根据系数k 的几何意义求得即可.【解答】解:设正方形ABOC 和正方形DOFE 的边长分别是m 、n ,则AB=OB=m ,DE=EF=OF=n ,∴BF=OB+OF=m+n ,∴S △ADF =S 梯形ABOD +S △DOF ﹣S △ABF =12m (m+n )+12n 2﹣12m (m+n )=4,∴n 2=8,∵点E (n .n )在反比例函数y=(x >0)的图象上,∴k=n 2=8,故答案为8.【点评】本题考查了反比例函数系数k 的几何意义,三角形的面积,根据面积得出方程是解题的关键.16.(3分)(2017?鞍山)如图,在△ABC 中,AB=AC=6,∠A=2∠BDC ,BD 交AC 边于点E ,且AE=4,则BE ?DE= 20 .【考点】S9:相似三角形的判定与性质;KH :等腰三角形的性质.【专题】17 :推理填空题.【分析】根据题意可以证明△FEB ∽△DEC ,然后根据相似三角形对应边的比相等,即可求得BE ?DE 的值,本题得以解决.【解答】解:延长CA 到F ,使得AF=AB ,连接BF ,则∠F=∠ABF=12∠BAC ,∵∠BAC=2∠BDC ,∴∠F=∠BDC ,∵∠FEB=∠DEC ,∴△FEB ∽△DEC ,∴=,∵AE=4,AB=AC=6,∴EF=10,CE=2,∴2=10,∴BE ?DE=20,故答案为:20.【点评】本题考查相似三角形的判定与性质、等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(共2小题,每小题8分,共16分)17.(8分)(2017?鞍山)先化简,再求值:(1﹣1+2)÷??2+2??+12??+4,其中x=√2﹣1.【考点】6D :分式的化简求值.【分析】根据分式的减法和除法可以化简题目中的式子,再将x 的值代入即可解答本题.【解答】解:(1﹣1+2)÷??2+2??+12??+4=+2-1+22(??+2)(??+1)2=2(??+1)(+1)2=2+1,当x=√2﹣1时,原式=2√2-1+1=√2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.(8分)(2017?鞍山)如图,四边形ABCD 为平行四边形,∠BAD 和∠BCD 的平分线AE ,CF 分别交DC ,BA 的延长线于点E ,F ,交边BC ,AD 于点H ,G .(1)求证:四边形AECF 是平行四边形.(2)若AB=5,BC=8,求AF+AG 的值.【考点】L7:平行四边形的判定与性质.【分析】(1)由平行四边形的性质,结合角平分线的定义可证得AE ∥CF ,结合AF ∥CE ,可证得结论;(2)由条件可证得△DCG ∽△AFG ,利用相似三角形的性质可求得DG 与AG 的关系,结合条件可求得AG 的长,从而可求得答案.【解答】(1)证明:∵四边形ABCD 为平行四边形,∴AD ∥BC ,∠BAD=∠BCD ,∵AE 、CF 分别平分∠BAD 和∠BCD ,∴∠BCG=∠CGD=∠HAD ,∴AE ∥CF ,∵AF ∥CE ,∴四边形AECF 是平行四边形;(2)解:由(1)可知∠BCF=∠DCF=∠F ,∴BF=BC=AD=8,∵AB=CD=5,∴AF=BF ﹣AB=3,∵BF ∥DE ,∴∠DCG=∠F ,∠D=∠FAG ,∴△DCG ∽△AFG ,∴==53,∴DG=53AG ,∴AD=AG+DG=83AG=8,∴AG=3,∴AF+AG=3+3=6.【点评】本题主要考查平行四边形的性质和判定,掌握平行四边形的对边平行且相等是解题的关键,注意相似三角形的应用.四、解答题(共2小题,每小题10分,共20分)19.(10分)(2017?鞍山)某校要了解学生每天的课外阅读时间情况,随机调查了部分学生,对学生每天的课外阅读时间x (单位:min )进行分组整理,并绘制了如图所示的不完整的统计图表,根据图中提供的信息,解答下列问题:(1)本次调查共抽取60 名学生.(2)统计表中a= 15 ,b= 0.3 .(3)将频数分布直方图补充完整.(4)若全校共有1200名学生,请估计阅读时间不少于45min 的有多少人.课外阅读时间x /m i n频数/人频率0≤x <1560.115≤x <30120.23a 00≤x <4 5. 2 54 5≤x <6 018b6 0≤x <7 590.15【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据0≤x<15min阶段的频数和频率求出总数即可;(2)根据题意列出算式a=60×0.25,b=18÷60,求出即可;(3)根据频数是15画出即可;(4)根据题意列出算式,再求出即可.【解答】解:(1)6÷0.1=60,即本次调查共抽取60名学生,故答案为:60;(2)a=60×0.25=15,b=18÷60=0.3,故答案为:15,0.3;(3)如图所示:;(4)1200×18+960=540,答:若全校共有1200名学生,请估计阅读时间不少于45min 的有540人.【点评】本题考查了频数分布直方图,用样本估计总体,频数分布表等知识点,能根据题意和图形列出算式是解此题的关键.20.(10分)(2017?鞍山)为增强学生环保意识,某中学举办了环保知识竞赛,某班共有5名学生(3名男生,2名女生)获奖.(1)老师若从获奖的5名学生中选取一名作为班级的“环保小卫士”,则恰好是男生的概率为35.(2)老师若从获奖的5名学生中任选两名作为班级的“环保小卫士”,请用画树状图法或列表法,求出恰好是一名男生、一名女生的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)根据概率公式用男生人数除以总人数即可得;(2)先画树状图展示所有20种等可能的结果数,再找出选出1名男生和1名女生的结果数,然后根据概率公式求解.【解答】解:(1)所有等可能结果共有5种,其中男生有3种,∴恰好是男生的概率为35,故答案为:35;(2)画树状图为:共有20种等可能的结果数,其中选出1名男生和1名女生的结果数为12种,所以恰好选出1名男生和1名女生的概率=1220=35.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.也考查了统计图.五、解答题(共2小题,每小题10分,共20分)21.(10分)(2017?鞍山)如图,建筑物C 在观测点A 的北偏东65°方向上,从观测点A 出发向南偏东40°方向走了130m 到达观测点B ,此时测得建筑物C 在观测点B 的北偏东20°方向上,求观测点B 与建筑物C 之间的距离.(结果精确到0.1m .参考数据:√3≈1.73)【考点】TB :解直角三角形的应用﹣方向角问题.【分析】过A 作AD ⊥BC 于D .解Rt △ADB ,求出DB=12AB=65m ,AD=√3BD=65√3m .再解Rt △ADC ,得出CD=AD=65√3m ,根据BC=BD+CD 即可求解.【解答】解:如图,过A 作AD ⊥BC 于D .根据题意,得∠ABC=40°+20°=60°,AB=130m .在Rt △ADB 中,∵∠DAB=30°,∴DB=12AB=12×130=65m ,AD=√3BD=65√3m .∵∠BAC=180°﹣65°﹣40°=75°,∴∠C=180°﹣∠ABC ﹣∠BAC=180°﹣60°﹣75°=45°.在Rt △ADC 中,∵tanC==1,∴CD=AD=65√3m ,∴BC=BD+CD=65+65√3≈177.5m .故观测点B 与建筑物C 之间的距离约为177.5m .【点评】此题考查了解直角三角形的应用﹣方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.(10分)(2017?鞍山)如图,△ACE ,△ACD 均为直角三角形,∠ACE=90°,∠ADC=90°,AE 与CD 相交于点P ,以CD 为直径的⊙O 恰好经过点E ,并与AC ,AE 分别交于点B 和点F .(1)求证:∠ADF=∠EAC .(2)若PC=23PA ,PF=1,求AF 的长.【考点】S9:相似三角形的判定与性质;M5:圆周角定理.【专题】55C :与圆有关的计算.【分析】(1)根据圆周角定理,等角的余角相等可以证明结论成立;(2)根据(1)中的结论和三角形相似的知识可以求得AF 的长.【解答】(1)证明:∵∠ADC=90°,∠ACE=90°,∴∠ADF+∠FDC=90°,∠EAC+∠CEF=90°,∵∠FDC=∠CEF ,∴∠ADF=∠EAC ;(2)连接FC ,∵CD 是圆O 的直径,∴∠DFC=90°,∴∠FDC+∠FCD=90°,∵∠ADF+∠FDC=90°,∠ADF=∠EAC ,∴∠FCD=∠EAC ,即∠FCP=CAP ,∵∠FPC=∠CPA ,∴△FPC ∽△CPA ,∴=,∵PC=23PA ,PF=1,∴123=23,解得,PA=94,∴AF=PA ﹣PF=94-1=54,即AF=54.【点评】本题考查相似三角形的判定与性质、圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答.六、解答题(共2小题,每小题10分,共20分)23.(10分)(2017?鞍山)某网络经销商销售一款夏季时装,进价每件60元,售价每件130元,每天销售30件,每销售一件需缴纳网络平台管理费4元.未来30天,这款时装将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该时装单价每降1元,每天销售量增加5件,设第x 天(1≤x ≤30且x 为整数)的销量为y 件.(1)直接写出y 与x 的函数关系式;(2)在这30天内,哪一天的利润是6300元?(3)设第x 天的利润为W 元,试求出W 与x 之间的函数关系式,并求出哪一天的利润最大,最大利润是多少.【考点】HE :二次函数的应用;AD :一元二次方程的应用.【分析】(1)根据销量=原价的销量+增加的销量即可得到y 与x 的函数关系式;(2)表示出网络经销商所获得的利润=6300,解方程即可求出x 的值;(3)根据每天售出的件数×每件盈利=利润即可得到的W 与x 之间的函数关系式,由函数的性质即可求出其最大利润以及其哪一天所获得的.【解答】解:(1)由题意可知y=5x+30;(2)根据题意可得(130﹣x ﹣60﹣4)(5x+30)=6300,即x 2﹣60x+864=0,解得:x=24或36(舍)∴在这30天内,第24天的利润是6300元.(3)根据题意可得:w=(130﹣x ﹣60﹣4)(5x+30),=﹣5x 2+300x+1980,=﹣5(x ﹣30)2+6480,∵a=﹣5<0,∴函数有最大值,∴当x=30时,w 有最大值为6480元,∴第30天的利润最大,最大利润是6480元.【点评】此题主要考查了一元二次方程的实际应用和二次函数实际中的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.最后要注意判断所求的解是否符合题意,舍去不合题意的解.24.(10分)(2017?鞍山)如图,一次函数y=34x+6的图象交x 轴于点A 、交y 轴于点B ,∠ABO 的平分线交x 轴于点C ,过点C 作直线CD ⊥AB ,垂足为点D ,交y 轴于点E .(1)求直线CE 的解析式;(2)在线段AB 上有一动点P (不与点A ,B 重合),过点P 分别作PM ⊥x 轴,PN ⊥y 轴,垂足为点M 、N ,是否存在点P ,使线段MN 的长最小?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【分析】(1)先求出AB=10,进而判断出Rt△BCD≌Rt△BCO,和△ACD∽△ABO,确定出点C(﹣3,0),再判断出△EBD≌△ABO,求出OE=BE﹣OB=4,即可得出点E坐标,最后用待定系数法即可;(2)设P(﹣m,﹣34m+6),∴PN=m,PM=﹣34m+6,根据勾股定理得,MN2=2516(m﹣7225)2+57625,即可得出点P横坐标,即可得出结论.【解答】解:(1)根据题意得点B的横坐标为0,点A的纵坐标为0,∴B(0,6),A(﹣8,0),∴OA=8,OB=6,∴AB=√2+2=10,∵CB平分∠ABO,CD⊥AB,CO⊥BO,∴CD=CO,∵BC=BC,∴Rt△BCD≌Rt△BCO,∴BD=BO=6,∴AD=AB﹣BD=4,∵∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴=,∴48=10,∴AC=5,∴OC=OA﹣AC=3,∴C(﹣3,0),∵∠EDB=∠AOB=90°,BD=BO,∠EBD=∠ABO,∴△EBD≌△ABO,∴BE=AB=10,∴OE=BE﹣OB=4,∴E(0,﹣4),设直线CE 的解析式为y=kx ﹣4,∴﹣3k ﹣4=0,∴k=﹣43,∴直线CE 的解析式为y=﹣43x ﹣4,(2)解:存在,(﹣7225,9625),如图,∵点P 在直线y=34x+6上,∴设P (﹣m ,﹣34m+6),∴PN=m ,PM=﹣34m+6,根据勾股定理得,MN 2=PN 2+PM 2=m 2+(﹣34m+6)2=2516(m ﹣7225)2+57625,∴当m=7225时,MN 2有最小值,则MN 有最小值,当m=7225时,y=﹣34x+6=﹣34×7225+6=9625,∴P (﹣7225,9625).【点评】此题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是求出点C 的坐标,解(2)的关键是得出MN 2的函数关系式,是一道中等难度的中考常考题.七、解答题(本大题共1小题,共12分)25.(12分)(2017?鞍山)如图,∠MBN=90°,点C 是∠MBN 平分线上的一点,过点C 分别作AC ⊥BC ,CE ⊥BN ,垂足分别为点C ,E ,AC=4√2,点P 为线段BE 上的一点(点P 不与点B 、E 重合),连接CP ,以CP 为直角边,点P 为直角顶点,作等腰直角三角形CPD ,点D 落在BC 左侧.(1)求证:=;(2)连接BD ,请你判断AC 与BD 的位置关系,并说明理由;(3)设PE=x ,△PBD 的面积为S ,求S 与x 之间的函数关系式.【考点】SO:相似形综合题.【分析】(1)由△CPD∽△CEB证得结论;(2)AC∥BD.欲推知AC∥BD,只需推知∠ACB+∠DBC=180°;(3)如图所示,过点P作PF⊥BD.交DB的延长线于点F.通过解直角三角形、(2)中相似三角形的对应边成比例和三角形的面积公式写出函数关系式即可.【解答】(1)证明:∵∠MBN=90°,点C是∠MBN平分线上的一点,∴∠CBE=45°,又CE⊥BN,∴∠BCE=45°,∴BE=CE,∴△BCE是等腰直角三角形.又∵△CPD是等腰直角三角形,∴△CPD∽△CEB,∴=,∴=;(2)解:AC∥BD,理由如下:∵∠PCE+∠BCP=∠DCB+∠BCP=45°,∴∠PEC=∠DCB.由(1)知,=,∴△EPC∽△BDC,∴∠PEC=∠DBC.∵AC⊥BC,∴∠ACB=90°,∴∠ACB+∠DBC=180°,∴AC∥BD;(3)解:如图所示,过点P作PF⊥BD.交DB的延长线于点F.∵AC=4√2,△ABC与△BEC都是等腰直角三角形,∴BC=4√2,BE=CE=4.由(2)知,△EPC∽△BDC,∴=.即??=44√2,∴DB=√2x.∵∠PBF=∠CBF﹣∠CBP=90°﹣45°=45°,即BP=BE﹣PE=4﹣x,∴PF=BP ?sin ∠PBF=(4﹣x )×√22=2√2﹣√22x ,∴S=12DB ?PF=12×√2x ×(2√2﹣√22x )=﹣12x 2+2x ,即:S=﹣12x 2+2x .【点评】本题考查了相似综合题.需要灵活掌握并运用等腰三角形的判定与性质,相似三角形的判定与性质,三角形的面积公式以及解直角三角形等知识点,难度不大,但是综合性比较强,需要多加训练,以达灵活运用的目的.八、解答题(本大题共1小题,共14分)26.(14分)(2017?鞍山)如图,抛物线y=﹣122+32x+2与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)试探究△ABC 的外接圆的圆心位置,求出圆心坐标;(2)点P 是抛物线上一点(不与点A 重合),且S △PBC =S △ABC ,求∠APB 的度数;(3)在(2)的条件下,点E 是x 轴上方抛物线上一点,点F 是抛物线对称轴上一点,是否存在这样的点E 和点F ,使得以点B 、P 、E 、F 为顶点的四边形是平行四边形?若存在,请直接写出点F 的坐标;若不存在,请说明理由.【考点】HF :二次函数综合题.【分析】(1)先确定出点A ,B ,C 的坐标,进而求出AC ,BC ,AB ,即可判断出△ABC 的形状,判断出外接圆的圆心的位置即可;(2)先确定出直线BC 的解析式,进而设出点P 的坐标,得出点Q 的坐标,再分两种情况,用S △PBC =S △ABC ,建立方程求解,最后判断出△ABN ∽△APM 即可求出∠APB 的度数;(3)设出点E 的坐标,用点E 到对称轴的距离建立方程求出点E 的坐标,即可得出结论.【解答】解:(1)∵抛物线y=﹣122+32x+2与y 轴交于点C ,∴C (0,2),令y=0,则0=﹣122+32x+2,。
初中数学鞍山市铁西区中考模拟数学模拟考试卷(3月)含答案解析
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________学号:______________题型选择题填空题简答题xx题xx题xx 题总分得分一、xx题(每空xx 分,共xx分)试题1:2018的相反数是()A.8102 B.﹣2018 C. D.2018试题2:如图所示的几何体是由六个相同的小正方体组合而成的,则从它左边看到的平面图形是()A. B. C. D.试题3:下列运算正确的是()A.3a2﹣2a2=1 B.a2•a3=a6C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b2试题4:如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为()评卷人得分A.34° B.54° C.56° D.66°试题5:七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,现在从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况如下表:节水量(m3)0.2 0.25 0.3 0.4 0.5家庭数 1 2 2 4 1那么这组数据的众数和平均数分别是()A.0.4m3和0.34m3 B.0.4m3和0.3m3C.0.25m3和0.34m3 D.0.25m3和0.3m3试题6:若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0 B.k≠0 C.k<1 D.k>1试题7:如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤=正确的有()A.①② B.①④⑤ C.①②④⑤ D.①②③④⑤试题8:二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>﹣3b;(3)7a﹣3b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个 B.3个 C.4个 D.5个试题9:钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为.试题10:分解因式:x3y﹣xy= .试题11:一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有个红球.试题12:如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b <0的解集为.[来源:学科网]试题13:如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为.试题14:如图,Rt△ABC的直角边BC在x轴正半轴上,点D为斜边AC上一点,AD=2CD,DB的延长线交y轴于点E,函数y=(k >0)的图象经过点A,若S△BCE=2,则k= .试题15:如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:①=;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+.其中正确的是(把你认为正确结论的序号都填上).试题16:如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点 P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点 P1、P2、P3、…、P2017,把△ABC分成个互不重叠的小三角形.试题17:先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.试题18:A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B两地同时出发匀速前往B,A两地,乙车速度是甲车速度的倍,乙车比甲车早到45分钟.(1)求甲车速度;(2)乙车到达A地停留半小时后以来A地时的速度匀速返回B地,甲车到达B地后立即提速匀速返回A地,若乙车返回到B地时甲车距A地不多于30千米,求甲车至少提速多少千米/时?试题19:如图是某路灯在铅垂面内的示意图,灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=6.求灯杆AB的长度.试题20:如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB 的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积;(3)若=,DF+BF=8,如图2,求BF的长.试题21:某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有人,在扇形统计图中,“乒乓球”的百分比为%,如果学校有800名学生,估计全校学生中有人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.试题22:如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k>0)的图象经过BC边的中点D(3,1).(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.试题23:六、解答题(第23题10分,第24题11分,共21分)23.(10分)铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如下表所示:第x天1≤x≤6 6<x≤15每天的销售量y/盒10 x+6(1)求p与x的函数关系式;(2)若每天的销售利润为w元,求w与x的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.试题24:问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C 和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.试题25:定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N 是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=4求BN的长;(2)已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一点D,使C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)(3)如图3,正方形ABCD中,M,N分别在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分别交BD于E,F求证:①E、F是线段BD的勾股分割点;②△AMN的面积是△AEF面积的两倍.试题26:如图1,在平面直角坐标系中,抛物线 y=x2﹣x﹣与x轴交于A、B、两点(点A在点B的左侧),与y轴交于点C.(1)判断△ABC形状,并说明理由.(2)在抛物线第四象限上有一点,它关于x轴的对称点记为点P,点M是直线BC上的一动点,当△PBC的面积最大时,求PM+MC的最小值;(3)如图2,点K为抛物线的顶点,点D在抛物线对称轴上且纵坐标为,对称轴右侧的抛物线上有一动点E,过点E作EH∥CK,交对称轴于点H,延长HE至点F,使得EF=,在平面内找一点Q,使得以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴,请问是否存在这样的点Q,若存在请直接写出点E的横坐标,若不存在,请说明理由.试题1答案:B【解答】解:2018的相反数﹣2018,试题2答案:D.试题3答案:D.试题4答案:C.试题5答案:A.试题6答案:A.试题7答案:C【解答】解:∵∠ACB=45°,∴由圆周角定理得:∠BOD=2∠ACB=90°,∴①正确;∵AB切⊙O于B,∴∠ABO=90°,∴∠DOB+∠ABO=180°,∴DO∥AB,∴②正确;假如CD=AD,因为DO∥AB,所以CE=BE,根据垂径定理得:OD⊥BC,则∠OEB=90°,∵已证出∠DOB=90°,∴此时△OEB不存在,∴③错误;∵∠DOB=90°,OD=OB,∴∠ODB=∠OBD=45°=∠ACB,即∠ODB=∠C,∵∠DBE=∠CBD,∴△BDE∽△BCD,∴④正确;过E作EM⊥BD于M,则∠EMD=90°,∵∠ODB=45°,∴∠DEM=45°=∠EDM,∴DM=EM,设DM=EM=a,则由勾股定理得:DE=a,∵∠ABC=180°﹣∠C﹣∠A=75°,又∵∠OBA=90°,∠OBD=45°,∴∠OBC=15°,∴∠EBM=30°,在Rt△EMB中BE=2EM=2a,∴==,∴⑤正确;故选:C.试题8答案:B【解答】解:∵x=﹣=2,∴4a+b=0,故①正确.由函数图象可知:当x=3时,y>0,即9a+3b+c>0,∴9a+c>﹣3b,故②正确.∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0又∵b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴7a﹣3b+2c=7a+12a﹣5a=14a,∵抛物线开口向下,∴a<0,∴7a﹣3b+2c<0,故③错误;∵抛物线的对称轴为x=2,C(7,y3),∴(﹣3,y3).∵﹣3<﹣,在对称轴的左侧,∴y随x的增大而增大,∴y1=y3<y2,故④错误.方程a(x+1)(x﹣5)=0的两根为x=﹣1或x=5,过y=﹣3作x轴的平行线,直线y=﹣3与抛物线的交点的横坐标为方程的两根,依据函数图象可知:x1<﹣1<5<x2,故⑤正确.故选:B.试题9答案:4.4×106.【解答】解:将4400000用科学记数法表示为:4.4×106.故答案为:4.4×106.试题10答案:xy(x+1)(x﹣1).【解答】解:原式=xy(x2﹣1)=xy(x+1)(x﹣1),故答案为:xy(x+1)(x﹣1)试题11答案:6【解答】解:设袋中有x个红球.由题意可得: =0.2,解得:x=6,即袋中有6个红球,故答案为:6.试题12答案:﹣4<x<﹣.【解答】解:不等式mx+2<kx+b<0的解集是﹣4<x<﹣.故答案是:﹣4<x<﹣.试题13答案:1.5或3 .【解答】解:分两种情况:①当∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=4,∴BC=AD=4,在Rt△ABC中,AC===5,设BE=x,则CE=BC﹣BE=4﹣x,由翻折的性质得,AF=AB=3,EF=BE=x,∴CF=AC﹣AF=5﹣3=2,在Rt△CEF中,EF2+CF2=CE2,即x2+22=(4﹣x)2,解得x=1.5,即BE=1.5;②当∠CEF=90°时,如图2,由翻折的性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=3,综上所述,BE的长为1.5或3.故答案为:1.5或3.试题14答案:8 .【解答】解:连结OA、EA,如图,∵AD=2CD,∴S△ADE=2S△CDE,S△ADB=2S△CDB,即S△ABE+S△ADE=2(S△CDB+S△BCE),∴S△ABE=2S△BCE=2×2=4,∵OE∥AB,∴S△ABE=S OAB=4,∴×|k|=4,而k>0,∴k=8.故答案为8.试题15答案:①②【解答】解:①如图所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,∴∠BOE=∠COF,在△BOE与△COF中,,∴△BOE≌△COF,∴BE=CF,∴=,①正确;②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,∴△BOG≌△COH;∴OG=OH,∵∠GOH=90°,∴△OGH是等腰直角三角形,②正确.③如图所示,∵△HOM≌△GON,∴四边形OGBH的面积始终等于正方形ONBM的面积,③错误;④∵△BOG≌△COH,∴BG=CH,∴BG+BH=BC=4,设BG=x,则BH=4﹣x,则GH==,∴其最小值为4+2,D错误.故答案为:①②.试题16答案:4035【解答】解:如图,△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0,△ABC的三个顶点和它内部的点P1、P2,把△ABC分成的互不重叠的小三角形的个数=3+2×1,△ABC的三个顶点和它内部的点 P1、P2、P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点 P1、P2、P3、…、P n,把△ABC分成的互不重叠的小三角形的个数=3+2(n﹣1)=2n+1,当n=2017时,2n+1=4035,故答案为:4035.试题17答案:【解答】解:(﹣a+1)÷===,当a=0时,原式=.试题18答案:【解答】解:(1)设甲车速度为x千米/时,则乙车的速度是x千米/时,依题意得: =+,解得:x=60.经检验:x=60是原方程的解.答:设甲车速度为60千米/时;(2)设甲车提速y千米/时,依题意得:180﹣(×2+)(60+y)≤30,解得:y≥15.所以甲车至少提速15千米/时.试题19答案:【解答】解:过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=10.由题意得∠ADE=α,∠E=45°.设AF=x.∵∠E=45°,∴EF=AF=x.在Rt△ADF中,∵tan∠ADF=,∴DF===,∵DE=13.3,∴x+=13.3.∴x=11.4.∴AG=AF﹣GF=11.4﹣10=1.4.∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°.∴AB=2AG=2.8,答:灯杆AB的长度为2.8米.试题20答案:【解答】证明:(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=2,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=BD=,PB=PD=3,在Rt△DEP中,∵PD=,DE=,∴PE==2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:,∴AE=∵BE∥DF,∴△ABE∽△AFD,∴=,即=,解得DF=12,在Rt△BDH中,BH=BD=,∴S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=•12•﹣+•(2)2=9﹣2π;(3)连结CD,如图2,由=可设AB=4x,AC=3x,设BF=y,∵=,∴CD=BD=2,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴=,即=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴=,即=,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.试题21答案:【解答】解:(1)调查的总人数为20÷40%=50(人),所以喜欢篮球项目的同学的人数=50﹣20﹣10﹣15=5(人);“乒乓球”的百分比==20%,因为800×=80,所以估计全校学生中有80人喜欢篮球项目;故答案为5,20,80;(2)如图,(3)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率==.试题22答案:【解答】解:(1)∵反比例函数y=(k>0)的图象经过点D(3,1),∴k=3×1=3,∴反比例函数表达式为y=;(2)①∵D为BC的中点,∴BC=2,∵△ABC与△EFG成中心对称,∴△ABC≌△EFG,∴GF=BC=2,GE=AC=1,∵点E在反比例函数的图象上,∴E(1,3),即OG=3,∴OF=OG﹣GF=1;②如图,连接AF、BE,∵AC=1,OC=3,∴OA=GF=2,在△AOF和△FGE中∴△AOF≌△FGE(SAS),∴∠GFE=∠FAO=∠A BC,∴∠GFE+∠AFO=∠FAO+∠BAC=90°,∴EF∥AB,且EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.试题23答案:【解答】解:(1)设p=kx+b(k≠0),∵第3天时,每盒成本为21元;第7天时,每盒成本为25元,∴,解得,所以,p=x+18;(2)1≤x≤6时,w=10[50﹣(x+18)]=﹣10x+320,6<x≤15时,w=[50﹣(x+18)](x+6)=﹣x2+26x+192,所以,w与x的函数关系式为w=,1≤x≤6时,∵﹣10<0,∴w随x的增大而减小,∴当x=1时,w最大为﹣10+320=310,6<x≤15时,w=﹣x2+26x+192=﹣(x﹣13)2+361,∴当x=13时,w最大为361,综上所述,第13天时当天的销售利润最大,最大销售利润是361元;(3)w=325时,﹣x2+26x+192=325,x2﹣26x+133=0,解得x1=7,x2=19,所以,7≤x≤15时,即第7、8、9、10、11、12、13、14、15天共9天销售利润不低于325元.试题24答案:【解答】解:(1)结论:AM⊥BN.理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4.(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠A PN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2+4.试题25答案:∵点M,N是线段AB的勾股分割点,∴BM===,②当BN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BN===5,综上,BN=或5;(2)作法:①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;③连接BF,并作BF的垂直平分线,交AB于D;[来源:]点D即为所求;如图2所示.(3)①如图3中,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.∵∠DAF+∠BAE=90°﹣∠EAF=45°,∠DAF=∠BAH,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AF,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE2=BH2+BE2,∵BH=DF,EF=HE,∵EF2=BE2+DF2,∴E、F是线段BD的勾股分割点.②证明:如图4中,连接FM,EN.∵四边形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∵∠AFE=∠FDN,∴△AFE∽△D FN,∴∠AEF=∠DNF, =,∴=,∵∠AFD=∠EFN,∴△AFD∽△EFN,∴∠DAF=∠FEN,∵∠DAF+∠DNF=90°,∴∠AEF+∠FEN=90°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,∵S△AMN=AM•AN•sin45°,S△AEF=AE•AF•sin45°,∴==2,∴S△AMN=2S△AEF.试题26答案:【解答】解:(1)结论:△ABC是直角三角形.理由如下,对于抛物线 y=x2﹣x﹣,令y=0得x2﹣x﹣=0,解得x=﹣或3;令x=0得y=﹣,∴A(﹣,0),C(0,﹣),B(3,0),∴OA=,OC=,OB=3,∴==,∵∠AOC=∠BOC,∴△AOC∽△COB,∴∠ACO=∠OBC,∵∠OBC+∠OCB=90°,∴∠ACO+∠BCO=90°,∴∠ACB=90°.(也可以求出AC、BC、AB利用勾股定理的逆定理证明).(2)如图1中,设第四象限抛物线上一点N(m, m2﹣m﹣),点N关于x轴的对称点P(m,﹣m2+m+),作过B、C分别作y轴,x轴的平行线交于点G,连接PG.∵G(3,﹣),∴S△PBC=S△PCG+S△PBG﹣S△BCG=××(﹣m2+m+2)+ו(3﹣m)﹣××=﹣(m﹣)2+.∵﹣<0,∴当m=时,△PBC的面积最大,此时P(,),如图2中,作ME⊥CG于M.∵CG∥OB,∴∠OBC=∠ECM,∵∠BOC=∠CEM,∴△CE M∽△BOC,∵OC:OB:BC=1:3:,∴EM:CE:CM=1:3:,∴EM=CM,∴PM+CM=PM+ME,∴根据垂线段最短可知,当PE⊥CG时,PM+ME最短,∴PM+MC的最小值为+=.(3)存在.理由如下,①如图3中,当DH=HF,HQ平分∠DHF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴.作CG⊥HK于G,PH∥x轴,EP⊥PH于P.∵FH∥CK,K(,﹣),易知CG:GK:CK=3:4:5,由△EPH∽△KGC,得PH:PE:EH=3:4:5,设E((n, n2﹣n﹣),则HE=(n﹣),PE=(n﹣),∵DH=HF,∴+[﹣n2+n+﹣(n﹣)]=(n﹣)+,解得n=或(舍弃).②如图4中,当DH=HF,HQ平分∠DHF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴.同法可得[n2﹣n﹣+(n﹣)]﹣=(n﹣)+,解得n=+或﹣(舍弃).③如图5中,当DH=DF,DQ平分∠HDF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴.设DQ交HF于M.由△DHM∽△CKG,可知HM:DH=4:5,[(n﹣)+]:[n2﹣n﹣+(n﹣)﹣]=4:5,解得n=+或=﹣(舍弃),④如图6中,当FQ平分∠DFH时,满足条件,此时=.∴5× [n2﹣n﹣﹣+(n﹣)]=4[(n﹣)+],解得:n=或(舍弃)综上所,满足条件的点E的横坐标为或+或+或.。
2017年鞍山市铁西区中考数学五模试卷含答案解析
2017年辽宁省鞍山市铁西区中考数学五模试卷一、选择题(每题3分,共24分)1.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣52.函数y=的自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠0 C.x≠0 D.x>0且x≠﹣23.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、4,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.44.已知二次函数y=﹣(x﹣a)2﹣b的图象如图所示,则反比例函数y=与一次函数y=ax+b的图象可能是()A.B.C.D.5.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°6.已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.27.如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是()A.=B.AD,AE将∠BAC三等分C.△ABE≌△ACD D.S△ADH=S△CEG8.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m二、填空题(每题3分,共24分)9.当x=时,分式的值为0.10.分解因式:(2a+b)2﹣(a+2b)2=.11.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)12.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.13.如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.14.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.15.如图,扇形OAB的圆心角为124°,C是弧上一点,则∠ACB=.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.三、解答题(第17题7分,18题9分,19、20题各10分,共36分)17.先化简,再求值:÷(1﹣),其中x=.18.如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).19.某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?20.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.四、解答题(21、22各10分,共20分)21.图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x 轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?22.如图,在△BCE 中,点A 是边BE 上一点,以AB 为直径的⊙O 与CE 相切于点D ,AD ∥OC ,点F 为OC 与⊙O 的交点,连接AF . (1)求证:CB 是⊙O 的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.23.如图,反比例函数y=的图象与一次函数y=kx +b 的图象交于A ,B 两点,点A 的坐标为(2,6),点B 的坐标为(n ,1). (1)求反比例函数与一次函数的表达式;(2)点E 为y 轴上一个动点,若S △AEB =10,求点E 的坐标.24.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如表:其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.2017年辽宁省鞍山市铁西区中考数学五模试卷参考答案与试题解析一、选择题(每题3分,共24分)1.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.2.函数y=的自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠0 C.x≠0 D.x>0且x≠﹣2【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0,故选:B.3.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、4,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【考点】频数与频率.【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+4)=40﹣32=8,则第5组的频率为8÷40=0.2.故选B.4.已知二次函数y=﹣(x﹣a)2﹣b的图象如图所示,则反比例函数y=与一次函数y=ax+b的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】观察二次函数图象,找出a>0,b>0,再结合反比例(一次)函数图象与系数的关系,即可得出结论.【解答】解:观察二次函数图象,发现:抛物线的顶点坐标在第四象限,即a>0,﹣b<0,∴a>0,b>0.∵反比例函数y=中ab>0,∴反比例函数图象在第一、三象限;∵一次函数y=ax+b,a>0,b>0,∴一次函数y=ax+b的图象过第一、二、三象限.故选B.5.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°【考点】平行线的性质.【分析】利用已知条件易求∠ACD的度数,再根据两线平行同位角相等即可求出∠1的度数.【解答】解:∵DA⊥AC,垂足为A,∴∠CAD=90°,∵∠ADC=35°,∴∠ACD=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选B.6.已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.2【考点】正多边形和圆;切线的性质.【分析】根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×=,∴边长为2的正六边形的内切圆的半径为.故选B.7.如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是()A.=B.AD,AE将∠BAC三等分C.△ABE≌△ACD D.S△ADH=S△CEG【考点】黄金分割;全等三角形的判定;线段垂直平分线的性质.【分析】由题意知AB=AC、∠BAC=108°,根据中垂线性质得∠B=∠DAB=∠C=∠CAE=36°,从而知△BDA∽△BAC,得=,由∠ADC=∠DAC=72°得CD=CA=BA,进而根据黄金分割定义知==,可判断A;根据∠DAB=∠CAE=36°知∠DAE=36°可判断B;根据∠BAD+∠DAE=∠CAE+∠DAE=72°可得∠BAE=∠CAD,可=S△CAE,根据DH垂直证△BAE≌△CAD,即可判断C;由△BAE≌△CAD知S△BAD=S△CEG,可判断D.平分AB,EG垂直平分AC可得S△ADH【解答】解:∵∠B=∠C=36°,∴AB=AC,∠BAC=108°,∵DH垂直平分AB,EG垂直平分AC,∴DB=DA,EA=EC,∴∠B=∠DAB=∠C=∠CAE=36°,∴△BDA∽△BAC,∴=,又∵∠ADC=∠B+∠BAD=72°,∠DAC=∠BAC﹣∠BAD=72°,∴∠ADC=∠DAC,∴CD=CA=BA,∴BD=BC﹣CD=BC﹣AB,则=,即==,故A错误;∵∠BAC=108°,∠B=∠DAB=∠C=∠CAE=36°,∴∠DAE=∠BAC﹣∠DAB﹣∠CAE=36°,即∠DAB=∠DAE=∠CAE=36°,∴AD,AE将∠BAC三等分,故B正确;∵∠BAE=∠BAD+∠DAE=72°,∠CAD=∠CAE+∠DAE=72°,∴∠BAE=∠CAD,在△BAE和△CAD中,∵,∴△BAE≌△CAD,故C正确;=S△CAD,即S△BAD+S△ADE=S△CAE+S△ADE,由△BAE≌△CAD可得S△BAE=S△CAE,∴S△BAD又∵DH垂直平分AB,EG垂直平分AC,=S△ABD,S△CEG=S△CAE,∴S△ADH=S△CEG,故D正确.∴S△ADH故选:A.8.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【考点】解直角三角形的应用﹣坡度坡角问题.【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.二、填空题(每题3分,共24分)9.当x=2时,分式的值为0.【考点】分式的值为零的条件.【分析】直接利用分式的值为0,则分子为0,进而求出答案.【解答】解:∵分式的值为0,∴x﹣2=0,解得:x=2.故答案为:2.10.分解因式:(2a+b)2﹣(a+2b)2=3(a+b)(a﹣b).【考点】因式分解﹣运用公式法.【分析】原式利用平方差公式分解即可.【解答】解:原式=(2a+b+a+2b)(2a+b﹣a﹣2b)=3(a+b)(a﹣b).故答案为:3(a+b)(a﹣b).11.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是乙运动员.(填“甲”或“乙”)【考点】方差.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S甲2=0.024>S乙2=0.008,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.12.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.【考点】根与系数的关系.【分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故答案为:.13.如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.【考点】三角形中位线定理.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出DB,再根据相似三角形对应边成比例列式计算即可得解.【解答】解:∵EF是△ODB的中位线,∴DB=2EF=2×2=4,∵AC∥BD,∴△AOC∽△BOD,∴=,即=,解得AC=.故答案为:.14.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【考点】正方形的性质;菱形的性质.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.15.如图,扇形OAB的圆心角为124°,C是弧上一点,则∠ACB=118°.【考点】圆周角定理;圆心角、弧、弦的关系.【分析】在⊙O上取点D,连接AD,BD,根据圆周角定理求出∠D的度数,由圆内接四边形的性质即可得出结论.【解答】解:如图所示,在⊙O上取点D,连接AD,BD,∵∠AOB=124°,∴∠ADB=∠AOB=×124°=62°.∵四边形ADBC是圆内接四边形,∴∠ACB=180°﹣62°=118°.故答案为:118°.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.【考点】切线的性质;圆周角定理;扇形面积的计算.【分析】连接OC,可求得△OCD和扇形OCB的面积,进而可求出图中阴影部分的面积.【解答】解:连接OC,∵过点C的切线交AB的延长线于点D,∴OC⊥CD,∴∠OCD=90°,即∠D+∠COD=90°,∵AO=CO,∴∠A=∠ACO,∴∠COD=2∠A,∵∠A=∠D,∴∠COD=2∠D,∴3∠D=90°,∴∠D=30°,∴∠COD=60°∵CD=3,∴OC=3×=,∴阴影部分的面积=×3×﹣=,故答案为:.三、解答题(第17题7分,18题9分,19、20题各10分,共36分)17.先化简,再求值:÷(1﹣),其中x=.【考点】分式的化简求值.【分析】先括号内通分,然后计算除法,最后代入化简即可.【解答】解:原式=÷=•=,当x=时,原式==.18.如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).【考点】作图—相似变换;平行四边形的性质.【分析】(1)BF交AD于G,先利用AD∥BC得到∠FBC=∠FGE,加上∠FBC=∠DCE,所以∠FGE=∠DCE,然后根据三角形内角和定理易得∠D=∠F;(2)分别作BC和BF的垂直平分线,它们相交于点O,然后以O为圆心,OC 为半径作△BCF的外接圆⊙O,⊙O交AD于P,连结BP、CP,则根据圆周角定理得到∠F=∠BPC,而∠F=∠D,所以∠D=∠BPC,接着可证明∠PCD=∠APB=∠PBC,于是可判断△BPC∽△CDP.【解答】(1)证明:BF交AD于G,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FBC=∠FGE,而∠FBC=∠DCE,∴∠FGE=∠DCE,∵∠GEF=∠DEC,∴∠D=∠F;(2)解:如图,点P为所作.19.某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)首先求得某顾客参加一次抽奖,能获得返还现金的情况,再利用概率公式即可求得答案.【解答】解:(1)画树状图得:则共有16种等可能的结果;(2)∵某顾客参加一次抽奖,能获得返还现金的有6种情况,∴某顾客参加一次抽奖,能获得返还现金的概率是:=.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【考点】菱形的性质;平行四边形的判定与性质.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.四、解答题(21、22各10分,共20分)21.图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x 轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?【考点】二次函数的应用;解直角三角形的应用﹣仰角俯角问题.【分析】(1)过点P作PH⊥OA于H,如图,设PH=3x,运用三角函数可得OH=6x,AH=2x,根据条件OA=4可求出x,即可得到点P的坐标;(2)若水面上升1m后到达BC位置,如图,运用待定系数法可求出抛物线的解析式,然后求出y=1时x的值,就可解决问题.【解答】解:(1)过点P作PH⊥OA于H,如图.设PH=3x,在Rt△OHP中,∵tanα==,∴OH=6x.在Rt△AHP中,∵tanβ==,∴AH=2x,∴OA=OH+AH=8x=4,∴x=,∴OH=3,PH=,∴点P的坐标为(3,);(2)若水面上升1m后到达BC位置,如图,过点O(0,0),A(4,0)的抛物线的解析式可设为y=ax(x﹣4),∵P(3,)在抛物线y=ax(x﹣4)上,∴3a(3﹣4)=,解得a=﹣,∴抛物线的解析式为y=﹣x(x﹣4).当y=1时,﹣x(x﹣4)=1,解得x1=2+,x2=2﹣,∴BC=(2+)﹣(2﹣)=2=2×1.41=2.82≈2.8.答:水面上升1m,水面宽约为2.8米.22.如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.(1)求证:CB是⊙O的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.【考点】切线的判定与性质;扇形面积的计算.【分析】(1)欲证明CB是⊙O的切线,只要证明BC⊥OB,可以证明△CDO≌△CBO解决问题.(2)首先证明S阴=S扇形ODF,然后利用扇形面积公式计算即可.【解答】(1)证明:连接OD,与AF相交于点G,∵CE与⊙O相切于点D,∴OD⊥CE,∴∠CDO=90°,∵AD∥OC,∴∠ADO=∠DOC,∠DAO=∠BOC,∵OA=OD,∴∠ADO=∠DAO,∴∠DOC=∠BOC,在△CDO和△CBO中,\,∴△CDO≌△CBO,∴∠CBO=∠CDO=90°,∴CB是⊙O的切线.(2)由(1)可知∠DOA=∠BCO,∠DOC=∠BOC,∵∠ECB=60°,∴∠DCO=∠BCO=∠ECB=30°,∴∠DOC=∠BOC=60°,∴∠DOA=60°,∵OA=OD,∴△OAD是等边三角形,∴AD=OD=OF,∵∠GOF=∠ADO,在△ADG和△FOG中,,∴△ADG≌△FOG,=S△FOG,∴S△ADG∵AB=6,∴⊙O的半径r=3,==π.∴S阴=S扇形ODF23.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;=10,求点E的坐标.(2)点E为y轴上一个动点,若S△AEB【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线y=kx+b,求出k、b的值,从而得出一次函数的解析式;(2)设点E的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,7),得出PE=|m﹣7|,根据S△AEB=S△BEP﹣S△AEP=10,求出m的值,从而得出点E的坐标.【解答】解:(1)把点A(2,6)代入y=,得m=12,则y=.把点B (n ,1)代入y=,得n=12, 则点B 的坐标为(12,1).由直线y=kx +b 过点A (2,6),点B (12,1)得,解得,则所求一次函数的表达式为y=﹣x +7.(2)如图,直线AB 与y 轴的交点为P ,设点E 的坐标为(0,m ),连接AE ,BE ,则点P 的坐标为(0,7).∴PE=|m ﹣7|.∵S △AEB =S △BEP ﹣S △AEP =10,∴×|m ﹣7|×(12﹣2)=10.∴|m ﹣7|=2.∴m 1=5,m 2=9.∴点E 的坐标为(0,5)或(0,9).24.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如表:其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.【考点】二次函数的应用.【分析】(1)根据利润=销售数量×每件的利润即可解决问题.(2)根据一次函数的增减性,二次函数的增减性即可解决问题.(3)根据题意分三种情形分别求解即可:)①=440,②>440,③<440.【解答】解:(1)y1=(6﹣a)x﹣20,(0<x≤200)y2=10x﹣40﹣0.05x2=﹣0.05x2+10x﹣40.(0<x≤80).(2)对于y1=(6﹣a)x﹣20,∵6﹣a>0,∴x=200时,y1的值最大=万元.对于y2=﹣0.05(x﹣100)2+460,∵0<x≤80,∴x=80时,y2最大值=440万元.(3)①=440,解得a=3.7,②>440,解得a<3.7,③<440,解得a>3.7,∵3≤a≤5,∴当a=3.7时,生产甲乙两种产品的利润相同.当3≤a<3.7时,生产甲产品利润比较高.当3.7<a≤5时,生产乙产品利润比较高.2017年3月13日。
2017年辽宁省中考数学一模试卷及答案
2017年辽宁省中考数学一模试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项正确)1.(3分)﹣5的相反数是()A.5 B.C.﹣5 D.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个3.(3分)下列事件是必然事件的是()A.任意购买一张电影票,座位号是奇数B.打开电视,正在播出“奔跑吧,兄弟”C.13名同学中至少有两名同学出生的月份相同D.抛掷一枚硬币,反面朝上4.(3分)一组数据:3,2,1,2,2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4 C.3,1,2 D.2,1,0.25.(3分)下列运算中,正确的是()A.2a2+3a2=a4B.5a2﹣2a2=3 C.a3〓2a2=2a6D.3a6〔a2=3a46.(3分)将不等式组的解集在数轴上表示,下列表示中正确的是()A.B.C.D.7.(3分)给定一列按规律排列的数:,则这列数的第6个数是()A.B.C.D.8.(3分)如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y与x的函数图象大致是()A.B.C.D.9.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()A.抛物线开口向下B.抛物线的对称轴是y轴C.当x<2时,y随x的增大而减小D.抛物线与y轴交于正半轴10.(3分)如图,等腰直角△ABC中,∠ACB=90°,点E为△ABC内一点,且∠BEC=90°,将△BEC绕C点顺时针旋转90°,使BC与AC重合,得到△AFC,连接EF交AC于点M,已知BC=10,CF=6,则AM:MC的值为()A.4:3 B.3:4 C.5:3 D.3:5二、填空题(每小题3分,共24分)11.(3分)4是的算术平方根.12.(3分)若二次根式有意义,则a的取值范围为.13.(3分)因式分解:ab2﹣9a= .14.(3分)五张分别写有3,4,5,6,7的卡片,现从中任意取出一张卡片,则该卡片上的数字为奇数的概率是.15.(3分)小亮将一个直角三角板和一把直尺(如图所示)叠放在一起,如果∠α=43°,那么∠β是度.16.(3分)一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为.17.(3分)如图,Rt△ABC的顶点B在反比例函数y=的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是.18.(3分)如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC= °.三、解答题(共96分)19.(10分)先化简,再求值:(﹣2)〔,其中x=2•sin60°+(3﹣π)0﹣.20.(10分)甲口袋中装有两个相同的小球,它们的标号分别为2和5,乙口袋中装有两个相同的小球,它们的标号分别为4和9,丙口袋中装有三个相同的小球,它们的标号分别为1,6,7.从这3个口袋中各随机取出一个小球.(1)用树形图表示所有可能出现的结果;(2)若用取出的三个小球的标号分别表示三条线段的长,求这些线段能构成三角形的概率.21.(12分)某校为了解学生的课外阅读情况,就“我最喜爱的课外读物”对文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),并根据调查结果绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次被调查的学生共有多少名?(2)请将条形统计图补充完整;并在扇形统计图中,计算出“其他类”所对应的圆心角的度数;(3)若该校有2400名学生,请你估计该校喜爱“科普类”的学生有多少名.22.(10分)如图,小明在山脚下的A处测得山顶N的仰角为45°,此时,他刚好与山底D在同一水平线上.然后沿着坡度为30°的斜坡正对着山顶前行110米到达B处,测得山顶N的仰角为60°.求山的高度.(结果精确到1米,参考数据:≈1.414,≈1.732).23.(12分)如图,在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连结DE并延长,与BC的延长线交于点F.(1)求证:BD=BF;(2)若BC=6,AD=4,求sinA的值.24.(14分)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.25.(14分)在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图①,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图②,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.26.(14分)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项正确)1.(3分)(2013•湘潭)﹣5的相反数是()A.5 B.C.﹣5 D.【解答】解:﹣5的相反数是5.故选A.2.(3分)(2017•大石桥市校级一模)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【解答】解:第一个图形既是轴对称图形,又是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形既是轴对称图形,又是中心对称图形;第四个图形既是轴对称图形,又是中心对称图形.故选B.3.(3分)(2017•大石桥市校级一模)下列事件是必然事件的是()A.任意购买一张电影票,座位号是奇数B.打开电视,正在播出“奔跑吧,兄弟”C.13名同学中至少有两名同学出生的月份相同D.抛掷一枚硬币,反面朝上【解答】解:A、任意购买一张电影票,座位号是奇数是随机事件,故A不符合题意;B、打开电视,正在播出“奔跑吧,兄弟”是随机事件,故B不符合题意;C、13名同学中至少有两名同学出生的月份相同是必然事件,故C符合题意;D、抛掷一枚硬币,反面朝上是随机事件,故D不符合题意;故选:C.4.(3分)(2013•天水)一组数据:3,2,1,2,2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4 C.3,1,2 D.2,1,0.2【解答】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)〔5=2,方差为[(3﹣2)2+3〓(2﹣2)2+(1﹣2)2]=0.4,即中位数是2,众数是2,方差为0.4.故选B.5.(3分)(2013•盐城)下列运算中,正确的是()A.2a2+3a2=a4B.5a2﹣2a2=3 C.a3〓2a2=2a6D.3a6〔a2=3a4【解答】解:A、2a2+3a2=5a2,故本选项错误;B、5a2﹣2a2=3a2,故本选项错误;C、a3〓2a2=2a5,故本选项错误;D、3a6〔a2=3a4,故本选项正确.故选D.6.(3分)(2011•自贡)将不等式组的解集在数轴上表示,下列表示中正确的是()A.B.C.D.【解答】解:,由①得,x≥﹣1;由②得x<1,故此不等式组的解集为:﹣1≤x<1,在数轴上表示为:.故选A.7.(3分)(2013•南平)给定一列按规律排列的数:,则这列数的第6个数是()A.B.C.D.【解答】解:∵一列按规律排列的数:∴这列数的第5个数是:=,这列数的第6个数是:=,故选:A.8.(3分)(2013•天水)如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y与x的函数图象大致是( )A .B .C .D .【解答】解:∵AE=BF=CG ,且等边△ABC 的边长为2, ∴BE=CF=AG=2﹣x ; ∴△AEG ≌△BEF ≌△CFG . 在△AEG 中,AE=x ,AG=2﹣x , ∵S △AEG =AE 〓AG 〓sinA=x (2﹣x ); ∴y=S△ABC ﹣3S △AEG =﹣3〓x (2﹣x )=(x 2﹣x+1).∴其图象为二次函数,且开口向上. 故选C .9.(3分)(2017•大石桥市校级一模)已知二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表:则下列判断中正确的是( )A .抛物线开口向下B .抛物线的对称轴是y 轴C.当x<2时,y随x的增大而减小D.抛物线与y轴交于正半轴【解答】解:A、由图表数据可知x=1时,y=﹣2最小,所以,抛物线开口向上,故本选项错误;B、∵x=0和x=2时的函数值都是﹣1,∴抛物线的对称轴为直线x=1,故本选项错误;C、∵抛物线的对称轴为直线x=1,∵x<1时,y随x的增大而增大,故本选项正确;D、x=0的函数值y=﹣1,所以抛物线与y轴交于,负半轴,故本选项错误.故选C.10.(3分)(2017•大石桥市校级一模)如图,等腰直角△ABC中,∠ACB=90°,点E为△ABC内一点,且∠BEC=90°,将△BEC绕C点顺时针旋转90°,使BC与AC重合,得到△AFC,连接EF交AC于点M,已知BC=10,CF=6,则AM:MC的值为()A.4:3 B.3:4 C.5:3 D.3:5【解答】解:∵△BEC绕C点旋转90°使BC与AC重合,得到△ACF,∴△BEC≌△AFC,∠ECF=90°,∴EC=CF=6,AC=BC=10,∠BEC=∠DFC=90°.在Rt△AFC中,由勾股定理,得AF=8.∵∠AFC=90°,∴∠AFC+∠ECF=180°,∴EC∥AF,∴△CEM∽△AFM,∴==,∴AM:MC=4:3,故选A.二、填空题(每小题3分,共24分)11.(3分)(2015•徐州)4是16 的算术平方根.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.12.(3分)(2013•鄂尔多斯)若二次根式有意义,则a的取值范围为a≥5 .【解答】解:依题意,得a﹣5≥0,解得a≥5.故答案是:a≥5.13.(3分)(2016•江都区一模)因式分解:ab2﹣9a= a(b+3)(b﹣3).【解答】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).14.(3分)(2013•怀化)五张分别写有3,4,5,6,7的卡片,现从中任意取出一张卡片,则该卡片上的数字为奇数的概率是.【解答】解:分别写有3,4,5,6,7的五张卡片中,有三张标有奇数;任意抽取一张,数字为奇数的概率是.故答案为.15.(3分)(2013•鄂尔多斯)小亮将一个直角三角板和一把直尺(如图所示)叠放在一起,如果∠α=43°,那么∠β是47 度.【解答】解:如图,∵a∥b,∴∠1=∠2,∵∠2=∠α=43°,∴∠1=43°,∵∠1+∠3=90°,∴∠3=90°﹣43°=47°,∴∠β=∠3=47°.故答案为47.16.(3分)(2017•大石桥市校级一模)一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为6πcm2.【解答】解:主视图和左视图为长方形可得此几何体为柱体,俯视图为圆可得此几何体为圆柱,故侧面积=π〓2〓3=6πcm2.故答案为:6πcm217.(3分)(2017•大石桥市校级一模)如图,Rt△ABC的顶点B在反比例函数y=的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是12﹣.【解答】解:∵∠ACB=90°,BC=4,∴B点纵坐标为4,∵点B在反比例函数y=的图象上,∴当y=4时,x=3,即B点坐标为(3,4),∴OC=3.在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,AC=BC=4,OA=AC﹣OC=4﹣3.设AB与y轴交于点D.∵OD∥BC,∴=,即=,解得,OD=4﹣,∴阴影部分的面积=〓(OD+BC)〓OC=12﹣,故答案为:12﹣.18.(3分)(2013•无锡)如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC= 45 °.【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAE=∠ABE=45°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣45°)=67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∵EF=BC(直角三角形斜边中线等于斜边的一半),∴BF=EF=CF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45.三、解答题(共96分)19.(10分)(2017•大石桥市校级一模)先化简,再求值:(﹣2)〔,其中x=2•sin60°+(3﹣π)0﹣.【解答】解:原式=〓=〓=x﹣1,当x=2〓+1﹣2=﹣+1,原式=﹣.20.(10分)(2013•贺州)甲口袋中装有两个相同的小球,它们的标号分别为2和5,乙口袋中装有两个相同的小球,它们的标号分别为4和9,丙口袋中装有三个相同的小球,它们的标号分别为1,6,7.从这3个口袋中各随机取出一个小球.(1)用树形图表示所有可能出现的结果;(2)若用取出的三个小球的标号分别表示三条线段的长,求这些线段能构成三角形的概率.【解答】解:(1)如图所示:,所以共有12种可能出现的结果;(2)这些线段能够成三角形(记为事件A)的结果有4种:(5,4,6);(5,4,7);(5,9,6)(5,9,7),所以P(A)==.21.(12分)(2013•鄂尔多斯)某校为了解学生的课外阅读情况,就“我最喜爱的课外读物”对文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),并根据调查结果绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次被调查的学生共有多少名?(2)请将条形统计图补充完整;并在扇形统计图中,计算出“其他类”所对应的圆心角的度数;(3)若该校有2400名学生,请你估计该校喜爱“科普类”的学生有多少名.【解答】解:(1)60〔30%=200(人).答:这次调查的学生共有200人.(2)200〓20%=40(人)补充条形统计图(艺术)200﹣(60+80+40)=20(人)补充条形统计图(其他)(注:没有算出40人,20人的步骤,直接补充条形图可得分)20〔200=10%10%〓360°=36°.答:“其它类”所对应的圆心角是36°.(3)80〔200=40%2400〓40%=960(人).答:该校喜爱“科普类”的学生有960人.22.(10分)(2017•大石桥市校级一模)如图,小明在山脚下的A处测得山顶N的仰角为45°,此时,他刚好与山底D在同一水平线上.然后沿着坡度为30°的斜坡正对着山顶前行110米到达B处,测得山顶N的仰角为60°.求山的高度.(结果精确到1米,参考数据:≈1.414,≈1.732).【解答】解:过点B作BF⊥DN于点F,过点B作BE⊥AD于点E,∵∠D=90°,∴四边形BEDF是矩形,∴BE=DF,BF=DE,在Rt△ABE中,AE=AB•cos30°=110〓=55(米),BE=AB•sin30°=〓110=55(米),设BF=x米,则AD=AE+ED=55+x(米),在Rt△BFN中,NF=BF•tan60°=x(米),∵∠NAD=45°,∴AD=DN,∴DN=DF+NF=55+x(米),即55+x=x+55,解得:x=55,∴DN=55+x≈150(米),答:山的高度约为150米.23.(12分)(2013•龙岗区模拟)如图,在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连结DE并延长,与BC的延长线交于点F.(1)求证:BD=BF;(2)若BC=6,AD=4,求sinA的值.【解答】(1)证明:连结OE.∵AC切⊙O于E,∴OE⊥AC,又∵∠ACB=90°即BC⊥AC,∴OE∥BC∴∠OED=∠F.又∵OD=OE,∴∠OED=∠ODE,∴∠ODE=∠F∴BD=BF;(2)解:设⊙O半径为r,由(1)知,OE∥BC得△AOE∽△ABC.∴,即,∴r2﹣r﹣12=0,解之得r1=4,r2=﹣3(舍去).在Rt△AOE中,∴sinA=.24.(14分)(2014•聊城)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.【解答】解:(1)由题意,得m=1.5﹣0.5=1.120〔(3.5﹣0.5)=40,∴a=40.答:a=40,m=1;(2)当0≤x≤1时设y与x之间的函数关系式为y=kx,由题意,得1,40=k1∴y=40x当1<x≤1.5时,y=40;x+b,由题意,得当1.5<x≤7设y与x之间的函数关系式为y=k2,解得:,∴y=40x﹣20.y=;(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得,解得:,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.=,.答:乙车行驶小时或小时,两车恰好相距50km.25.(14分)(2017•大石桥市校级一模)在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图①,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图②,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.【解答】(1)证明:如图①,作∠GAH=∠EAB交GE于点H.∴∠GAB=∠HAE.∵∠EAB=∠EGB,∠APE=∠BPG,∴∠ABG=∠AEH.在△ABG和△AEH中,,∴△ABG≌△AEH(ASA).∴BG=EH,AG=AH.∵∠GAH=∠EAB=60°,∴△AGH是等边三角形.∴AG=HG.∴EG=AG+BG;(2)EG=AG﹣BG.如图②,作∠GAH=∠EAB交GE于点H.∴∠GAB=∠HAE.∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°.∴∠ABG=∠AEH.∵又AB=AE,∴△ABG≌△AEH.∴BG=EH,AG=AH.∵∠GAH=∠EAB=90°,∴△AGH是等腰直角三角形.∴AG=HG.∴EG=AG﹣BG.26.(14分)(2014•资阳)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.【解答】解:(1)由题意可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),则,解得.故抛物线的解析式为y=﹣x2+2x+3.(2)依题意:设M点坐标为(0,t),①当MA=MB时:解得t=0,故M(0,0);②当AB=AM时:解得t=3(舍去)或t=﹣3,故M(0,﹣3);③当AB=BM时,解得t=3〒3,故M(0,3+3)或M(0,3﹣3).所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).(3)平移后的三角形记为△PEF.设直线AB的解析式为y=kx+b,则,解得.则直线AB的解析式为y=﹣x+3.△AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,易得直线EF的解析式为y=﹣x+3+m.设直线AC的解析式为y=k′x+b′,则,解得.则直线AC的解析式为y=﹣2x+6.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.①当0<m≤时,如图1所示.设PE交AB于K,EF交AC于M.则BE=EK=m,PK=PA=3﹣m,联立,解得,即点M(3﹣m,2m).故S=S △PEF ﹣S △PAK ﹣S △AFM=PE 2﹣PK 2﹣AF •h=﹣(3﹣m )2﹣m •2m =﹣m 2+3m .②当<m <3时,如图2所示. 设PE 交AB 于K ,交AC 于H . 因为BE=m ,所以PK=PA=3﹣m , 又因为直线AC 的解析式为y=﹣2x+6, 所以当x=m 时,得y=6﹣2m , 所以点H (m ,6﹣2m ). 故S=S △PAH ﹣S △PAK=PA •PH ﹣PA 2=﹣(3﹣m )•(6﹣2m )﹣(3﹣m )2=m 2﹣3m+.综上所述,当0<m ≤时,S=﹣m 2+3m ;当<m <3时,S=m 2﹣3m+.第31页(共32页)参与本试卷答题和审题的老师有:345624;王学峰;2300680618;zhjh;CJX;HJJ;ZJX;sd2011;dbz1018;sks;gsls;sjzx;知足长乐;星期八;hdq123;nhx600;HLing(排名不分先后)菁优网2017年4月8日第32页(共32页)。
2017辽宁省中考数学模拟试卷参考答案与试题解析
2017年辽宁省中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,计30分)01.﹣的相反数是()A.﹣ B.C.﹣D.【解答】﹣的相反数是.故选:B.02.2016年8月,辽宁省政府办公厅发布方案要求全省严格控制用水总量,全面提高用水效率,到2020年,全省年用水总量控制在160.6亿立方米以内,将160.6亿用科学记数法表示为()×1010×109×109D.1606×107【解答】═160 6×1010,故选:A.03.下列运算正确的是()A.(ab)2=ab2B.3a+2a2=5a2C.2(a+b)=2a+b D.a•a=a2【解答】A、(ab)2=a2b2,故此选项错误;B、3a+2a2无法计算,故此选项错误;C、2(a+b)=2a+2b,故此选项错误;D、a•a=a2,故此选项正确;故选:D.04.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.【解答】从上面看,共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选C.05.某校参加校园青春健身操比赛的16名运动员的身高如表所示,该校16名运动员身高的平均数和中位数分别是(单位:cm)()A.173cm,173cm B.174cm,174cm C.173cm,174cm D.174cm,175cm【解答】这组数据按照从小到大的顺序排列为:172,172,172,172,173,173,173,173,175,175,175,175,176,176,176,176,则平均数为:(172×4+173×4+175×4+176×4)÷16=174cm,中位数为:(173+175)÷2=174cm.故选B.06.使得关于x的一元二次方程2x(kx﹣4)﹣x2+6=0无实数根的最小整数k为()A.﹣1 B.2 C.3 D.4个【解答】方程变形为:(2k﹣1)x2﹣8x+6=0,当△<0,方程没有实数根,即△=82﹣4×6(2k﹣1)<0,解得k>,则满足条件的最小整数k为2.故选B.07.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()A.B.C.D.【解答】∵一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴你抬头看信号灯时是绿灯的概率是:=.故选C.08.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 【解答】设原来的平均车速为xkm/h,则根据题意可列方程为﹣=1.故选:A.09.关于抛物线y=x2﹣(a+1)x+a﹣2,下列说法错误的是()A.开口向上B.当a=2时,经过坐标原点OC.a>0时,对称轴在y轴左侧D.不论a为何值,都经过定点(1,﹣2)【解答】∵a=1,∴抛物线开口向上;当a=2时,抛物线的解析式为y=x2﹣3x,则过原点;对称轴为x=,当a>0时,对称轴>0,∴对称轴在y轴右侧;当x=1时,y=1﹣a﹣1+a﹣2=﹣2,∴不论a 为何值,都经过定点(1,﹣2),故选C.10.如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于x轴,直线AC交x轴于点E,BC⊥AC,连接BE,反比例函数(x>0)的图象经过点D.已知S△BCE=2,则k的值是()A.2 B.﹣2 C.3 D.4【解答】连接ED、OD,如图所示.∵四边形ABCD为平行四边形,∴BC=AD,BC∥AD.∵BC⊥AC,∴AD⊥AC.∵△BCE和△DCE有相同的底CE,相等的高BC=AD,∴S△BCE=S△DCE.∵CD平行于x轴,∴△OCD与△ECD有相等的高,∴S△OCD=S△DCE=S△BCE=2=|k|,∴k=±4.∵反比例函数在第一象限有图象,∴k=4.故选D.二、填空题(每小题3分,计24分)11.分解因式:x3﹣x2﹣20x=x(x+4)(x﹣5).【解答】原式=x(x2﹣x﹣20)=x(x+4)(x﹣5).故答案为:x(x+4)(x﹣5).12.不等式组的解集是﹣1<x≤3.【解答】,解①得x>﹣1,解②得x≤3.则不等式组的解集是﹣1<x≤3.13.如图,若BD∥AC,∠1=65°,∠A=40°,则∠2的大小是75°.【解答】∵BD∥AC,∠1=65°,∴∠C=∠1=65°,在△ABC中,∠A=40°,∠C=65°,∴∠2=75°,故答案为:75°14.如图,在△ABC中,AB=AC,AD⊥BC于点D,AD=18,点E在AC上且CE=AC,连接BE,与AD相交于点F.若BE=15,则△DBF的周长是24.【解答】∵在△ABC中,AB=AC,AD⊥BC,∴AD是△ABC的中线,∵CE=AC,即BE是△ABC的中线,∵BE与AD相交于点F,∴F是△ABC的重心,∴BF=BE=10,DF=AD=6.在Rt△BDF中,∵∠BDF=90°,∴BD==8,∴△DBF的周长=BD+DF+BF=8+6+10=24.故答案为24.15.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数分别为0,1,5,9,10,成绩较稳定的是甲(填“甲”或“乙”).【解答】乙组数据的平均数=(0+1+5+9+10)÷5=5,乙组数据的方差S2=[(0﹣5)2+(1﹣5)2+(9﹣5)2+(10﹣5)2]=16.4,∵S2甲<S2乙,∴成绩较为稳定的是甲.故答案为:甲.16.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0),A B C并把△ABC以点C为位似中心在x轴下方作△ABC的位似图形''的边长放大到原来的2倍.设点的对应点B′的横坐标是2,则点B的横坐标是﹣2.5.【解答】过点B、B'分别作BD⊥x轴于D,B'E⊥x轴于E,∴∠BDC=∠B'EC=90°.∵△ABC的位似图形是△A'B'C,∴点B、C、B'在一条直线上,∴∠BCD=∠B'CE,∴△BCD∽△B'CE.∴=,又∵=,∴=,又∵点B'的横坐标是2,点C的坐标是(﹣1,0),∴CE=3,∴CD=.∴OD=,∴点B的横坐标为:﹣2.5.故答案为:﹣2.5.17.如图,在菱形ABCD中,AB=5,AC=8,点P是对角线AC上的一个动点,过点P作EF⊥AC分别交AD、AB于点E、F,将△AEF沿EF折叠,使得点A落在点A′处,当△A′BC是等腰三角形时,AP的长为或.【解答】∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∠DAC=∠BAC,∵EF⊥AA′,∴∠EPA=∠FPA=90°,∴∠EAP+∠AEP=∠FAP+∠AFP=90°,∴∠AEP=∠AFP,∴AE=AF,∵由翻折知AE=EA′,A F=FA′,∴AE=EA′=A′F=FA,∴四边形AEA′F是菱形,∴AP=PA′①当CB=CA′时,∵AA′=AC﹣CA′=3,∴AP=AA′=.②当A′C=A′B时,∵∠A′CB=∠A′BC=∠BAC,∴△A′CB∽△BAC,∴=,∴A′C=,∴AA=8﹣=,∴AP=AA′=.故答案为或.18.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推,则正方形OB2015B2016C2016的顶点B2016的坐标是(21008,0).【解答】∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4(﹣4,0),B5(﹣4,﹣4),B6(0,﹣8),B7(8,﹣8),B8(16,0),B9(16,16),B10(0,32),由规律可以发现:每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252,∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).三、解答题19.先化简,再求值:(﹣1)÷,其中x=2+.【解答】原式=(﹣)÷=×==x﹣2当x=2+时,原式=2+﹣2=.20.某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图补充完成;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现欲从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率.(用树状图或列表法解答)【解答】(1)根据题意得:这次被调查的学生共有20÷=200(人).(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)列表如下:甲乙丙丁甲﹨(乙,甲) (丙,甲) (丁,甲)乙(甲,乙) ﹨(丙,乙) (丁,乙)丙(甲,丙) (乙,丙) ﹨(丁,丙)丁(甲,丁) (乙,丁) (丙,丁) ﹨∵共有12种等可能情况,恰好选中甲乙两位同学的有2种,∴P(选中甲、乙)==.21.如图,在▱ABCD中,过点A作AE⊥DC交DC的延长线于点E.过点D作DF⊥BA,交BA的延长线于点F.(1)求证:四边形AEDF是矩形;(2)连接BD,若AB=AE=2,tan∠FAD=,求BD的长.【解答】(1)∵四边形ABCD是平行四边形,∴AB∥DC,AF∥ED,∵AE⊥DC,DF⊥BA,∴DF∥EA,∴四边形AEDF是平行四边形,∵AE⊥DE,∴∠E=90°,∴四边形AEDF是矩形;(2)如图,连接BD,∵四边形AEDF是矩形,∴FD=AE=2,∠F=90°,∵在Rt△AFD中,tan∠FAD==,∵AF=5,∴AB=2,∴BF=AB+AF=7,∴在Rt△BFD中,BD==.22.放风筝是大家喜爱的运动,星期天上午小明在市政府广场上放风筝.如图,他在A处不小心让风筝挂在一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(AD,BD均为线段,≈1.414,≈1.732,结果精确到1米).【解答】作DH⊥BC于H,设DH=x米.∵∠ACD=90°,∴在Rt△ADH中,∠DAH=30°,AD=2DH=2x,AH=DH÷tan30°=x,在Rt△BDH中,∠DBH=45°,BH=DH=x,BD=x,∵AH﹣BH=AB=10,∴x﹣x=10,∴x=5(+1),∴小明此时所收回风筝的长度为AD﹣BD=2x﹣x=(2﹣)×5(+1)≈8米答:小明此时所收回的风筝线的长度约是8米.23.如图,AB是⊙O的直径,C是⊙O上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠CAD.(1)求证:直线MN是⊙O的切线;(2)若CD=3,∠CAD=30°,求⊙O的半径.【解答】(1)连接OC,∵OA=OC,∴∠BAC=∠ACO.∵AC平分∠BAD,∴∠BAC=∠CAD,∴∠ACO=∠CAD.∴OC∥AD,又∵AD丄MN,∴OC丄MN,∴直线MN是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,又∵AD丄MN,∴∠ADC=90°.∵CD=3,∠CAD=30°,∴AD=3,AC=6∵在Rt△ABC和Rt△ACD中,∠BAC=∠CAD,∴Rt△ABC∽Rt△ACD,∴,∴AB=4,∴⊙O的半径为2.24.国家为支持大学生创业,提供小额无息贷款,学生王芳享受无息贷款36000元用来代理品牌服装销售.若该品牌服装进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),每天付员工的工资每人每天82元,每天应支付其它费用106元.(1)求日销售y(件)与销售价x (元/件)之间的函数关系式;(2)若不考虑还贷,当某天销售价为48元/件时收支恰好平衡(收入=支出),求该店员工人数;(3)若该店只有2名员工,则至少需要多少天才能还清贷款?此时每件服装的价格应定为多少元?【解答】(1)当40≤x≤58时,设y与x的函数解析式为y=k1x+b1,由解得.∴y=﹣2x+140;当58<x≤71时,设y与x的函数解析式为y=k2x+b2,由解得.∴y=﹣x+82.综上所述:y=.(2)设人数为a,当x=48时,y=﹣2×48+140=44,则(48﹣40)×44=106+82a,∴a=3.答:略.(3)令每日的收入为S元,则有:当40≤x≤58时,S=(x﹣40)(﹣2x+140)=﹣2(x﹣55)2+450,故当x=55时S取得最大值450;当58<x≤71时,S=(x﹣40) (﹣x+82)=﹣(x﹣61)2+441,故当x=61时S取得最大值441.综上可知,当x=55时,S取得最大值450.设需要b天,该店还清所有债务,则(450﹣106﹣82×2)b≥36000,解得b≥200.故该店至少需要200天才能还清贷款,此时,每件服装的价格应定为55元.25.在正方形ABCD中,BD是一条对角线,点E在直线CD上(与点C,D不重合),连接AE,平移△ADE,使点D移动到点C,得到△BCF,过点F作FG⊥BD于点G,连接AG,EG.⑴问题猜想:如图1,若点E在线段CD上,猜想AG与EG的数量关系是AG=EG,位置关系是AG⊥EG;⑵类比探究:如图2,若点E在线段CD延长线上,其余条件不变,⑴中结论仍然成立吗?请说明理由;⑶解决问题:若点E在线段DC延长线上且∠AGF=120°,正方形ABCD的边长为2,请在备用图中画出图形并直接写出DE的长度.【解答】(1)如图1,由平移得EF=AD,∵BD是正方形的对角线,∴∠ADB=∠CDB=45°,∵GF⊥BD,∴∠DGF=90°,∴∠GFD+∠CBD=90°,∴∠DFG=45°,∴GD=GF,在△AGD和△EGF中,,∴△AGD≌△EGF∴AG=EG,∠AGD=∠EGF,∴∠AGE=∠AGD+∠DGE=∠EGF+DGE=90°,∴AG⊥EG.故答案为AG=EG,AG⊥EG.(2)(1)中的结论仍然成立,证明过程如下:如图2,由平移得EF=AD,∵BD是正方形的对角线,∴∠ADB=∠CDB=45°,∵GF⊥BD,∴∠DGF=90°,∴∠GFD+∠CBD=90°,∴∠DFG=45°,∴GD=GF,在△AGD和△EGF中,,∴△AGD≌△EGF∴AG=EG,∠AGD=∠EGF,∴∠AGE=∠AGD+∠DGE=∠EGF+DGE=90°,∴AG⊥EG.(3)由(1)有AG=CG,AG⊥EG,∴∠GEA=45°,∵∠AGF=120°,∴∠AGB=∠CGB=30°,∴∠FGE=∠CGB=∠CGE=30°,∴∠CEG=75°,∴∠AED=30°,在Rt△ADE中,AD=2,∴DE=2.26.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(3,0)(A在B的左侧),与y轴交于点C(0,3),它的对称轴是直线x=1.(1)求抛物线的解析式;(2)将抛物线向下平移h个单位长度,使得平移后所得抛物线顶点落在△OBC内部(含△OBC的边界),求h的取值范围;(3)设点P是抛物线上任一点,点Q在直线x=﹣3上,则△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能够,求出点P坐标;若不能,说明理由.【解答】(1)∵对称轴是直线x=1且B(3,0),∴A(﹣1,0)∵抛物线y=ax2+bx+c过点C(0,3),∴当x=0时c=3.∵抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),∴,∴,∴抛物线的解析式为y=﹣x2+2x+3;(2)∵C(0,3),B(3,0),∴直线BC解析式为y=﹣x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为(1,4)∵对于直线BC:y=﹣x+3,当x=1时y=2;∴将抛物线向下平移h个单位长度,∴当h=2时,抛物线顶点落在BC上;当h=4时,抛物线顶点落在OB上,∴将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(含△OBC的边界),则2≤h≤4;(3)设P(m,﹣m2+2m+3),Q(﹣3,n),①当P点在x轴上方时,过P点作PM垂直于y轴,交y轴与M点,过B点作BN垂直于MP的延长线于N点,如图所示:B(3,0),∵△PBQ是以点P为直角顶点的等腰直角三角形,∴∠BPQ=90°,BP=PQ,则∠PMQ=∠BNP=90°,∠MPQ=∠NBP,在△PQM和△BPN中,,∴△PQM≌△BPN(AAS),∴PM=BN,∵PM=BN=﹣m2+2m+3,根据B点坐标可得PN=3﹣m且PM+PN=6,∴﹣m2+2m+3+3﹣m=6,解得m=1或m=0,∴P(1,4)或P(0,3).②当P点在x轴下方时,作PM垂直于直线x=﹣3于M点,作BN垂直于MP延长线于N点,同理可得△PQM≌△BPN,∴PM=BN,∴PM=6﹣(3﹣m)=3+m,BN=m2﹣2m﹣3,则3+m=m2﹣2m﹣3,解得m=或.∴P(,)或(,).综上可得点P的坐标是(1,4),(0,3),(,)和(,).。
2017年辽宁省鞍山市中考数学试卷(解析版)
2017年辽宁省鞍山市中考数学试卷一、选择题(共8小题,每小题3分,共24分)1.(3分)下列各数中,比﹣3小的数是()A.﹣2B.0C.1D.﹣42.(3分)如图所示几何体的左视图是()A.B.C.D.3.(3分)函数y=中自变量x的取值范围是()A.x≥﹣2B.x>﹣2C.x≤﹣2D.x<﹣24.(3分)一组数据2,4,3,x,4的平均数是3,则x的值为()A.1B.2C.3D.45.(3分)在平面直角坐标系中,点P(m+1,2﹣m)在第二象限,则m的取值范围为()A.m<﹣1B.m<2C.m>2D.﹣1<m<2 6.(3分)某班有若干个活动小组,其中书法小组人数的3倍比绘画小组的人数多15人,绘画小组人数的2倍比书法小组的人数多5人,问:书法小组和绘画小组各有多少人?若设书法小组有x人,绘画小组有y人,那么可列方程组为()A.B.C.D.7.(3分)分式方程=﹣2的解为()A.x=2B.x=﹣2C.x=1D.无解8.(3分)如图,在矩形ABCD中,点E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②DF=DC;③S△DCF=4S△DEF;④tan∠CAD =.其中正确结论的个数是()A.4B.3C.2D.1二、填空题(共8小题,每小题3分,共24分)9.(3分)长城的总长大约为6700000m,将数6700000用科学记数法表示为.10.(3分)分解因式2x2y﹣8y的结果是.11.(3分)有5张大小、背面都相同的卡片,正面上的数字分别为1,﹣,0,π,﹣3,若将这5张卡片背面朝上洗匀后,从中任意抽取1张,那么这张卡片正面上的数字为无理数的概率是.12.(3分)如图,在▱ABCD中,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN,分别交AD,BC于点E,F,连接AF,∠B=50°,∠DAC=30°,则∠BAF等于.13.(3分)若一个圆锥的底面圆半径为1cm,其侧面展开图的圆心角为120°,则圆锥的母线长为cm.14.(3分)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为.15.(3分)如图,在平面直角坐标系中,正方形ABOC和正方形DOFE的顶点B,F在x 轴上,顶点C,D在y轴上,且S△ADF=4,反比例函数y=(x>0)的图象经过点E,则k=.16.(3分)如图,在△ABC中,AB=AC=6,∠A=2∠BDC,BD交AC边于点E,且AE =4,则BE•DE=.三、解答题(共2小题,每小题8分,共16分)17.(8分)先化简,再求值:(1﹣)÷,其中x=﹣1.18.(8分)如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,BA的延长线于点E,F,交边BC,AD于点H,G.(1)求证:四边形AECF是平行四边形.(2)若AB=5,BC=8,求AF+AG的值.四、解答题(共2小题,每小题10分,共20分)19.(10分)某校要了解学生每天的课外阅读时间情况,随机调查了部分学生,对学生每天的课外阅读时间x(单位:min)进行分组整理,并绘制了如图所示的不完整的统计图表,根据图中提供的信息,解答下列问题:(1)本次调查共抽取名学生.(2)统计表中a=,b=.(3)将频数分布直方图补充完整.(4)若全校共有1200名学生,请估计阅读时间不少于45min的有多少人.20.(10分)为增强学生环保意识,某中学举办了环保知识竞赛,某班共有5名学生(3名男生,2名女生)获奖.(1)老师若从获奖的5名学生中选取一名作为班级的“环保小卫士”,则恰好是男生的概率为.(2)老师若从获奖的5名学生中任选两名作为班级的“环保小卫士”,请用画树状图法或列表法,求出恰好是一名男生、一名女生的概率.五、解答题(共2小题,每小题10分,共20分)21.(10分)如图,建筑物C在观测点A的北偏东65°方向上,从观测点A出发向南偏东40°方向走了130m到达观测点B,此时测得建筑物C在观测点B的北偏东20°方向上,求观测点B与建筑物C之间的距离.(结果精确到0.1m.参考数据:≈1.73)22.(10分)如图,△ACE,△ACD均为直角三角形,∠ACE=90°,∠ADC=90°,AE 与CD相交于点P,以CD为直径的⊙O恰好经过点E,并与AC,AE分别交于点B和点F.(1)求证:∠ADF=∠EAC.(2)若PC=P A,PF=1,求AF的长.六、解答题(共2小题,每小题10分,共20分)23.(10分)某网络经销商销售一款夏季时装,进价每件60元,售价每件130元,每天销售30件,每销售一件需缴纳网络平台管理费4元.未来30天,这款时装将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该时装单价每降1元,每天销售量增加5件,设第x天(1≤x≤30且x为整数)的销量为y件.(1)直接写出y与x的函数关系式;(2)在这30天内,哪一天的利润是6300元?(3)设第x天的利润为W元,试求出W与x之间的函数关系式,并求出哪一天的利润最大,最大利润是多少.24.(10分)如图,一次函数y=x+6的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.(1)求直线CE的解析式;(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y 轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P 的坐标;若不存在,请说明理由.七、解答题(本大题共1小题,共12分)25.(12分)如图,∠MBN=90°,点C是∠MBN平分线上的一点,过点C分别作AC⊥BC,CE⊥BN,垂足分别为点C,E,AC=4,点P为线段BE上的一点(点P不与点B、E重合),连接CP,以CP为直角边,点P为直角顶点,作等腰直角三角形CPD,点D落在BC左侧.(1)求证:=;(2)连接BD,请你判断AC与BD的位置关系,并说明理由;(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.八、解答题(本大题共1小题,共14分)26.(14分)如图,抛物线y=﹣x+2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)试探究△ABC的外接圆的圆心位置,求出圆心坐标;(2)点P是抛物线上一点(不与点A重合),且S△PBC=S△ABC,求∠APB的度数;(3)在(2)的条件下,点E是x轴上方抛物线上一点,点F是抛物线对称轴上一点,是否存在这样的点E和点F,使得以点B、P、E、F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.2017年辽宁省鞍山市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,共24分)1.【解答】解:∵﹣4<﹣3<﹣2<0,∴比﹣3小的数是﹣4,故选:D.2.【解答】解:图中几何体的左视图如图所示:故选:C.3.【解答】解:由x+2≥0可得x≥﹣2,故选:A.4.【解答】解:根据题意,得:=3,解得:x=2,故选:B.5.【解答】解:根据题意,得:,解得m<﹣1,故选:A.6.【解答】解:若设书法小组有x人,绘画小组有y人,由题意得:,故选:D.7.【解答】解:两边同时乘以(x﹣2)得:5=(x﹣1)﹣2(x﹣2),解得:x=﹣2,检验:当x=﹣2时,x﹣2≠0,∴x=﹣2是原方程的根.故选:B.8.【解答】解:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,S△DCF=4S△DEF ∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;②∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故②正确;③∵点E是AD边的中点,∴S△DEF=S△ADF,∵△AEF∽△CBF,∴AF:CF=AE:BC=,∴S△CDF=2S△ADF=4S△DEF,故③正确;④设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有=,即b=a,∴tan∠CAD===.故④正确;故选:A.二、填空题(共8小题,每小题3分,共24分)9.【解答】解:6 700 000=6.7×106,故答案为:6.7×106.10.【解答】解:原式=2y(x+2)(x﹣2).故答案为:2y(x+2)(x﹣2)11.【解答】解:∵在1,﹣,0,π,﹣3中,无理数有﹣,π,共2个,∴这张卡片正面上的数字为无理数的概率是;故答案为:.12.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD=180°﹣∠B=130°,∠ACF=∠CAD=30°,由作图痕迹可知EF是AC的垂直平分线,∴AF=CF,∴∠CAF=∠ACF=30°,∴∠BAF=∠BAD﹣∠CAD﹣∠CAF=70°.故答案为70°.13.【解答】解:设母线长为l,则=2π×1解得:l=3.故答案为:3.14.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A顺时针旋转,使点C落在E处,点B恰好落在AC延长线上点D处,∴AD=AB=5,∴CD=AD﹣AC=1,∴四边形AEDB的面积为,故答案为:.15.【解答】解:设正方形DOFE的边长分别是n,则E(n,n),连接AO,∵四边形ABOC和四边形DOFE是正方形,∴∠AOB=∠DFO=45°,∴AO∥DF,∴S△ADF=S△DOF(同底等高),∴n2=4,∴n2=8,∴k=8,故答案为8.16.【解答】解:延长CA到F,使得AF=AB,连接BF,则∠F=∠ABF=∠BAC,∵∠BAC=2∠BDC,∴∠F=∠BDC,∵∠FEB=∠DEC,∴△FEB∽△DEC,∴,∵AE=4,AB=AC=6,∴EF=10,CE=2,∴,∴BE•DE=20,故答案为:20.三、解答题(共2小题,每小题8分,共16分)17.【解答】解:(1﹣)÷===,当x=﹣1时,原式=.18.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠BAD=∠BCD,∵AE、CF分别平分∠BAD和∠BCD,∴∠BCG=∠CGD=∠HAD,∴AE∥CF,∵AF∥CE,∴四边形AECF是平行四边形;(2)解:由(1)可知∠BCF=∠DCF=∠F,∴BF=BC=AD=8,∵AB=CD=5,∴AF=BF﹣AB=3,∵BF∥DE,∴∠DCG=∠F,∠D=∠F AG,∴△DCG∽△AFG,∴==,∴DG=AG,∴AD=AG+DG=AG=8,∴AG=3,∴AF+AG=3+3=6.四、解答题(共2小题,每小题10分,共20分)19.【解答】解:(1)6÷0.1=60,即本次调查共抽取60名学生,故答案为:60;(2)a=60×0.25=15,b=18÷60=0.3,故答案为:15,0.3;(3)如图所示:;(4)1200×=540,答:若全校共有1200名学生,请估计阅读时间不少于45min的有540人.20.【解答】解:(1)所有等可能结果共有5种,其中男生有3种,∴恰好是男生的概率为,故答案为:;(2)画树状图为:共有20种等可能的结果数,其中选出1名男生和1名女生的结果数为12种,所以恰好选出1名男生和1名女生的概率==.五、解答题(共2小题,每小题10分,共20分)21.【解答】解:如图,过A作AD⊥BC于D.根据题意,得∠ABC=40°+20°=60°,AB=130m.在Rt△ADB中,∵∠DAB=30°,∴DB=AB=×130=65m,AD=BD=65m.∵∠BAC=180°﹣65°﹣40°=75°,∴∠C=180°﹣∠ABC﹣∠BAC=180°﹣60°﹣75°=45°.在Rt△ADC中,∵tan C==1,∴CD=AD=65m,∴BC=BD+CD=65+65≈177.5m.故观测点B与建筑物C之间的距离约为177.5m.22.【解答】(1)证明:∵∠ADC=90°,∠ACE=90°,∴∠ADF+∠FDC=90°,∠EAC+∠CEF=90°,∵∠FDC=∠CEF,∴∠ADF=∠EAC;(2)连接FC,∵CD是圆O的直径,∴∠DFC=90°,∴∠FDC+∠FCD=90°,∵∠ADF+∠FDC=90°,∠ADF=∠EAC,∴∠FCD=∠EAC,即∠FCP=CAP,∵∠FPC=∠CP A,∴△FPC∽△CP A,∴,∵PC=P A,PF=1,∴,解得,P A=,∴AF=P A﹣PF=,即AF=.六、解答题(共2小题,每小题10分,共20分)23.【解答】解:(1)由题意可知y=5x+30;(2)根据题意可得(130﹣x﹣60﹣4)(5x+30)=6300,即x2﹣60x+864=0,解得:x=24或36(舍)∴在这30天内,第24天的利润是6300元.(3)根据题意可得:w=(130﹣x﹣60﹣4)(5x+30),=﹣5x2+300x+1980,=﹣5(x﹣30)2+6480,∵a=﹣5<0,∴函数有最大值,∴当x=30时,w有最大值为6480元,∴第30天的利润最大,最大利润是6480元.24.【解答】解:(1)根据题意得点B的横坐标为0,点A的纵坐标为0,∴B(0,6),A(﹣8,0),∴OA=8,OB=6,∴AB==10,∵CB平分∠ABO,CD⊥AB,CO⊥BO,∴CD=CO,∵BC=BC,∴Rt△BCD≌Rt△BCO,∴BD=BO=6,∴AD=AB﹣BD=4,∵∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,∴,∴AC=5,∴OC=OA﹣AC=3,∴C(﹣3,0),∵∠EDB=∠AOB=90°,BD=BO,∠EBD=∠ABO,∴△EBD≌△ABO,∴BE=AB=10,∴OE=BE﹣OB=4,∴E(0,﹣4),设直线CE的解析式为y=kx﹣4,∴﹣3k﹣4=0,∴k=﹣,∴直线CE的解析式为y=﹣x﹣4,(2)解:存在,(﹣,),方法1、如图,∵点P在直线y=x+6上,∴设P(﹣m,﹣m+6),∴PN=m,PM=﹣m+6,根据勾股定理得,MN2=PN2+PM2=m2+(﹣m+6)2=(m﹣)2+,∴当m=时,MN2有最小值,则MN有最小值,当m=时,y=﹣x+6=﹣×+6=,∴P(﹣,).方法2、如图∵PM⊥x轴于M,PN⊥OB于y轴,∴∠PMO=∠PNO=90°=∠MON,∴四边形PMON是矩形,∴MN=OP∴OP最小时,MN最小,∴OP⊥AB,∵OA=8,OB=6,∴AB=10,∴OP==,易知,△OPM∽△OAP,∴∴,∴P的横坐标为﹣,∵点P在直线y=x+6上,∴P的纵坐标为,∴P(﹣,).七、解答题(本大题共1小题,共12分)25.【解答】(1)证明:∵∠MBN=90°,点C是∠MBN平分线上的一点,∴∠CBE=45°,又CE⊥BN,∴∠BCE=45°,∴BE=CE,∴△BCE是等腰直角三角形.又∵△CPD是等腰直角三角形,∴△CPD∽△CEB,∴=,(2)解:AC∥BD,理由如下:∵∠PCE+∠BCP=∠DCB+∠BCP=45°,∴∠PCE=∠DCB.由(1)知,=,∴△EPC∽△BDC,∴∠PEC=∠DBC.∵AC⊥BC,∴∠ACB=90°,∴∠ACB+∠DBC=180°,∴AC∥BD;(3)解:如图所示,过点P作PF⊥BD.交DB的延长线于点F.∵AC=4,△ABC与△BEC都是等腰直角三角形,∴BC=4,BE=CE=4.由(2)知,△EPC∽△BDC,∴=.即=,∴DB=x.∵∠PBF=∠CBF﹣∠CBP=90°﹣45°=45°,即BP=BE﹣PE=4﹣x,∴PF=BP•sin∠PBF=(4﹣x)×=2﹣x,∴S=DB•PF=×x×(2﹣x)=﹣x2+2x,即:S=﹣x2+2x.八、解答题(本大题共1小题,共14分)26.【解答】解:(1)∵抛物线y=﹣x+2与y轴交于点C,∴C(0,2),令y=0,则0=﹣x+2,∴x=﹣1或x=4,∵点A在点B的左侧,∴A(﹣1,0),B(4,0),∴OA=1,OB=4,OC=2,根据勾股定理得,AC=,BC=2,∵AB=OA+OB=5,∴AC2+BC2=5+20=25=AB2,∴△ABC是直角三角形,∴AB是Rt△ABC的外接圆的直径,∴△ABC的外接圆的圆心是线段AB的中点,∴其坐标为(,0);(2)∵C(0,2)设直线BC的解析式为y=kx+2,∵B(4,0),∴4k+2=0,∴k=﹣,∴直线BC的解析式为y=﹣x+2,∵P是抛物线上一点,设点P(m,﹣m2+m+2)如图,过点P作PQ∥y轴交直线BC于点Q,∴Q(m,﹣m+2),①当点P在直线BC上方时,S△PBC=S△PQC+S△PBQ=S△ABC,∴[(﹣m2+m+2)﹣(﹣m+2)]×m+[(﹣m2+m+2)﹣(﹣m+2)](m﹣4)=×5×2∴m2﹣4m+5=0,∵△=(﹣4)2﹣4×1×5=﹣4<0,∴此方程没有实数根;∴当点P在直线BC上方时,S△PBC≠S△ABC,②当点P在直线BC下方时,S△PBC=S△PQC﹣S△PBQ=S△ABC,∴[(﹣m+2)﹣(﹣m2+m+2)]×m﹣[(m+2)﹣(﹣m2+m+2)](m ﹣4)=×5×2∴m2﹣4m﹣5=0,∴m=﹣1(舍)或m=5,∴P(5,﹣3)作PM⊥x轴于,交BC于Q,∴PM=3,MB=1,根据勾股定理得,BP=,AP=3,过点B作BN⊥AP于N,∴∠ANB=∠AMP=90°,∠BAN=∠P AM,∴△ABN∽△APM,∴,∴,∴BN=,在Rt△BPN中,PN==,∴BN=PN,∴∠APB=45°;(3)存在,如图2,∵抛物线y=﹣x+2的对称轴为x=,由(2)知,P(5,﹣3),BP=,设E(n,﹣n2+n+2),①当点E在抛物线对称轴右侧时,即:点E处时,EF=BP=,∴点E到对称轴的距离为EG=BM=1,∴n﹣=1,∴n=,∴E(,),易知,FG=PM=3,∴F(,);②当点E在抛物线对称轴左侧时,即:E'处时,E'F'=BP=,∴点E'到对称轴的距离为E'G'=BM=1,∴﹣n=1,∴n=,∴E'(,),易知,F'G'=PM=3,∴F'(,﹣).即:满足条件的点F的坐标为(,)或(,﹣).。
鞍山市铁西区中考数学模拟试卷含答案试卷分析详解
辽宁省鞍山市铁西区中考数学模拟试卷(3月份)一、选择题(共8小题,每小题3分,共24分)1.(3分)的相反数是()A.8102B.﹣C.D.2.(3分)如图所示的几何体是由六个相同的小正方体组合而成的,则从它左边看到的平面图形是()A.B.C.D.3.(3分)下列运算正确的是()A.3a2﹣2a2=1B.a2•a3=a6C.(a﹣b)2=a2﹣b2D.(a+b)2=a2+2ab+b24.(3分)如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为()A.34°B.54°C.56°D.66°5.(3分)七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,现在从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况如下表:节水量(m3)0.20.250.30.40.5家庭数12241那么这组数据的众数和平均数分别是()A.0.4m3和0.34m3B.0.4m3和0.3m3C.0.25m3和0.34m3D.0.25m3和0.3m36.(3分)若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k 的取值范围()A.k<1且k≠0B.k≠0C.k<1D.k>17.(3分)如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤=正确的有()A.①②B.①④⑤C.①②④⑤D.①②③④⑤8.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>﹣3b;(3)7a﹣3b+2c >0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题(共8小题,每小题3分,共24分)9.(3分)钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为.10.(3分)分解因式:x3y﹣xy=.11.(3分)一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有个红球.12.(3分)如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为.13.(3分)如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为.14.(3分)如图,Rt△ABC的直角边BC在x轴正半轴上,点D为斜边AC上一点,AD=2CD,DB的延长线交y轴于点E,函数y=(k>0)的图象经过点A,=2,则k=.若S△BCE15.(3分)如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:①=;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+.其中正确的是(把你认为正确结论的序号都填上).16.(3分)如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点P1、P2、P3、…、P,把△ABC分成个互不重叠的小三角形.三、解答题(共2小题,每题8分,共16分)17.(8分)先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.18.(8分)A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B两地同时出发匀速前往B,A两地,乙车速度是甲车速度的倍,乙车比甲车早到45分钟.(1)求甲车速度;四、解答题(共2小题,每题10分,共20分)19.(10分)如图是某路灯在铅垂面内的示意图,灯柱BC的高为10米,灯柱BC 与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=6.求灯杆AB 的长度.20.(10分)如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积;(3)若=,DF+BF=8,如图2,求BF的长.五、解答题(共2小题,每题10分,共20分)21.(10分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有人,在扇形统计图中,“乒乓球”的百分比为%,如果学校有800名学生,估计全校学生中有人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.22.(10分)如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k>0)的图象经过BC边的中点D(3,1).(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E 在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.六、解答题(第23题10分,第24题11分,共21分)23.(10分)铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如下表所示:6<x≤15第x天1≤x≤6每天的销售量y/盒10x+6(1)求p与x的函数关系式;(2)若每天的销售利润为w元,求w与x的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.24.(10分)问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点M和N 分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM 和BN,交于点P.求△APB周长的最大值.七、解答题(本题12分)25.(12分)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=4求BN的长;(2)已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一点D,使C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)(3)如图3,正方形ABCD中,M,N分别在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分别交BD于E,F求证:①E、F是线段BD的勾股分割点;②△AMN的面积是△AEF面积的两倍.八、解答题(本题14分)26.(14分)如图1,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B、两点(点A在点B的左侧),与y轴交于点C.(1)判断△ABC形状,并说明理由.(2)在抛物线第四象限上有一点,它关于x轴的对称点记为点P,点M是直线BC上的一动点,当△PBC的面积最大时,求PM+MC的最小值;(3)如图2,点K为抛物线的顶点,点D在抛物线对称轴上且纵坐标为,对称轴右侧的抛物线上有一动点E,过点E作EH∥CK,交对称轴于点H,延长HE 至点F,使得EF=,在平面内找一点Q,使得以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴,请问是否存在这样的点Q,若存在请直接写出点E的横坐标,若不存在,请说明理由.辽宁省鞍山市铁西区中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(共8小题,每小题3分,共24分)1.(3分)的相反数是()A.8102B.﹣C.D.【解答】解:的相反数﹣,故选:B.2.(3分)如图所示的几何体是由六个相同的小正方体组合而成的,则从它左边看到的平面图形是()A.B.C.D.【解答】解:观察几何体,从左面看到的图形是故选:D.3.(3分)下列运算正确的是()A.3a2﹣2a2=1B.a2•a3=a6C.(a﹣b)2=a2﹣b2D.(a+b)2=a2+2ab+b2【解答】解:A、3a2﹣2a2=a2,故A错误;B、a2•a3=a5,故B错误;C、(a﹣b)2=a2﹣2ab+b2,故C错误;D、(a+b)2=a2+2ab+b2,故D正确;故选:D.4.(3分)如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为()A.34°B.54°C.56°D.66°【解答】解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故选:C.5.(3分)七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,现在从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况如下表:节水量(m3)0.20.250.30.40.5家庭数12241那么这组数据的众数和平均数分别是()A.0.4m3和0.34m3B.0.4m3和0.3m3C.0.25m3和0.34m3D.0.25m3和0.3m3【解答】解:将数据按从大到小的顺序排列为:0.2,0.25,0.25,0.3,0.3,0.4,0.4,0.4,0.4,0.5,则众数为:0.4m3;平均数为:(0.2+0.25+0.25+0.3+0.3+0.4+0.4+0.4+0.4+0.5)=0.34m3.故选:A.6.(3分)若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k 的取值范围()A.k<1且k≠0B.k≠0C.k<1D.k>1【解答】解:∵关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,∴△>0,即(﹣6)2﹣4×9k>0,解得,k<1,∵为一元二次方程,∴k≠0,∴k<1且k≠0.故选:A.7.(3分)如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤=正确的有()A.①②B.①④⑤C.①②④⑤D.①②③④⑤【解答】解:∵∠ACB=45°,∴由圆周角定理得:∠BOD=2∠ACB=90°,∴①正确;∵AB切⊙O于B,∴∠ABO=90°,∴∠DOB+∠ABO=180°,∴DO∥AB,∴②正确;假如CD=AD,因为DO∥AB,所以CE=BE,根据垂径定理得:OD⊥BC,则∠OEB=90°,∵已证出∠DOB=90°,∴此时△OEB不存在,∴③错误;∵∠DOB=90°,OD=OB,∴∠ODB=∠OBD=45°=∠ACB,即∠ODB=∠C,∵∠DBE=∠CBD,∴△BDE∽△BCD,∴④正确;过E作EM⊥BD于M,则∠EMD=90°,∵∠ODB=45°,∴∠DEM=45°=∠EDM,∴DM=EM,设DM=EM=a,则由勾股定理得:DE=a,∵∠ABC=180°﹣∠C﹣∠A=75°,又∵∠OBA=90°,∠OBD=45°,∴∠OBC=15°,∴∠EBM=30°,在Rt△EMB中BE=2EM=2a,∴==,∴⑤正确;故选:C.8.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>﹣3b;(3)7a﹣3b+2c >0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个【解答】解:∵x=﹣=2,∴4a+b=0,故①正确.由函数图象可知:当x=3时,y>0,即9a+3b+c>0,∴9a+c>﹣3b,故②正确.∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0又∵b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴7a﹣3b+2c=7a+12a﹣5a=14a,∵抛物线开口向下,∴a<0,∴7a﹣3b+2c<0,故③错误;∵抛物线的对称轴为x=2,C(7,y3),∴(﹣3,y3).∵﹣3<﹣,在对称轴的左侧,∴y随x的增大而增大,∴y1=y3<y2,故④错误.方程a(x+1)(x﹣5)=0的两根为x=﹣1或x=5,过y=﹣3作x轴的平行线,直线y=﹣3与抛物线的交点的横坐标为方程的两根,依据函数图象可知:x1<﹣1<5<x2,故⑤正确.故选:B.二、填空题(共8小题,每小题3分,共24分)9.(3分)钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为 4.4×106.【解答】解:将4400000用科学记数法表示为:4.4×106.故答案为:4.4×106.10.(3分)分解因式:x3y﹣xy=xy(x+1)(x﹣1).【解答】解:原式=xy(x2﹣1)=xy(x+1)(x﹣1),故答案为:xy(x+1)(x﹣1)11.(3分)一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有6个红球.【解答】解:设袋中有x个红球.由题意可得:=0.2,解得:x=6,即袋中有6个红球,故答案为:6.12.(3分)如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为﹣4<x<﹣.【解答】解:不等式mx+2<kx+b<0的解集是﹣4<x<﹣.故答案是:﹣4<x<﹣.13.(3分)如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为 1.5或3.【解答】解:分两种情况:①当∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=4,∴BC=AD=4,在Rt△ABC中,AC===5,设BE=x,则CE=BC﹣BE=4﹣x,由翻折的性质得,AF=AB=3,EF=BE=x,∴CF=AC﹣AF=5﹣3=2,在Rt△CEF中,EF2+CF2=CE2,即x2+22=(4﹣x)2,解得x=1.5,即BE=1.5;②当∠CEF=90°时,如图2,由翻折的性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=3,综上所述,BE的长为1.5或3.故答案为:1.5或3.14.(3分)如图,Rt△ABC的直角边BC在x轴正半轴上,点D为斜边AC上一点,AD=2CD,DB的延长线交y轴于点E,函数y=(k>0)的图象经过点A,=2,则k=8.若S△BCE【解答】解:连结OA、EA,如图,∵AD=2CD,∴S△ADE =2S△CDE,S△ADB=2S△CDB,即S△ABE +S△ADE=2(S△CDB+S△BCE),∴S△ABE =2S△BCE=2×2=4,∵OE∥AB,∴S△ABE=S OAB=4,∴×|k|=4,而k>0,∴k=8.故答案为8.15.(3分)如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:①=;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+.其中正确的是①②(把你认为正确结论的序号都填上).【解答】解:①如图所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,∴∠BOE=∠COF,在△BOE与△COF中,,∴△BOE≌△COF,∴BE=CF,∴=,①正确;②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,∴△BOG≌△COH;∴OG=OH,∵∠GOH=90°,∴△OGH是等腰直角三角形,②正确.③如图所示,∵△HOM≌△GON,∴四边形OGBH的面积始终等于正方形ONBM的面积,③错误;④∵△BOG≌△COH,∴BG=CH,∴BG+BH=BC=4,设BG=x,则BH=4﹣x,则GH==,∴其最小值为4+2,D错误.故答案为:①②.16.(3分)如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点P1、P2、P3、…、P2017,把△ABC分成4035个互不重叠的小三角形.【解答】解:如图,△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0,△ABC的三个顶点和它内部的点P1、P2,把△ABC分成的互不重叠的小三角形的个数=3+2×1,△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成的互不重叠的小三角形的个数=3+2(n﹣1)=2n+1,当n=2017时,2n+1=4035,故答案为:4035.三、解答题(共2小题,每题8分,共16分)17.(8分)先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.【解答】解:(﹣a+1)÷===,当a=0时,原式=.18.(8分)A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B两地同时出发匀速前往B,A两地,乙车速度是甲车速度的倍,乙车比甲车早到45分钟.(1)求甲车速度;(2)乙车到达A地停留半小时后以来A地时的速度匀速返回B地,甲车到达B 地后立即提速匀速返回A地,若乙车返回到B地时甲车距A地不多于30千米,求甲车至少提速多少千米/时?【解答】解:(1)设甲车速度为x千米/时,则乙车的速度是x千米/时,依题意得:=+,解得:x=60.经检验:x=60是原方程的解.答:设甲车速度为60千米/时;(2)设甲车提速y千米/时,依题意得:180﹣(×2+)(60+y)≤30,解得:y≥15.所以甲车至少提速15千米/时.四、解答题(共2小题,每题10分,共20分)19.(10分)如图是某路灯在铅垂面内的示意图,灯柱BC的高为10米,灯柱BC 与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=6.求灯杆AB 的长度.【解答】解:过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=10.由题意得∠ADE=α,∠E=45°.设AF=x.∵∠E=45°,∴EF=AF=x.在Rt△ADF中,∵tan∠ADF=,∴DF===,∴x+=13.3.∴x=11.4.∴AG=AF﹣GF=11.4﹣10=1.4.∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°.∴AB=2AG=2.8,答:灯杆AB的长度为2.8米.20.(10分)如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积;(3)若=,DF+BF=8,如图2,求BF的长.【解答】证明:(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=2,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=BD=,PB=PD=3,在Rt△DEP中,∵PD=,DE=,∴PE==2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:,∴AE=∵BE∥DF,∴△ABE∽△AFD,∴=,即=,解得DF=12,在Rt△BDH中,BH=BD=,∴S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=•12•﹣+•(2)2=9﹣2π;(3)连结CD,如图2,由=可设AB=4x,AC=3x,设BF=y,∵=,∴CD=BD=2,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴=,即=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴=,即=,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.五、解答题(共2小题,每题10分,共20分)21.(10分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有5人,在扇形统计图中,“乒乓球”的百分比为20%,如果学校有800名学生,估计全校学生中有80人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.【解答】解:(1)调查的总人数为20÷40%=50(人),所以喜欢篮球项目的同学的人数=50﹣20﹣10﹣15=5(人);“乒乓球”的百分比==20%,因为800×=80,所以估计全校学生中有80人喜欢篮球项目;故答案为5,20,80;(2)如图,(3)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率==.22.(10分)如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k>0)的图象经过BC边的中点D(3,1).(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E 在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.【解答】解:(1)∵反比例函数y=(k>0)的图象经过点D(3,1),∴k=3×1=3,∴反比例函数表达式为y=;(2)①∵D为BC的中点,∴BC=2,∵△ABC与△EFG成中心对称,∴△ABC≌△EFG,∴GF=BC=2,GE=AC=1,∵点E在反比例函数的图象上,∴E(1,3),即OG=3,∴OF=OG﹣GF=1;②如图,连接AF、BE,∵AC=1,OC=3,∴OA=GF=2,在△AOF和△FGE中∴△AOF≌△FGE(SAS),∴∠GFE=∠FAO=∠A BC,∴∠GFE+∠AFO=∠FAO+∠BAC=90°,∴EF∥AB,且EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.六、解答题(第23题10分,第24题11分,共21分)23.(10分)铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如下表所示:第x天1≤x≤6<x≤15610x+6(1)求p与x的函数关系式;(2)若每天的销售利润为w元,求w与x的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.【解答】解:(1)设p=kx+b(k≠0),∵第3天时,每盒成本为21元;第7天时,每盒成本为25元,∴,解得,所以,p=x+18;(2)1≤x≤6时,w=10[50﹣(x+18)]=﹣10x+320,6<x≤15时,w=[50﹣(x+18)](x+6)=﹣x2+26x+192,所以,w与x的函数关系式为w=,1≤x≤6时,∵﹣10<0,∴w随x的增大而减小,∴当x=1时,w最大为﹣10+320=310,6<x≤15时,w=﹣x2+26x+192=﹣(x﹣13)2+361,∴当x=13时,w最大为361,综上所述,第13天时当天的销售利润最大,最大销售利润是361元;(3)w=325时,﹣x2+26x+192=325,x2﹣26x+133=0,解得x1=7,x2=19,所以,7≤x≤15时,即第7、8、9、10、11、12、13、14、15天共9天销售利润不低于325元.24.(10分)问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点M和N 分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM 和BN,交于点P.求△APB周长的最大值.【解答】解:(1)结论:AM⊥BN.理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF ⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4.(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠A PN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2+4.七、解答题(本题12分)25.(12分)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=4求BN的长;(2)已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一点D,使C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)(3)如图3,正方形ABCD中,M,N分别在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分别交BD于E,F求证:①E、F是线段BD的勾股分割点;②△AMN的面积是△AEF面积的两倍.【解答】解:(1)解:(1)①当MN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BM===,②当BN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BN===5,综上,BN=或5;(2)作法:①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;点D即为所求;如图2所示.(3)①如图3中,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.∵∠DAF+∠BAE=90°﹣∠EAF=45°,∠DAF=∠BAH,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AF,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE2=BH2+BE2,∵BH=DF,EF=HE,∵EF2=BE2+DF2,∴E、F是线段BD的勾股分割点.②证明:如图4中,连接FM,EN.∵四边形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∵∠AFE=∠FDN,∴△AFE∽△D FN,∴∠AEF=∠DNF,=,∴=,∵∠AFD=∠EFN,∴△AFD∽△EFN,∴∠DAF=∠FEN,∵∠DAF+∠DNF=90°,∴∠AEF+∠FEN=90°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,=AM•AN•sin45°,∵S△AMNS△AEF=AE•AF•sin45°,∴==2,=2S△AEF.∴S△AMN八、解答题(本题14分)26.(14分)如图1,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B、两点(点A在点B的左侧),与y轴交于点C.(1)判断△ABC形状,并说明理由.(2)在抛物线第四象限上有一点,它关于x轴的对称点记为点P,点M是直线BC上的一动点,当△PBC的面积最大时,求PM+MC的最小值;(3)如图2,点K为抛物线的顶点,点D在抛物线对称轴上且纵坐标为,对称轴右侧的抛物线上有一动点E,过点E作EH∥CK,交对称轴于点H,延长HE 至点F,使得EF=,在平面内找一点Q,使得以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴,请问是否存在这样的点Q,若存在请直接写出点E的横坐标,若不存在,请说明理由.【解答】解:(1)结论:△ABC是直角三角形.理由如下,对于抛物线y=x2﹣x﹣,令y=0得x2﹣x﹣=0,解得x=﹣或3;令x=0得y=﹣,∴A(﹣,0),C(0,﹣),B(3,0),∴OA=,OC=,OB=3,∴==,∵∠AOC=∠BOC,∴△AOC∽△COB,∴∠ACO=∠OBC,∵∠OBC+∠OCB=90°,∴∠ACO+∠BCO=90°,∴∠ACB=90°.(也可以求出AC、BC、AB利用勾股定理的逆定理证明).(2)如图1中,设第四象限抛物线上一点N(m,m2﹣m﹣),点N关于x轴的对称点P(m,﹣m2+m+),作过B、C分别作y轴,x轴的平行线交于点G,连接PG.∵G(3,﹣),∴S△PBC =S△PCG+S△PBG﹣S△BCG=××(﹣m2+m+2)+ו(3﹣m)﹣××=﹣(m﹣)2+.∵﹣<0,∴当m=时,△PBC的面积最大,此时P(,),如图2中,作ME⊥CG于M.∵CG∥OB,∴∠OBC=∠ECM,∵∠BOC=∠CEM,∴△CE M∽△BOC,∵OC:OB:BC=1:3:,∴EM:CE:CM=1:3:,∴EM=CM,∴PM+CM=PM+ME,∴根据垂线段最短可知,当PE⊥CG时,PM+ME最短,∴PM+MC的最小值为+=.(3)存在.理由如下,①如图3中,当DH=HF,HQ平分∠DHF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴.作CG⊥HK于G,PH∥x轴,EP⊥PH于P.∵FH∥CK,K(,﹣),易知CG:GK:CK=3:4:5,由△EPH∽△KGC,得PH:PE:EH=3:4:5,设E((n,n2﹣n﹣),则HE=(n﹣),PE=(n﹣),∵DH=HF,∴+[﹣n2+n+﹣(n﹣)]=(n﹣)+,解得n=或(舍弃).②如图4中,当DH=HF,HQ平分∠DHF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴.同法可得[n2﹣n﹣+(n﹣)]﹣=(n﹣)+,解得n=+或﹣(舍弃).③如图5中,当DH=DF,DQ平分∠HDF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴.设DQ交HF于M.由△DHM∽△CKG,可知HM:DH=4:5,[(n﹣)+]:[n2﹣n﹣+(n﹣)﹣]=4:5,解得n=+或=﹣(舍弃),④如图6中,当FQ平分∠DFH时,满足条件,此时=.∴5× [n2﹣n﹣﹣+(n﹣)]=4[(n﹣)+],解得:n=或(舍弃)综上所,满足条件的点E的横坐标为或+或+或.。
2017年鞍山市中考数学试卷与答案
五、解答题(共 2 小题,每小题 10 分,共 20 分) 21. (10 分)如图,建筑物 C 在观测点 A 的北偏东 65°方向上,从观 测点 A 出发向南偏东 40°方向走了 130m 到达观测点 B,此时测得建 筑物 C 在观测点 B 的 北偏东 20°方向上,求观测点 B 与建筑物 C 之 间的距离. (结果精确到 0.1m.参考数据: ≈1.73)
从第一天起每天的单价均比前一天降 1 元,通过市场调查发现,该 时装单价每降 1 元,每天销售量增加 5 件,设第 x 天(1≤x≤30 且 x 为整数)的销量为 y 件. (1)直接写出 y 与 x 的函数关系式; (2)在这 30 天内,哪一天的利润是 6300 元? (3)设第 x 天的利润为 W 元,试求出 W 与 x 之间的函数关系式, 并求出哪一天的利润最大,最大利润是多少.
2017 年辽宁省鞍山市中考数学试卷及解答
一、选择题(共 8 小题,每小题 3 分,共 24 分) 1. (3 分)下列各数中,比﹣3 小的数是( ) A.﹣2 B.0 C.1 D.﹣4 2. (3 分)如图所示几何体的左视图是( )
7. (3 分)分式方程 = ﹣2 的解为( ) A.x=2 B.x=﹣2C.x=1 D.无解 8. (3 分)如图,在矩形 ABCD 中,点 E 是 AD 边的中点,BE⊥AC, 垂足为点 F,连接 DF,分析下列四个结论:①△AEF∽△ CAB;②DF=DC;③S△DCF=4S△DEF;④tan∠CAD= 的个数是( ) .其中正确结论
A.4 B.3 C.2 D.1 二、填空题(共 8 小题,每小题 3 分,共 24 分) 9. (3 分)长城的总长大约为 6700000m,将数 6700000 用科学记数 法表示为 . 10. (3 分)分解因式 2x2y﹣8y 的结果是 . 11. (3 分)有 5 张大小、背面都相同的卡片,正面上的数字分别为 1,﹣ ,0,π,﹣3,若将这 5 张卡片背面朝上洗匀后,从中任意抽 取 1 张,那么这张卡片正面上的数字为无理数的概率是 . 12. (3 分)如图,在□ABCD 中,分别以点 A 和点 C 为圆心,大于 AC 的长为半径作弧,两弧相交于 M,N 两点,作直线 MN,分别 交 AD,BC 于点 E,F,连接 AF,∠B=50°,∠DAC=30°,则∠BAF 等 于 .
2017年中考数学五模试卷
2017 年中考数学五模试卷一、选择题1.以下算式中,运算结果为负数的是()A. ﹣| ﹣1| B. ﹣(﹣ 2)3 C. ﹣(﹣) D. (﹣ 3)22.一个几何体的三视图以下图,则这个几何体是()A. 三棱锥 B. 三棱柱 C. 圆柱 D. 长方体温度/ ℃ 222426 29天数21 3 13.以下计算中正确的选项是() A. a?a2=a2 B. 2a?a=2a2 C. ( 2a2)2=2a4 D. 6a8÷3a2 =2a44.如图,直线 a∥ b,∠ 1=85°,∠ 2=35°,则∠3=() A. 85° B. 60° C. 50° D. 35°5.本市 5 月份某一周每日的最高气温统计如上表:则这组数据的中位数和均匀数分别是()A. 24, 25B. 25, 26C. 26, 24D. 26, 256.关于一次函数y=k 2x﹣ k(k 是常数, k≠0)的图象,以下说法正确的选项是()A. 是一条抛物线B. 过点(,0)C. 经过一、二象限D. y 跟着 x 增大而减小7.如图, A( 0,﹣),点 B 为直线 y=﹣ x 上一动点,当线段AB最短时,点 B 的坐标为()A. (0,0)B. ( 1,﹣ 1)C. (,﹣)D. (,﹣)8.如图,在矩形ABCD中, AB=3,BC=2,点 E 为 AD中点,点 F 为 BC边上任一点,过点 F 分别作EB, EC的垂线,垂足分别为点G,H,则 FG+FH为()A. B. C. D.9.已知点 A、 B、 C 是直径为 6cm 的⊙ O上的点,且AB=3cm, AC=3cm,则∠ BAC的度数为()A. 15°B. 75°或 15°C. 105°或 15°D. 75°或 105°10. 定义符号 min{a ,b} 的含义为:当a> b 时 min{a ,b}=b ;当 a< b 时 min{a ,b}=a .如: min{1 ,-3}= ﹣3,min{ ﹣ 4,﹣ 2}= ﹣ 4,则 min{ ﹣ x2+2,﹣ x} 的最大值是()A. ﹣1 B.﹣ 2 C. 1 D.0二、填空题11. 不等式组的最小整数解是 ________.12. 若一个正多边形的一个外角等于36°,则这个正多边形有________条对角线;用科学计算器计算:135×sin13 °≈ ________.(精准到0.1 )13.如图,双曲线 y= ( x>0)经过△ OAB的极点 A 和 OB的中点 C,AB∥x 轴,点 A 的坐标为( 2,3),求△ OAC的面积是________.14. 如图,在平面直角坐标系中,已知点A(,0),点B在第一象限,且AB 与直线 l : y=x 平行, AB长为 4,若点 P 是直线 l 上的动点,则△ PAB的内切圆面积的最大值为 ________.三、解答题15.计算:(﹣)﹣2++|1 ﹣| 0﹣2sin60 °+tan60 °.16.解方程:= +.17.如图,△ ABC中, AB=AC,且∠ BAC=108°,点 D 是 AB 上必定点,请在 BC边上找一点 E,使以 B, D,E 为极点的三角形与△ ABC相像.18. 如图,在△ ABC中, AB=AC, BD、 CE分别是边AB,AC上的高, BD与 CE交于点 O.求征: BO=CO.19.为深入义务教育课程改革,某校踊跃展开拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类其他拓展性课程,要求每一位学生都自主选择一个类其他拓展性课程.为了认识学生选择拓展性课程的状况,随机抽取了部分学生进行检查,并将检查结果绘制成以下统计图(部分信息未给出):依据统计图中的信息,解答以下问题:( 1)求本次被检查的学生人数.( 2)将条形统计图增补完好.( 3)若该校共有 1600 名学生,请预计全校选择体育类的学生人数.20. 如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成 53°的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得 BE=6米,塔高 DE=9米.在某一时辰的太阳照耀下,未折断树杆AB落在地面的影子FB 长为 4 米,且点 F,B,C,E 在同一条直线上,点 F, A, D 也在同一条直线上.求这棵大树没有折断前的高度.(参照数据:sin53 °≈ 0.8 ,cos53°≈ 0.6 ,tan53 °≈ 1.33 )21. 为保障我国国外维和队伍官兵的生活,现需经过 A 港口、 B 港口分别运送 100 吨和 50 吨生港口运费(元 / 吨)活物质.已知该物质在甲库房存有80 吨,乙库房存有70 吨,若从甲、乙两库房运送物质到港口的花费(元 / 吨)如表所示:甲库乙库( 1)设从甲库房运送到 A 港口的物质为 x 吨,求总运费 y(元)与 x(吨)之间的函数关系式,A港 1420并写出 x 的取值范围;B港 108( 2)求出最低花费,并说明花费最低时的分配方案.1 个白球、若干个蓝球.从22. 甲、乙两个盒子中装有质地、大小同样的小球.甲盒中有2 个白球、 1 个蓝球;乙盒中有乙盒中随意摸取一球为蓝球的概率是从甲盒中随意摸取一球为蓝球的概率的 2 倍.( 1)求乙盒中蓝球的个数;( 2)从甲、乙两盒中分别随意摸取一球,求这两球均为蓝球的概率.23.如图, AB是⊙ O的直径, AC是⊙ O的切线, A 为切点, BC交⊙ O于点E.( 1)若 D 为 AC的中点,证明: DE是⊙ O的切线;( 2)若 OA= , CE=1,求∠ ACB的度数.24. 在平面直角坐标系xOy 中,抛物线y=﹣x2+bx+c 与 x 轴交于 A(﹣ 1, 0), B(﹣ 3, 0)两点,与 y 轴交于点C.(1)求抛物线的分析式;(2)设抛物线的极点为 D,点 P 在抛物线的对称轴上,且∠ APD=∠ ACB,求点 P 的坐标;( 3)点 Q在直线 BC上方的抛物线上,能否存在点Q使△ BCQ的面积最大,若存在,恳求出点Q坐标.25.综合题( 1)如图①,已知正方形ABCD的边长为4.点M和 N分别是边BC,CD上两点,且BM=CN,连接 AM和 BN,交于点P.猜想 AM与 BN的地点关系,并证明你的结论.(2)如图②,已知正方形 ABCD的边长为 4.点M和 N分别从点 B、C同时出发,以同样的速度沿 BC、CD方向向终点 C和 D 运动.连结 AM和BN,交于点 P,求△ APB周长的最大值;(3)如图③, AC为边长为 2 的菱形 ABCD的对角线,∠ ABC=60°.点 M和 N 分别从点 B、C 同时出发,以同样的速度沿BC、 CA向终点 C和 A 运动.连结 AM和 BN,交于点 P.求△ APB周长的最大值.。
辽宁省鞍山市中考数学模拟试题(无答案)
辽宁省鞍山市2017届中考数学模拟试题一、选择题(每题3分,共30分) 1. 化简4的值为( )A.±4 B.-2C.±2D. 22.如右图,小手盖住的点的坐标可能为( )A .(52),B . (46)--,C .(63)-,D .(34)-,3.直线y = -2(x – 1)+1与水平线所夹锐角的余弦是 ( )A .21 B .21- C . 55 D . 55-4.已知一组数据n 21x x x ,,,Λ,其标准差为1S ,另有一组数据,,,,n 21y y y Λ其中5x 6y k k +=(k = 1,2,……,n )其标准差是2S ,则正确的是( ) A .2S = 61S +5 B .2S = 61S 1S C . 2S =61S D . 2S =61S +55.已知函数y =x 2-2x -2的图象如图所示,根据其中提供的信息, 可求得使y ≥1成立的x 的取值范围是( ) A .-1≤x ≤3 B .-3≤x ≤1 C .x ≥-3D .x ≤-1或x ≥36.如图,⊙O 的半径OC=5cm ,直线l ⊥OC ,垂足为H ,且l 交⊙O 于 A 、 B 两点,AB=8cm ,则l 沿OC 向下平移( )cm 时与⊙O 相切.A.1B.4C.3D.27.已知⊙1O 和⊙2O 的半径分别为5和3,圆心距为2,则两圆的位置关系是( )A. 内含B. 外切 C . 相交 D.内切第6题图第2题图yxO第5题图8.如图,AB 是⊙O 的弦,半径OA=2,sinA=32,则弦AB 的长为( ) A.352B .3132C .4D .354 9.如图,四边形ABCD 为圆内接四边形,E 为DA 延长线上 一点,若BAD 的度数为70°,则∠BAE 的度数为( ) A .140° B .70° C .35° D .20°10.如果经过圆锥的轴的剖面是一个边长为4cm 的等边三角形,那么圆锥的表面积是( )A .8πcm 2B .10πcm 2C .12πcm 2D .16πcm 2二、填空题(每题3分,共24分) 11.函数y =5x 3x -+中,自变量x 的取值范围是 . 12.抽查某班一组学生一周内写作业的时间:有2名学生每人用6小时,3名学生每人用8小时,5名学生每人用10小时,在这组数据中,时间的众数、中位数分别为__________________ . 13.在平面直角坐标系中,入射光线经过y 轴上点A (0,5),由x 轴上点C 反射,反射光线经过点B (-4,1),则点C 的坐标为 .14.若0≤x ≤3,则函数y =322--x x 的取值范围是 。
鞍山市中考数学五模试卷
鞍山市中考数学五模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 8的相反数是()A . 8B .C . ﹣8D . -2. (2分)(2020·衡阳) 2019年12月12日,国务院新闻办公室发布,南水北调工程全面通水5周年来,直接受益人口超过1.2亿人,其中1.2亿用科学记数法表示为()A .B .C .D .3. (2分) (2020七下·莘县期末) 下列运算正确的是()A . 2a3·a4=2a12B . (-3a²)3=-9a6C . a2÷a× =a2D . a·a3+a²·a²=2a44. (2分)(2013·常州) 如图所示圆柱的左视图是()A .B .C .D .5. (2分)已知等腰三角形的两条边长分别为3和7,则它的周长为()A . 10B . 13C . 17D . 13或176. (2分)已知样本数据1、2、4、3、5,下列说法错误的是()A . 平均数是3B . 中位数是4C . 极差是4D . 方差是27. (2分)已知关于x的一元二次方程有两个不相等的实数根,那么m的值为()A .B .C .D .8. (2分)(2017·徐汇模拟) 如果将某一抛物线向右平移2个单位,再向上平移2各单位后所得新抛物线的表达式是y=2(x﹣1)2 ,那么原抛物线的表达式是()A . y=2(x﹣3)2﹣2B . y=2(x﹣3)2+2C . y=2(x+1)2﹣2D . y=2(x+1)2+29. (2分)如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=5,在AC上取一E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为()A . 1B .C . 2D .10. (2分) (2016九上·盐城期末) 已知二次函数y= +bx+c的图象如图所示,对称轴为直线x=1.有位学生写出了以下五个结论:①ac>0;②方程ax2+bx+c=0的两根是 =﹣1, =3;③2a﹣b=0;④当x>1时,y 随x的增大而减小;则以上结论中正确的有().A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共9分)11. (1分) (2019九下·东台期中) 多项式 4a﹣a3 分解因式为________.12. (2分)(2011·湛江) 函数y= 中自变量x的取值范围是________,若x=4,则函数值y=________.13. (1分)(2018·随州) 如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=________度.14. (1分) (2019九上·东源期中) 已知菱形的两条对角线长分别为8cm、6cm,则它的边长为________cm.15. (1分)(2020·藤县模拟) 如图,直角坐标系xoy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k≠0,x>0)的图象过点B,E.若AB=2,则正方形ODEF 的边长为________.16. (1分)(2020·中宁模拟) 如图,正六边形ABCDEF内接于⊙O , AB=2,则图中阴影部分的面积为________17. (1分) (2019九上·上海月考) 已知点G是的重心,,那么点G与边中点之间的距离是________.18. (1分)如图,在△ABC中,DE∥BC,EF∥AB,∠A=60°,∠C=70°,则∠DEF=________°.三、解答题 (共8题;共75分)19. (10分)(2018·铜仁模拟)(1)计算:﹣2sin45°+(2﹣π)0﹣()﹣1;(2)先化简,再求值•(a2﹣b2),其中a= ,b=﹣2 .20. (5分)先化简,再求值:÷(1﹣),其中a=﹣2.21. (5分) (2016八上·连州期末) 海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元,李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?22. (15分) (2017九上·巫溪期末) 如图所示,已知反比例函数y= 的图象与一次函数y=ax+b的图象交于两点M(4,m)和N(﹣2,﹣8),一次函数y=ax+b与x轴交于点A,与y轴交于点B.(1)求这两个函数的解析式;(2)求△MON的面积;(3)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.23. (10分) (2019九下·武威月考) 如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE;(2)若AB=6,AC=4,求AE的长.24. (10分) (2019九下·无锡期中) 如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.25. (10分)(2017·枣阳模拟) 如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)说明:AP是⊙O的切线;(2)若OC=CP,AB=6,求CD的长.26. (10分)(2017·徐州模拟) 已知二次函数y=ax2+bx﹣2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=﹣2和x=5时二次函数的函数值y相等.(1)求实数a、b的值;(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F 以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式;参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、19-2、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、。
2017年辽宁省鞍山市中考数学试卷
2017年辽宁省鞍山市中考数学试卷一、选择题(共8小题,每小题3分,共24分)1. 下列各数中,比−3小的数是()A.−2B.0C.1D.−4【答案】D【考点】有理数大小比较【解析】根据0大于负数,负数比较大小绝对值大的反而小,即可解答.【解答】∵−4<−3<−2<0,∴比−3小的数是−4,2. 如图所示几何体的左视图是()A. B. C. D.【答案】【考点】简单组合体的三视图【解析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【解答】图中几何体的左视图如图所示:故选:C.3. 函数y=√x+2中自变量x的取值范围是()A.x≥−2B.x>−2C.x≤−2D.x<−2【答案】A【考点】函数自变量的取值范围【解析】根据被开方数大于等于0列式计算即可得解.【解答】由x+2≥0可得x≥−2,4. 一组数据2,4,3,x ,4的平均数是3,则x 的值为( )A.1B.2C.3D.4【答案】B【考点】算术平均数【解析】根据平均数的定义列出方程,解方程可得答案.【解答】根据题意,得:2+4+3+x+45=3, 解得:x =2,5. 在平面直角坐标系中,点P(m +1, 2−m)在第二象限,则m 的取值范围为( )A.m <−1B.m <2C.m >2D.−1<m <2【答案】A【考点】解一元一次不等式组点的坐标【解析】根据第二象限内点的横坐标为负、纵坐标为正得出关于m 的不等式组,解之可得.【解答】根据题意,得:{m +1<02−m >0, 解得m <−1,6. 某班有若干个活动小组,其中书法小组人数的3倍比绘画小组的人数多15人,绘画小组人数的2倍比书法小组的人数多5人,问:书法小组和绘画小组各有多少人?若设书法小组有x 人,绘画小组有y 人,那么可列方程组为( )A.{y −3x =15x −2y =5B.{y −3x =152y −x =5C.{3x −y =15x −2y =5D.{3x −y =152y −x =5【答案】D【考点】由实际问题抽象出二元一次方程组【解析】根据题意可得等量关系:书法小组人数×3−绘画小组的人数=15;绘画小组人数×2−书法小组的人数=5,根据等量关系列出方程组即可.【解答】若设书法小组有x 人,绘画小组有y 人,由题意得:{3x −y =152y −x =5,7. 分式方程5x−2=1−x2−x−2的解为()A.x=2B.x=−2C.x=1D.无解【答案】B【考点】解分式方程【解析】本题需先根据解分式方程的步骤,先乘以最简公分母,再去掉分母,即可求出x的值,再进行检验即可求出答案.【解答】两边同时乘以(x−2)得:5=(x−1)−2(x−2),解得:x=−2,检验:当x=−2时,x−2≠0,∴x=−2是原方程的根.8. 如图,在矩形ABCD中,点E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②DF=DC;③S△DCF=4S△DEF;④tan∠CAD=√22.其中正确结论的个数是()A.4B.3C.2D.1【答案】A【考点】矩形的性质相似三角形的性质与判定解直角三角形【解析】①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90∘即可;②根据已知条件得到四边形BMDE是平行四边形,求得BM=DE=12BC,根据线段垂直平分线的性质得到DM垂直平分CF,于是得到结论,③根据三角形的面积公式即可得到结论;④设AE=a,AB=b,则AD=2a,根据相似三角形的性质即可得到结论.【解答】如图,过D作DM // BE交AC于N,∵四边形ABCD是矩形,∴AD // BC,∠ABC=90∘,AD=BC,S△DCF=4S△DEF∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90∘,∴△AEF∽△CAB,故①正确;②∵DE // BM,BE // DM,∴BM=DE=12BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM // BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故②正确;③∵点E是AD边的中点,∴S△DEF=12S△ADF,∵△AEF∽△CBF,∴AF:CF=AE:BC=12,∴S△CDF=2S△ADF=4S△DEF,故③正确;④设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有ba =2ab,即b=√2a,∴tan∠CAD=CDAD =b2a=√22.故④正确;二、填空题(共8小题,每小题3分,共24分)长城的总长大约为6700000m,将数6700000用科学记数法表示为________.【答案】6.7×106【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】6 700 000=6.7×106,分解因式2x2y−8y的结果是________.【答案】2y(x+2)(x−2)【考点】提公因式法与公式法的综合运用【解析】原式提取公因式,再利用平方差公式分解即可.【解答】原式=2y(x+2)(x−2).有5张大小、背面都相同的卡片,正面上的数字分别为1,−√2,0,π,−3,若将这5率是________.【答案】25【考点】无理数的判定概率公式【解析】根据所有等可能的结果数有5种,其中任取一张,这张卡片上的数字为无理数的结果有2种,根据概率公式即可得出答案.【解答】∵在1,−√2,0,π,−3中,无理数有−√2,π,共2个,∴这张卡片正面上的数字为无理数的概率是2;5AC的长为半径作弧,两弧相交如图,在▱ABCD中,分别以点A和点C为圆心,大于12于M,N两点,作直线MN,分别交AD,BC于点E,F,连接AF,∠B=50∘,∠DAC= 30∘,则∠BAF=________.【答案】70∘【考点】作图—基本作图线段垂直平分线的性质【解析】根据∠BAF=∠BAD−∠CAD−∠CAF,想办法求出∠BAD、∠CAD、∠CAF即可.【解答】解:∵四边形ABCD是平行四边形,∴AD // BC,∴∠BAD=180∘−∠B=130∘,∠ACF=∠CAD=30∘,由作图痕迹可知EF是AC的垂直平分线,∴AF=CF,∴∠CAF=∠ACF=30∘,∴∠BAF=∠BAD−∠CAD−∠CAF=70∘.故答案为:70∘.若一个圆锥的底面圆半径为1cm,其侧面展开图的圆心角为120∘,则圆锥的母线长为________cm.【答案】【考点】圆锥的展开图及侧面积圆锥的计算【解析】利用圆锥的底面周长等于圆锥的侧面展开图的弧长即可求解.【解答】解:设母线长为l,则120⋅π⋅l180=2π×1,解得:l=3(cm).故答案为:3.如图,在△ABC中,∠ACB=90∘,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为________.【答案】272【考点】三角形的面积旋转的性质勾股定理【解析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用面积公式解答即可.【解答】解:∵在△ABC中,∠C=90∘,AC=4,BC=3,∴AB=5,∵将△ABC绕点A顺时针旋转,使点C落在E处,点B恰好落在AC延长线上点D处,∴AD=AB=5,∴CD=AD−AC=1,∴四边形AEDB的面积为2×12×4×3+12×1×3=272,故答案为:272.如图,在平面直角坐标系中,正方形ABOC和正方形DOFE的顶点B,F在x轴上,顶点C,D在y轴上,且S△ADF=4,反比例函数y=kx(x>0)的图象经过点E,则k=________.【答案】8【考点】反比例函数系数k的几何意义【解析】设正方形DOFE的边长分别是n,连接AO,则AO // DF,得出△ADF的面积=△DOF的面积(同底等高),∴得到关于n的方程,解方程求得n2的值,最后根据系数k的几何意义求得即可.【解答】设正方形DOFE的边长分别是n,则E(n, n),连接AO,∵四边形ABOC和四边形DOFE是正方形,∴∠AOB=∠DFO=45∘,∴AO // DF,∴S△ADF=S△DOF(同底等高),∴1n2=4,2∴n2=8,∴k=8,如图,在△ABC中,AB=AC=6,∠A=2∠BDC,BD交AC边于点E,且AE=4,则BE⋅DE=________.【答案】20【考点】等腰三角形的判定与性质相似三角形的性质与判定【解析】根据题意可以证明△FEB∽△DEC,然后根据相似三角形对应边的比相等,即可求得BE⋅DE的值,本题得以解决.【解答】延长CA到F,使得AF=AB,连接BF,∠BAC,则∠F=∠ABF=12∵∠BAC=2∠BDC,∵ ∠FEB =∠DEC ,∴ △FEB ∽△DEC ,∴ BE CE =FE DE ,∵ AE =4,AB =AC =6,∴ EF =10,CE =2,∴ BE 2=10DE ,∴ BE ⋅DE =20,三、解答题(共2小题,每小题8分,共16分)先化简,再求值:(1−1x+2)÷x 2+2x+12x+4,其中x =√2−1. 【答案】(1−1x +2)÷x 2+2x +12x +4=x +2−1x +2∗2(x +2)(x +1)2=2(x +1)(x +1)2=2x+1,当x =√2−1时,原式=√2−1+1=√2.【考点】分式的化简求值【解析】根据分式的减法和除法可以化简题目中的式子,再将x 的值代入即可解答本题.【解答】(1−1x +2)÷x 2+2x +12x +4=x +2−1x +2∗2(x +2)(x +1)2=2(x +1)(x +1)2 =2x+1,当x =√2−1时,原式=√2−1+1=√2.如图,四边形ABCD 为平行四边形,∠BAD 和∠BCD 的平分线AE ,CF 分别交DC ,BA 的延长线于点E ,F ,交边BC ,AD 于点H ,G .(1)求证:四边形AECF 是平行四边形.(2)若AB =5,BC =8,求AF +AG 的值.【答案】证明:∵四边形ABCD为平行四边形,∴AD // BC,∠BAD=∠BCD,∵AE、CF分别平分∠BAD和∠BCD,∴∠BCG=∠CGD=∠HAD,∴AE // CF,∵AF // CE,∴四边形AECF是平行四边形;由(1)可知∠BCF=∠DCF=∠F,∴BF=BC=AD=8,∵AB=CD=5,∴AF=BF−AB=3,∵BF // DE,∴∠DCG=∠F,∠D=∠FAG,∴△DCG∽△AFG,∴DGAG =CDFA=53,∴DG=53AG,∴AD=AG+DG=83AG=8,∴AG=3,∴AF+AG=3+3=6.【考点】平行四边形的应用【解析】(1)由平行四边形的性质,结合角平分线的定义可证得AE // CF,结合AF // CE,可证得结论;(2)由条件可证得△DCG∽△AFG,利用相似三角形的性质可求得DG与AG的关系,结合条件可求得AG的长,从而可求得答案.【解答】证明:∵四边形ABCD为平行四边形,∴AD // BC,∠BAD=∠BCD,∵AE、CF分别平分∠BAD和∠BCD,∴∠BCG=∠CGD=∠HAD,∴AE // CF,∵AF // CE,∴四边形AECF是平行四边形;∴BF=BC=AD=8,∵AB=CD=5,∴AF=BF−AB=3,∵BF // DE,∴∠DCG=∠F,∠D=∠FAG,∴△DCG∽△AFG,∴DGAG =CDFA=53,∴DG=53AG,∴AD=AG+DG=83AG=8,∴AG=3,∴AF+AG=3+3=6.四、解答题(共2小题,每小题10分,共20分)某校要了解学生每天的课外阅读时间情况,随机调查了部分学生,对学生每天的课外阅读时间x(单位:min)进行分组整理,并绘制了如图所示的不完整的统计图表,根据图中提供的信息,解答下列问题:(1)本次调查共抽取________名学生.(2)统计表中a=________,b=________.(3)将频数分布直方图补充完整.(4)若全校共有1200名学生,请估计阅读时间不少于45min的有多少人.60≤x<7590.15【答案】6015,0.3;【考点】用样本估计总体频数(率)分布表频数(率)分布直方图【解析】(1)根据0≤x<15min时间段的频数和频率求出总数即可;(2)根据题意列出算式a=60×0.25,b=18÷60,求出即可;(3)根据频数是15画出即可;(4)根据题意列出算式,再求出即可.【解答】6÷0.1=60,即本次调查共抽取60名学生,故答案为:60;a=60×0.25=15,b=18÷60=0.3,故答案为:15,0.3;如图所示:;1200×18+960=540,答:若全校共有1200名学生,请估计阅读时间不少于45min的有540人.为增强学生环保意识,某中学举办了环保知识竞赛,某班共有5名学生(3名男生,2名女生)获奖.(1)老师若从获奖的5名学生中选取一名作为班级的“环保小卫士”,则恰好是男生的概率为________.(2)老师若从获奖的5名学生中任选两名作为班级的“环保小卫士”,请用画树状图法或列表法,求出恰好是一名男生、一名女生的概率.【答案】3(2)画树状图为:共有20种等可能的结果数,其中选出1名男生和1名女生的结果数为12种,所以恰好选出1名男生和1名女生的概率P=1220=35.【考点】列表法与树状图法概率公式【解析】(1)根据概率公式用男生人数除以总人数即可得;(2)先画树状图展示所有20种等可能的结果数,再找出选出1名男生和1名女生的结果数,然后根据概率公式求解.【解答】解:(1)所有等可能结果共有5种,其中是男生的结果有3种,∴恰好是男生的概率为35.故答案为:35;(2)画树状图为:共有20种等可能的结果数,其中选出1名男生和1名女生的结果数为12种,所以恰好选出1名男生和1名女生的概率P=1220=35.五、解答题(共2小题,每小题10分,共20分)如图,建筑物C在观测点A的北偏东65∘方向上,从观测点A出发向南偏东40∘方向走了130m到达观测点B,此时测得建筑物C在观测点B的北偏东20∘方向上,求观测点B与建筑物C之间的距离.(结果精确到0.1m.参考数据:√3≈1.73)【答案】如图,过A作AD⊥BC于D.根据题意,得∠ABC=40∘+20∘=60∘,AB=130m.在Rt△ADB中,∵∠DAB=30∘,∴DB=12AB=12×130=65m,AD=√3BD=65√3m.∵∠BAC=180∘−65∘−40∘=75∘,∴∠C=180∘−∠ABC−∠BAC=180∘−60∘−75∘=45∘.在Rt△ADC中,∵tan C=ADCD=1,∴CD=AD=65√3m,∴BC=BD+CD=65+65√3≈177.5m.故观测点B与建筑物C之间的距离约为177.5m.【考点】解直角三角形的应用-方向角问题【解析】过A作AD⊥BC于D.解Rt△ADB,求出DB=12AB=65m,AD=√3BD=65√3m.再解Rt△ADC,得出CD=AD=65√3m,根据BC=BD+CD即可求解.【解答】如图,过A作AD⊥BC于D.根据题意,得∠ABC=40∘+20∘=60∘,AB=130m.在Rt△ADB中,∵∠DAB=30∘,∴DB=12AB=12×130=65m,AD=√3BD=65√3m.∵∠BAC=180∘−65∘−40∘=75∘,∴∠C=180∘−∠ABC−∠BAC=180∘−60∘−75∘=45∘.在Rt△ADC中,∵tan C=ADCD=1,∴CD=AD=65√3m,∴BC=BD+CD=65+65√3≈177.5m.故观测点B与建筑物C之间的距离约为177.5m.如图,△ACE,△ACD均为直角三角形,∠ACE=90∘,∠ADC=90∘,AE与CD相交于点P,以CD为直径的⊙O恰好经过点E,并与AC,AE分别交于点B和点F.(1)求证:∠ADF=∠EAC.(2)若PC=23PA,PF=1,求AF的长.【答案】证明:∵∠ADC=90∘,∠ACE=90∘,∴∠ADF+∠FDC=90∘,∠EAC+∠CEF=90∘,∵∠FDC=∠CEF,∴∠ADF=∠EAC;连接FC,∵CD是圆O的直径,∴∠DFC=90∘,∴∠FDC+∠FCD=90∘,∵∠ADF+∠FDC=90∘,∠ADF=∠EAC,∴∠FCD=∠EAC,即∠FCP=CAP,∵∠FPC=∠CPA,∴△FPC∽△CPA,∴PFPC =PCPA,∵PC=23PA,PF=1,∴ 123PA =23PA PA , 解得,PA =94,∴ AF =PA −PF =94−1=54, 即AF =54.【考点】圆周角定理相似三角形的性质与判定【解析】(1)根据圆周角定理,等角的余角相等可以证明结论成立;(2)根据(1)中的结论和三角形相似的知识可以求得AF 的长.【解答】证明:∵ ∠ADC =90∘,∠ACE =90∘,∴ ∠ADF +∠FDC =90∘,∠EAC +∠CEF =90∘,∵ ∠FDC =∠CEF ,∴ ∠ADF =∠EAC ;连接FC ,∵ CD 是圆O 的直径,∴ ∠DFC =90∘,∴ ∠FDC +∠FCD =90∘,∵ ∠ADF +∠FDC =90∘,∠ADF =∠EAC ,∴ ∠FCD =∠EAC ,即∠FCP =CAP ,∵ ∠FPC =∠CPA ,∴ △FPC ∽△CPA ,∴ PFPC =PCPA, ∵ PC =23PA ,PF =1,∴ 123PA =23PA PA ,解得,PA =94, ∴ AF =PA −PF =94−1=54,即AF =54.六、解答题(共2小题,每小题10分,共20分)某网络经销商销售一款夏季时装,进价每件60元,售价每件130元,每天销售30件,每销售一件需缴纳网络平台管理费4元.未来30天,这款时装将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该时装单价每降1元,每天销售量增加5件,设第x天(1≤x≤30且x为整数)的销量为y件.(1)直接写出y与x的函数关系式;(2)在这30天内,哪一天的利润是6300元?(3)设第x天的利润为W元,试求出W与x之间的函数关系式,并求出哪一天的利润最大,最大利润是多少.【答案】由题意可知y=5x+30;根据题意可得(130−x−60−4)(5x+30)=6300,即x2−60x+864=0,解得:x=24或36(舍)∴在这30天内,第24天的利润是6300元.根据题意可得:w=(130−x−60−4)(5x+30),=−5x2+300x+1980,=−5(x−30)2+6480,∵a=−5<0,∴函数有最大值,∴当x=30时,w有最大值为6480元,∴第30天的利润最大,最大利润是6480元.【考点】一元二次方程的应用二次函数的应用【解析】(1)根据销量=原价的销量+增加的销量即可得到y与x的函数关系式;(2)表示出网络经销商所获得的利润=6300,解方程即可求出x的值;(3)根据每天售出的件数×每件盈利=利润即可得到的W与x之间的函数关系式,由函数的性质即可求出其最大利润以及其哪一天所获得的.【解答】由题意可知y=5x+30;根据题意可得(130−x−60−4)(5x+30)=6300,即x2−60x+864=0,解得:x=24或36(舍)∴在这30天内,第24天的利润是6300元.根据题意可得:w=(130−x−60−4)(5x+30),=−5x2+300x+1980,=−5(x−30)2+6480,∵a=−5<0,∴函数有最大值,∴当x=30时,w有最大值为6480元,∴第30天的利润最大,最大利润是6480元.如图,一次函数y=34x+6的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.(1)求直线CE的解析式;(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】根据题意得点B的横坐标为0,点A的纵坐标为0,∴B(0, 6),A(−8, 0),∴OA=8,OB=6,∴AB=√OA2+OB2=10,∵CB平分∠ABO,CD⊥AB,CO⊥BO,∴CD=CO,∵BC=BC,∴Rt△BCD≅Rt△BCO,∴BD=BO=6,∴AD=AB−BD=4,∵∠ADC=∠AOB=90∘,∠CAD=∠BAO,∴△ACD∽△ABO,∴ADAO =ACAB,∴48=AC10,∴AC=5,∴OC=OA−AC=3,∴C(−3, 0),∵∠EDB=∠AOB=90∘,BD=BO,∠EBD=∠ABO,∴△EBD≅△ABO,∴BE=AB=10,∴OE=BE−OB=4,∴E(0, −4),设直线CE的解析式为y=kx−4,∴−3k−4=0,∴k=−43,∴直线CE的解析式为y=−43x−4,存在,(−7225, 9625),方法1、如图,∵点P在直线y=34x+6上,∴设P(−m, −34m+6),∴PN=m,PM=−34m+6,根据勾股定理得,MN2=PN2+PM2=m2+(−34m+6)2=2516(m−7225)2+57625,∴当m=7225时,MN2有最小值,则MN有最小值,当m=7225时,y=−34x+6=−34×7225+6=9625,∴P(−7225, 9625).方法2、如图∵PM⊥x轴于M,PN⊥OB于y轴,∴∠PMO=∠PNO=90∘=∠MON,∴四边形PMON是矩形,∴MN=OP∴OP最小时,MN最小,∴OP⊥AB,∵OA=8,OB=6,∴AB=10,∴OP=6×810=245,易知,△OPM∽△OAP,∴OPOA =OMOP=PMAP∴2458=OM245,∴OM=7225,∴P的横坐标为−7225,∵点P在直线y=34x+6上,∴P的纵坐标为9625,∴P(−7225, 9625).【考点】一次函数的综合题【解析】(1)先求出AB=10,进而判断出Rt△BCD≅Rt△BCO,和△ACD∽△ABO,确定出点C(−3, 0),再判断出△EBD≅△ABO,求出OE=BE−OB=4,即可得出点E坐标,最后用待定系数法即可;(2)方法1,设P(−m, −34m+6),进而得出PN=m,PM=−34m+6,根据勾股定理得,MN2=2516(m−7225)2+57625,即可得出点P横坐标,即可得出结论.方法2、先判断出OP⊥AB时,MN最小,再用面积求出OP,即可得出结论.【解答】根据题意得点B的横坐标为0,点A的纵坐标为0,∴B(0, 6),A(−8, 0),∴OA=8,OB=6,∴AB=√OA2+OB2=10,∵CB平分∠ABO,CD⊥AB,CO⊥BO,∴CD=CO,∵BC=BC,∴Rt△BCD≅Rt△BCO,∴BD=BO=6,∴AD=AB−BD=4,∵∠ADC=∠AOB=90∘,∠CAD=∠BAO,∴△ACD∽△ABO,∴ADAO =ACAB,∴48=AC10,∴AC=5,∴OC=OA−AC=3,∴C(−3, 0),∵∠EDB=∠AOB=90∘,BD=BO,∠EBD=∠ABO,∴△EBD≅△ABO,∴BE=AB=10,∴OE=BE−OB=4,∴E(0, −4),设直线CE的解析式为y=kx−4,∴−3k−4=0,∴k=−43,∴直线CE的解析式为y=−43x−4,存在,(−7225, 9625),方法1、如图,∵点P在直线y=34x+6上,∴设P(−m, −34m+6),∴PN=m,PM=−34m+6,根据勾股定理得,MN2=PN2+PM2=m2+(−34m+6)2=2516(m−7225)2+57625,∴当m=7225时,MN2有最小值,则MN有最小值,当m=7225时,y=−34x+6=−34×7225+6=9625,∴P(−7225, 9625).方法2、如图∵PM⊥x轴于M,PN⊥OB于y轴,∴∠PMO=∠PNO=90∘=∠MON,∴四边形PMON是矩形,∴MN=OP∴OP最小时,MN最小,∴OP⊥AB,∵OA=8,OB=6,∴AB=10,∴OP=6×810=245,易知,△OPM∽△OAP,∴OPOA =OMOP=PMAP∴2458=OM245,∴OM=7225,∴P的横坐标为−7225,∵点P在直线y=34x+6上,∴P的纵坐标为9625,∴P(−7225, 9625).七、解答题(本大题共1小题,共12分)如图,∠MBN=90∘,点C是∠MBN平分线上的一点,过点C分别作AC⊥BC,CE⊥BN,垂足分别为点C,E,AC=4√2,点P为线段BE上的一点(点P不与点B,E重合),连接CP,以CP为直角边,点P为直角顶点,作等腰直角三角形CPD,点D落在BC左侧.(1)求证:CPCD =CECB;(2)连接BD,请你判断AC与BD的位置关系,并说明理由;(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.【答案】(1)证明:∵∠MBN=90∘,点C是∠MBN平分线上的一点,∴∠CBE=45∘,又CE⊥BN,∴∠BCE=45∘,∴BE=CE,∴△BCE是等腰直角三角形.又∵△CPD是等腰直角三角形,∴△CPD∼△CEB,∴CPCE =CDCB,∴CPCD =CECB;(2)解:AC // BD,理由如下:∵∠PCE+∠BCP=∠DCB+∠BCP=45∘,∴∠PCE=∠DCB.由(1)知,CPCD =CECB,∴△EPC∼△BDC,∴∠PEC=∠DBC=90∘.∵AC⊥BC,∴∠ACB=90∘,∴∠ACB+∠DBC=180∘,∴AC // BD;(3)如图所示,过点P作PF⊥BD,交DB的延长线于点F.∵AC=4√2,△ABC与△BEC都是等腰直角三角形,∴BC=4√2,BE=CE=4.由(2)知,△EPC∼△BDC,∴PEDB =CECB,即xDB=4√2,∴DB=√2x.∵∠PBF=∠CBF−∠CBP=90∘−45∘=45∘,又BP=BE−PE=4−x,∴PF=BP⋅sin∠PBF=(4−x)×√22=2√2−√22x,∴S=12DB⋅PF=12×√2x×(2√2−√22x)=−12x2+2x,即:S=−12x2+2x.【考点】相似三角形的性质与判定相似三角形的性质三角形的面积锐角三角函数的定义等腰三角形的性质平行线的判定【解析】(1)由△CPD∽△CEB证得结论;(2)AC // BD.欲推知AC // BD,只需推知∠ACB+∠DBC=180∘;(3)如图所示,过点P作PF⊥BD.交DB的延长线于点F.通过解直角三角形、(2)中相似三角形的对应边成比例和三角形的面积公式写出函数关系式即可.【解答】(1)证明:∵∠MBN=90∘,点C是∠MBN平分线上的一点,∴∠CBE=45∘,又CE⊥BN,∴∠BCE=45∘,∴BE=CE,∴△BCE是等腰直角三角形.又∵△CPD是等腰直角三角形,∴△CPD∼△CEB,∴CPCE =CDCB,∴CPCD =CECB;(2)解:AC // BD,理由如下:∵∠PCE+∠BCP=∠DCB+∠BCP=45∘,∴∠PCE=∠DCB.由(1)知,CPCD =CECB,∴△EPC∼△BDC,∴∠PEC=∠DBC=90∘.∵AC⊥BC,∴∠ACB=90∘,∴∠ACB+∠DBC=180∘,∴AC // BD;(3)如图所示,过点P作PF⊥BD,交DB的延长线于点F.∵AC=4√2,△ABC与△BEC都是等腰直角三角形,∴BC=4√2,BE=CE=4.由(2)知,△EPC∼△BDC,∴PEDB =CECB,即xDB=4√2,∴DB=√2x.∵∠PBF=∠CBF−∠CBP=90∘−45∘=45∘,又BP=BE−PE=4−x,∴PF=BP⋅sin∠PBF=(4−x)×√22=2√2−√22x,∴S=12DB⋅PF=12×√2x×(2√2−√22x)=−12x2+2x,即:S=−12x2+2x.八、解答题(本大题共1小题,共14分)如图,抛物线y=−12x2+32x+2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)试探究△ABC的外接圆的圆心位置,求出圆心坐标;(2)点P是抛物线上一点(不与点A重合),且S△PBC=S△ABC,求∠APB的度数;(3)在(2)的条件下,点E是x轴上方抛物线上一点,点F是抛物线对称轴上一点,是否存在这样的点E和点F,使得以点B、P、E、F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】∵抛物线y=−12x2+32x+2与y轴交于点C,∴C(0, 2),令y=0,则0=−12x2+32x+2,∴x=−1或x=4,∵点A在点B的左侧,∴A(−1, 0),B(4, 0),∴OA=1,OB=4,OC=2,根据勾股定理得,AC=√5,BC=2√5,∵AB=OA+OB=5,∴AC2+BC2=5+20=25=AB2,∴△ABC是直角三角形,∴AB是Rt△ABC的外接圆的直径,∴△ABC的外接圆的圆心是线段AB的中点,∴其坐标为(32, 0);∵C(0, 2)设直线BC的解析式为y=kx+2,∵B(4, 0),∴4k+2=0,∴k=−12,∴直线BC的解析式为y=−12x+2,∵P是抛物线上一点,设点P(m, −12m2+32m+2)如图,过点P作PQ // y轴交直线BC于点Q,∴Q(m, −12m+2),①当点P在直线BC上方时,S△PBC=S△PQC+S△PBQ=S△ABC,∴12[(−12m2+32m+2)−(−12m+2)]×m+12[(−12m2+32m+2)−(−12m+2)](m−4)=12×5×2∴m2−4m+5=0,∵△=(−4)2−4×1×5=−4<0,∴此方程没有实数根;∴当点P在直线BC上方时,S△PBC≠S△ABC,②当点P在直线BC下方时,S△PBC=S△PQC−S△PBQ=S△ABC,∴12[(−12m+2)−(−12m2+32m+2)]×m−12[(12m+2)−(−12m2+32m+2)](m−4)=12×5×2∴m2−4m−5=0,∴m=−1(舍)或m=5,∴P(5, −3)作PM⊥x轴于,交BC于Q,∴PM=3,MB=1,根据勾股定理得,BP=√10,AP=3√5,过点B作BN⊥AP于N,∴∠ANB=∠AMP=90∘,∠BAN=∠PAM,∴△ABN∽△APM,∴ABAP =BNPM,∴3√5=BN3,∴BN=√5,在Rt△BPN中,PN=√BP2−BN2=√5,∴BN=PN,∴∠APB=45∘;存在,如图2,∵抛物线y=−12x2+32x+2的对称轴为x=32,由(2)知,P(5, −3),BP=√10,设E(n, −12n2+32n+2),①当点E在抛物线对称轴右侧时,即:点E处时,EF=BP=√10,∴点E到对称轴的距离为EG=BM=1,∴n−32=1,∴n=52,∴E(52, 218),易知,FG=PM=3,∴F(32, 458);②当点E在抛物线对称轴左侧时,即:E′处时,E′F′=BP=√10,∴点E′到对称轴的距离为E′G′=BM=1,∴32−n=1,∴n=12,∴E′(12, 218),易知,F′G′=PM=3,∴F′(32, −38).即:满足条件的点F的坐标为(32, 458)或(32, −38).【考点】二次函数综合题【解析】(1)先确定出点A,B,C的坐标,进而求出AC,BC,AB,即可判断出△ABC的形状,判断出外接圆的圆心的位置即可;(2)先确定出直线BC的解析式,进而设出点P的坐标,得出点Q的坐标,再分两种情况,用S△PBC=S△ABC,建立方程求解,最后判断出△ABN∽△APM即可求出∠APB的度数;(3)设出点E的坐标,用点E到对称轴的距离建立方程求出点E的坐标,即可得出结论.【解答】∵抛物线y=−12x2+32x+2与y轴交于点C,∴C(0, 2),令y=0,则0=−12x2+32x+2,∴x=−1或x=4,∵点A在点B的左侧,∴A(−1, 0),B(4, 0),∴OA=1,OB=4,OC=2,根据勾股定理得,AC=√5,BC=2√5,∵AB=OA+OB=5,∴AC2+BC2=5+20=25=AB2,∴△ABC是直角三角形,∴AB是Rt△ABC的外接圆的直径,∴△ABC的外接圆的圆心是线段AB的中点,∴其坐标为(32, 0);∵C(0, 2)设直线BC的解析式为y=kx+2,∵B(4, 0),∴4k+2=0,∴k=−12,∴直线BC的解析式为y=−12x+2,∵P是抛物线上一点,设点P(m, −12m2+32m+2)如图,过点P作PQ // y轴交直线BC于点Q,∴Q(m, −12m+2),①当点P在直线BC上方时,S△PBC=S△PQC+S△PBQ=S△ABC,∴12[(−12m2+32m+2)−(−12m+2)]×m+12[(−12m2+32m+2)−(−12m+2)](m−4)=12×5×2∴m2−4m+5=0,∵△=(−4)2−4×1×5=−4<0,∴此方程没有实数根;∴当点P在直线BC上方时,S△PBC≠S△ABC,②当点P在直线BC下方时,S△PBC=S△PQC−S△PBQ=S△ABC,∴12[(−12m+2)−(−12m2+32m+2)]×m−12[(12m+2)−(−12m2+32m+2)](m−4)=12×5×2∴m2−4m−5=0,∴m=−1(舍)或m=5,∴P(5, −3)作PM⊥x轴于,交BC于Q,∴PM=3,MB=1,根据勾股定理得,BP=√10,AP=3√5,过点B作BN⊥AP于N,∴∠ANB=∠AMP=90∘,∠BAN=∠PAM,∴△ABN∽△APM,∴ABAP =BNPM,∴35=BN3,∴BN=√5,在Rt△BPN中,PN=√BP2−BN2=√5,∴BN=PN,∴∠APB=45∘;存在,如图2,∵抛物线y=−12x2+32x+2的对称轴为x=32,由(2)知,P(5, −3),BP=√10,设E(n, −12n2+32n+2),①当点E在抛物线对称轴右侧时,即:点E处时,EF=BP=√10,∴点E到对称轴的距离为EG=BM=1,∴n−32=1,∴n=52,∴E(52, 218),易知,FG=PM=3,∴F(32, 458);②当点E在抛物线对称轴左侧时,即:E′处时,E′F′=BP=√10,∴点E′到对称轴的距离为E′G′=BM=1,∴32−n=1,∴n=12,∴E′(12, 218),易知,F′G′=PM=3,∴F′(32, −38).即:满足条件的点F的坐标为(32, 458)或(32, −38).。
4月辽宁省鞍山市铁西区中考数学模拟试卷(含答案解析)
辽宁省鞍山市铁西区中考数学模拟试卷(4月份)一.选择题(共10小题,满分20分)1.下列四个实数中,比5小的是()A.﹣1B.2C.﹣1D.【分析】首先确定无理数的取值范围,然后再确定是实数的大小,进而可得答案.【解答】解:A、∵5<<6,∴5﹣1<﹣1<6﹣1,∴﹣1<5,故此选项正确;B、∵2=>,∴2>5,故此选项错误;C、∵6<<7,∴5<﹣1<6,故此选项错误;D、∵4<<5,∴5<+1<6,故此选项错误;故选:A.2.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选:B.3.主席在新年贺词中指出,,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为()A.135×107B.1.35×109C.13.5×108D.1.35×1014【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1350000000=1.35×109,故选:B.4.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4B.3C.2D.1【分析】先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.【解答】解:根据题意,得: =2x,解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为×[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选:A.5.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是()A.B.C.D.【分析】首先确定在图中蓝色区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向蓝色区域的概率.【解答】解:∵一个自由转动的转盘被等分成6个扇形区域,其中蓝色部分占2份,∴指针指向蓝色区域的概率是==;故选:D.6.菱形的两条对角线长分别是6cm和8cm,则它的面积是()A.6cm2B. 12cm2C.24cm2D.48cm2【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.【解答】解:根据对角线的长可以求得菱形的面积,根据S=ab=×6cm×8cm=24cm2.故选:C.7.解分式方程,分以下四步,其中,错误的一步是()A.方程两边分式的最简公分母是(x﹣1)(x+1)B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=1【分析】分式方程两边乘以最简公分母,去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的解.【解答】解:分式方程的最简公分母为(x﹣1)(x+1),方程两边乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6,解得:x=1,经检验x=1是增根,分式方程无解.故选:D.8.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高【分析】根据线段垂直平分线上的点到两端点的距离相等解答.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.9.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=()A.﹣1B.4C.﹣4D.1【分析】根据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b即可.【解答】解:∵点A(a,3)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣3,∴a+b=1,故选:D.10.如图,在四边形ABCD中,∠A=120°,∠C=80°.将△BMN沿着MN翻折,得到△FMN.若MF∥AD,FN∥DC,则∠F的度数为()A.70°B.80°C.90°D.100°【分析】首先利用平行线的性质得出∠BMF=100°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.【解答】解:∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,∴∠BMF=120°,∠FNB=80°,∵将△BMN沿MN翻折得△FMN,∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,∴∠F=∠B=180°﹣60°﹣40°=80°,故选:B.二.填空题(共6小题,满分18分,每小题3分)11.计算a10÷a5= a5.【分析】根据同底数幂的除法底数不变指数相减,可得答案.【解答】解:原式=a10﹣5=a5,故答案为:a5.12.如图,Rt△ABC中,若∠C=90°,BC=4,tanA=,则AB= 5 .【分析】在Rt△ABC中,已知tanA,BC的值,根据tanA=,可将AC的值求出,再由勾股定理可将斜边AB的长求出.【解答】解:Rt△ABC中,∵BC=4,tanA==,∴AC==3,则AB==5,故答案为:5.13.若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为﹣12 .【分析】根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【解答】解:∵a+b=2,ab=﹣3,∴a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=﹣3×4,=﹣12.故答案为:﹣12.14.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出8 环的成绩.【分析】设第8次射击打出x环的成绩,根据总成绩=前7次射击成绩+后3次射击成绩(9、10两次按最高成绩计算)结合总成绩大于89环,即可得出关于x的一元一次不等式,解之取其内的最小值即可得出结论.【解答】解:设第8次射击打出x环的成绩,根据题意得:62+x+10+10>89,解得:x>7,∵x为正整数,∴x≥8.故答案为:8.15.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中,正确的有①②③⑤.(只填序号)【分析】根据图象可判断①②③④⑤,由x=1时,y<0,可判断⑥【解答】解由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=∴abc>0,4ac<b2,当x<时,y随x的增大而减小.故①②⑤正确∵﹣=<1∴2a+b>0故③正确由图象可得顶点纵坐标小于﹣2,则④错误当x=1时,y=a+b+c<0故⑥错误故答案为①②③⑤16.已知⊙O的半径为5,由直径AB的端点B作⊙O的切线,从圆周上一点P引该切线的垂线PM,M为垂足,连接PA,设PA=x,则AP+2PM的函数表达式为AP+2PM=x+=﹣+20,(0<x<10),此函数的最大值是,最小值是不存在.【分析】先连接BP,AB是直径,BP⊥BM,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP,那么有△PMB∽△PAB,于是PM:PB=PB:AB,可求PM==,从而有AP+2PM=x+=﹣x2+x+20(0<x<10),再根据二次函数的性质,可求函数的最大值.【解答】解:如图所示,连接PB,∵∠PBM=∠BAP,∠BMP=∠APB=90°,∴△PMB∽△PAB,∴PM:PB=PB:AB,∴PM==,∴AP+2PM=x+=﹣x2+x+20(0<x<10),∵a=﹣<0,∴AP+2PM有最大值,没有最小值,==.∴y最大值故答案为:AP+2PM=x+=﹣x2+x+20(0<x<10),,不存在.三.解答题(共3小题,满分22分)17.(6分)计算:()﹣2﹣+(﹣4)0﹣cos45°.【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【解答】解:原式=4﹣3+1﹣×=2﹣1=1.18.(8分)在▱ABCD中,AB=1,BC=2,∠B=45°,M为AB的中点.(1)求tan∠CMD的值;(2)设N为CD中点,CM交BN于K,求及S的值.△BKC【分析】(1)过点M作MF⊥BC于F,交DA的延长线于E,作DG⊥MC交MC的延长线于G,①求出ME,MF,BF的长,②求出MC的长,③求出▱ABCD的面积,△MCD的面积,④由△MCD的面积,求出DG的长,⑤由勾股定理求出CG的长,⑥求出MG的长,⑦在Rt△MDG中,求出tan∠CMD的值.(2)易证明△KBM≌△KNC,∴BK=BN,∴,▱ABCD=.【解答】解:(1)过点M作MF⊥BC于F,交DA的延长线于E,作DG⊥MC交MC 的延长线于G,∵在▱ABCD中,AB=1,BC=2,∠B=45°,M为AB的中点.∴BM=AM=,∠EAM=∠B=45°,∴△AEM、△BFM是等腰直角三角形,∴AE=EM=BF=MF=,∴DE=AD+AE=2+,CF=2﹣,∴CM=,∵AE=EM=BF=MF=,∴EF=EM+FM=,∴S▱ABCD=AD•EF=,∵点M是AB的中点,∴S▱ABCD=,∵,∴DG=,在Rt△CDG中,由勾股定理得:CG==,∴MG=MC+CG==,在Rt△MDG中,tan∠CMD=.(2)在▱ABCD中,M为AB的中点,N为CD中点,∴BM=CN,∵AB∥CD,∴∠MBK=∠CNK,∠BMK=NCK,在△BMK和△NCK中,,∴△BMK≌△NCK(ASA)∴BK=NK,MK=CK,∴.∵MK=CK,=S▱ABCD=.∴S△BCM19.(8分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了60 名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是36 度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?【分析】(1)由虎园人数及其所占百分比可得总人数;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,根据各参观项目人数和等于总人数求得x的值,据此即可补全图形;(3)用360°乘以最喜欢植物园的学生人数占被调查人数的比例可得;(4)用总人数乘以样本中最喜欢烈士陵园的人数所占比例.【解答】解:(1)本次活动调查的学生人数为18÷30%=60人,故答案为:60;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,则x+2x=60﹣18﹣6,解得:x=12,即最喜欢博物馆的学生人数为12,则最喜欢烈士陵园的学生人数为24,补全条形图如下:(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是360°×=36°,故答案为:36;(4)最喜欢烈士陵园的人数约有720×=288人.四.解答题(共2小题,满分16分,每小题8分)20.(8分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同(1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华选择去同一个地方游玩的概率.【分析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【解答】解:(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有4种,所以小明和小华选择去同一个地方游玩的概率==.21.(8分)如图,要在长、宽分别为50米、40米的矩形草坪内建一个正方形的观赏亭.为方便行人,分别从东,南,西,北四个方向修四条宽度相同的矩形小路与亭子相连,若小路的宽是正方形观赏亭边长的,小路与观赏亭的面积之和占草坪面积的,求小路的宽.【分析】根据“小路与观赏亭的面积之和占草坪面积的,”建立方程求解即可得出结论.【解答】解:设小路的宽为x米,由题意得,(5x)2+(40+50)x﹣2×x×5x=×40×50解得,x=2或x=﹣8(不合题意,舍去)答:小路的宽为2米.五.解答题(共1小题,满分10分,每小题10分)22.(10分)已知:如图,AB为⊙O的直径,C,D是⊙O直径AB异侧的两点,AC=DC,过点C与⊙O相切的直线CF交弦DB的延长线于点E.(1)试判断直线DE与CF的位置关系,并说明理由;(2)若∠A=30°,AB=4,求的长.【分析】(1)利用切线的性质得OC⊥CF,再证明△OAC≌△ODC得到∠1=∠2,而根据圆周角定理得到∠A=∠4,所以∠2=∠4,于是可判定OC∥DE,然后根据平行线的性质得DE⊥CF;(2)先利用等腰三角形性质得∠1=∠A=30°,从而得到∠2=∠3=30°,所以∠COD=120°,然后利用弧长公式求解.【解答】解:(1)DE⊥CF.理由如下:∵CF为切线,∴OC⊥CF,∵CA=CD,OA=OD,OC=OC,∴△OAC≌△ODC,∴∠1=∠2,而∠A=∠4,∴∠2=∠4,∴OC∥DE,∴DE⊥CF;(2)∵OA=OC,∴∠1=∠A=30°,∴∠2=∠3=30°,∴∠COD=120°,∴的长==π.六.解答题(共1小题,满分10分,每小题10分)23.(10分)如图1,在平面直角坐标系中,A点的坐标为(m,3),AB⊥x轴于点B,tan∠OAB=,反比例函数y1=的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式;(2)设直线OA的解析式为y2=nx,请直接写出y1<y2时,自变量x的取值范围﹣2<x<0或x>2 .(3)如图2,若函数y=3x与y1=的图象的另一支交于点M,求△OMB与四边形OCDB的面积的比值.【分析】(1)在Rt△AOB中,根据tan∠OAB=求出OB,再求出点A、C坐标即可解决问题.(2)根据函数图象直接得到答案.(3)利用方程组求出点M坐标,分别求出三角形OMB与四边形OCDB的面积即可解决问题.【解答】解:(1)在Rt△AOB中,∵AB=3,∠ABO=90°,∴tan∠OAB==,∴OB=4,∴点A(4,3),∵点C是OA中点,∴点C坐标(2,),∵反比例函数y1=的图象的一支经过点C,∴k=3,∴反比例函数解析式为y1=.(2)如图1,由反比例函数图象的对称性质得到点C关于原点对称的C′的坐标为(﹣2,﹣),结合图象得到:当y1<y2时,自变量x的取值范围是﹣2<x<0或x>2.故答案是:﹣2<x<0或x>2.(3)由解得或,∵点M在第三象限,∴点M坐标(﹣1,﹣3),∵点D坐标(4,),∴S△OBM =×4×3=6,S四边形OBDC=S△AOB﹣S△ACD=×4×3﹣×2×=,∴三角形OMB与四边形OCDB的面积的比=6: =8:5.七.解答题(共1小题,满分12分,每小题12分)24.(12分)如图1,等腰△ABC中,AB=AC,∠BAC=30°,AB边上的中垂线DE 分别交AB,AC于点D、E,∠BAC的平分线交DE于点F.连接BF、CF、BE.(1)求证:△BCF为等边三角形;(2)猜想EF、EB、EC三条线段的关系,并说明理由;(3)如图2,在BE的延长线上取一点M,连接AM,使AM=AB,连接MC并延长交AF的延长线于点M.求证:AN=MC.【分析】(1)先根据角平分线定义得:∠BAF=∠CAF=15°,根据等腰三角形性质得:∠ABC=∠ACB=75°,计算∠FBC=60°,由中垂线的性质得:AF=BF,证明△BAF≌△CAF(SAS),可得BF=CF,根据有一个角是60°的等腰三角形是等边三角形,可得结论;(2)如图1,作辅助线,构建等边三角形EFG,证明△BFG≌△CFE,可得BG=EC,可得:BE=BG+EG=EF+EC;(3)如图2,设AE=x,分别计算∠CAM=90°,∠NAH=60°,∠ANH=30°,可得AN=x,CM=x,可得结论.【解答】证明:(1)如图1,∵∠BAC=30°,AF平分∠BAC,∴∠BAF=∠CAF=15°,∵A B=AC,∴∠ABC=∠ACB=75°,∵DE是AB的中垂线,∴AF=BF,∴∠BAF=∠ABF=15°,∴∠FBC=75°﹣15°=60°,在△BAF和△CAF中,∵,∴△BAF≌△CAF(SAS),∴BF=CF,∴△BCF是等边三角形;(2)猜想:BE=EF+EC,如图1,在BE上截取EF=FG,∵DE是AB的中垂线,∴AE=BE,∴∠BED=∠AED=60°,∴△FGE是等边三角形,∴∠GFE=60°,EF=EG,∵∠BFC=60°,∴∠BFG=∠CFE,在△BFG和△CFE中,∵,∴△BFG≌△CFE,∴BG=EC,∴BE=BG+EG=EF+EC;(3)如图2,∵∠ABE=∠BAE=30°,∴∠AEM=60°,∵AB=AM,∴∠ABE=∠AMB=30°,∴∠EAM=90°,设AE=x,则EM=2x,AM=x,∵AB=AC=AM,∴△ACM是等腰直角三角形,∴CM=AM=x,∠AMC=45°,过A作AH⊥MN于H,∴△AMH是等腰直角三角形,∴AH==,∵AC=AM,AH⊥CM,∴∠CAH=45°,∵∠NAC=∠BAC=15°,∴∠NAH=15°+45°=60°,∴∠ANH=30°,∴AN=2AH=x,∴AN=CM.,八.解答题(共1小题,满分12分,每小题12分)25.(12分)如图1,已知抛物线y=﹣x2+x﹣4与y轴相交于点A,与x轴相交于B和点C(点C在点B的右侧,点D的坐标为(4,﹣4),将线段OD 沿x轴的正方向平移n个单位后得到线段EF.(1)当n= 1或2或5 时,点E或点F正好移动到抛物线上;(2)当点F正好移动到抛物线上,EF与CD相交于点G时,求GF的长;(3)如图2,若点P是x轴上方抛物线上一动点,过点P作平行于y轴的直线交AC于点M,探索是否存在点P,使线段MP长度有最大值?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)分点E与点B重合,点E与点C重合,点F在抛物线上三种情况讨论,可求n的值;(2)由题意可求直线EF解析式,直线CD解析式,即可求点G坐标,根据两点距离公式可求GF的长;(3)由题意可求直线AC解析式,设点P(t,﹣t2+t﹣4),则点M(t, t﹣4),则可用t表示PM的长度,根据二次函数的性质可求点P的坐标.【解答】解:(1)∵抛物线y=﹣x2+x﹣4与x轴相交于B和点C∴0=﹣x2+x﹣4∴x1=1,x2=5∴点B(1,0),点C(5,0)当点E与点B重合,则n=1,当点E与点C重合,则n=5当点F在抛物线上,则﹣4=﹣x2+x﹣4解得:x1=0(不合题意舍去),x2=6∴F(6,﹣4)∴n=6﹣4=2故答案为:1或2或5(2)∵点F正好移动到抛物线上∴n=2∴点E坐标为(2,0)∵点E(2,0),点F(6,﹣4)∴直线EF解析式:y=﹣x+2∵点C(5,0),点D(4,﹣4)∴直线CD解析式:y=4x﹣20设点G(x,y)∵EF与CD相交于点G∴解得:x=,y=﹣∴点G(,﹣)∵点G(,﹣),点F(6,﹣4)∴GF==(3)存在点P,使线段MP长度有最大值∵抛物线y=﹣x2+x﹣4与y轴相交于点A,∴当x=0时,y=﹣4∴点A(0,﹣4)∵点A(0,﹣4),点C(5,0)∴直线A C解析式:y=x﹣4设点P(t ,﹣t2+t﹣4),则点M(t , t﹣4)∴PM=﹣t2+t﹣4﹣(t﹣4)=﹣t2+4t=﹣(t ﹣)2+5∴当t=时,PM的最大值为5∴点P 坐标为(,3)∴存在点P (,3),使线段MP长度有最大值为5.21 / 21。
辽宁省沈阳市铁西区2017-2018学年度上期九年级数学期末试题(2017
辽宁省沈阳市铁西区2017-2018学年度上期九年级数学期末试题(2017.12.26)2017.12.26 铁西区初三数学期末卷一、选择题1.如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是()。
A。
B。
C。
D.2.若关于 x 的方程 ax^2 - 3x = 2x^2 - 2 是一元二次方程,则 a 的值不能为()。
A。
2 B。
−2 C。
0 D。
33.在一个不透明的盒子中装有 8 个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,它是白球的概率为()。
A。
2 B。
4 C。
12 D。
164.二次函数 y = (x - 1)^2 + 2 的最小值是()。
A。
2 B。
1 C。
−1 D。
−25.已知反比例函数 y = k/x,其图象经过点 (2,3),那么下列四个点中,也在这个函数图象上的是()。
A。
(−6,1) B。
(1,6) C。
(2,−3) D。
(3,−2)6.如图,△ABC 中,DE∥BC,DE=1,AD=2,DB=3,则 BC 的长是()。
A。
B。
C。
D.7.下列一元二次方程中有两个不相等的实数根的方程是()。
A。
(x - 1)^2 = 0 B。
x^2 + 2x - 19 = 0 C。
x^2 + 4 = 0 D。
x^2 + x + 1 = 08.如图,已知某菱形花坛 ABCD 的周长是 24m,∠BAD=120∘,则花坛对角线 AC 的长是()。
A。
3m B。
6m C。
3√3m D。
6√3m9.二次函数 y = a(x + m)^2 + n 的图象如图,则一次函数 y = mx + n 的图象经过()象限。
A。
一、二、三 B。
一、二、四 C。
二、三、四 D。
一、三、四10.如图,△ABC 中,AE 交 BC 于点 D,∠C = ∠E,AD:DE = 3:5,AE = 8,BD = 4,则 DC 的长等于()。
A。
B。
C。
D.二、填空题11.△ABC 与△DEF 的相似比为 3:4,则△ABC 与△DEF 的周长比为 ________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年辽宁省鞍山市铁西区中考数学五模试卷一、选择题(每题3分,共24分)1.(3分)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣52.(3分)函数y=的自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠0 C.x≠0 D.x>0且x≠﹣23.(3分)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、4,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.44.(3分)已知二次函数y=﹣(x﹣a)2﹣b的图象如图所示,则反比例函数y=与一次函数y=ax+b的图象可能是()A.B.C.D.5.(3分)如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°6.(3分)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.27.(3分)如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是()A.=B.AD,AE将∠BAC三等分C.△ABE≌△ACD D.S△ADH=S△CEG8.(3分)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m二、填空题(每题3分,共24分)9.(3分)当x=时,分式的值为0.10.(3分)分解因式:(2a+b)2﹣(a+2b)2=.11.(3分)要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)12.(3分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.13.(3分)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.14.(3分)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.15.(3分)如图,扇形OAB的圆心角为124°,C是弧上一点,则∠ACB=.16.(3分)如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.三、解答题(第17题7分,18题9分,19、20题各10分,共36分)17.(12分)先化简,再求值:÷(1﹣),其中x=.18.(12分)如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).19.(14分)某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?20.(12分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.四、解答题(21、22各10分,共20分)21.(10分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?22.(10分)如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE 相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.(1)求证:CB是⊙O的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.23.(16分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B 两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;=10,求点E的坐标.(2)点E为y轴上一个动点,若S△AEB24.(16分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如表:产每件售价(万每件成本(万每年其他费用(万每年最大产销量品元)元)元)(件)甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.2017年辽宁省鞍山市铁西区中考数学五模试卷参考答案与试题解析一、选择题(每题3分,共24分)1.(3分)(2016•苏州)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【解答】解:0.0007=7×10﹣4,故选:C.2.(3分)(2016•威海)函数y=的自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠0 C.x≠0 D.x>0且x≠﹣2【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0,故选:B.3.(3分)(2017•鞍山模拟)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、4,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【解答】解:根据题意得:40﹣(12+10+6+4)=40﹣32=8,则第5组的频率为8÷40=0.2.故选B.4.(3分)(2016•威海)已知二次函数y=﹣(x﹣a)2﹣b的图象如图所示,则反比例函数y=与一次函数y=ax+b的图象可能是()A.B.C.D.【解答】解:观察二次函数图象,发现:抛物线的顶点坐标在第四象限,即a>0,﹣b<0,∴a>0,b>0.∵反比例函数y=中ab>0,∴反比例函数图象在第一、三象限;∵一次函数y=ax+b,a>0,b>0,∴一次函数y=ax+b的图象过第一、二、三象限.故选B.5.(3分)(2016•威海)如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°【解答】解:∵DA⊥AC,垂足为A,∴∠CAD=90°,∵∠ADC=35°,∴∠ACD=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选B.6.(3分)(2016•南京)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.2【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×=,∴边长为2的正六边形的内切圆的半径为.故选B.7.(3分)(2016•威海)如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是()A.=B.AD,AE将∠BAC三等分C.△ABE≌△ACD D.S△ADH=S△CEG【解答】解:∵∠B=∠C=36°,∴AB=AC,∠BAC=108°,∵DH垂直平分AB,EG垂直平分AC,∴DB=DA,EA=EC,∴∠B=∠DAB=∠C=∠CAE=36°,∴△BDA ∽△BAC , ∴=,又∵∠ADC=∠B +∠BAD=72°,∠DAC=∠BAC ﹣∠BAD=72°, ∴∠ADC=∠DAC ,∴CD=CA=BA ,∴BD=BC ﹣CD=BC ﹣AB , 则=,即==,故A 错误;∵∠BAC=108°,∠B=∠DAB=∠C=∠CAE=36°,∴∠DAE=∠BAC ﹣∠DAB ﹣∠CAE=36°,即∠DAB=∠DAE=∠CAE=36°,∴AD ,AE 将∠BAC 三等分,故B 正确;∵∠BAE=∠BAD +∠DAE=72°,∠CAD=∠CAE +∠DAE=72°, ∴∠BAE=∠CAD ,在△BAE 和△CAD 中, ∵,∴△BAE ≌△CAD ,故C 正确;由△BAE ≌△CAD 可得S △BAE =S △CAD ,即S △BAD +S △ADE =S △CAE +S △ADE , ∴S △BAD =S △CAE ,又∵DH 垂直平分AB ,EG 垂直平分AC ,∴S △ADH =S △ABD ,S △CEG =S △CAE ,∴S △ADH =S △CEG ,故D 正确.故选:A .8.(3分)(2016•苏州)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.二、填空题(每题3分,共24分)9.(3分)(2016•苏州)当x=2时,分式的值为0.【解答】解:∵分式的值为0,∴x﹣2=0,解得:x=2.故答案为:2.10.(3分)(2016•威海)分解因式:(2a+b)2﹣(a+2b)2=3(a+b)(a﹣b).【解答】解:原式=(2a+b+a+2b)(2a+b﹣a﹣2b)=3(a+b)(a﹣b).故答案为:3(a+b)(a﹣b).11.(3分)(2016•苏州)要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是乙运动员.(填“甲”或“乙”)2=0.024>S乙2=0.008,方差小的为乙,【解答】解:因为S甲所以本题中成绩比较稳定的是乙.故答案为乙.12.(3分)(2017•鞍山模拟)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故答案为:.13.(3分)(2016•南京)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.【解答】解:∵EF是△ODB的中位线,∴DB=2EF=2×2=4,∵AC∥BD,∴△AOC∽△BOD,∴=,即=,解得AC=.故答案为:.14.(3分)(2016•南京)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.15.(3分)(2017•鞍山模拟)如图,扇形OAB的圆心角为124°,C是弧上一点,则∠ACB=118°.【解答】解:如图所示,在⊙O上取点D,连接AD,BD,∵∠AOB=124°,∴∠ADB=∠AOB=×124°=62°.∵四边形ADBC是圆内接四边形,∴∠ACB=180°﹣62°=118°.故答案为:118°.16.(3分)(2016•苏州)如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.【解答】解:连接OC,∵过点C的切线交AB的延长线于点D,∴OC⊥CD,∴∠OCD=90°,即∠D+∠COD=90°,∵AO=CO,∴∠A=∠ACO,∴∠COD=2∠A,∵∠A=∠D,∴∠COD=2∠D,∴3∠D=90°,∴∠D=30°,∴∠COD=60°∵CD=3,∴OC=3×=,∴阴影部分的面积=×3×﹣=,故答案为:.三、解答题(第17题7分,18题9分,19、20题各10分,共36分)17.(12分)(2016•苏州)先化简,再求值:÷(1﹣),其中x=.【解答】解:原式=÷=•=,当x=时,原式==.18.(12分)(2016•南京)如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).【解答】(1)证明:BF交AD于G,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FBC=∠FGE,而∠FBC=∠DCE,∴∠FGE=∠DCE,∵∠GEF=∠DEC,∴∠D=∠F;(2)解:如图,点P为所作.19.(14分)(2015•黔东南州)某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?【解答】解:(1)画树状图得:则共有16种等可能的结果;(2)∵某顾客参加一次抽奖,能获得返还现金的有6种情况,∴某顾客参加一次抽奖,能获得返还现金的概率是:=.20.(12分)(2016•苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.四、解答题(21、22各10分,共20分)21.(10分)(2016•南京)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?【解答】解:(1)过点P作PH⊥OA于H,如图.设PH=3x,在Rt△OHP中,∵tanα==,∴OH=6x.在Rt△AHP中,∵tanβ==,∴AH=2x,∴OA=OH+AH=8x=4,∴x=,∴OH=3,PH=,∴点P的坐标为(3,);(2)若水面上升1m后到达BC位置,如图,过点O(0,0),A(4,0)的抛物线的解析式可设为y=ax(x﹣4),∵P(3,)在抛物线y=ax(x﹣4)上,∴3a(3﹣4)=,解得a=﹣,∴抛物线的解析式为y=﹣x(x﹣4).当y=1时,﹣x(x﹣4)=1,解得x1=2+,x2=2﹣,∴BC=(2+)﹣(2﹣)=2=2×1.41=2.82≈2.8.答:水面上升1m,水面宽约为2.8米.22.(10分)(2016•威海)如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.(1)求证:CB是⊙O的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.【解答】(1)证明:连接OD,与AF相交于点G,∵CE与⊙O相切于点D,∴OD⊥CE,∴∠CDO=90°,∵AD∥OC,∴∠ADO=∠DOC ,∠DAO=∠BOC ,∵OA=OD ,∴∠ADO=∠DAO ,∴∠DOC=∠BOC ,在△CDO 和△CBO 中,\,∴△CDO ≌△CBO ,∴∠CBO=∠CDO=90°,∴CB 是⊙O 的切线.(2)由(1)可知∠DOA=∠BCO ,∠DOC=∠BOC , ∵∠ECB=60°,∴∠DCO=∠BCO=∠ECB=30°,∴∠DOC=∠BOC=60°,∴∠DOA=60°,∵OA=OD ,∴△OAD 是等边三角形,∴AD=OD=OF ,∵∠GOF=∠ADO ,在△ADG 和△FOG 中,,∴△ADG ≌△FOG ,∴S △ADG =S △FOG ,∵AB=6,∴⊙O 的半径r=3,∴S 阴=S 扇形ODF ==π.23.(16分)(2017•鞍山模拟)如图,反比例函数y=的图象与一次函数y=kx+b 的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;=10,求点E的坐标.(2)点E为y轴上一个动点,若S△AEB【解答】解:(1)把点A(2,6)代入y=,得m=12,则y=.把点B(n,1)代入y=,得n=12,则点B的坐标为(12,1).由直线y=kx+b过点A(2,6),点B(12,1)得,解得,则所求一次函数的表达式为y=﹣x+7.(2)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,7).∴PE=|m ﹣7|.∵S △AEB =S △BEP ﹣S △AEP =10, ∴×|m ﹣7|×(12﹣2)=10.∴|m ﹣7|=2.∴m 1=5,m 2=9.∴点E 的坐标为(0,5)或(0,9).24.(16分)(2016•武汉)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如表:产品每件售价(万元) 每件成本(万元) 每年其他费用(万元) 每年最大产销量(件) 甲6 a 20 200 乙 20 10 40+0.05x 2 80其中a 为常数,且3≤a ≤5(1)若产销甲、乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.【解答】解:(1)y 1=(6﹣a )x ﹣20,(0<x ≤200)y 2=10x ﹣40﹣0.05x 2=﹣0.05x 2+10x ﹣40.(0<x ≤80).(2)对于y 1=(6﹣a )x ﹣20,∵6﹣a >0,∴x=200时,y 1的值最大=(1180﹣200a )万元.对于y 2=﹣0.05(x ﹣100)2+460,∵0<x ≤80,∴x=80时,y2最大值=440万元.(3)①(1180﹣200a)=440,解得a=3.7,②(1180﹣200a)>440,解得a<3.7,③(1180﹣200a)<440,解得a>3.7,∵3≤a≤5,∴当a=3.7时,生产甲乙两种产品的利润相同.当3≤a<3.7时,生产甲产品利润比较高.当3.7<a≤5时,生产乙产品利润比较高.参与本试卷答题和审题的老师有:sd2011;HJJ;HLing;曹先生;wd1899;弯弯的小河;三界无我;gsls;sks;张其铎;星期八;1987483819;733599;zcx;1160374(排名不分先后)菁优网2017年4月8日。