一元二次方程(复习)

合集下载

一元二次方程专题复习

一元二次方程专题复习

一元二次方程专题复习(一)直接开平方法→配方法要点一、一元二次方程的解法---配方法1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.类型一、用配方法解一元二次方程1.用配方法解方程x 2-7x-1=0.【答案与解析】将方程变形为x 2-7x =1,两边加一次项的系数的一半的平方,得x 2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为x =+或x =-.【总结升华】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行: (1)把形如ax 2+bx+c =0(a ≠0)的方程中二次项的系数化为1; (2)把常数项移到方程的右边;2222()a ab b a b ±+=±(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n ≥0)的方程; (4)用直接开平方的方法解此题.举一反三:【变式】用配方法解方程.(1)x 2-4x-2=0; (2)x 2+6x+8=0.要点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,一定要学好.类型二、配方法在代数中的应用2.若代数式,,则的值( )A .一定是负数B .一定是正数C .一定不是负数D .一定不是正数【答案】B ;【解析】(作差法).故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.221078Ma b a =+-+2251N a b a =+++M N -22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>3.用配方法说明:代数式x2+8x+17的值总大于0.【答案与解析】x2+8x+17= x2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴(x+4)2+1>0,故无论x取何实数,代数式 x2+8x+17的值总大于0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值得符号.举一反三:【变式】求代数式 x2+8x+17的最小值4.(2014春•滦平县期末)已知x2+y2﹣4x+6y+13=0,求(x+y)2013的值.【思路点拨】采用配方法求出x、y的值,代入计算即可得到答案.【答案与解析】解:x2+y2﹣4x+6y+13=0,x2﹣4x+4+y2﹣+6y+9=0,(x﹣2)2+(y+3)2=0∴x﹣2=0,y+3=0,解得,x=2,y=﹣3,(x+y)2013=﹣1.【总结升华】本题考查的是配方法的应用和非负数的性质的应用,掌握配方法的步骤和几个非负数的和为0,每个非负数都为0是解题的关键.1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程,用配方法将其变形为:①当时,右端是正数.因此,方程有两个不相等的实根:② 当时,右端是零.因此,方程有两个相等的实根: ③ 当时,右端是负数.因此,方程没有实根.20 (0)ax bx c a ++=≠2224()24b b ac x a a -+=240b ac ∆=->1,22b x a-±=240b ac ∆=-=1,22b x a=-240b ac ∆=-<5. 用公式法解下列方程.(1); (2).【总结升华】 用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算的值;(3)若是非负数,用公式法求解.举一反三:【变式】用公式法解方程6.用公式法解下列方程:(1); (2) .【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在的前提下,代入求根公式可求出方程的根.23310x x --=2241x x =-24b ac -24b ac -2341x x =+2100x -+=(1)(1)x x +-=240b ac -≥举一反三:【变式】(2014秋•泽州县校级期中)用公式法解方程:5x 2﹣4x ﹣12=0.【巩固练习】 一、选择题1.已知关于x 的一元二次方程,用配方法解此方程,配方后的方程是( )A .B .C .D . 2.用配方法解下列方程时,配方有错误的是( )A .化为B .化为C .化为D .化为3.(2015春•张家港市校级期中)若M=2x 2﹣12x+15,N=x 2﹣8x+11,则M 与N 的大小关系为( ) A .M ≥N B . M >N C . M ≤N D . M <N 4.不论x 、y 为何实数,代数式的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题 7.(1)x 2-x+ =( )2; (2)x 2+px+ =( )2. 220x x m --=2(1)1x m -=+2(1)1x m +=+22(1)1x m -=+22(1)1x m +=+22990x x --=2(1)100x -=22740t t --=2781416t ⎛⎫-= ⎪⎝⎭2890x x ++=2(4)25x +=23420x x --=221039x ⎛⎫-= ⎪⎝⎭22247x y x y ++-+438.已知,则的值为 . 9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,∴所以方程的根为_________. 11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.(2015春•重庆校级期中)a 2+b 2﹣4a+2b+5=0,则b a 的值为 .三、解答题 13. 用配方法解方程.(1) 3x 2-4x-2=0; (2)x 2-4x+6=0.14. 用公式法解下列方程:(2) .15.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.16.已知在⊿ABC 中,三边长a 、b 、c ,满足等式a 2-16b 2-c 2+6ab+10bc=0,求证:a+c=2b223730216b a a b -+-+=a -2(1)210x ax --=;22222(1)()ab x a x b x a b +=+>一元二次方程专题复习(二)温故知新:1.直接开平方法2.配方法3.公式法一、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

《一元二次方程》总复习、练习、中学考试真题【题型解析汇报】

《一元二次方程》总复习、练习、中学考试真题【题型解析汇报】

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0)。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

考点2:一元二次方程的解法1.直接开平方法:对形如(x+a)2=b(b≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。

x+a= ± b ∴ x1 =-a+ b x2 =-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2=b 的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b ± b 2 - 4ac 2-4ac≥0)。

步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0 或 b=0。

步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于 0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。

5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②若b2-4ac<0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3(x+4)中,不能随便约去 x+4。

一元二次方程复习课(绝对经典)

一元二次方程复习课(绝对经典)
2
2
关于 x的一元二次方程 x (2k 3) x k 0有
2 2
两个不相等的实数根 、
(1)求k的取值范围; ( )若 6, 求( ) 3 5的值 2 解: )由题意得, (2
2
解得, k1 1, k 2 3 3 k , k 1 4
2 8、x 2 4 x 2 0, 请用配方法转化成( m) n的 x
形式,则
( x 2) 2
2
9、请写出一个一元二次方程,
它的根为-1和2
(x+1)(x-2)=0
将4个数a、b、c、d排成2行2列,两边各加一条竖线记成
a b a b , 定义 ad bc,这个式子叫做2阶行列式。 c d c d 若 x+1 x-1 1-x x+1 =6则x=
的一个根是-1,则
4 , 另一根为______ x=-3
若a为方程 x2 x 5 0 的解,则 a 2 a 1 的值 为 6
6、若a是方程x 3x 3 0的一个根,则
2
3a 9a 2
2
11
2
7、n是方程x m x n 0一个根(n 0), n m -1
2、若(m+2)x 2 +(m-2) x -2=0是关于x的一元二 ≠- 2 次方程则m 。
一元二次方程的一般式
ax bx c 0 (a≠0)
2
一元二次方程 一般形式 二次项系 一次项 常数项 数 系数
3x²=1
2y(y-3)= -4
3x²-1=0
2y2-6y+4=0
3 2
0
-6
-1 4

完整版)一元二次方程(知识点考点题型总结)

完整版)一元二次方程(知识点考点题型总结)

完整版)一元二次方程(知识点考点题型总结)一元二次方程专题复考点一、概念一元二次方程是只含有一个未知数,且未知数的最高次数是2的整式方程。

一般表达式为ax^2+bx+c=0,其中a不等于0.关于“未知数的最高次数是2”,需要注意以下三点:一是该项系数不为0;二是未知数指数为2;三是若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x的一元二次方程的是():A。

2x^2+11x-2=0B。

ax^2+bx+c=DC。

2x=x+1变式:当k时,关于x的方程kx+2x=x+3是一元二次方程。

例2、方程m+2xm+1=0是关于x的一元一次方程,求m 的值,并写出关于x的一元一次方程。

针对练:1.方程8x^2+3mx+1=0是关于x的一元二次方程,则m的值为多少?2.若方程m-2x=0是关于x的一元一次方程,求m的值,并写出关于x的一元一次方程。

3.若方程(m-1)x+m·x=1是关于x的一元二次方程,则m 的取值范围是多少?4.若方程nx+x-2x=0是一元二次方程,则下列不可能的是():A。

m=n=2B。

m=2.n=1C。

n=2.m=1D。

m=n=1考点二、方程的解方程的解是指使方程两边相等的未知数的值。

根的概念可用于求代数式的值。

典型例题:例1、已知2y+y^2-3的值为2,则4y+2y^2+1的值为多少?例2、关于x的一元二次方程(a-2)x^2+x+a-4=0的一个根为2,求a的值。

例3、已知关于x的一元二次方程ax^2+bx+c=0的系数满足a+c=b,则此方程必有一根为多少?例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为多少?针对练:1.已知方程x+kx-10=0的一根是2,则k为多少?另一根是多少?2.已知关于x的方程x^2+kx-2=0的一个解与方程(x+1)/(x-1)=3的解相同,求k的值,并求方程的另一个解。

一元二次方程复习试题(含答案)

一元二次方程复习试题(含答案)

一元二次方程 双基演练一、选择题1.下面关于x的方程中①a x2+bx+c=0;②3(x-9)2-(x+1)2=1;③x+3=1x;④(a2+a+1)x2-a=0.一元二次方程的个数是()A.1 B.2 C.3 D.42.要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A.a≠0 B.a≠3C.a≠1且b≠-1 D.a≠3且b≠-1且c≠03.若(x+y)(1-x-y)+6=0,则x+y的值是()A.2 B.3 C.-2或3 D.2或-34.若关于x的一元二次方程3x2+k=0有实数根,则()A.k>0 B.k<0 C.k≥0 D.k≤05.下面对于二次三项式-x2+4x-5的值的判断正确的是()A.恒大于0 B.恒小于0 C.不小于0 D.可能为06.下面是某同学在九年级期中测试中解答的几道填空题:(1)若x2=a2,则x= a ;(2)方程2x(x-1)=x-1的根是 x=0 ;(3)若直角三角形的两边长为3和4,则第三边的长为 5 .•其中答案完全正确的题目个数为()A.0 B.1 C.2 D.37.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,•而按原定价的九折出售,将赚20元,则这种商品的原价是()A.500元 B.400元 C.300元 D.200元8.利华机械厂四月份生产零件50万个,若五、六月份平均每月的增长率是20%,•则第二季度共生产零件()A.100万个 B.160万个 C.180万个 D.182万个二、填空题9.若a x2+bx+c=0是关于x的一元二次方程,则不等式3a+6>0的解集是________.10.已知关于x的方程x2+3x+k2=0的一个根是-1,则k=_______.11.若x2-4x+8=________.12.若(m+1)(2)1m m x +-+2mx-1=0是关于x 的一元二次方程,则m 的值是________. 13.若a+b+c=0,且a ≠0,则一元二次方程ax 2+bx+c=0必有一个定根,它是_______. 14.若矩形的长是6cm ,宽为3cm ,一个正方形的面积等于该矩形的面积,则正方形的边长是_______.15.若两个连续偶数的积是224,则这两个数的和是__________. 三、计算题(每题9分,共18分) 16.按要求解方程:(1)4x 2-3x-1=0(用配方法); (2)5x 2(精确到0.1)17.用适当的方法解方程:(1)(2x-1)2-7=3(x+1); (2)(2x+1)(x-4)=5;(3)(x 2-3)2-3(3-x 2)+2=0.能力提升18.若方程x2-2x+=0的两根是a和b(a>b),方程x-4=0的正根是c,试判断以a、b、c为边的三角形是否存在.若存在,求出它的面积;若不存在,说明理由.19.已知关于x的方程(a+c)x2+2bx-(c-a)=0的两根之和为-1,两根之差为1,•其中a,b,c是△ABC的三边长.(1)求方程的根;(2)试判断△ABC的形状.20.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?21.李先生乘出租车去某公司办事,下午时,打出的电子收费单为“里程11•公里,应收29.10元”.出租车司机说:“请付29.10元.”该城市的出租车收费标准按下表计算,请求出起步价N (N<12)是多少元.聚焦中考22.方程(2)0x x +=的根是( )A 2x =B 0x =C 120,2x x ==-D 120,2x x ==23.某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价( ) A .10%B .19%C .9.5%D .20%24.关于x 的一元二次方程()220x mx m -+-=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .无法确定25.已知a 、b 、c 分别是三角形的三边,则方程(a + b )x 2 + 2cx + (a + b )=0的根的情况是( ) A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根26.关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为 . 27.小华在解一元二次方程x 2-4x=0时.只得出一个根是x=4,则被他漏掉的一个根是x=_____.28.在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。

《一元二次方程》-总复习、练习、中考真题【题型解析】

《一元二次方程》-总复习、练习、中考真题【题型解析】

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为 0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0)。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

考点2:一元二次方程的解法1.直接开平方法:对形如(x+a)2=b(b≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。

x+a= ± b ∴ x1 =-a+ b x2=-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为 1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2=b 的形式;⑤如果b≥0 就可以用两边开平方来求出方程的解;如果b≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b±b 2 - 4ac (b2-4ac≥0)。

步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0 时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则 a=0 或b=0。

步骤是:①将方程右边化为 0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于 0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。

5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②若b2-4ac<0,则方程无解.⑶利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3(x+4)中,不能随便约去 x+4。

《一元二次方程》全章复习与巩固—知识讲解

《一元二次方程》全章复习与巩固—知识讲解

《一元二次方程》全章复习与巩固—知识讲解一元二次方程是高中数学中的重要内容,它是一种形如ax^2 + bx + c = 0的方程,其中a、b、c为实数,且a ≠ 0。

解一元二次方程的方法有因式分解、配方法和求根公式法。

下面将对这些解法进行讲解。

一、因式分解法如果一元二次方程能够因式分解为两个一次因式的乘积,即 (px + q) (rx + s) = 0,那么方程的解就可以直接得到。

具体步骤如下:1. 将二次方程化简成标准形式:ax^2 + bx + c = 0;2. 因式分解方程:(px + q) (rx + s) = 0;3. 解方程:px + q = 0 或 rx + s = 0;4.求解方程得到x的值。

例如,对方程x^2-5x+6=0应用因式分解法:1.方程已经是标准形式;2.可以将方程改写为(x-2)(x-3)=0;3.解方程得到x-2=0或x-3=0;4.求解方程可得x=2或x=3,这就是原方程的解。

二、配方法对于一元二次方程ax^2 + bx + c = 0,有时候可以通过配方法将方程转化为一个平方差或一个完全平方式。

具体步骤如下:1.当a≠0时,将方程两边同时除以a,化简为x^2+(b/a)x+c/a=0;2. 计算出一个值k,使得(b/a)^2 + 2(b/a)k + k^2 = k^2、其中,2(b/a)k为bx的一半,k^2为(c/a)的相反数的一半;3.将方程变形为(x+k)^2+m=0,即(x+k)^2=-m;4.解方程得到x+k=±√(-m);5.求解方程得到x的值。

例如,对方程x^2-6x+8=0应用配方法:1.将方程化简为(x-3)^2-1=0;2.得到k=3,使得(-6/2)^2+2(-6/2)k+k^2=1;3.方程变形为(x-3)^2=1;4.解方程得到x-3=±1;5.求解方程可得x=2或x=4,这就是原方程的解。

三、求根公式法一元二次方程的求根公式是美国数学家Vieta发现的,它的公式形式为:x = (-b ± √(b^2 - 4ac)) / 2a。

一元二次方程复习

一元二次方程复习

【主题训练1】(2014·怀化模拟)若(a-3) 的一元二次方程,则a的值为( )
+4xxa 2-+75=0是关于x
A.3
B.-3
C.±3
D.无法确定
【自主解答】选B.因为方程是关于x的一元二次方程,所以a2-
7=2,且a-3≠0,解得a=-3.
第三页,共28页。
【主题升华】 一元二次方程的有关定义及根
第十七页,共28页。
1.(2013·珠海中考)已知一元二次方程:①x2+2x+3=0,
②x2-2x-3=0,下列说法正确的是( )
A.①②都有实数解
B.①无实数解,②有实数解
C.①有实数解,②无实数解 D.①②都无实数解
第十八页,共28页。
【解析】选B.一元二次方程①的判别式的值为Δ= b2-4ac=412=-8<0,所以方程无实数根;一元二次方程②的判别式的值为 Δ=b2-4ac=4+12=16>0,所以方程有两个不相等的实数根.
第十九页,共28页。
2.(2013·黄冈中考)已知一元二次方程x2-6x+c=0有一个根为2,则
另一根为( )
A.2
B.3
C.4
D.8
【解析】选C.由题意,把2代入原方程得:22-6×2+c=0,解得c=8,把
c=8代入方程得x2-6x+8=0,解得x1=2,x2=4.
第二十页,共28页。
3.(2013·武汉中考)若x1,x2是一元二次方程x2-2x-3=0的两个根,则
得x1=1.9(不合题意,舍去),x2=0.1=10%. 答案:10%
第二十七页,共28页。
谢谢大家
第二十八页,共28页。

一元二次方程专题复习资料

一元二次方程专题复习资料

一元二次方程专题复习 知识盘点1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的 方程叫做一元二次方程。

通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。

2. 一元二次方程的解法:(1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解。

(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为 ,即方程两边同时除以二次项系数;②移项,使方程左边为 项和 项,右边为 项;③配方,即方程两边都加上 的平方;④化原方程为2()x m n +=的形式,如果n 是非负数,即0n ≥,就可以用 法求出方程的解。

如果n <0,则原方程 。

(3)公式法: 方程20(0)ax bx c a ++=≠,当24b ac -_______ 0时,x = ________(4)因式分解法:用因式分解法解一元二次方程的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个 的乘积;③令每个因式都等于 ,得到两个 方程;④解这两个方程,它们的解就是原方程的解。

3.一元二次方程的根的判别式 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 的实数根,即-----=-----=2,1x x(2)ac b 42-=0⇔一元二次方程有两个 的实数根,即-----==21x x ,(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根。

4. 一元二次方程根与系数的关系如果一元二次方程20ax bx c ++=(0)a ≠的两根为12,x x ,则12x x += ,12x x =提示:在应用一元二次方程根与系数的关系时,一定要保证元二次方程有实数根。

5. 列一元二次方程解应用题列一元二次方程解应用题的步骤和列一元一次方程解应用题的步骤一样,即审、找、设、列、解、答六步。

一元二次方程复习题

一元二次方程复习题

一元二次方程复习题一. 知识归纳1 一元二次方程概念ax 2+bx +c =0(a ≠0)2 解法①直接开平方法②配方法③公式法④因式分解法3 根的判别式⊿△=b 2-4ac4 根与系数关系1x + 2x =ab-, 1x ·2x =a c二. 填空题1方程02=x 的解为__________,方程()()040022≥-≠=++ac b a c bx ax 的解为________若关于x 的二次方程(m +1)x 2-3x +2=0有两个相等的实数根,则m =______.2设方程0432=-+x x 的两根分别为1x ,2x ,则1x + 2x =______,1x ·2x =________ =+2221x x ________, ()221x x -=________, 121213x x x x ++=___________3 若方程x 2-5x +m =0的一个根是1,则m =________4 两根之和等于-3,两根之积等于-7的最简系数的一元二次方程是________5 已知方程2x 2+(k -1)x -6=0的一个根为2,则k =_______6若关于x 的一元二次方程mx 2+3x-4=0有实数根,则m 的值为______ 7方程 无实根,则 ______8如果 是一个完全平方公式,则 ______。

9若方程 的两根之差的绝对值是8,则 ______。

10若方程的两根之比为3,则_____。

11在实数范围内分解因式:=-52x ___ _,12-+x x =____________122--x x =______________132--x x =____________12若a ,b 为实数,且()0232=-+-+ab b a ,则以a ,b 为根的一元二次方程是_______________13以方程0122=--x x 的两根的相反数为根的一元二次方程是______________ 三. 选择题1下列方程(1)-x 2+2=0 (2)2x 2-3x =0 (3)-3x 2=0 (3)x 2+x1=0 (5)232+x =5x (6)2x 2-3=(x -3)(x 2+1)中是一元二次方程的有( )A 、2个B 、3个C 、4个D 、5个2下列配方正确的是( )(1) x 2+3x =(x +23)2-23 (2)x 2+2x +5=(x +1)2+4 (3)x 2-21x +43=(x -41)2+161 (4)3x 2+6x +1=3(x +1)2-23方程(x -1)2+(2x +1)2=9x 的一次项系数是( )A 、2B 、5C 、-7D 、7 4方程x 2-3x +2-m =0有实根,则m 的取值范围是( ) A 、m >-41 B 、m ≥41 C 、m ≥-41 D 、m >41 5方程(m +1)x 2-(2m +2)x +3m -1=0有一个根为0,则m 的值为( ) A 、32 B 、31 C 、-32 D 、-316方程()()1231=+-x x 化为02=++c bx ax 形式后,a 、b 、c 的值为( ) (A )1,–2,-15 (B )1,-2,15(C )-1,2,15 (D )–1,2,–15 7方程()()02322=-+x x 的解的个数是( ) (A )1 (B )2 (C )3 (D )48若方程07532=--x x 的两根为x 1,x 2,下列表示根与系数关系的等式中,正确的是( )(A)7,52121-=⋅=+x x x x (B )37,352121=⋅-=+x x x x(C )37,352121=⋅=+x x x x (D )37,352121-=⋅=+x x x x9以215-和215+为根的一元二次方程是( ) (A )0152=+-x x (B )02522=+-x x (C )0152=++x x (D )02522=++x x 10如果一元二次方程02=++c bx ax 的两个根是x 1,x 2,那么二次三项式c bx ax ++2分解因式的结果是( )(A )()()212x x x x c bx ax --=++ (B )()()212x ax x ax c bx ax --=++(C )()()212x x x x a c bx ax ++=++ (D )()()212x x x x a c bx ax --=++11在实数范围内,1842++x x 可以分解为( )(A )()()3232++-+x x (B )⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛+--232232x x (C )()()322322++-+x x (D )()()32232241++-+x x12已知方程()031222=+--m x m x 的两个根是互为相反数,则m 的值是( ) (A )1±=m (B )1-=m (C )1=m (D )0=m13如果关于x 的方程3ax 2-23(a -1)x +a =0有实数根,则a 的取值范围是( )A 、a <21且a ≠0 B 、a ≥21 C 、a ≤21且a ≠0 D 、a ≤21 14若方程2x (kx -4)-x 2+6=0没有实数根,则k 的最小整数值是( ) A 、1 B 、2 C 、3 D 、415一元二次方程一根比另一根大8,且两根之和为6,那么这个方程是( )A 、x 2-6x -7=0B 、x 2-6x +7=0C 、x 2+6x -7=0D 、x 2+6x +7=016已知方程07822=+-x x 的两根恰好是一个直角三角形的两条直角边的长,则这个直角三角 形的斜边的长是( ) (A )9(B )6 (C )3(D )317若一元二次方程02=++q px x 的两根之比为3∶2,则q p ,满足的关系式是( ) (A )q p 2532= (B )q p 2562= (C )q p 3252= (D) q p 6252= 18方程x 2-2x-m=0有两个正实根,则m 的取值范围是 ( ) A 、0<m<1 B 、m>0 C 、-1≤m <0 D、m <-1 19一元二次方程ax 2+bx+c=0(a ≠0)的两根之和为m ,两根平方和为n ,则c bm an ++2121 的值为( )A 、0B 、22n m + C 、2m D 、2n 20已知关于x 的一元二次方程032=+-m x x 的两根21x x 、满足161112221=+x x ,则m 的值为( )A 、4B 、-36C 、4或-36D 、-36或-421若一元二次方程的两根21x x 、满足下列关系:=+++22121x x x x 0,05222121=+--x x x x ,则这个一元二次方程( )A 、032=++x x B 、032=--x x C 、032=+-x x D 、032=-+x x 四. 解方程1、04)221(2=-+x 2、0662=++x x3、06)32(5)32(2=+---x x4、22)3(4)23(-=+x x 5、06122=+-x x6、34124)3(2-+=-x x五. 在实数范围内分解因式 1、592-x2、3742--x x3、22582y xy x +-六. 解答题1已知方程0132=--x x 的两个根是21,x x ,求代数式 (1)()()1121--x x ;(2)111221+++x xx x 的值。

一元二次方程单元复习

一元二次方程单元复习

一元二次方程单元复习一元二次方程基本概念:1、填表:2、一元二次方程(1-3x)(x+3)=2x2+1的一般形式是;它的二次项系数是;一次项系数是;常数项是。

3、二次项系数为5,一次项系数为-3,常数项为-1的一元二次方程是。

4、把(x+1)(2x+3)=5x2+2化成一般形式是,它的二次项系数是,一次项系数是,常数项是,根的判别式△= 。

5、已知方程2(m+1)x2+4mx+3m-2=0是关于x的一元二次方程,那么m的取值范围是。

6、已知关于x的方程(m+3)x2-mx+1=0,当m 时,原方程为一元二次方程,若原方程是一元一次方程,则m的取值范围是。

7、把方程a(x 2+x)+b(x 2-x)=1-c 写成关于x 的一元二次方程的一般形 式是 ,它的二次项系数是 、它是一元二次方程的条件是 。

一次项系数是 ,常数项是 。

8、已知关于x 的一元二次方程(2m -1)x 2+3mx+5=0有一根是x=-1,则m= 。

9、已知关于x 的方程(2k+1)x 2-4kx+(k -1)=0,问:(1)k 为 时,此方程是一元一次方程;此时方程的根为 ; (2)k 为 时,此方程是一元二次方程;此时一元二次方程的二次项系数是 ,一次项系数是 ,常数项为 。

10、当k 时,关于x 的方程(k+1)x 2+(2k -1)x+3=0是一元二次方程。

11、方程2x 2=8的实数根是 。

12、方程4(x -3)2=36的实数根是 。

13、方程(x 2-4)(x+3)=0的解是 。

解方程:14、240x -=; 15、2410y -=;16、m 2-3m -4=0; 17、2690x x -+=;18、24210y y --=; 19、220n n --=;20、2122030x x -+=; 21、22320x x --=;22、(2)(1)70x x +-=; 23、224(21)9(4)x x -=+;24、(2x +1)2-3=2(2x +1); 25、(1-x) 2=1-x 2;26、()()323212x x -+= 27、24120x x --=28、26730x x +-= 29、22510x x +-=30、方程53x 0.22-的解是 。

《一元二次方程》全章复习

《一元二次方程》全章复习

《一元二次方程》全章复习1. 一元二次方程的有关概念2. 配方法的应用3. 根判别式,根与系数的关系4. 一元二次方程的解法:1)直接开平方法 2)因式分解法 3)配方法 4)公式法5. 实际问题:1)传播与数字问题 2)增长率与销售问题 3)有关面积的问题【巩固练习】1.下列方程是一元二次方程的是( ) A.211x x x-=+ B.224x xy y -+= C.20ax bx c +=+ D.(x 1)1x x -=- 2.在一元二次方程2410x x --=中,二次项系数和一次项系数分别为( )A.1,4B.1,-4C.-1,-4D.2,4x x -3.在一元二次方程260x kx --=中,已知一个根为3x =,则实数k 的值为( )A.1B.-1C.2D.-24.关于x 的一元二次方程22(a 1)10x x a -++-=的一个根是0,则a 的值为( )A.1B.-1C.1或-1D.12 5.若关于x 的一元二次方程220x x m -+=没有实数根,则实数m 的取值范围是( )A.m <1B.m > -1C.m < -1D.m > 16. 若关于x 的方程2(m 1)02x m mx +-+=有两个不等的实数根,则m 的取值范围是7. 已知2410x x a +=-可变为2(2)x b -的形式,则ab=8. 若关于x 的方程2(2)10x x m m +++=-有两个相等的实数根,则m=9.已知一个矩形长比宽多2cm ,其面积为82cm ,则此长方形的周长是10. 若方程2310x x b +=+无解,则b 应满足的条件是11. 若关于x 的方程22(21)20k x x k -+-+=+有实数根,则k 的取值范围是 12. 若分式2817x x x -+-的值为0,则x= 13. 关于x 的方程22202x x a b a +-=+的根是14. 若关于x 的方程260x x k +=+的两根之差为2,则k=15. 已知关于x 的方程22(31)0x x m m --+=有两根为12,x x ,且121134x x +=-,则m= 16.用恰当的方法解下列方程: (1)21(3)13x += (2)2(21)2(2x 1)x +=+(3)(x 8)16x += (4)2280x x +-=(5)22(32)(2x 1)x +=- (5)2(21)4(21)40y y +-++=17.已知,αβ是方程2250x x +-=的两个实数根,求22ααβα++的值18.已知12,x x 是方程2214160x x +-=的两个实数根,求下列代数式的值,(1)212()x x - (2)2112x x x x + (3)12(2)(2)x x -- (4)12x x -19.已知关于x 的方程222(a 1)740x x a a +-+--=的两根为12,x x ,且满足12123340x x x x --+=,求a 的值20.实数k 在什么范围取值时,方程22(k 1)0kx kx -+-=有两个正的实数根21.若关于x 的方程2430x x k -+-=的两根为12,x x ,且满足123x x =,试求出方程的两个实数根及k 的值23.若n > 0,关于x 的方程21(m 2n)04x x mn --+=有两个相等的正的实数根,求m n24.如果2246130x x y y -++=,求(xy)z25.水果店花500元进了一批水果,按40%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利67元.若两次打折相同,每次打了几折?26.如图,在△ABC中,AB=10m,BC= 40m,∠C=90°,点P从点A开始沿AC边向点C以2m/s的速度匀速移动,同时另一点Q由C点开始以3m/s的速度沿着CB匀速移动,几秒时,△PCQ的面积等于450m2?25.某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为_________ 万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)。

(完整版)一元二次方程知识点总结和例题——复习,推荐文档

(完整版)一元二次方程知识点总结和例题——复习,推荐文档

配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项 系数为 1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使 左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果 q≥0,方程的根是 x=-p±√q;如果 q<0,方程无实根. (3)公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一 般方法。
一个一元二次方程经过整理化成 ax2+bx+c=0(a≠0)后,其中 ax2 是二次项,
程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两 根之积等于常数项除以二次项系数所得的商。
a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
7.分式方程
分母里含有未知数的方程叫做分式方程。
c a

温馨提示:利用根与系数的关系解题时,一元二次方程必须有实数根。
例题:
1、关于 x 的一元二次方程 x2 kx 4k 2 3 0 的两个实数根分别是 x1, x2 ,
且满足 x1 x2 x1x2 ,则 k 的值为:
()
(A) 1或 3 4
(B) 1
3
(C)
4
(D)不存在
2、已知 , 是关于 x 的一元二次方程 x2 2m 3x m2 0 的两个不相
12、当 x =
时,代数式 x2 3x 比代数式 2x2 x 1的值大 2 .
13、某商品原价每件 25 元,在圣诞节期间连续两次降价,现在商品每件 16
A.2 B.3 C.-2 或 3 D.2 或-3
建议收藏下载本文,以便随时学习! 一元二次方程综合复习
10、若(m+1) xm(m2)1 +2mx-1=0 是关于 x 的一元二次方程,则 m 的值是

一元二次方程复习

一元二次方程复习

(4)x +1/x=0
的三个要素及一个条 件
问题1、方程xy +y²=2是一元二次方程吗?是关于x的一
元二次方程吗?是关于y的一元二次方程吗?
巩固提高:
1、已知关于x的方程(m²-1)x²+(m-1)x-2m+1=0,当m=
时是
一元二次方程,当m=
时是一元一次方程,当m= 时,x=0。
2、若(m+2)x +(m-2)-2=0是关于x的一元二次方程则
m=

一元二次方程(关于x)
3x²-1=0
一般形式
二次项系数
一次项系数 常数项
3x(x-2)=2(x-2)
二、一元二次方程的解法
你还记得吗?请你选择最恰当的方法解下列一元二次方程
1、3x²-1=0
2、x(2x +3)=5(2x +3)
3、x²-4x-2=0
4、2 x ²-5x+1=0
点评:1、形如(x-k)²=h的方程可以用直接开平方法求解
为了解方程(y²-1)²-3(y²-1)+2=0,我们将y²-1
视为一个整体,设 y²-1=a ,则(y²-1)²=a²,原方
程可以化为:(1)a²- 3a+2=0,解得a1=1,a2=2。
当a=1时,y²-1=1,y =± 2 ,当a=2时,y²-1=2,
y=± 3
2
所以原方程的解为:y1= 2 ,y2 =- y 3= 3
2、千万记住:方程的两边有相同的含有未知数的因式的时候不能两边都除以这个因式, 因为这样能把方程的一个跟丢失了。要利用因式分解法求解 3、当方程的一次项系数是方程的二次项系数的两倍的时候可以用配方法求解, 当我们不能利用上边的方法求解的时候就就可以用公式法求解,公式法是万能的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AC BC , 如图,点C把线段AB分成两条线段AC和BC,如果 AB AC
那么称线段AB被点C黄金分割(golden section),点C叫
做线段AB的黄金分割点,AC与AB的比称为黄金比. A
设AB 1, AC x, 则CB 1 x. x 2 1 1 x , 即x 2 x 1 0. 解这个方程, 得
A.m=±2 B.m=2 C.m=-2 D.m≠ ±2
4、关于x的方程(a2-4)x2+(a+2)x-1=0
(1)当a取什么值时,它是一元一次方程?
(2)当a取什么值时,它是一元二次方程?
解:(1) a2-4=0 a+2≠0 (2) a2-4≠0 ∴a≠±2
∴a=2
∴当a=2时,原方程 是一元一次方程
解:把方程化简,得
(b+c)x2-2ax+(c-b)=0
ቤተ መጻሕፍቲ ባይዱ
b2-4ac=(-2a)2-4(b+c)(c-b)=4a2-4(c2-b2)
=4a2-4c2+4b2=0
∴a2-c2+b2=0,即a2+b2=c2
∴ △ABC是直角三角形
效果检测
1.方程x2= 7x 的解是 . 2.对于任意的实数x,代数式x2-5x+10的值是一个( ) A.非负数 B.正数 C.整数 D.不能确定的数
4( x 8) 400.
2
解这个方程 : ( x 8) 2 100, x 8 10, x 8 10, x1 18; x2 2(不合题意, 舍去). 答 : 原正方形铁皮的边长为18cm.
开启
智慧
经济效益与方程
2 .某果园有100棵桃树,一棵桃树平均结1000个桃子,现准 备多种一些桃树以提高产量.试验发现,每多种一棵桃树,每 棵棵桃树的产量就会减少2个.如果要使产量增加15.2%,那 么应种多少棵桃树? 解 : 设多种桃树x棵, 根据题意, 得
9.下面是李刚同学在一次 测验中解答的填空题 , 答对的是 A.若x 4, 则x 2
2
( C )
B.方程x(2 x 1) 2 x 1的解为x 1 C.若x 2 2 x k 0的一个根为 3, 则k 3 x 3x 2 D.若分式 的值为0, 则x 1或2 x 1
1 5 x . 2
C
B
1 5 x1 , 2 1 5 x2 (不合题意, 舍去). 2 AC 1 5 黄金比 0.618. AB 2
一元二次方程的根与系数:
根的判别式:b2-4ac
(1)当b2 4ac 0时,一元二次方程有两个不相等的实数根; b b 2 4ac b b 2 4ac , . x1 x 2 2a 2a ( 2)当b 2 4ac 0时, 一元二次方程有两个相等的实数根; b x1 x 2 2a . (3)当b 2 4ac 0时, 一元二次方程没有实数根.
练习三
选用适当方法解下列一元二次方程
• • • • • • • • 1、 (2x+1)2=64 ( 直接开平方 法) 2、 (x-2)2-4(x+1)2=0 ( 因式分解 法) 3、(5x-4)2 -(4-5x)=0 ( 因式分解 法) 4、 x2-4x-10=0 ( 公式 法) 5、 3x2-4x-5=0 ( 公式 法) 6、 x2+6x-1=0 ( 公式 法) 7、 3x2 -8x-3=0 ( 因式分解 法) 8、 y2- 2 y-1=0 ( 公式 法)
2
练习:
1、在矩形ABCD中,点P从点A沿AB向 点B以每秒2cm的速度移动,点Q从点B 开始沿BC向点C以每秒1cm的速度移动, AB=6cm,BC=4cm,若P、Q两点分别 从A、B同时出发,问几秒后P、Q两点 之间的距离为 cm ? 2 2
D
Q
C
A
P
B
例:已知实数a、b满足条件a2+4b2+2a4b+2=0,你认为能够求出a、b的值吗?如 果能,请求出a、b的值;如果不能,请说 明理由。
x (100 x)(1000 2 ) 100 1000 1 15.2% . 1 整理得 : x 2 40 x 7600 0.
解这个方程, 得 x1 20, x2 380.
答 : 应多种桃树20棵或380棵.
三、二次三项式的因式分解
ax bx c a( x x1 )( x x2 )
例1 把
5 x 2 6 x 8 分解因式
解:方程5 x 2 6 x 8 0的根是 6 6 2 4 5 (8) 6 196 6 14 x 25 10 10
4 即: x1 , x2 2 5
4 5 x 6 x 8 5( x )( x 2) 5 此步的目的是去掉括号内的分母
解:若方程x (k 1 )x k 0有两个相等的实数根, 则 4k k 2k 1 0 (k 1 )
2 2 2
2
k 1 当k 1时,
x
2
(k 1 )x k x 2 x 1 ( x 1 )
2 2
是关于x的完全平方式。
8、已知关于x的方程(a 2) x 2(a 1) x (a 1) 0 ,
2
a为何非负整数时,
(1)方程只有一个实数根?
(2)方程有两个相等的实数根? (3)方程有两个不相等的实数根?
练一练:
• 1、一张长方形铁皮,四个角各剪去一个边长为4cm的小 正方形,再折起来做成一个无盖的小 盒子。已知铁皮的 长是宽的2倍,做成的小盒子的容积是1536cm3,求长方 形铁皮的长与宽 。 • 2、一块长方形木板长40cm,宽30cm。在木板中间挖去 一个底边长为20cm,高为15cm的 等宽U形孔,已知剩下
一元二次方程的概念
等号两边都是整式, 只含有一个未知数 (一元),并且未知数的最高次数是2(二次)的 方程叫做一元二次方程 (quadratic equation in one unknown) ①都是整式方程;
特点:
②只含一个未知数;
③未知数的最高次数是2.
一元二次方程的一般形式
一般地,任何一个关于x 的一元二次方程都可以 化为 ax 2 bx c的形式 0 ,我们把 (a,b,c为常数,a≠0)称为一元二次方程的一般形式。 ax 2 bx c 0
∴当a≠±2时,原 方程是一元二次方 程
解一元二次方程的方法有几种?
•配方法步骤:
①移项; ②二次项系数化为1; ③配方(两边加上一次项系数一半的平方); ④直接开平方。
•公式法步骤:
步骤归纳
① 先化为一般形式; ②确定a、b、c, ③求b2-4ac; ④当 b2-4ac≥ 0时,代入公式: 若b2-4ac<0,方程没有实数根。
已知两数的和是4,积是1,则此两数为 .
拓展练习:
• 1、已知方程x2-mx+2=0的两根互为相反数, 则m= 。 • 2、 已知方程x2+4x-2m=0的一个根α比另一 个根β小4,则α= ;β= ; m= . • 3、已知方程5x2+mx-10=0的一根是-5,求 方程的另一根及m的值。 • 4、关于x的方程2x2-3x+m=0,当 时, 方程有两个正数根;当m 时,方程有一 个正根,一个负根;当m 时,方程有一 个根为0。
- b± b - 4ac x= 2a
2
•分解因式法步骤: ①右边化为0,左边化成两个因式的积; ②分别令两个因式为0,求解。
例:解下列方程
• 1、用直接开平方法:(x+2)2=9 • 2、用配方法解方程:4x2-8x-5=0
3、用公式法解方程:
3x2=4x+7
4、用分解因式法解方程: (y+2)2=3(y+2)
练习:
• 1、方程2x2+3x-k=0根的判别式是 ; 当k 时,方程有实根。 • 2、方程x2+2x+m=0有两个相等实数根,则 m= 。 • 3、关于x的方程x2-(2k-1)x+(k-3)=0.试说明 无论k为任何实数,总有两个不相等的实数根. • 4、关于x的一元二次方程mx2+(2m-1)x- 2=0的根的判别式的值等于4,则m= 。
一元二次方程的根与系数: 韦达定理:
一元二次方程的根与系数的关系: 若 ax2+bx+c=0 的两根为 x1、x2,则
c b x1+x2=_______ ;x1x2=___ a ; a
以x1、x2为根(二次项系数为1)的 2-(x +x )x+x x =0 x 1 2 1 2 一元二次方程为_________________.
2
(6) y 0
y 4 2
× (√ )
(
)
2、把方程(1-x)(2-x)=3-x2 化为一 2-3x-1=0 2 x 般形式是:___________, 其二次项 系数是____, -3 常数 2 一次项系数是____, 项是____. -1
3、方程(m-2)x|m| +3mx-4=0是关于 x的一元二次方程,则 ( C )
3.能使分式
x 1
2
x 2x 1 A、1 B、 -1 C、 1或 -1 D、2或 -1 4.方程2x2-2x-1=0的解是 . 5.若关于的方程x2-3x+q=0的一个根x1的值是2. 则另一根x2及q的值分别是( ) A.x2 =1,q=2 B. x2 = -1,q =2 C. x2 =1,q = -2 D. x2 = -1,q = -2
5 的木板面积是原来面积的 ,求挖去的U形孔的宽度。 6
相关文档
最新文档