轴对称知识点总结

合集下载

轴对称知识点总结

轴对称知识点总结

轴对称与轴对称图形一、知识点:1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。

②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。

联系:①两部分都完全重合,都有对称轴,都有对称点。

②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。

常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。

4.线段的垂直平分线:l 垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。

(也称线段的中垂线) A B 5.轴对称的性质:1⑴成轴对称的两个图形全等。

⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。

二、举例:例1:判断题:①角是轴对称图形,对称轴是角的平分线;()②等腰三角形至少有 1 条对称轴,至多有 3 条对称轴;()③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁。

()例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.例3:如图,由小正方形组成的L 形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:2方法 1 方法 2 方法3例4:如图,已知:ΔABC 和直线l,请作出ΔABC 关于直线l 的对称三角形。

轴对称知识点的归纳

轴对称知识点的归纳

轴对称与轴对称图形一、知识点:1 .什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2 .什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

3 .轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。

②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。

联系:①两部分都完全重合,都有对称轴,都有对称点。

②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。

常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰二角形、等边三角形、角、线段、相交的两条直线等。

4 •线段的垂直平分线:1垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。

--------- ---------A B(也称线段的中垂线)5 .轴对称的性质:⑴成轴对称的两个图形全等。

⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

6 .怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。

二、举例:例1 :判断题:①角是轴对称图形,对称轴是角的平分线;()②等腰三角形至少有1条对称轴,至多有3条对称轴;()③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁例2 :下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形方法1 方法2 方法3例4 :如图,已知:A ABC和直线丨,请作出A ABC关于直线丨的对称三角形例3:如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:例5 :如图,DA、CB是平面镜前同一发光点S发出的经平面镜反射后的反射光线,请通过画图例6:如图,四边形ABCD是长方形弹子球台面,有黑白两球分别位于E、F两点位置上,试问怎样撞击黑球E,才能使黑球先碰撞台边AB反弹后再击中白球F?确定发光点S的位置,并将光路图补充完整也B例7:如图,要在河边修建一个水泵站,向张庄A、李庄B送水。

关于轴对称的知识点

关于轴对称的知识点

关于轴对称的知识点1.轴对称的定义把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。

折叠后重合的点是对应点,也叫做对称点。

【轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合。

成轴对称的两个图形一定全等。

】2.轴对称图形的定义把一个图形沿着某直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形,这条直线就是对称轴。

【轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定。

】3.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的主要区别:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.。

4.轴对称的性质轴对称的性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分;成轴对称的两个图形的任何对应部分也成轴对称;成轴对称的两个图形全等。

5.线段的轴对称性①线段是轴对称图形,线段的垂直平分线是它的对称轴。

②线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等。

③线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线上。

【①线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。

②三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。

】6.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线。

7.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴。

(2)角平分线上的点到角两边的距离相等。

第十二章 轴对称知识点(整理)

第十二章  轴对称知识点(整理)

第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

二、线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:1.在平面直角坐标系中[关于坐标轴对称]点P(x,y)关于x轴对称的点的坐标是(x,-y)【关于x轴对称的点横坐标相等,纵坐标互为相反数】点P(x,y)关于y轴对称的点的坐标是(-x,y)【关于y轴对称的点横坐标互为相反数,纵坐标相等】[关于原点对称]点P(x,y)关于原点对称的点的坐标是(-x,-y)【关于原点对称的点横坐标和纵坐标互为相反数】[关于坐标轴夹角平分线对称]点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y= -x对称的点的坐标是(-y,-x)[关于平行于坐标轴的直线对称]点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等.。

轴对称知识点总结

轴对称知识点总结

轴对称知识点总结 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C-轴对称与轴对称图形一、知识点:1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。

②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。

联系:①两部分都完全重合,都有对称轴,都有对称点。

②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。

常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。

4.线段的垂直平分线:(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。

⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。

二、举例:例1:判断题:①角是轴对称图形,对称轴是角的平分线;()②等腰三角形至少有1条对称轴,至多有3条对称轴;()③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁。

()例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.例3:如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:例4:如图,已知:ΔABC和直线l,请作出ΔABC关于直线l的对称三角形。

轴对称知识点

轴对称知识点

轴对称【知识脉络】【基础知识】Ⅰ. 轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. (2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.(4)线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等..常见的轴对称图形:(1)英文字母。

A B D E H I K M O T U V W X Y(2)中文。

日,目,木,土,十,士,中,一,二,三,六,米,山,甲,由,田,天,又,只,支,圭,凹,凸,出,兰,合,全,仝,人,关,甘,等等。

(3)数字。

0 3 8(4)图形。

说明:①圆有无数条对称轴。

②正n 边形有n 条对称轴。

Ⅱ. 作轴对称图形1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.对称轴的画法:在一个轴对称图形或成轴对称的两个图形中,连结其中一对对应点并作出所得线段的垂直平分线。

超详细轴对称知识点总结(精华版)

超详细轴对称知识点总结(精华版)

轴对称学问点总结1,轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合;这条直线叫做对称轴;相互重合的点叫做对应点;2,轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合;这条直线叫做对称轴;相互重合的点叫做对应点;3,轴对称图形与轴对称的区分与联系:(1)区分;轴对称图形争论的是“一个图形与一条直线的对称关系”;轴对称争论的是“两个图形与一条直线的对称关系”;(2)联系;把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形;4,轴对称的性质:(1)成轴对称的两个图形全等;(2)对称轴与连结“对应点的线段”垂直;(3)对应点到对称轴的距离相等;(4)对应点的连线相互平行;5,线段的垂直平分线:(1)定义:经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线;性质:线段垂直平分线上的点与线段两端点的距离相等;(2)判定:与线段两端点距离相等的点在线段的垂直平分线上;6,等腰三角形:(1)定义;有两条边相等的三角形,叫做等腰三角形;;(2)性质;等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线”,只有一条;等边对等角;三线合一;(3)判定;有两条边相等的三角形是等腰三角形;有两个角相等的三角形是等腰三角形;7,等边三角形:(1)定义;三条边都相等的三角形,叫做等边三角形;说明:等边三角形就是腰和底相等的等腰三角形,因此,等边三角形是特别的等腰三角形;(2)性质;等边三角形是轴对称图形,其对称轴是“三边的垂直平分线”,有三条;三条边上的中线,高线及三个内角平分线都相交于一点;等边三角形的三个内角都等于60°;(3)判定;三条边都相等的三角形是等边三角形;三个内角都相等的三角形是等边三角形;有一个内角是60°的等腰三角形是等边三角形;(4)重要结论;在Rt△中,3图0°7角所对直角边等于斜边的一半;8,平面直角坐标系中的轴对称:(1)( a, b)关于x轴对称横不变,纵反向( a, b) (a,b)关于y轴对称横反向,纵不变( a,b)说明:要作出一个图形关于坐标轴(或直线)成轴对称的图形,只需依据作出各顶点的对称点,再顺次连结各对称点;对称点的作法见11(1);9,对称轴的画法:在一个轴对称图形或成轴对称的两个图形中,连结其中一对对应点并作出所得线段的垂直平分线;留意:有的轴对称图形只有一条对称轴,有的不止一条,要画出全部的对称轴;成轴对称的两个图形只有一条对称轴;10,常见的轴对称图形:(1)英文字母;A B D E H I K M O T U V W X Y(2)中文;日,目,木,土,十,士,中,一,二,三,六,米,山,甲,由,田,天,又,只,支,圭,凹,凸,出,兰,合,全,仝,人,关,甘,等等;(3)数字;0 3 8(4)图形;说明:圆有很多条对称轴;正n 边形有n 条对称轴;11,把握几个作图:(1)作出点 A 关于直线m 对称的点A/;作法:如图以点A 为圆心,适当的长为半径画圆弧;使圆弧与直线MN 交于两点C,D ;分别以点C,D 为圆心,大于1CD2的长为半径画圆弧,设两条圆弧交于点E;作射线AE,设交直线mn 于点F;○4 在射线AE 上截取FA/=FA ,点A/即为所求;(2)课本34 页例题;(3)课本37 页9,10 题;(4)课本42 页12.2-8 图2(5)。

轴对称知识点总结

轴对称知识点总结

2
2
F
A
G
B
E
C
例 8:已知:在∠ABC 中,D 是∠ABC 平分线上一点,E、F 分别在 AB、AC 上,且 DE=DF。试 判断∠BED 与∠BFD 的关系,并说明理由.
6
2、已知:在 ΔABC 中,D 是 BC 上一点,DE⊥BA 于 E,DF⊥AC 于 F,且 DE=DF.。试判断线段 AD 与 EF 有何关系?并说明理由。
3.轴对称与轴对称图形的区别与联系:
区别:
①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分 沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
联系:
①两部分都完全重合,都有对称轴,都有对称点。
②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;
∠BDC 的度数是
;又若 AD=5,则 BC=

A
6、如图,在等腰梯形 ABCD 中,AD∥BC,AB = AD,BD = BC,
则∠C=
0。
B
D C
例 2:如图,等腰梯形 ABCD 中,AD∥BC,对角线 AC、BD 相交于点 O.试说明:AO=DO.
A
D
O
B
C
例 3:如图,梯形 ABCD 中,AD∥BC,AC=BD。试说明:梯形 ABCD 是等腰梯形。
于这一点对称。也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对 称点。 注意:①中心对称是旋转的一种特例,因此, 成中心对称的两个图形具有旋转图形的一切性质。 ②成中心对称的 2 个图形,对称点的连线都经过对称中心, 并且被对称中心平分。 3、中心对称图形:

《轴对称》知识点总结及章节检测解析

《轴对称》知识点总结及章节检测解析

《轴对称》知识点总结及章节检测解析一、知识点总结:1.轴对称的定义:如果一个图形经过其中一条直线折叠后,能够与自身完全重合,则这条直线被称为这个图形的轴对称线,这个图形是轴对称的。

2.旋转对称:如果一个图形能够围绕其中一点旋转一定的角度后,能够与自身完全重合,则这个图形是旋转对称的。

3.轴对称图形的特点:轴对称图形的特点是,对称轴两侧的各点关于对称轴对应,即对称轴上的一点与对应点互为图形的对称点。

4.轴对称的判定方法:判断一个图形是否为轴对称图形,可以按照以下方式进行判定:(1)观察是否能找到一个或多个对称轴;(2)沿对称轴将图形折叠,看是否能够重合。

5.制作轴对称图形:制作一个轴对称图形可按照以下步骤进行:(1)在纸上画出一条轴对称线;(2)沿着对称线将图形的一边折叠;(3)检查折叠后的图形与未折叠的图形是否重合,如重合则完成。

二、章节检测解析:以小学三年级数学教材为例,进行《轴对称》的章节检测解析。

教材章节:第三章图形与设计1.知识点掌握情况:首先,学生需要了解轴对称的概念、特点和判定方法,并能够制作轴对称图形。

2.基础练习题:对于基础的练习题,要求学生绘制给定图形的对称线,并判断是否为轴对称图形。

3.综合应用题:在综合应用题中,要求学生设计自己的轴对称图形,并描述其特点。

4.拓展思考题:为了拓展学生的思维,可以提出一些拓展思考题,如“如何判断一个图形是否为旋转对称图形”、“如何找到一个图形的所有对称轴”等。

总结:通过针对《轴对称》这一章节的检测解析,学生可以对轴对称的知识点进行复习和巩固。

同时,综合应用题和拓展思考题能够提高学生的思维能力和创造力。

轴对称知识点整理总结

轴对称知识点整理总结

§13.1 轴对称(一)一、轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,这个图形就叫轴对称图形,这条直线叫对称轴.二、两个图形成轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.下列各图,你能找出它们的对称轴吗?(1) (2) (3) (4) (5)§13.1 轴对称(二)一、线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做线段的垂直平分线.二、图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.三、线段垂直平分线的性质:线段垂直平分线的点到这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.[探究1]线段垂直平分线上的点与这条线段两个端点的距离相等.即AP 1=BP 1,AP 2=BP 2,… 证明.证法一:利用判定两个三角形全等.如下图,在△APC 和△BPC 中,P C P C P C A P C BR t A C B C =⎧⎪∠=∠=∠⎨⎪=⎩ ⇒ △APC ≌△BPC ⇒PA=PB.证法二:利用轴对称性质.由于点C 是线段AB 的中点,将线段AB 沿直线L 对折,线段PA 与PB 是重合的,•因此它们也是相等的.[探究2]1.作线段AB ,取其中点P ,过P 作L ,在L 上取点P 1、P 2,连结AP 1、AP 2、BP 1、BP 2.会有以下两种可能.2.讨论:要使L 与AB 垂直,AP 1、AP 2、BP 1、BP 2应满足什么条件?探究过程:1.如上图甲,若AP 1≠BP 1,那么沿L 将图形折叠后,A 与B 不可能重合,也就是∠APP 1≠∠BPP 1,即L 与AB 不垂直.2.如上图乙,若AP 1=BP 1,那么沿L 将图形折叠后,A 与B 恰好重合,就有∠APP 1=∠BPP 1,即L 与AB 重合.当AP 2=BP 2时,亦然.§12.2作轴对称图形一.如何由一个平面图形得到它的轴对称图形.【探究】四边形ABCD 的四个顶点的坐标分别为A(-5,1)、B(-2,1)、C(-2,5)、D(-5,4),分别作出与四边形ABCD 关于x 轴和y 轴对称的图形.(归纳:与已知点关于y 轴或x 轴对称的点的坐标的规律;)【引申】分别作出△PQR 关于直线x=1(记为m)和直线y=-1(记为n)对称的图形,你能发现它们的对应点的坐标之间分别有什么关系吗?若△P 1Q 1R 1中P 1(x 1,y 1)关于x=1(记为m)轴对称的点的坐标P 2 (x 2,y 2) , 则m x x =+221,y 1= y 2.若△P1Q1R1中P1(x1,y1)关于y=-1(记为n)轴对称的点的坐标P2(x2,y2) ,则x1= x2,221yy=n.13.3. 1等腰三角形等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).例题与练习1.如图2其中△ABC是等腰三角形的是[ ]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④若已知AD=4cm,则BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.13.3.2等边三角形等边三角形定义:在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。

【八上数学】《轴对称》最全知识点汇总

【八上数学】《轴对称》最全知识点汇总

5、垂直平分线(中垂线)定义垂直并且平分⼀条线段的直线,叫做这条线段的垂直平分线.书写格式:判定:∵AO=A′O,∠1=90°,∴l 是AA′的垂直平分线.性质:∵l是AA′的垂直平分线,∴AO=A′O,∠1=∠2=90° .6、轴对称性质成轴对称的两个图形全等,且(1)对应点的连线被对称轴垂直平分.(2)对应点的连线互相平⾏(或在同⼀条直线上).(3)对应线段相等,对应⾓相等.(4)对应线段所在直线的交点在对称轴上(或对应线段所在直线互相平⾏).如图:(1)AA′,BB′,CC′,DD′,被l垂直平分.(2)AA′∥BB′∥CC′,CC′、DD′在同⼀直线上.(3)AB=A′B′,BC=B′C′,CD=C′D′,AD=A′D′,∠BAD=∠B′A′D′,∠ABC=∠A′B′C′,∠BCD=∠B′C′D′,∠CDA=∠C′D′A′.(4)BA、B′A′,BC、B′C′,CD、C′D′的延长线交点在l上.DA、D′A′的延长线平⾏.7、对称轴的作法法1:作⼀条对应点的连线,并作其中垂线.法2:作两条对应点的连线,并分别作其中点,两点确定⼀条直线.法3:分别延长两对对应线段,确定两个交点,两点确定⼀条直线.8、给出⼀个图形及对称轴,作其对称图形的作法过原图形各点画对称轴的垂线,以各点到垂⾜的距离为半径,截取相等,将所作对应点分别相连.⼆、实战演练例1:请在下列三个2×2的⽅格中,各画出⼀个三⾓形,要求所画三⾓形与图中三⾓形成轴对称,且所画的三⾓形顶点与⽅格中的⼩正⽅形顶点重合,并将所画三⾓形涂上阴影.分析:我们应该利⽤轴对称图形的性质,先选择不同的直线当对称轴,再作对称图形.显然⼤⽅格作为正⽅形,有4条对称轴,⽽还有⼀条⽐较难想,对称轴可以经过斜边和直⾓边的中点.解答:例2:如图,桌⾯上有A、B两球,若要将B球射向桌⾯任意⼀边,使⼀次反弹后击中A球,则可以瞄准的点有哪些?分析:本题中,对于桌⾯反弹的问题,其实属于物理中的光路问题,⼊射⾓等于反射⾓,⽽将⼊射⾓作对称后,恰好与反射⾓是对顶⾓,光线在同⼀直线上,因此我们考虑作对称.解答:变式:如图是⼀个台球桌⾯的⽰意图,图中四个⾓上的阴影部分分别表⽰四个⼊球孔.若⼀个球按图中所⽰的⽅向被击出(球可以经过多次反弹),则该球最后落⼊的球袋是______袋.分析:本题与例2类似,但如果每次都作对称,未免太过⿇烦,我们不难发现⼊射线与桌边的夹⾓为45°,则反射后的夹⾓也为45°,问题得解.解答:例3:如图,已知∠AOB=60°,点P为∠AOB内⼀点,分别作点P关于OA,OB的对称点P1,P2,连接P1P2,交OA于点M,交OB于点M.(1)连接OP1,OP2,求∠P1OP2的度数.(2)若P1P2=8,求△PMN周长.分析:(1)要求∠P1OP2的度数,直接求显然很困难,我们不妨从对应线段考虑,则想到连接OP.(2)同样的,将组成三⾓形的三条线段中,能找到对应相等的线段找出,进⾏转化.解答:变式:如图,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和△A′′B′′C′′关于直线EF对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB′′与直线MN、EF所夹锐⾓α的数量关系.分析:(1)问不难,只需⽤3种⽅法中的任意⼀种即可.(2)问与例3类似,准确依据题意,画出图形后,根据对称性,连接对应线段就能有所突破.解答:(1)如图,连接B′B′′,C′C′′,各取中点,连接后,直线EF即为所求.(2)连接OB′,∵△ABC和△A′B′C′关于直线MN对称,∴∠BOM=∠B′OM,同理可得∠B′OE=∠B′′OE,∴∠BOB′′=∠BOB′+∠B′OB′′=2∠B′OM+2∠B′OE=2∠MOE=2α.。

轴对称课本知识点总结

轴对称课本知识点总结

轴对称课本知识点总结一、轴对称的概念轴对称是指一个图形围绕某条中心轴线旋转180度,旋转后的图形和原图形完全重合。

在二维几何中,轴对称是一种重要的对称形式,常见于各种图形和实物之中。

二、轴对称的性质1. 轴对称图形的两个部分互相对称,互为镜像。

2. 轴对称图形的对称中心为图形的轴心。

3. 轴对称图形每一点的对应点与对称中心的距离相等。

三、轴对称的图形1. 对称图形:直线对称图形是最简单的轴对称图形,常见的有点、线段、正多边形等。

2. 音符:音符是一个常见的轴对称图形,它围绕中心轴线旋转180度后,可以和原音符完全重合。

3. 字母、数字:如字母A、M、H等和数字0、8等都是轴对称图形。

四、轴对称的判断方法1. 观察法:观察图形围绕某一条中心轴线旋转180度后是否和原图形重合。

2. 设坐标法:设定坐标轴,通过图形的对称特点来判断是否轴对称。

3. 折叠法:将图形折叠在对称轴上,判断折叠后两部分是否完全重合。

五、轴对称的应用1. 轴对称图形的设计:在各种设计中,轴对称图形的运用可以使设计更加美观。

2. 轴对称图形的制作:通过手工制作,可以制作各种轴对称图形的手工作品。

3. 轴对称图形的应用:在建筑、工程、美术、工艺等领域都有轴对称图形的应用。

六、轴对称的作用1. 保持图形的对称美:轴对称可以使图形保持一定的对称美。

2. 方便图形的绘制:对称图形通过轴对称可以方便地进行绘制和复制。

七、轴对称的练习1. 描绘轴对称图形:通过规定的对称轴来描绘对称图形。

2. 判断轴对称图形:判断给定图形是否对称,并找出对称轴。

3. 补全轴对称图形:在已知半图形的基础上补全对称图形。

八、轴对称的拓展知识1. 轴对称的组合:两个或多个轴对称图形组合成一个新的轴对称图形。

2. 轴对称的面积计算:轴对称图形的面积计算可以通过对称轴进行分割和计算。

九、轴对称的应用案例1. 建筑设计中的轴对称图形应用:在建筑设计中,轴对称图形的应用可以使建筑更加美观大方。

轴对称知识点总结与常考题型

轴对称知识点总结与常考题型

轴对称是几何学中的一个重要概念,它描述了一个图形相对于某条轴线具有对称性。

以下是轴对称的知识点总结以及常考题型:1. 轴对称的定义:一个图形相对于某条直线对称,如果将该图形沿着这条直线折叠,两边完全重合。

2. 轴对称的特点:-对称轴上的任意一点与它关于对称轴上的对应点距离相等。

-对称轴将图形分为两个对称的部分,其中一个部分可以通过另一个部分旋转180度得到。

3. 常见的轴对称图形:-矩形、正方形和长方形都是轴对称图形,其对称轴分别为中心线和对边的中垂线。

-圆是轴对称图形,其对称轴为任意直径。

-有些字母和数字如"A"、"H"、"8"等也是轴对称图形。

4. 轴对称的判断方法:-观察图形是否能够通过折叠使两边完全重合。

-寻找图形的对称轴,判断图形上的点是否关于对称轴对称。

5. 轴对称的常考题型:-判断图形是否具有轴对称性质。

-找出图形的对称轴。

-完成轴对称图形的绘制,只给出一部分图形或对称轴。

-求解与轴对称图形相关的问题,如周长、面积等。

举例:1. 判断图形是否具有轴对称性质:给定一个图形,观察其能否通过折叠使两边完全重合。

2. 找出图形的对称轴:观察图形,找到一个直线,使得图形上的点关于这条直线对称。

3. 完成轴对称图形的绘制:给出部分图形或对称轴,根据已知信息完成图形的绘制。

4. 求解与轴对称图形相关的问题:如给定一个轴对称图形的一条边的长度,求解它的周长或面积等。

掌握轴对称的知识和解题技巧,可以帮助你在几何学中更好地理解和应用轴对称概念。

多做相关的练习题,加深对轴对称的理解和应用。

轴对称知识点汇总

轴对称知识点汇总

轴对称知识点汇总轴对称知识在数学考试中是一个常考点,那么应该掌握的知识又有什么呢?下面轴对称知识点汇总是小编为大家带来的,希望对大家有所帮助。

一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。

轴对称图形知识点归纳

轴对称图形知识点归纳

2.轴对称知识梳理3.一、根本观点4.轴对称图形5.假设一个图形沿一条直线折叠,直线两旁的局部可以相互重合,这个图形就叫做轴对称图6.形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.7.线段的垂直均分线8.经过线段中点而且垂直于这条线段的直线,叫做这条线段的垂直均分线9.轴对称变换10.由一个平面图形获得它的轴对称图形叫做轴对称变换.11.等腰三角形12.有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.13.等边三角形14.三条边都相等的三角形叫做等边三角形.15.二、主要性质16.假设两个图形对于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直均分线.17.或许说轴对称图形的对称轴,是任何一对对应点所连线段的垂直均分线.18.线段垂直均分钱的性质19.线段垂直均分线上的点与这条线段两个端点的距离相等.20.〔1〕点P〔x,y〕对于x轴对称的点的坐标为P′〔x,-y〕.21.〔2〕点P〔x,y〕对于y轴对称的点的坐标为P″〔-x,y〕.22.等腰三角形的性质23.1〕等腰三角形的两个底角相等〔简称“等边平等角〞〕.24.2〕等腰三角形的顶角均分线、底边上的中线、底边上的高相互重合.25.3〕等腰三角形是轴对称图形,底边上的中线〔顶角均分线、底边上的高〕所在直线就是它的对称轴.26.4〕等腰三角形两腰上的高、中线分别相等,两底角的均分线也相等.27.5〕等腰三角形一腰上的高与底边的夹角是顶角的一半。

28.6〕等腰三角形顶角的外角均分线平行于这个三角形的底边.29.等边三角形的性质30.1〕等边三角形的三个内角都相等,而且每一个角都等于60°.31.2〕等边三角形是轴对称图形,共有三条对称轴.32.3〕等边三角形每边上的中线、高和该边所对内角的均分线相互重合.三、相关判断33. 1.与一条线段两个端点距离相等的点,在这条线段的垂直均分线上.34.假设一个三角形有两个角相等,那么这两个角所对的边也相等〔简写成“等角平等边〞〕.35.三个角都相等的三角形是等边三角形.36.有一个角是60°的等腰三角形是等边三角形.。

关于三年级轴对称的知识点

关于三年级轴对称的知识点

关于三年级轴对称的知识点
轴对称知识点
1、轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够相互重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

可以说这个图形关于这条直线成轴对称。

2、两个图形成轴对称:把一个图形沿着以一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

3、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。

对称性质:轴对称图形或成轴对称的两个图形的对应线段对折后重合的线段相等,对应角对折后重合的角相等。

轴对称知识点

轴对称知识点

第十二章:轴对称一、相关知识点:1、定义:轴对称图形:直线两旁的部分能够相互重合,这个图形就叫做轴对称图形;对称轴:这条直线就叫做它的对称轴;关于这条直线对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这个图形关于这条直线对称;对称点:折叠后重合的点是对应点,叫做对称点;垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线;等腰三角形:两条边相等的三角形叫等腰三角形;等边三角形:三条边都相等的三角形叫做等边三角形;2、性质:1)轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线;线段垂直平分线上的点与这条线段两个端点的距离相等;与一条线段两个端点距离相等的点在这条线段的垂直平分线上;2)对称点性质:点(X,Y)关于X对称的点的坐标为(X, - Y)点(X,Y)关于Y对称的点的坐标为( - X,Y)3)等腰三角形的性质及判定:等腰三角形的两个底角相等(简写成“等边对等角”);等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合;如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”);4)等边三角形的性质和判定:等边三角形的三个内角都相等,并且每一个角都等于60度;三个角都相等的三角形是等边三角形;有一个叫是60度的等腰三角形是等边三角形;在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半;二、相关练习题:1、选择题:(1)等腰三角形的一边等于5,一边等于12,则它的周长为()A.22 B.29 C.22或29 D.17(2)下列图形中,是轴对称图形的为()(3)在平面直角坐标系中,ΔABC与ΔA′B′C′关于直线l成轴对称,则两个三角形的面积的关系是()A.变大 B.变小 C.不变 D.不确定(4)点P(-2,5)关于y轴对称的点Pˊ的坐标是()A.(2,-5) B.(-2,-5) C.(2,5) D.(5,-2)(5)下列说法正确的是()A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC与△A′B′C′成轴对称,则△ABC≌△A′B′C′D.点A、点B在直线1两旁,且AB与直线1交于点O,若AO=BO,则点A与点B•关于直线l对称(6)将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到的是()(7)在平面镜里看到背后墙上的电子钟示数如图所示,这时的实际时间应是()A.21:02 B.21:05 C.20:15 D.20:05(8)如图,有A、B、C三个村庄,现要建一个车站,到三个村庄的距离相等,这样的车站选址有()新课标第一网A.1处 B.2处 C.3处 D.4处(9)已知A、B两点的坐标分别是(-1,2)和(1,2),则下面四个结论:①A、B 两点关于x轴对称;②A、B两点关于y轴对称;③A、B两点关于原点对称;④A、B两点之间的距离为2,其中正确的有()A.1个 B.2个 C.3个 D.4个(10)如图,∠C=90°,AB的垂直平分线交BC于D,连接AD,若∠CAD=20°,则∠B=()A.20° B.30° C.35° D.40°2、填空题(11)如图,MN•既是线段AB•的垂直平分线,也是线段CD•的垂直平分线,则线段AC BD.(填“>”、“=”或“<”)(12)如图,在Rt△ABC中,∠C=90°,沿着过点B的一条直线BE折叠△ABC使点C•恰好落在AB边的中点D处,则∠A的度数等于.(13)一辆汽车牌在水中的倒影为,则该车牌照号码为.(14)点M(-2,1)关于x轴对称的点N的坐标是,直线MN与x•轴的位置关系是.(15)如图,在△ABC中,AB=AC=8cm,AB的垂直平分线交AC于D,如果BC=5cm,那么△BCD的周长是 cm.(16)如图,直线l是四边形ABCD的对称轴,如果AD∥BC,有下列结论:①AB∥CD;②AB=BC; ③AB⊥BC; ④AO=OC.其中正确的结论是.(把你认为正确的结论的序号都填上)3、解答题(17)利用图形中的对称点,画出图形的对称轴.(18)如图,从轴对称的角度来看,你觉得哪一个图形比较独特?简单说明你的道理.(19)小明家中客厅的南北长度是6m,在客厅西墙上装了一面很大很大的镜子,•客厅的门在东墙.某日小敏去小明家,刚进门就说:“呀,你家客厅好大呀,•估计有50多平方米吧?”小说:“没有,不足30平方米.”请你解释,两人的估算怎么会差别如此之大?究竟谁说错了呢?(20)如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点(保留作图痕迹).(21)如图:①写出A、B、C三点的坐标.②若△ABC各顶点的横坐标不变,纵坐标都乘以-1,•请你在同一坐标系中描出对应的点A′、B′、C′,并依次连接这三个点,所得的△A′B′C′与原△ABC•有怎样的位置关系?③在②的基础上,纵坐标都不变,横坐标都乘以-1,•在同一坐标系中描出对应的点A″、B″、C″,并依次连接这三个点,所得的△A″B″C″与原△ABC•有怎样的位置关系?(22)如图,AB=AC,DB=DC,E是AD延长线上的一点,BE是否与CE相等?试说明理由.(23)如图,已知AB比AC长3cm,BC的垂直平分线交AB于D,交BC于E,△ACD•的周长是15cm,求AB和AC的长.4、选做题(24)如图,在ΔABC中,∠ACB=90°,点D,E在AB上,且AF垂直平分CD,BG垂直平分CE.(1)求∠ECD的度数;(2)若∠ACB为a,则∠ECD的度数能否用含a的式子来表示.。

轴对称知识点总结

轴对称知识点总结

轴对称知识点总结一、轴对称1.轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.2.判断一个图形是不是轴对称图形,可利用轴对称图形的定义,将图形对折,看是否能够完全重合,若能够完全重合,则这个图形是轴对称图形,否则这个图形不是轴对称图形.注意:(1)对称轴是一条直线,而不是射线或线段.(2)一个轴对称图形的对称轴可以有1条,也可以有多条,还可以有无数条.(3)轴对称图形是对于一个图形而言的,它表示具有一定特性(轴对称性)的某一类图形.3.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.4.轴对称和轴对称图形的区别与联系5.轴对称的性质:(1)两个图形成轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.(2)轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.(3)轴对称图形(或关于某条直线对称的两个图形)的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等.(4)成轴对称的两个图形全等;轴对称图形被对称轴分成的两部分也全等,但全等的两个图形不一定是轴对称图形.二、线段垂直平分线的性质和判定1.线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.如下图所示,点P在线段AB 的垂直平分线上,则P A=PB.3.线段垂直平分线的判定:与线段两个端点距离相等的点在这条线段的垂直平分线上.如上图所示,若P A=PB,则点P在线段AB的垂直平分线上三、尺规作图(线段的垂直平分线)1.作图步骤:(1)以A为圆心,以大于线段AB一半的长度画弧(2)再以B为圆心,以相同长度为半径画弧,交前弧于C、D两点(3)连接CD,直线CD即为线段AB的垂直平分线四、尺规作图(轴对称)1.轴对称图形或成轴对称的两个图形的对称轴的画法,步骤如下:(1)找出轴对称图形或成轴对称的两个图形的任意一对对应点;(2)连接这对对应点;(3)画出对应点所连线段的垂直平分线.这条垂直平分线就是该轴对称图形或成轴对称的两个图形的对称轴.注意:对于轴对称图形或两个图形成轴对称,它们的对应点有一个共同的特征——对应点所连的线段被对称轴垂直平分,这是我们画图形的对称轴的依据.2.在坐标系中画轴对称图形的方法:(1)计算——计算对称点的坐标;(2)描点——根据对称点的坐标描点;(3)连接——依次连接所描各点得到成轴对称的图形五、关于坐标轴对称的点的坐标1.关于坐标轴对称的点的坐标特点:(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)点(x,y)关于y轴对称的点的坐标为(-x,y).2.已知两个点的坐标分别为P1(x1,y1),P2(x2,y2),若x1=x2,y1+y2=0,则点P1,P2关于x轴对称;若x1+x2=0,y1=y2,则点P1,P2关于y轴对称.反之也成立。

关于轴对称的知识点

关于轴对称的知识点

关于轴对称的知识点1.轴对称的定义把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。

折叠后重合的点是对应点,也叫做对称点。

【轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合。

成轴对称的两个图形一定全等。

】2.轴对称图形的定义把一个图形沿着某直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形,这条直线就是对称轴。

【轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定。

】3.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的主要区别:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.。

4.轴对称的性质轴对称的性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分;成轴对称的两个图形的任何对应部分也成轴对称;成轴对称的两个图形全等。

5.线段的轴对称性①线段是轴对称图形,线段的垂直平分线是它的对称轴。

②线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等。

③线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线上。

【①线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。

②三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。

】6.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线。

7.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴。

(2)角平分线上的点到角两边的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
3(1
(2
4(1(2(3(4 5
(1
C
∴△ABC是等边三角形。

✍有一个内角是60°的等腰三角形是等边三角形。

如图6,在△ABC中
∵AB=AC(或AB=BC,AC=BC)
∠A=60°(∠B=60°,∠C=60°)
∴△ABC是等边三角形。

(4)重要结论。

在Rt△中,30°角所对直角边等于斜边的一半。

如图7,
∵在Rt△ABC中,
∠C=90°,∠A=30°
∴BC=
2
1AB
或AB=2BC
8、平面直角坐标系中的轴对称:
说明:要作出一个图形关于坐标轴(或直线)成轴对称的图形,只需根据作出各顶点的对称点,再顺次连结各对称点。

对称点的作法见11(1)。

9、对称轴的画法:
在一个轴对称图形或成轴对称的两个图形中,连结其中一对对应点并作出所得线段的垂直平分线。

注意:✍有的轴对称图形只有一条对称轴,有的不止一条,要画出所有的对称轴。

✍成轴对称的两个图形只有一条对称轴。

10、常见的轴对称图形:
(1)英文字母。

A B D E H I K M O T U V W X Y
(2)中文。

日,目,木,土,十,士,中,一,二,三,六,米,山,甲,由,田,天,又,只,支,圭,凹,凸,出,兰,合,全,仝,人,关,甘,等等。

(3)数字。

0 3 8
(4)图形。

说明:✍圆有无数条对称轴。

✍正n边形有n条对称轴。

11、掌握几个作图:
(1)作出点A关于直线m对称的点A/ 。

作法:如图
✍以点A为圆心,适当的长为半径画圆弧。

使圆弧与直线MN交于
两点C、D。

✍分别以
点C,D为圆心,大于
CD
2
1的长为半径画
圆弧,设两条圆弧交
于点E。

✍作射线AE,设交直线mn于点F。

○4在射线AE上截取FA/=FA,点A/即为所求。

图7。

相关文档
最新文档