必修4综合检测卷
2021高中同步创新课堂数学优化方案人教A版必修4习题:模块综合检测 Word版含答案
模块综合检测(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设向量a =(1,0),b =⎝⎛⎭⎫12,12,则下列结论中正确的是( ) A .|a |=|b | B .a·b =22C .a -b 与b 垂直D .a ∥b解析:选C .a -b =⎝⎛⎭⎫12,-12,(a -b )·b =0, 所以a -b 与b 垂直.故选C .2.已知sin(π+α)=13,则cos 2α=( )A .79B .89C .-79D .429解析:选A .由于sin(π+α)=13,所以sin α=-13,所以cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫-132 =79.3.下列函数中同时满足最值是12,最小正周期是6π的三角函数的解析式是( )A .y =12sin ⎝⎛⎭⎫x 3+π6 B .y =12sin ⎝⎛⎭⎫3x +π6 C .y =2sin ⎝⎛⎭⎫x 3-π6D .y =12sin ⎝⎛⎭⎫x +π6 解析:选A .由题意得,A =12,2πω=6π,ω=13,故选A .4.已知平面对量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-5,-10) B .(-4,-8) C .(-3,-6)D .(-2,-4)解析:选B .由于a =(1,2),b =(-2,m ), 所以1×m -2×(-2)=0, 所以m =-4.所以2a +3b =(2,4)+(-6,-12)=(-4,-8).5.在△ABC 中,A =15°,则3sin A -cos(B +C )的值为( ) A .22B .32C . 2D .2解析:选C .由于A +B +C =180°, 所以原式=3sin A -cos(180°-A ) =3sin A +cos A =2sin(A +30°) =2sin(15°+30°)=2sin 45°=2.6.已知向量a ,b ,c 满足|a |=1,|b |=2,c =a +b ,c ⊥a ,则a 与b 的夹角等于( ) A .30° B .60° C .120°D .90°解析:选C .设a ,b 的夹角为θ,由c ⊥a ,c =a +b ⇒(a +b )·a =a 2+a·b =0⇒a·b =-1⇒cos θ=a·b |a ||b |=-12且0°≤θ≤180°⇒θ=120°.故选C .7.已知α,β为锐角,且tan α=17,sin β=35,则α+β等于( )A .3π4B .2π3C .π4D .π3解析:选C .由于β为锐角,sin β=35,所以cos β=1-sin 2β=45,所以tan β=sin βcos β=34, 所以tan(α+β)=tan α+tan β1-tan αtan β=17+341-17×34=1.由于α,β为锐角,所以α+β∈(0,π), 所以α+β=π4.8.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .π12B .π6C .π3D .5π6解析:选B .y =f (x )=3cos x +sin x =2sin ⎝⎛⎭⎫x +π3,向左平移m (m >0)个单位长度后得f (x +m )=2sin ⎝⎛⎭⎫x +m +π3,由于图象关于y 轴对称,令x =0,得⎪⎪⎪⎪2sin ⎝⎛⎭⎫m +π3=2, 从而m +π3=2k π±π2,故m =2k π+π6或m =2k π-5π6,k ∈Z .又m >0,所以m min =π6.9.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,x ≥0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (11)的值等于( )A .2B .2+ 2C .2+2 2D .-2-2 2解析:选C .由图象可知,函数的振幅为2,初相为0,周期为8,则A =2,φ=0,2πω=8,从而f (x )=2sinπ4x . 所以f (1)+f (2)+f (3)+…+f (11)=f (1)+f (2)+f (3)=2sin π4+2sin π2+2sin 3π4=2+22.10.已知向量a =(2cos φ,2sin φ),φ∈⎝⎛⎭⎫π2,π,b =(0,-1),则a 与b 的夹角为( ) A .φ B .π2-φC .π2+φ D .3π2-φ 解析:选D .|a |=(2cos φ)2+(2sin φ)2=2,|b |=1,a·b =-2sin φ,设a 与b 的夹角为θ,则cos θ=a·b |a |·|b |=-2sin φ2×1=-sin φ=sin(-φ)=cos ⎝⎛⎭⎫3π2-φ,即cos θ=cos ⎝⎛⎭⎫3π2-φ,且3π2-φ∈⎝⎛⎭⎫π2,π,所以θ=3π2-φ.故选D .11.已知|p |=22,|q |=3,p ,q 的夹角为π4,如图所示,若AB →=5p +2q ,AC →=p -3q ,D 为BC 的中点,则|AD →|为( )A .152B .152C .7D .18解析:选A .由于AD →=12(AC →+AB →)=12(5p +2q +p -3q )=12(6p -q ),所以|AD →|=|AD →|2=12(6p -q )2=1236p 2-12p ·q +q 2=1236×()222-12×22×3×cos π4+32=152.12.已知函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,其图象与直线y =2的交点的横坐标为x 1,x 2,若|x 1-x 2|的最小值为π,则( )A .ω=2,θ=π2B .ω=12,θ=π2C .ω=12,θ=π4D .ω=2,θ=π4解析:选A .由于函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,所以θ=π2,所以y =2cos ωx ,排解C ,D ;y =2cos ωx ∈[-2,2],结合题意可知T =π,所以2πω=π,所以ω=2,排解B ,故选A .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知2sin θ+3cos θ=0,则tan(3π+2θ)=________.解析:由同角三角函数的基本关系式,得tan θ=-32,从而tan(3π+2θ)=tan 2θ=2tan θ1-tan 2 θ=2×⎝⎛⎭⎫-321-⎝⎛⎭⎫-322=125. 答案:12514.在平面直角坐标系xOy 中,已知OA →=(-1,t ),OB →=(2,2).若∠ABO =90°,则实数t 的值为________. 解析:由于∠ABO =90°,所以AB →⊥OB →,所以OB →·AB →=0. 又AB →=OB →-OA →=(2,2)-(-1,t )=(3,2-t ), 所以(2,2)·(3,2-t )=6+2(2-t )=0. 所以t =5. 答案:515.已知函数f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos 2x -1,x ∈⎣⎡⎦⎤π4,π2,则f (x )的最小值为________. 解析:f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos 2x -1=1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π4+x -3cos 2x -1 =-cos ⎝⎛⎭⎫π2+2x -3cos 2x =sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3, 由于π4≤x ≤π2,所以π6≤2x -π3≤2π3,所以12≤sin ⎝⎛⎭⎫2x -π3≤1. 所以1≤2sin ⎝⎛⎭⎫2x -π3≤2, 所以1≤f (x )≤2,所以f (x )的最小值为1. 答案:116(2021·高考安徽卷)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是________.(写出全部正确结论的编号)①a 为单位向量;②b 为单位向量;③a ⊥b ;④b ∥BC →;⑤(4a +b )⊥BC →. 解析:由于 AB →2=4|a |2=4,所以|a |=1,故①正确;由于 BC →=AC →-AB →=(2a +b )-2a =b ,又△ABC 为等边三角形,所以|BC →|=|b |=2,故②错误; 由于 b =AC →-AB →,所以a ·b =12AB →·(AC →-AB →)=12×2×2×cos 60°-12×2×2=-1≠0,故③错误;由于 BC →=b ,故④正确;由于 (AB →+AC →)·(AC →-AB →)=AC →2-AB →2=4-4=0, 所以(4a +b )⊥BC →,故⑤正确. 答案:①④⑤三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)在平面直角坐标系中,A (1,-2),B (-3,-4),O 为坐标原点. (1)求OA →·OB →;(2)若点P 在直线AB 上,且OP →⊥AB →,求OP →的坐标. 解:(1)OA →·OB →=1×(-3)+(-2)×(-4)=5. (2)设P (m ,n ),由于P 在AB 上,所以BA →与P A →共线.BA →=(4,2),P A →=(1-m ,-2-n ),所以4·(-2-n )-2(1-m )=0. 即2n -m +5=0.①又由于OP →⊥AB →,所以(m ,n )·(-4,-2)=0. 所以2m +n =0.②由①②解得m =1,n =-2,所以OP →=(1,-2).18.(本小题满分12分)已知tan α=-13,cos β=55,α,β∈(0,π).(1)求tan(α+β)的值;(2)求函数f (x )=2sin(x -α)+cos(x +β)的最大值. 解:(1)cos β=55,β∈(0,π), 得sin β=255,即tan β=2.所以tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1.(2)由于tan α=-13,α∈(0,π),所以sin α=110,cos α=-310. 所以f (x )=-355sin x -55cos x +55cos x -255sin x =-5sin x .所以f (x )的最大值为5.19.(本小题满分12分)已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)争辩f (x )在区间⎣⎡⎦⎤0,π2上的单调性. 解:(1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx=2(sin 2ωx +cos 2ωx )+2 =2sin ⎝⎛⎭⎫2ωx +π4+2. 由于f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2, 即0≤x ≤π8时,f (x )单调递增;当π2<2x +π4≤5π4,即π8<x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增,在区间⎝⎛⎦⎤π8,π2上单调递减. 20.(本小题满分12分)(2021·高考湖北卷)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上全部点向左平行移动π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.解:(1)依据表中已知数据,解得A =5,ω=2,φ=-π6,数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1),知f (x )=5sin ⎝⎛⎭⎫2x -π6, 因此g (x )=5sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=5sin ⎝⎛⎭⎫2x +π6. 由于y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为⎝⎛⎭⎫k π2-π12,0,k ∈Z ,其中离原点O 最近的对称中心为⎝⎛⎭⎫-π12,0. 21.(本小题满分12分)将射线y =17x (x ≥0)围着原点逆时针旋转π4后所得的射线经过点A (cos θ,sin θ).(1)求点A 的坐标;(2)若向量m =(sin 2x ,2cos θ),n =(3sin θ,2cos 2x ),求函数f (x )=m·n ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的值域. 解:(1)设射线y =17x (x ≥0)与x 轴的非负半轴所成的锐角为α,则tan α=17,α∈⎝⎛⎭⎫0,π2. 所以tan α<tan π4,所以α∈⎝⎛⎭⎫0,π4, 所以tan θ=tan ⎝⎛⎭⎫α+π4=17+11-17×1=43,θ∈⎝⎛⎭⎫π4,π2,所以由⎩⎪⎨⎪⎧sin 2θ+cos 2θ=1,sin θcos θ=43,得⎩⎨⎧sin θ=45,cos θ=35.所以点A 的坐标为⎝⎛⎭⎫35,45. (2)f (x )=3sin θ·sin 2x +2cos θ·2cos 2x =125sin 2x +125cos 2x =1225sin ⎝⎛⎭⎫2x +π4. 由x ∈⎣⎡⎦⎤0,π2, 得2x +π4∈⎣⎡⎦⎤π4,5π4, 所以sin ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1, 所以函数f (x )的值域为⎣⎡⎦⎤-125,1225.22.(本小题满分12分)已知向量OA →=(cos α,sin α),α∈[-π,0],向量m =(2,1),n =()0,-5,且m ⊥(OA →-n ).(1)求向量OA →; (2)若cos(β-π)=210,0<β<π,求cos(2α-β)的值. 解:(1)由于OA →=(cos α,sin α), 所以OA →-n =()cos α,sin α+5. 由于m ⊥(OA →-n ),所以m ·(OA →-n )=0, 所以2cos α+sin α+5=0.① 又sin 2α+cos 2α=1,②由①②得sin α=-55,cos α=-255, 所以OA →=⎝⎛⎭⎫-255,-55. (2)由于cos(β-π)=210, 所以cos β=-210, 又0<β<π, 所以sin β=1-cos 2β=7210,且π2<β<π. 又由于sin 2α=2sin αcos α=2×⎝⎛⎭⎫-55×⎝⎛⎭⎫-255=45,cos 2α=2cos 2α-1=2×45-1=35,所以cos(2α-β)=cos 2αcos β+sin 2αsin β =35×⎝⎛⎭⎫-210+45×7210 =25250=22.。
高中历史-高二历史上学期4-6单元检测卷(选择性必修1)解析版
选择性必修一阶段性检测卷(二)(4-6单元综合测试)一、选择题(本大题共16小题,每小题3分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.孔子称赞管仲辅佐齐桓公“霸诸侯,一匡天下”,企望周之复兴。
孟子提出“定于一”,尊新王,希望重现孔子所说“礼乐征伐自天子出”的盛世。
据此可知,孔孟都A.希望实现统一以安定社会秩序B.强调血缘关系以强化分封体制C.服务争霸需要维护奴隶主利益D.直面地方问题以加强中央集权2.论及秦朝政治制度对后世的深远影响,有学者指出“百代都行秦政法”“秦虽死犹存”。
下列对秦朝政治风格的描述准确的是A.“天下之事无小大,皆决于上”B.“古者以天下为主,君为客”C.“丞相以下至六百石为外朝也”D.“儒臣入直,仅备顾问而已”3.考古人员在新疆塔里木盆地西北边缘丝绸之路古道荒漠中,发现了大片西汉时期屯田(军人以军事建制垦荒种地)及官署遗址群,遗存包括民居、水渠和防御性建筑。
这一发现蕴含的重要历史信息是A.西汉政府力保丝绸之路畅通B.汉代先进生产技术传入了西域C.西域与内地的交往源远流长D.西汉政府对西域实行有效管理4.下图主要反映了唐代唐墓出土的胡装女俑,大食、非洲陶俑A.兼收并蓄的时代风范B.空前辽阔的疆域版图C.多姿多彩的社会生活D.光照四邻的灿烂文化5.明朝户籍册以里甲制为基础,每里一册,详列各户人口、田土、房屋。
清前期实行固定丁银、摊丁入亩后,户籍作用大为削弱。
古代实行严格户籍制度的根本目的是A.加强基层管理B.控制人口流动C.保证赋役征收D.限制土地兼并6.下表是两汉西北地区关市史料统计表,这说明关市的设置时间文献记载备注前元元年(前156年)复与匈奴和亲,通关市,给遗匈奴,遣公主,如故约。
《史记·匈奴列传》永初四年(110年)鲜卑大人燕荔阳诣阙朝贺,邓太后······令止乌桓校尉所居宁城下,通胡市·······《后汉书·乌桓鲜卑传》初平元年(190年)(刘虞)劝督农植,开上古胡市之利,通渔阳盐铁之饶,民悦年登·····《后汉书·刘虞传》A.是管辖少数民族的重要手段B.充分保障了丝绸之路的畅通C.是促进民族交融的重要方式D.改变了少数民族的生产方式7.据统计,在晚清担任英、法、德、日、俄等11国驻外大使的外交官中,有12人出身同文馆。
高中数学必修4第三章三角恒等变换综合检测题(人教A版)
第三章三角恒等变换综合检测题本试卷分第I 卷选择题和第U 卷非选择题两部分,满分150分,时间120 分钟。
第I 卷(选择题共60分)一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )n 3 41 .已知 0v av 2v 3<n 又 sin a= 5, cos (a+ ®= — 5,贝V sin ()B . 0 或 2424 C.25 24 D . ±25 [答案]Cn 3 4[解析]•/ 0v av 2 v 3v n 且 sin a= 5, COS ( a+ 3 = — 54 n3 3• cos a= 5 , 2< a+ 3v ㊁ n, • sin( a+ 3 = ±5,=sin( a+ 3cos a — cos( a+ 3)sin a才< 3v n ••• sin 3> 0•故排除 A , B , D.4 3 4⑵由 cos( a+ 3)= — 5及 Sin a= 3可得 sin 3= §(1 + cos 3)代入 sin 2 3+ cos 2 3= 1 中可解得 cos37 n=—1或一25,再结合2<仟n 可求sin 32.若sin Bv 0, cos2 0v 0,则在(0,2 内)B 的取值范围是()3 n3=0.sin3=- 5x 4-又氏才,n j, • sin 3> 0,故 sin 3= 24当 sin( a+ 3 =,sin 3= sin [( a+ a[点评](1)可用排除法求解,T=器53 245 = 25;A . n< 0< 25 nB.5T <e< ¥3 nC.y <e< 2 nD.严< 0<孕4 4[答案]B[解析]2 2 2•/ cos2 e< 0, • 1 —2sin < 0,即sin e>2或sin < —"2,又已知sin < 0, •— 1 < sin e<—亠2,2由正弦曲线得满足条件的e取值为54n<e< ¥3. 函数y= sin2x+ cos2x的图象,可由函数y= sin2x —cos2x的图象()A .向左平移f个单位得到B .向右平移f个单位得到8c.向左平移n个单位得到4D .向右平移4个单位得到[答案]C[解析]y= sin2x+ cos2x= , 2sin(2x+J=2si n2(x +》_ n _ ny= sin2x—cos2x= 2sin(2x—4)= . 2sin2(x—§)n n n其中x+8=(x+ 4)—8n•••将y= sin2x—cos2x的图象向左平移:个单位可得y= sin2x+ cos2x的图象.44. 下列各式中,值为~2的是()A . 2sin 15 cos15 °2 2B. cos 15。
高中语文选择性必修下 第四单元达标检测卷 语文 A卷 (含答案)
2020-2021学年选择性必修下册第四单元达标检测卷语 文(A )注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷 阅读题一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分) 阅读下面的文字,完成1-5题。
材料一:天育物有时,地生财有限,道法自然,天人合一,这是古人朴素的生态道德观。
《尚书·舜典》记载,上古时代舜就设置了一个管理山林川泽草木的官职叫虞,担任这个官位的人叫伯益。
到夏朝时,就有了“夏三月,川泽不入网罟,以成鱼鳖之长”的道德倡导。
人类社会已经经历了三大文明形态:一是上百万年的原始文明,二是上万年的农业文明,三是三百年的工业文明。
今天正在向第四文明形态过渡,即生态文明。
人们逐渐认识到,人不是自然的主宰,只是自然的一员,规律只能认识,不能违背。
由此,国家出台了严格的生态环境保护制度,追究终身责任,筑起一道壁垒森严的屏障。
制度是写在纸上的硬措施,道德则是刻在心中的软约束。
生态文明社会所要倡导的生态道德是一种全新的道德观和道德范式,它不仅要求人对人的社会行为,而且要求人对自然环境的行为都要受到伦理评价,接受自我良心的审判。
尊重生命和自然界是生态伦理学的命令性原则,不损害生命和自然界是生态伦理学的禁止性原则。
在生态文明时代,生态道德水平的高低是衡量一个人综合素质的重要尺度,也是衡量一个国家、一个民族文明程度的重要标志。
在“人是自然的主宰”这一工业文明理念仍然广为流传的背景下,仅靠法律和制度的硬约束,缺乏“发乎情止乎礼”的道德修养,是很难建成生态文明社会的。
统编版必修四《哲学与文化》1-6课易错易混点整理(检测卷)
1、哲学源于人们对万事万物的惊讶和好奇。
( )2、哲学是社会生活的反映,是时代精神的精华。
( )3、哲学是科学的世界观和方法论的统一。
( )4、哲学是研究具体科学的基础,为具体科学提供世界观和方法论的指导。
( )5、哲学是关于世界观的科学。
( )6、马克思主义哲学的发展决定着社会实践的发展。
( )7、哲学的本义就是聪明、智慧。
( )8、哲学智慧来源于哲学家的头脑。
( )9、哲学是人们对整个世界的总的看法和根本观点。
( )10、哲学属于世界观,但世界观不一定是哲学。
11、世界观人人都有,因而都是正确的。
( )12、哲学是关于世界观的学问,因此与方法论无关。
( )13、任何哲学都是一定社会和时代精神生活的构成部分,是一定社会和时代的经济政治在精神上的反映。
( )14、哲学是一成不变的。
( )15、真正的哲学之所以是时代精神的精华,就是因为它从最一般本质和最普遍规律的层面上反映了时代的任务和要求,把握了时代的脉搏,总结和概括了时代的实践经验和认识成果。
( )16、哲学是“科学之科学”,是具体知识的总和。
( )17、哲学的基本问题就是思维与存在何者为本原的问题。
( )18、思维与存在的关系问题决定着各种哲学的基本性质和方向。
( )19、追求物质财富的满足就是唯物主义,强调精神文明就是唯心主义。
( )20、唯物主义的观点都是正确的,唯心主义的观点都是错误的。
( )21、哲学的基本派别是辩证法和形而上学。
( )22、辩证唯物主义和历史唯物主义是科学的世界观和方法论。
( )23、古代朴素唯物主义认为,原子是世界的本原。
( )24、主观唯心主义把客观精神看做世界的主宰和本原,认为现实的物质世界只是这些客观精神的外化和表现。
( )25、唯物主义和唯心主义的分歧是围绕物质和意识的关系问题展开的。
( )26、习近平新时代中国特色社会主义思想是马克思主义发展的顶峰。
( )27、超阶级性是马克思主义哲学的本质特征。
( )28、克思主义哲学的历史使命就是实现无产阶级和全人类的解放。
高一数学必修4第三章综合检测题
第三章综合检测题、选择题(本大题共12个小题,每小题5分,共60分)1. si门2右一cos2;n的值为(C )B.2 D. ,3~2[解析]原式=-(cos2^- sin^F - cos62.函数f(x)= sin2x—cos2x的最小正周期是(B )nA.q3 B . n C . 2 n D . 4 n[解析]f(x) = sin2x—cos2x= , 2sin(2x—4),故T=今=冗13.已知cos 0= 3,(0,n )则cos(32 + 2 0 = ( C )4;29D.9[解析]cos(3n + 2 0= sin2 A 2sin 0os0= 2X 屮3=普44.若tan a= 3, ta n B= 3,则tan (a— 3 等于(D )C. 3D.13 —4tan a—tan 3 3 1[解析]tan(a—®=■—o= = 3.1 + tan dt an B〔+ 3X4 335. COS275°+COS215°+COS75°C OS15的值是(A )5 6 3 2A.4B.〒eq D. 1 +可2 21 5 [解析]原式=sin215°+ cos 15° + sin15 6os15°= 1 + ?sin30 = 4.6. y= cos2x—sin2x+ 2sinxcosx的最小值是(B )A. 2 B2 C. 2 D2_ n _[解析]y= cos2x+ si n2x= 2si n( 2x+ 4),.,.y max=— 2.7.若tan a= 2, tan(B— M= 3,贝U tan(B—2 0)= ( D )A. —1B. —5C.7D.1tan p- a—tan a 3 —2 i[解析]tan( p—2 a = tan[( p— a) —a = = =千1 + tan p—a tan a 1 + 68.已知点P(cos a, sin M, Q(cos p, sin®,贝U |PQ| 的最大值是(B )A. 2[解析] PQ = (cos® —cos a, sin p—si n a ,贝U |PQ| = p cos®—cos a2+ sin p- sin a2='2—2cos a— p,故|PQ|的最大值为2.cos2x+ sin2x”^「十厂9.函数y= cos2x —sin2x的最小正周期为(C )n nA. 2 nB. nC.qD.41 + tan2x n n[解析]y= =tan(2x+ 4),.T=2.1 —tan2x 4 210. 若函数f(x) = sin2x —*x€ R),则f(x)是(D )A .最小正周期为訓勺奇函数B .最小正周期为n的奇函数C.最小正周期为2 n的偶函数 D .最小正周期为n的偶函数1 12 12[解析]f(x)= sin2x—2= —2(1 —2sin2x) = —^cos2x,.f(x)的周期为n的偶函数.n11. y= sin(2x —3)—sin2x 的一个单调递增区间是(B )n n n 7^ r 5 1^ _ _ _ n 5 nA . [—6, 3] B.[石,石n]c.[匚n 石n ] D . [3,石!5 n n n n n[解析] y = sin(2x — 3) — sin2x = sin2xcos^ — coshes% — sin2x =- (sin2xcos^ + cos2xsin^)=—sin(2x + 3),其增区间是函数y = sin(2x +3)的减区间,即2k n+㊁三2x + 3W 2k n+~2,「k nn7 n 「 r 「 n 7 n+12= x <k n+12,当 k = 0 时,x € [乜,乜].12. 已知 sin(a+ 3 = 2,sin(a- 3 = £,则 log • 5(器 等于 (C . 41 sin a os 3+ cos a in 23得 1sin a os 3— cos a in 3= 313. (1+ tan 17 )(1 + tan28 °tan 17 ° tan28[解析] 原式=1 + tan 17 + tan28 °tan 17 °tan28 ;又 tan(17 +28°) = ------------- =1 — tan17 )an28 0 tan45 = 1,Atan17 + tan28 = 1— tan 17 °tan28 )14. (2012全国高考江苏卷)设a 为锐角,若cosn a+6=5,贝U sin 2 a+ 的值为弋^2.n n 2 n n [解析]Ta 为锐角,.「6<a+ 6<3,v cos a- 6 =4 5, n 3 sin a+ 6 = 5;n n n 24.••sin 2 a+ 3 = 2sin a+ 6 cos a+ 6 = 25,n n 2 .2 n 7cos(2 a+ 3) = cos( a+ g) 一 sin ( a+ g) =25 . n n n . n .•sin 2 a+ 12 = sin 2 + 3— 4 = sin 2 a — 3 ncos4—cosc n . n 1A /2 2a+3 sin 4= 50 .115.已知 cos2a= 3,贝U sin 4 a+ cos 4a=[解析]由sin(a+ 3 = 2, sin(a- a 5sin ocos 3=12.tan a 1,• °tan 3cos a i n 3=徨=5,「•log ‘5(眯沪 g 552 = 4.、填空题(本大题共4个小题, 每小题5分,共20分)代入原式可得结果为2.521 2 2 2[解析]cos2o a 2cos a—1= 3 得cos a 3,由cos2o a 1 —2s in a得sin2a 3(或据sin2a2 2 1 , + cos a 1得Sin a= 3),代入计算可得.3 1 n n16.设向量a=(刃sin0, b= (cos0 3),其中0€ (0,刃,若a / b,贝U 0= ___41 n [解析]若a//b,贝U sin 0cos A2,即卩2sin(Cos B= 1 ,:sin2 A1,又(0,㊁),n 4.三、解答题(本大题共6个小题,共70分,写出文字说明,证明过程或演算步骤3 - 3 sin2 a+ 2sin a,17.(本题满分10分)已知cos a—sin a= 5^,且na^n 求—1 —t an a—的值.[解析]因为cos a—sin aa%"2,所以1 —2si n a cos a=卷,所以2si n«cos a= £又a€ ( n "2),故sin a+ CoS a=-冷 1 + 2sin0cos a= —誉,2 2sin2 a+ 2sin a 2sin a cos a+ 2sin a cos a 2sin a cos a cos a+ sin a所以=1 —tan a COS a—sin a COS a—sin aZ x4/225x一 55 28 75.18.(本题满分12分)设x€ [0 , 3],求函数y= cos(2x-3) + 2sin(x—力的最值.n n n n[解析]y = cos(2x—3) + 2si n(x—6)= cos2(x—6)+ 2sin(x—石)2n n n 1 2 3=1 —2sin (x—舌)+ 2sin(x —6)= —2[sin(x—$) —2 + 21 1 3 1 • x€ [0 , 3], —x—g[一6,6].• °sin(x—g) € [一?, 2] ,^ymax a2,ymin= —2*19.(本题满分12分)已知tan2a2tan2a+ 1,求证:cos20+ sin2a= 0.十卄2cos20- sin20 2 1 —tan20 2—2tan2a[证明] cos2 0+ sin a= 2 2 + sin a= 2 + sin a= 2cos20+ sin20 1 + tan20 1 + 2tan2a+ 1+ si n2a=.2—sin a 2 + sin a= COS a+ Sin a 2 o—sin a+ sin a 0.3x . 3xx . x »亠12分)已知向量 a = (cos^, sin_2), b = (co^,— sin^), c = (.3— 1),其中 x €R.(1)当a 丄b 时,求x 值的集合; ⑵求a —ci 的最大值.3x x 3x xk n n [解析](1)由 a 丄b 得 a b = 0,即卩 cos^cos^ —sin-^sin^a 0,贝Ucos2x = 0,得x a ^ + 4(kk n n€ Z), Ax 值的集合是{x|x = 2 + 4, « Z}.2 3x1- 2 3x 2 o 3x t -3x o 3x 3x(2)|a — c| = (cos 刁—.3) + (sin_2 + 1) = cos"^ — 2.3cos^ + 3+ sin + 2sin^ + 1=5+ 2sin^x —2 ,3。
2021高中同步创新课堂数学优化方案人教A版必修4习题:章末综合检测(一) Word版含答案
章末综合检测(一)(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =tan x2是( )A .最小正周期为4π的奇函数B .最小正周期为2π的奇函数C .最小正周期为4π的偶函数D .最小正周期为2π的偶函数解析:选B .该函数为奇函数,其最小正周期T =π12=2π.2.简谐运动y =4sin ⎝⎛⎭⎫5x -π3的相位与初相是( ) A .5x -π3,π3B .5x -π3,4C .5x -π3,-π3D .4,π3解析:选C .相位是5x -π3,当x =0时的相位为初相即-π3.3.设a <0,角α的终边与单位圆的交点为P (-3a ,4a ),那么sin α+2cos α的值等于( ) A .25 B .-25C .15D .-15解析:选A .由于点P 在单位圆上,则|OP |=1. 即(-3a )2+(4a )2=1,解得a =±15.由于a <0,所以a =-15.所以P 点的坐标为⎝⎛⎭⎫35,-45. 所以sin α=-45,cos α=35.所以sin α+2cos α=-45+2×35=25.4.设α为其次象限角,则sin αcos α·1sin 2α-1=( ) A .1 B .tan 2α C .-tan 2α D .-1解析:选D .sin αcos α·1sin 2α-1=sin αcos α·cos 2αsin 2α=sin αcos α·⎪⎪⎪⎪cos αsin α. 由于α为其次象限角,所以cos α<0,sin α>0.所以原式=sin αcos α·⎪⎪⎪⎪cos αsin α=sin αcos α·-cos αsin α=-1.5.已知函数f (x )=sin ⎝⎛⎭⎫x -π2(x ∈R ),下列结论错误的是( ) A .函数f (x )的最小正周期为2π B .函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )为奇函数解析:选D .由于f (x )=sin ⎝⎛⎭⎫x -π2=-cos x ,所以T =2π,故A 选项正确;由于y =cos x 在⎣⎡⎦⎤0,π2上是减函数,所以y =-cos x 在⎣⎡⎦⎤0,π2上是增函数,故B 选项正确;由于f (0)=sin ⎝⎛⎭⎫-π2=-1,所以f (x )的图象关于直线x =0对称,故C 选项正确;f (x )=-cos x 是偶函数,故D 选项错误.6.sin 600°+tan 240°的值等于( ) A .-32B .32C .-12+ 3D .12+ 3 解析:选B .sin 600°=sin(360°+240°)=sin 240° =sin(180°+60°)=-sin 60°=-32, tan 240°=tan(180°+60°)=tan 60°=3, 因此sin 600°+tan 240°=32. 7.已知α为锐角,且2tan(π-α)-3cos ⎝⎛⎭⎫π2+β+5=0,tan(π+α)+6sin(π+β)=1,则sin α的值是( ) A .355B .377C .31010D .13解析:选C .由已知可得-2tan α+3sin β+5=0,tan α-6sin β=1,解得tan α=3,故sin α=31010.8.设g (x )的图象是由函数f (x )=cos 2x 的图象向左平移π3个单位得到的,则g ⎝⎛⎭⎫π6等于( ) A .1 B .-12C .0D .-1解析:选D .由f (x )=cos 2x 的图象向左平移π3个单位得到的是g (x )=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3的图象,则g ⎝⎛⎭⎫π6=cos ⎣⎡⎦⎤2⎝⎛⎭⎫π6+π3=cos π=-1.故选D . 9.设ω>0,函数y =sin ⎝⎛⎭⎫ωx +π3+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( ) A .23 B .43C .32D .3解析:选C .法一:函数y =sin ⎝⎛⎭⎫ωx +π3+2的图象向右平移4π3个单位后得到函数y =sin ⎣⎡⎦⎤ω⎝⎛⎭⎫x -4π3+π3+2=sin ⎝⎛⎭⎫ωx -4π3ω+π3+2的图象.由于两图象重合,所以ωx +π3=ωx -4π3ω+π3+2k π,k ∈Z ,解得ω=32k ,k ∈Z .又ω>0,所以ω的最小值是32.法二:由题意可知,4π3是函数y =sin ⎝⎛⎭⎫ωx +π3+2(ω>0)的最小正周期T 的正整数倍,即4π3=kT =2k πω(k ∈N *),所以ω=32k ,所以ω的最小值为32.10.假如函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A .π6 B .π4C .π3D .π2解析:选A .由y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,知f ⎝⎛⎭⎫4π3=0,即3cos ⎝⎛⎭⎫8π3+φ=0, 所以8π3+φ=k π+π2(k ∈Z ),所以φ=k π+π2-8π3(k ∈Z ),|φ|的最小值为π6.11.假如函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期为T ,且当x =2时,取得最大值,那么( ) A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=πD .T =1,θ=π2解析:选A .由于T =2ππ=2,f (x )=sin(πx +θ),所以f (2)=sin(2π+θ)=sin θ=1, 又0<θ<2π,则θ=π2.故选A .12.已知函数y =sin(2x +φ)⎝⎛⎭⎫0<φ<π2图象的一条对称轴在区间⎝⎛⎭⎫π6,π3内,则满足此条件的一个φ值为( )A .π12 B .π6C .π3D .π4解析:选A .令2x +φ=k π+π2(k ∈Z ),解得x =k π2+π4-φ2(k ∈Z ),由于函数y =sin(2x +φ)⎝⎛⎭⎫0<φ<π2图象的一条对称轴在区间⎝⎛⎭⎫π6,π3内,所以令π6<k π2+π4-φ2<π3(k ∈Z ),解得k π-π6<φ<k π+π6(k ∈Z ), 四个选项中只有A 符合,故选A .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知cos(45°+α)=513,则cos(135°-α)=________.解析:cos(135°-α)=cos[180°-(45°+α)] =-cos(45°+α)=-513.答案:-51314.函数f (x )=2sin ⎝⎛⎭⎫x 2-π6,当f (x )取最大值时,x 的取值集合为________. 解析:由x 2-π6=2k π+π2,k ∈Z ,得x =4k π+43π,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x |x =4k π+43π,k ∈Z15.若f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值为2,则ω=________. 解析:由于0<ω<1,x ∈⎣⎡⎦⎤0,π3,所以ωx ∈⎣⎡⎦⎤0,ωπ3⎣⎡⎦⎤0,π2, 所以f (x )max =2sin ωπ3=2, 所以sin ωπ3=22,所以ωπ3=π4,ω=34. 答案:3416.有下列说法:①函数y =-cos 2x 的最小正周期是π; ②终边在y 轴上的角的集合是⎩⎨⎧⎭⎬⎫α|α=k π2,k ∈Z ;③把函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移π6个单位长度得到函数y =3sin 2x 的图象. 其中,正确的说法是________.解析:对于①,y =-cos 2x 的最小正周期T =2π2=π,故①对;对于②,由于k =0时,α=0,角α的终边在x 轴上,故②错;对于③,y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移π6个单位长度后,得y =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π3=3sin 2x ,故③对. 答案:①③三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知cos ⎝⎛⎭⎫π2+θ=12, 求cos (3π+θ)cos θ[cos (π+θ)-1]+cos (θ-4π)cos (θ+2π)cos (3π+θ)+cos (-θ)的值.解:由于cos ⎝⎛⎭⎫π2+θ=-sin θ, 所以sin θ=-12.原式=-cos θcos θ(-cos θ-1)+cos θcos θ(-cos θ)+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ=8.18.(本小题满分12分)已知函数f (x )=2sin ⎝⎛⎭⎫2x -π6+a ,a 为常数. (1)求函数f (x )的最小正周期;(2)若x ∈⎣⎡⎦⎤0,π2时,f (x )的最小值为-2,求a 的值. 解:(1)f (x )=2sin ⎝⎛⎭⎫2x -π6+a , 所以f (x )的最小正周期T =2π2=π.(2)当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,所以x =0时,f (x )取得最小值,即2sin ⎝⎛⎭⎫-π6+a =-2, 故a =-1.19.(本小题满分12分)已知函数f (x )=2sin ⎝⎛⎭⎫2ωx +π6+1(其中0<ω<1),若点⎝⎛⎭⎫-π6,1是函数f (x )图象的一个对称中心,(1)试求ω的值;(2)先列表,再作出函数f (x )在区间x ∈[-π,π]上的图象.解:(1)由于点⎝⎛⎭⎫-π6,1是函数f (x )图象的一个对称中心, 所以-ωπ3+π6=k π,k ∈Z ,所以ω=-3k +12,k ∈Z ,由于0<ω<1,所以k =0,ω=12.(2)由(1)知f (x )=2sin ⎝⎛⎭⎫x +π6+1,x ∈[-π,π],列表如下, x +π6 -56π -π2 0 π2 π 76π x -π -23π -π6 π3 56π π y-1131则函数f (x )在区间x ∈[-π,π]上的图象如图所示.20.(本小题满分12分)已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示.(1)求此函数的解析式;(2)求此函数在(-2π,2π)上的递增区间. 解:(1)由题图可知,其振幅为A =23, 由于T2=6-(-2)=8,所以周期为T =16, 所以ω=2πT =2π16=π8,此时解析式为y =23sin ⎝⎛⎭⎫π8x +φ. 由于点(2,-23)在函数y =23sin ⎝⎛⎭⎫π8x +φ的图象上, 所以π8×2+φ=2k π-π2(k ∈Z ),所以φ=2k π-3π4(k ∈Z ).又|φ|<π,所以φ=-3π4.故所求函数的解析式为y =23sin ⎝⎛⎭⎫π8x -3π4. (2)由2k π-π2≤π8x -3π4≤2k π+π2(k ∈Z ),得16k +2≤x ≤16k +10(k ∈Z ),所以函数y =23sin ⎝⎛⎭⎫π8x -3π4的递增区间是[16k +2,16k +10](k ∈Z ). 当k =-1时,有递增区间[-14,-6],当k =0时,有递增区间[2,10], 与定义区间求交集得此函数在(-2π,2π)上的递增区间为(-2π,-6]和[2,2π).21.(本小题满分12分)已知函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,在同一个周期内,当x =π4时,y 取最大值1,当x =7π12时,y 取最小值-1.(1)求函数的解析式y =f (x ),并说明函数y =sin x 的图象经过怎样的变换可得到y =f (x )的图象? (2)若函数f (x )满足方程f (x )=a (0<a <1),求此方程在[0,2π]内的全部实数根之和.解:(1)由于T =2×⎝⎛⎭⎫7π12-π4=2π3, 所以ω=2πT=3.又sin ⎝⎛⎭⎫3π4+φ=1, 所以3π4+φ=2k π+π2,k ∈Z .又|φ|<π2,所以φ=-π4,所以y =f (x )=sin ⎝⎛⎭⎫3x -π4. y =sin x 的图象向右平移π4个单位长度,得到y =sin ⎝⎛⎭⎫x -π4的图象, 再将y =sin ⎝⎛⎭⎫x -π4的图象上全部点的横坐标缩短为原来的13,纵坐标不变,得到y =sin ⎝⎛⎭⎫3x -π4的图象. (2)由于f (x )=sin ⎝⎛⎭⎫3x -π4的最小正周期为2π3, 所以f (x )=sin ⎝⎛⎭⎫3x -π4在[0,2π]内恰有3个周期, 所以sin ⎝⎛⎭⎫3x -π4=a (0<a <1)在[0,2π]内有6个实数根,从小到大设为x 1,x 2,x 3,x 4,x 5,x 6,则x 1+x 2=π4×2=π2,x 3+x 4=⎝⎛⎭⎫π4+2π3×2=11π6, x 5+x 6=⎝⎛⎭⎫π4+2π3×2×2=19π6, 故全部实数根之和为π2+11π6+19π6=11π2.22.(本小题满分12分)如图,函数y =2cos(ωx +θ)⎝⎛⎭⎫x ∈R ,ω>0,0≤θ≤π2的图象与y 轴交于点(0,3),且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点A ⎝⎛⎭⎫π2,0,点P 是该函数图象上一点,点Q (x 0,y 0)是P A 的中点,当y 0=32,x 0∈⎣⎡⎦⎤π2,π时,求x 0的值.解:(1)把 (0,3)代入y =2cos(ωx +θ)中, 得cos θ=32. 由于0≤θ≤π2,所以θ=π6.由于T =π,且ω>0,所以ω=2πT =2ππ=2.(2)由于点A ⎝⎛⎭⎫π2,0,Q (x 0,y 0)是P A 的中点,y 0=32. 所以点P 的坐标为⎝⎛⎭⎫2x 0-π2,3. 由于点P 在y =2cos ⎝⎛⎭⎫2x +π6的图象上,且π2≤x 0≤π, 所以cos ⎝⎛⎭⎫4x 0-5π6=32,且7π6≤4x 0-5π6≤19π6. 所以4x 0-5π6=11π6或4x 0-5π6=13π6,所以x 0=2π3或x 0=3π4.。
高一必修4第二单元检测
精心整理Book4UnitOne Ⅰ.单词拼写:1.UNisaninternational__________(组织).2. Hed_________allhislifetoteachinginaf3.4.5.6. 6.7. 8. thisproblemforalongtime. 9. Tom_________(表现)sobadlyincollegethathewassentdowna ndnevergothisdegree.10. TyphoonSaomei(桑美)_________(袭击)thecityofWenzhouandcausedgreatdam agelastyear. Ⅱ.动词填空:1.Hespentaboutathirdofhissalary_______8. Itisworthwhile_________(argue)forourownrights.9. Theclass_______(be)anactiveoneand_________(have)apartynow.10. Women_____________(lookdownupon)inthepastbutnowthey___________(res pect).Ⅲ.单项选择:()1.Only______ahumanbeing.A.whenisit hungryalionwillattackB.whenitishungryal()2.It()5.Morethanoneanswer____tothequestio n.A.havebeengivenBweregivenC.hasbeen givenD.hasgiven()6.Howaboutthetwoofus____awalkdown thegarden?A.totakeB.takeC.takingD.tobe taking()7.Thefamoussingeranddancer____ourp artythisevening.A.aregoingtoattendB.was toattendC.weretoattendD.isgoingtoattend ()8.-Howoftendoyouwritetoyourfather?’’ntendedforB.devotedtoC.connectedwithD .introducedto()12.----Whydidyougobackt otheshop?----Ileftmyfriend____there.A.w aitingB.towaitC.waitD.waits()13.Wouldyou_____acupoftea?A.careaboutB.careofC.takecareofD.carefor()14.Hedevotedhislife_____theenvironm ent.A.toimproveB.tobeimprovingC.toimp rovingD.inimproving()15.Heisconsidering______abroad.A.goi ⅠⅡⅢAswith?2.P___________ofcomputershasincrease ddoubleinthelastfewmonths.3.Sydney'spopulation(扩大)rapidlyinthe1960s.4.Hehasa(晒黑的)faceandbrighteyes.5.The________(斗争)forindependencewaslongandhard.6.RichardisAmericanandJohnisBritish----theyhavedifferentn____________.查3.Itisawasteoftime___________(argue)w ithheraboutthisproblem.4.Ifyoukeep__________(water)theflower s,theywilldieverysoon.5.Everyclassroominourschool_____________(equip)withacomputer.6.Thepolice____________(search)thethie fforthelostmoneyinthenextroomnow.7.Thankstohishardwork,he__________(a chieve)greatsuccessinthepasttwoweeks.Ⅲ.()3.—Somemorewine?—Thankyou.______.Ihavetodrivehome.A. WithpleasureB.I’drathernotC.ThatwouldbeniceD.Justwhat Ineeded ()4.Theexpertsadvise_______ourarmy__ _____modernweapons.A.toequip;withB.e quipping;withC.toequip;forD.equipping;f or()5.Ourschoolcoversanareaof400mu,whic’improvesyourmind?A.chatB.chatsC.chatt edD.chatting()10.WhenIsaidthatsomepeoplearestupidI wasnot_______you.A.talkingtoB.referrin gtoC.turningtoD.listeningto()11.–Youwerebraveenoughtoraiseobjectionsatt hemeeting.--Well,nowIregret________th atA.todoB.tobedoningC.tohavedoneD.ha vingdoneewon()15.Nickislookingforanotherjobbecauseh efeelsthatnothinghedoes______hisboss.A .servesB.satisfiesC.promisesD.supports Book4Unit2Ⅰ.1.confused2.production3.expanded4.s unburnt5.struggle6.nationalities7.equippe d8.reduce9.refer10.chemicalⅡ.1.Crying2.finding3.arguing4.watering 5.isequipped6.aresearching7.hasachieved 8.confused9.Workingout10.hasexpanded运惊讶特’onwhyhewaslateforschool.6.__________theworld,kindpeopledonate dmoneyandnecessitiesforthepeopleineart hquake-hitareas.7.Hewasc___________justtositinfrontofthetelevisionallday.8.Afterthebigearthquake,tensofthousands ofpeoplebecameh__________.9.Theexpert________(使人相信)everyoneofhistheorywiththeexperime nt.Ⅱ.imselfawatch.4.___________(return)tomyapartment,If oundmybag__________(miss).5.__________(learn)tospeakaforeignlang uagemakesone’sliferich.6.Uptonow,manysupermarketsandstoresi nHuzhou________________(stop)tooffer plasticbagstotheircustomers.7.Thereweresomeboys___________(sho ut)and________(cry)undermywindow,soIicular,feelcontentwithC.especially,feelsati sfiedwithD.particularly,feelsatisfiedto ()2.Hewasinsuchahurrythathe_______an oldman.A.cameacrossB.wavedgoodbyeC. lookedupatD.knockedinto()3.Wewererunningoutofpetrol.Iwentoff_ _____agaragewhereIcouldbuysome.A.ins earchofB.insearchforC.searchedD.searchi ng()4.Itisnot_____goodmannerstotalk_____ a,by()8.Isthisquestionworth_______again?A. discussingB.beingdiscussedC.todiscussD. tobediscussed()9.Don’thavehim________outsideallthetime.A.st andB.tostandC.stoodD.standing()10.Aco okwillbeimmediatelyfiredifheisfound___ ________inthekitchen.A.smokeB.smokin gC.tosmokeD.smoked()11.Thefilmwasreally_______.Wewereg’hewasalwaysanoutstandingstudent.A.plea sedB.astonishedC.exitedD.frightened ()15.To_____theotherplayers,theathlete_ ____alotofdifficultiesinhistraining.A.over come;beatB.beat;overcameC.overcome;overcameD.beat;beatBook4Unit3Ⅰ.1.fortune2.astonishing3.particular4.m outhful5.explained6.Throughout7.content 8.homeless9.convinced10.enjoymentⅡⅢB。
高一数学必修4第一章综合检测题
第一章综合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若α是第二象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角[答案] A[解析] α为第二象限角,不妨取α=120°,则180°-α为第一象限角.2.sin(-600°)=( )A.12B.32 C .-12 D .-32 [答案] B3.已知角α的终边经过点P (3,-4),则角α的正弦值为( ) A.34 B .-4 C .-45 D.35 [答案] C[解析] x =3,y =-4,则r =x 2+y 2=5, 则sin α=y r =-45.4.函数y =tan ⎝ ⎛⎭⎪⎫x -π4的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-π4C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x ≠k π+π4,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+3π4k ∈Z[答案] D[解析] 要使函数有意义,则有x -π4≠π2+k π,k ∈Z ,即x ≠3π4+k π,k ∈Z .5.已知sin(π+α)=13,则cos ⎝ ⎛⎭⎪⎫3π2-α等于( )A .-13 B.13 C .-33 D.33[答案] B[解析] sin(π+α)=-sin α=13,则sin α=-13,cos ⎝ ⎛⎭⎪⎫3π2-α=-sin α=13. 6.函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的一个单调递减区间为( ) A.⎝ ⎛⎭⎪⎫π6,2π3 B.⎝ ⎛⎭⎪⎫-π3,π6 C.⎝ ⎛⎭⎪⎫-π2,π2 D.⎝ ⎛⎭⎪⎫π2,2π3 [答案] A[解析] 令π2+2k π≤2x +π6≤3π2+2k π(k ∈[]),整理得π6+k π≤x ≤2π3+k π,所以仅有⎝ ⎛⎭⎪⎫π6,2π3是单调递减区间.7.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( ) A .-43 B.54 C .-54 D.45[答案] D[解析] sin 2θ+sin θcos θ-2cos 2θ =sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-21+tan 2θ=45. 8.将函数y =sin(x -π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向右平移π3个单位,得到的图象对应的解析式是( )A .y =sin 12xB .y =sin(12x -π2)C .y =sin(12x -π6)D .y =sin(2x -π6)[答案] B[解析] y =sin(x -π3)――→横坐标伸长为原来的2倍y =sin(12x -π3)错误!y=sin[12(x -π3-π3]=sin(12x -π2).9.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π2(x ∈R ),下面结论错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )是奇函数[答案] D[解析] ∵f (x )=sin ⎝ ⎛⎭⎪⎫x -π2=-cos x (x ∈R ), ∴T =2π,在⎣⎢⎡⎦⎥⎤0,π2上是增函数. ∵f (-x )=-cos(-x )=-cos x =f (x ).∴函数f (x )是偶函数,图象关于y 轴即直线x =0对称. 10.已知某帆船中心比赛场馆区的海面上每天海浪高度y (米)可看作是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ),经长期观测,y =f (t )的曲线可近似地看成是函数y =A cos ωt +b ,下表是某日各时的浪高数据:A .y =12cos π6t +1B .y =12cos π6t +32C .y =2cos π6t +32D .y =12cos6πt +32[答案] B[解析] ∵T =12-0=12,∴ω=2πT =2π12=π6.又最大值为2,最小值为1,则⎩⎪⎨⎪⎧A +b =2,-A +b =1,解得A =12,b =32,∴y =12cos π6t +32.11.已知函数f (x )=A cos(ωx +φ)的图象如图所示,f ⎝ ⎛⎭⎪⎫π2=-23,则f (0)等于( )A .-23B .-12 C.23 D.12[答案] C[解析] 首先由图象可知所求函数的周期为T =2⎝ ⎛⎭⎪⎫11π12-7π12=2π3,故ω=2π2π3=3.将⎝ ⎛⎭⎪⎫11π12,0代入解析式, 得A cos ⎝ ⎛⎭⎪⎫3×11π12+φ=0,即cos ⎝ ⎛⎭⎪⎫11π4+φ=0,∴11π4+φ=π2+2k π,k ∈Z , ∴φ=-9π4+2k π(k ∈Z ).令φ=-π4,代入解析式得f (x )=A cos ⎝ ⎛⎭⎪⎫3x -π4.又∵f ⎝ ⎛⎭⎪⎫π2=-23, ∴f ⎝ ⎛⎭⎪⎫π2=-A sin π4=-22A =-23∴A =232,∴f (0)=232cos ⎝ ⎛⎭⎪⎫-π4=232cos π4=23.12.已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π]上是单调函数,则ω+φ=( )A.π2+23B.π2+2 C.π2+32 D.π2+103[答案] A[解析] 由于f (x )是R 上的偶函数,且0≤φ≤π,故φ=π2.图象关于点M (3π4,0)对称,则f (3π4)=0,即sin(3π4ω+π2)=0,所以cos 3ωπ4=0.又因为f (x )在区间[0,π]上是单调函数,且ω>0, 所以ω=23.故ω+φ=π2+23.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.某人的血压满足函数式f (t )=24sin160πt +110,其中f (t )为血压,t 为时间,则此人每分钟心跳的次数为________.[答案] 8014.化简1-2sin4cos4=________. [答案] cos4-sin4[解析] 原式=sin 24+cos 24-2sin4cos4=(sin4-cos4)2=|sin4-cos4|.则sin4<cos4,所以原式=cos4-sin4.15.定义在R 上的函数f (x )既是偶函数,又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,π2]时,f (x )=sin x ,则f (5π3)的值为________.[答案] 32[解析] ∵T =π,∴f (5π3)=f (π+2π3)=f (23π)=f (π-π3)=f (-π3)=f (π3)=32.16.已知函数f (x )=sin ⎝ ⎛⎭⎫2x -π4,在下列四个命题中:①f (x )的最小正周期是4π;②f (x )的图象可由g (x )=sin2x 的图象向右平移π4个单位长度得到;③若x 1≠x 2,且f (x 1)=f (x 2)=-1,则x 1-x 2=k π(k ∈Z ,且k ≠0); ④直线x =-π8是函数f (x )图象的一条对称轴.其中正确命题的序号是________(把你认为正确命题的序号都填上).[答案] ③④[解析] f (x )的最小正周期是T =2π2=π,所以①不正确;f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π8, 则f (x )的图象可由g (x )=sin2x 的图象向右平移π8个单位长度得到,所以②不正确;当f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4=-1时,有2x -π4=-π2+2k π(k ∈Z ),则x =-π8+k π(k ∈Z ),又x 1≠x 2,则x 1=-π8+k 1π(k 1∈Z ),x 2=-π8+k 2π(k 2∈Z ),且k 1≠k 2,所以x 1-x 2=(k 1-k 2)π=k π(k ∈Z 且k ≠0),所以③正确;当x =-π8时,f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫-π8-π4=-1,即函数f (x )取得最小值-1,所以④正确.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)设f (θ)= 2cos 3θ+sin 2(2π-θ)+sin (π2θ)-32+2sin 2(π2+θ)-sin (3π2-θ),求f (π3)的值.[解析] 解法一:f (π3)=2cos 3π3+sin 2(2π-π3)+sin (π2+π3)-32+2sin 2(π2+π3)-sin (32π-π3)=2cos 3π3+sin 25π3+sin 5π6-32+2sin 25π6-sin7π6=2×18+34+12-32+2×14+12=-12.解法二:∵f (θ)=2cos 3θ+sin 2θ+cos θ-32+2cos 2θ+cos θ =2cos 3θ+1-cos 2θ+cos θ-32+cos θ+2cos 2θ=2cos 3θ-2-(cos 2θ-cos θ)2+cos θ+2cos 2θ =2(cos 3θ-1)-cos θ(cos θ-1)2+2cos 2θ+cos θ=(cos θ-1)(2cos 2θ+cos θ+2)2cos 2θ+cos θ+2=cos θ-1,∴f (π3)=cos π3-1=-12.18.(本题满分12分)(2011~2012·山东济南一模)已知sin θ=45,π2<θ<π.(1)求tan θ;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值. [解析] (1)∵sin 2θ+cos 2θ=1,∴cos 2θ=1-sin 2θ=925.又π2<θ<π, ∴cos θ=-35.∴tan θ=sin θcos θ=-43. (2)sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857.19.(12分)已知x ∈[-π3,2π3],(1)求函数y =cos x 的值域;(2)求函数y =-3sin 2x -4cos x +4的值域.[解析] (1)∵y =cos x 在[-π3,0]上为增函数,在[0,2π3]上为减函数,∴当x =0时,y 取最大值1; x =2π3时,y 取最小值-12.∴y =cos x 的值域为[-12,1].(2)原函数化为:y =3cos 2x -4cos x +1, 即y =3(cos x -23)2-13,由(1)知,cos x ∈[-12,1],故y 的值域为[-13,154].20.(本题满分12分)已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1,x ∈R . 求:(1)函数f (x )的最小值及此时自变量x 的取值集合; (2)函数y =sin x 的图象经过怎样的变换得到函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1的图象? [解析] (1)函数f (x )的最小值是3×(-1)-1=-4,此时有12+π4=2k π-π2,解得x =4k π-3k π2(k ∈Z ), 即函数f (x )的最小值是-4,此时自变量x 的取值集合是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =4k π-3π2,k ∈Z . (2)步骤是:①将函数y =sin x 的图象向左平移π4个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图象; ②将函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图象; ③将函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图象上所有点的纵坐标伸长为原来的3倍(横坐标不变),得到函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图象; ④将函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图象向下平移1个单位长度,得函数y =3sin ⎝ ⎛⎭⎪⎫12+π4-1的图象. 21.(本题满分12分)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上一个最低点为M (2π3,-2). (1)求f (x )的解析式;(2)当x ∈[0,π12]时,求f (x )的最值.[解析] (1)由最低点为M (2π3,-2),得A =2. 由T =π,得ω=2πT =2ππ=2. 由点M (2π3,-2)的图象上,得2sin(4π3+φ)=-2, 即sin(4π3+φ)=-1. 所以4π3+φ=2k π-π2,(k ∈Z ). 故φ=2k π-11π6(k ∈Z ). 又φ∈(0,π2), 所以φ=π6.所以f (x )=2sin(2x +π6). (2)因为x ∈[0,π12],所以2x +π6∈[π6π3]. 所以当2x +π6=π6,即x =0时,f (x )取得最小值1; 当2x +π6=π3,即x =π12时,f (x )取得最大值 3. 22.(本题满分12分)已知f (x )=2sin(2x +π6)+a +1(a 为常数). (1)求f (x )的单调递增区间;(2)若当x ∈[0,π2]时,f (x )的最大值为4,求a 的值; (3)求出使f (x )取得最大值时x 的取值集合.[解析] (1)由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ).(2)当x ∈[0,π2]时,2x +π6∈[π6,76π], 故当2x +π6=π2,即x =π6时,f (x )有最大值a +3=4,所以a =1. (3)当sin(2x +π6)=1时f (x )取得最大值, 此时2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z ,此时x 的取值集合为{x |x =k π+π6,k ∈Z }.。
基础检测卷必修4第2章平面向量
2020暑期复习基础检测卷必修4第二童平面向量一、选择题(共12小题,每小题5分,满分60分)1 .AB + PC + BA-&的化简结果是( )A . PQB . QPC . BQD . CQ【答案】A【解析】*••云+ PC+BA-QC = AB + PC+(-AB ) +CQ = PC + CQ = PQ; 5^ A .2 .已知向量:=(2, 1)5 = (1, 丄则曲二( )A .B . jC . V5D . 5【答案】C【解析】••向量:=(2,1), b = (1, m ),且;1 b , :2*b =2+m=0 f m= - 2 ,贝|」|刁=Vl + m2=曲,故选C .3 .已知:=(2,73)5=(1,73),贝临在/方向上的投影为( )A.空B上 C.匹 D.27 2 7 2【答案】D【解析】由数量积定义可知,:在/方向上的投影为|a|cos< a.b>=^= 2xl+f xv,1 =扌.故选D .IS 2 24 •如图f在乙ABC中r AD = ^AC r BP = ^PD t若云=久云+ “云,贝!U+p的值为( )【答案】A【解析】••矗=^PD . :.BP = jSD ,又・・•* = AB + BP t :.AP = AB + ^BD tT T T?T T T T〔T T o -> 1 O又.BD = AD-AB = ^AC - AB ,:.AP = AB + 扌BD = AB+^(-AC -AB )= -AB + -AC t :.X= - fp= 7 /则入+P=〃当直角三角形的两为商高定理■〃勾三股四弦五〃,其中勾AC 的长为3 ,点A 在弦BC 上的射 影为点D #则(云-BA )-AD=( 36r144)c•-【答案】B【解析】由5 •已知正方形ABCD 的边长为4 ,点E , F 分别为AD , BC 的中点,如果对于常数入,在正方形ABCD的四条边上,有且只有8个不同的点P ,使得丘• PF =久成立,那么入的取值范围是()A . ( 0,2]B.(0#4) C . ( 0 f 4] D.(0z 2)【答案】B(PE + PF = 2P0 r TT T T【解析】设EF 的中点为O ,贝IJ T T T ,两式平方相减得4PE • PF = 4PO2 - EF2 t 所 (PE -PF =FE t l^PE-PF = PO 2-4=A t gPPO 2 =A + 4t \P0\ = VIT4 ,由对称性可知每个边上存在两个点P ,所以点P 在边的中点和顶点之间, 故2 < VTT4 < 2A /2 ,解得0<入<4・故选B ・5在MBC中AB二2 ,BC二4 zABC=60° AD为BC边上的高Q为AD的中点若矗=AAB + [xBC .则入+p二( )A . -B . -C . -D .-3 3 8 8【答案】D【解析】由已知,如图屆=\AD = + BD) = AB + \mBC ,T T T T T T T又AD 为BC 边上的高z:.AD ・ BC = 0 .又/D = AB + BD = AB + mBC f :.AB ・ BC + mBC2 = 0 r g 卩2x4xcos ( 180°・ 60°) +mx42=0 # 解得m=扌,:.AO = ^AB + ^BC .又矗=AAB + fiBC ,可得入=釘P=扌, .•.入+JJ= |.故选D .6 •如图1是某晶体的阴阳离子单层排列的平面示意图•其阴离子扫洌如图2所示,图2中圆的半径均为1.且相邻的圆都相切,A , B , C , D是其中四个圆的圆心,贝UB^CD =( )B・26D・32A・24 C・28A ・2逅一4B ・ 2A /2C ・4 【答案】B【解析】如图所示,建立以:,鬲一组基底的基向量,其中|刁=\b\ = 1且:,/的夹角为60° ,20xlxlx^=26・故选B ・7・已知向量V ,亍满足恆+ b\ = \a- 2b\ r 其中E 是单位向量,贝畅在E 方向上的投影是()【答案】C【解析】b 是单位向量,・・・|匸| = 1 ,・・逅+ b|=|a -2b| f /. (a+ b ) 2= (a -2b ) 2,T T化简得2a= b 2=l f 即:活=扌f方向上的投影是借=爲故选C •2\b\28・已知BC 是圆O : x?+y2=4的直径,H 为直线x+y 二4上任意点・贝(J 云•运的最小值为( )【答案】C【解析】如图,HB»HC =(HO^OBy(HO^OC).因为BC 为圆O 的直径,所以必=-OB , 贝U 云•况=(HO + OB )^HO+ OC) = (HO + OB XHO-OB ) =\HO\2 ・ |0创2二|矗|2 ・ r 2=\HO\2 -4 ,故要想応•品最小,只需|品|最小,即当OH 垂直x+y 二4时取最小值, 根据条件,|品|最小值=略兽=272 ,故云•応最小值为(2逅)2 - 4二4 ,故选C .2+ 8b 2+ 20a9 •在二ABC中,点D在线段BC上,且页+说=兄鬲,设AB=a,AC = b,下列结论:①A =-;2_ 1 1 ______ 1 1 ________ 1@BD = -b一一a@AD = -a+-b ; @\AD\=-\BC\•其中正确结论的序号为( )2 2 2 2 2A .①③B .②④C .③④D .②③【答案】D'* I 一「・* ・•■' ・・■I •【解析】取AC 中点E f贝yr>E = -(DA + DC) f由D4 + QC = ;IBA 可知,2DE = ABA t即DE II2AB,贝ij D为BC中点,DE = -BA,故眉:1,即①错误;BD = -BC = -b--a,即②正确;2 2 2 2AD = -a + -b^ t即③正确;只有zBAC二90。
2023版新教材高中语文第四单元检测卷部编版必修上册(含答案)
新教材高中语文部编版必修上册:第四单元检测卷一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,17分)阅读下面的文字,完成1~5题。
材料一地名如人名,与生于斯长于斯的一代又一代人息息相关。
地名,承载着丰富的文化信息,接续千百年的情感传承,不会随时间的推移而消失。
一个长期形成的地名,其实就是那个地方的符号,是那个地方所有人情感所系的标志。
即便远在他乡,人们也永远不会忘记故乡的名字。
我们常说珍爱乡愁、寻找乡愁,这乡愁,就融在地名中。
曾听某省的民政厅干部讲过这样一个故事。
一位老兵到了台湾后一直没能回到大陆,身体不好不能回到家乡,就让孩子回来寻根,寻找他生活过的地方。
孩子归来,根据地名按图索骥,却难以找到,原来这个地名早已消失。
最后,孩子找到民政厅,翻阅档案,才找到原来的地名。
这位老先生写信来感谢民政厅的同志,并说:“你们经济发展得很好,建设也很好,但是地名不要改。
地名是我们回家的路。
”地名,是我们回家的路。
说得多好!地名,在海内外华人眼里,在所有寻找乡愁的人们心中,就是一条回家的路。
即便不在这里出生,那也是祖辈的根,后代依旧将心底的那份乡愁,与那个遥远的地名连在一起。
地名的替换与取消,显然需要慎之又慎。
尤其是一个历史悠久的地名,早就成为中国文化的一部分,存在于史书、碑刻、文学经典之中。
如果轻率地将之更名,多少文化信息会被消解。
陕西汉中的勉县,是武侯墓和武侯祠的所在地,因汉水称作沔水,历史上曾叫沔县。
20世纪50年代初,因考虑到“沔”字不好写,便改为“勉”。
汉水流至湖北,一个县叫沔阳,和沔县的“沔”是同一个字,前些年改名叫仙桃市。
远远近近的人,都熟悉沔阳三蒸、沔阳花鼓戏,可如今,一个“仙桃”,令“沔阳”失去了多少历史内涵。
说到襄阳,会想到王维的“襄阳好风日,留醉与山翁”,想到杜甫的“即从巴峡穿巫峡,便下襄阳向洛阳”;说到荆州,会想到“大意失荆州”;说到衡阳,会想到范仲淹的“衡阳雁去无留意”;说到徽州,会想到汤显祖的“一生痴绝处,无梦到徽州”……试想,如果将“襄樊”“荆沙”“黄山”在诗句中予以替换,今人与后人的感受,又该如何?幸好衡阳、洛阳等地名依然安在,不然,多少经典诗词将从此失去地名带来的历史内涵和美感。
(压轴题)高中数学必修四第二章《平面向量》检测卷(有答案解析)
一、选择题1.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( )A .4B .C .3+D .62.设向量a ,b ,c 满足||||1a b ==,12a b ⋅=,()()0a c b c -⋅-=,则||c 的最小值是( )A .12B .12C D .13.已知非零向量a →,b →夹角为45︒,且2a =,2a b -=,则b →等于( )A .B .2C D4.已知ABC 是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,与CE 交于点O ,则下列说法正确的是( )A .1AB CD ⋅=- B .1233BD BC BA =+ C .3OA OB OC ++=D .ED 在BC 方向上的投影为765.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( )A .(1⎤⎦B .(1⎤⎦C .1⎤⎦D .)1,+∞6.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .37.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==8.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .3-C .3D .39.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b + B .3255a b + C .2133a b +D .1233a b +10.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( ) A .14B .12C .2D .411.直线0ax by c与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( ) A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-12.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,23AB =,2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题: ①若1ABλ=,1ACμ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心; ③若1λμ+=,且0μ>,则点P 在线段BC 上; ④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内. 其中真命题为______14.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.15.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,) OC mOA nOB m n R =+∈,则mn等于.16.已知ABC的三边长3AC=,4BC=,5AB=,P为AB边上任意一点,则()CP BA BC⋅-的最大值为______________.17.已知ABC∆中,3AB=,5AC=,7BC=,若点D满足1132AD AB AC=+,则DB DC⋅=__________.18.已知向量()()2,3,1,2==-a b,若ma b+与2a b-平行,则实数m等于______. 19.已知点O是ABC∆内部一点,并且满足230OA OB OC++=,BOC∆的面积为1S,ABC∆的面积为2S,则12SS=______.20.如图,在四边形ABCD中,60B∠=︒,2AB=,6BC=,1AD=,若M,N是线段BC上的动点,且||1MN=,则DM DN⋅的取值范围为_________.三、解答题21.在ABC中,3AB=,6AC=,23BACπ∠=,D为边BC的中点,M为中线AD 的中点.(1)求中线AD的长;(2)求BM与AD的夹角θ的余弦值.22.在直角坐标系xoy中,单位圆O的圆周上两动点A B、满足60AOB∠=︒(如图),C 坐标为()1,0,记COAα∠=(1)求点A与点B纵坐标差A By y-的取值范围;(2)求AO CB ⋅的取值范围;23.在OAB 的边OA ,OB 上分别有一点P ,Q ,已知:1:2OP PA =,:3:2OQ QB =,连接AQ ,BP ,设它们交于点R ,若OA a =,OB b =.(1)用a 与b 表示OR ;(2)过R 作RH AB ⊥,垂足为H ,若1a =,2b =,a 与b 的夹角2,33ππθ⎡⎤∈⎢⎥⎣⎦,求BHBA的范围.24.如图,在ABC 中,1AB AC ==,120BAC ∠=.(Ⅰ)求AB BC 的值;(Ⅱ)设点P 在以A 为圆心,AB 为半径的圆弧BC 上运动,且AP x AB y AC →→→=+,其中,x y R ∈. 求xy 的最大值.25.如图,四边形ABOC 是边长为1的菱形,120CAB ∠=︒,E 为OC 中点.(1)求BC 和BE ;(2)若点M 满足ME MB =,问BE BM ⋅的值是否为定值?若是定值请求出这个值;若不是定值,说明理由.26.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+,再利用基本不等式即可求解. 【详解】因为1a a b =-=, 所以22222cos ,1a a ba ab a b b =-=-〈〉+=,则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b -=-22124a a b t b =-+== ()2222a b a b a a b t b +=+=++22418t t =+=+,所以29832a b a b t -+-=+,利用基本不等式知:2a b a b +≤+≤,≤=,=此时2t =±.则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到29832a b a b t -+-=+,最后利用基本不等式即可解决.2.B解析:B 【分析】建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为122⎛⎫ ⎪ ⎪⎝⎭,,221⎛⎫- ⎪ ⎪⎝⎭,设c 的坐标为(),x y ,由已知可得2214x y ⎛+= ⎝⎭,表示以2⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆,求出圆心到原点的距离,再减去半径即为所求 【详解】解:建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为12⎫⎪⎪⎝⎭,21⎫-⎪⎪⎝⎭,设c 的坐标为(),x y , 因为()()0a c b c -⋅-=,所以11,,022x y x y ⎫⎫--⋅---=⎪⎪⎪⎪⎝⎭⎝⎭,化简得22124x y ⎛-+= ⎝⎭,表示以,02⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆, 则||c 的最小值表示圆上的点到原点的距离的最小值,因为圆到原点的距离为2,所以圆上的点到原点的距离的最小值为122-,故选:B【点睛】此题考查平面向量的数量积运算,解题的关键是写出满足条件的对应的点,考查数学转化思想,考查数形结合的思想,属于中档题3.A解析:A 【分析】根据数量积的运算,2a b →→-=两边平方即可求解. 【详解】2a b →→-=,=2a →,a →,b →夹角为45︒,2222()24a b a b a a b b →→→→→→→→∴-=-=-⋅+=, 2422||cos||44b b π→→∴-⨯+=,解得:||22b →= 故选:A 【点睛】本题主要考查了向量数量积的运算性质,数量积的定义,属于中档题.4.D解析:D 【分析】利用CE AB ⊥,判断出A 错误;由2AD DC =结合平面向量的基本定理,判断出选项B 错误;以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,写出各点坐标,计算出OA OB OC ++的值,判断出选项C 错误;利用投影的定义计算出D 正确. 【详解】由题E 为AB 中点,则CE AB ⊥,0AB CE ⋅=,所以选项A 错误;由平面向量线性运算得2133BD BC BA =+,所以选项B 错误; 以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,()0,0E ,1,0A ,()1,0B -,(3C ,1233D ⎛ ⎝⎭,设()0,O y ,(3y ∈,()1,BO y =,123,33DO y ⎛=-- ⎝⎭, //BO DO ,所以,3133y y -=-,解:32y =, 32OA OB OC OE OE OE ++=+==,所以选项C 错误; 123,33ED ⎛⎫= ⎪ ⎪⎝⎭,(1,3BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,故选:D . 【点睛】本题考查平面向量数量积的应用,考查平面向量基本定理,考查投影的定义,考查平面向量的坐标表示,属于中档题.5.C解析:C 【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出22OB x y d =+=,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 取得最小值21-,O 在BM 的延长线上时,OB 取得最大值21+. 故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,()()2222222ax cy ac xy x y +≤++=+,取等号条件:ay cx =,令22OB x y d =+=,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得2121d -≤≤+.故选:C 【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.6.C解析:C 【分析】由AC 的垂直平分线交AB 于D ,且4A π=可得ACD △为等腰直角三角形,且4A ACD π∠=∠=,2ADC BDC π∠=∠=;进而由2BC =可求出,,DB CD AC 的长,从而求出AC CD ⋅的值. 【详解】解:因为AC 的垂直平分线交AB 于D 、4A π=,所以ACD △为等腰直角三角形,4A ACD π∠=∠=,2ADC BDC π∠=∠=,在BDC 中,3B π=,2BDC π∠=,2BC =,所以1,3BD CD ==,所以3AD CD ==,26AC CD ==,所以32cos63()342AC CD AC CD π⋅=⋅=⨯⨯-=-.故选:C. 【点睛】本题主要考查平面向量的数量积,考查运算求解能力,属于基础题型.7.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.8.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+,所以13a b ⋅=,则()2263a b a b+=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a a b a b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.9.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x y y z x y z x z +=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555AD AB BD AB BC AB AC AB AB AC =+=+=+-=+3255a b =+. 故选:B 【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.10.C解析:C 【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos62b a b t aaπ⋅=-=-时,()g t 取得最小值1,变形可得22sin16b π=,从而可求出b 【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos 1)06a b a b a b π∆=⋅-=-<,所以()g t 恒大于零,所以当232cos622b b a b taaaπ⋅=-=-=-时,()g t 取得最小值1,所以22233321222b b bg a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =,所以2b =, 故选:C 【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题11.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-,()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭,∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-; 当OP ,OA 反向时,取得最大值,为246+=. ∴PM PN ⋅的取值范围为[]2,6-. 故选:A. 【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.12.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④ 【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断. 【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】延长BC 作圆M 的切线设切点为A1切线与BD 的交点D 结合数量积的几何意义可得点A 运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC 作圆M 的切线设切点为A1切 解析:2-延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,结合数量积的几何意义可得点A 运动到A 1时,CA 在CB 上的投影最小,设CP x =,将结果表示为关于x 的二次函数,求出最值即可. 【详解】 如图,延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,由数量积的几何意义,CA CB ⋅等于CA 在CB 上的投影与CB 之积,当点A 运动到A 1时,CA 在CB 上的投影最小; 设BC 中点P ,连MP ,MA 1,则四边形MPDA 1为矩形; 设CP =x ,则CD =2-x ,CB =2x ,CA CB ⋅=()()222224212x x x x x --⋅=-=--,[]02x ∈,, 所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.15.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=.以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,22OC λλλ⎛⎫=︒︒ ⎪ ⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=,得()31,=322m n λ⎛⎫ ⎪ ⎪⎝⎭,即 3=2132m nλλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.16.9【分析】根据题意建立直角坐标系用坐标法解决即可得答案【详解】解:根据题意如图建立直角坐标系∴∴∴∴的最大值为故答案为:【点睛】本题考查坐标法表示向量向量的数量积运算线性运算的坐标表示等是中档题解析:9 【分析】根据题意,建立直角坐标系,用坐标法解决即可得答案. 【详解】解:根据题意,如图建立直角坐标系,∴ ()0,3A ()4,0B ,()0,0C , ∴ ()4,3AB =-,()()()0,34,34,33CP CA AP CA AB λλλλλ=+=+=+-=-,[]0,1λ∈,∴ ()()()[]4,330,3990,9CP BA BC CP CA λλλ⋅-=⋅=-⋅=-∈∴()CP BA BC ⋅-的最大值为9.故答案为:9 . 【点睛】本题考查坐标法表示向量,向量的数量积运算,线性运算的坐标表示等,是中档题.17.【分析】根据以为一组基底由得到再由求解【详解】因为又因为所以所以故答案为:-12【点睛】本题主要考查平面向量基本定理和向量的线性运算还考查了运算求解的能力属于中档题 解析:12-【分析】 根据1132AD AB AC =+,以,AB AC 为一组基底,由2222()2BC AC AB AC AB AB AC =-=+-⋅,得到152AB AC ⋅=-,再由2111()()3223⎛⎫⎛⎫⋅=-⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭DB DC AB AD AC AD AB AC AC AB 求解.【详解】因为2222()2BC AC AB AC AB AB AC =-=+-⋅ 又因为3AB =,5AC =,7BC = 所以152AB AC ⋅=-,所以2111()()3223DB DC AB AD AC AD AB AC AC AB ⎛⎫⎛⎫⋅=-⋅-=-⋅-=⎪ ⎪⎝⎭⎝⎭22211251521294244AB AC AB AC --+⋅=---=-. 故答案为:-12 【点睛】本题主要考查平面向量基本定理和向量的线性运算,还考查了运算求解的能力,属于中档题.18.【分析】由向量坐标的数乘及加减法运算求出与然后利用向量共线的坐标表示列式求解【详解】解:由向量和所以由与平行所以解得故答案为:【点睛】本题考查了平行向量与共线向量考查了平面向量的坐标运算属于基础题解析:12-【分析】由向量坐标的数乘及加减法运算求出ma b +与2a b -,然后利用向量共线的坐标表示列式求解. 【详解】解:由向量(2,3)a =和(1,2)b =-,所以()()()2,31,221,32m m m b m a ++=-=-+,()()()22,321,24,1a b -=--=-,由ma b +与2a b -平行,所以4(32)(21)0m m ++-=. 解得12m =-. 故答案为:12-. 【点睛】本题考查了平行向量与共线向量,考查了平面向量的坐标运算,属于基础题.19.【分析】将化为再构造向量和得出比例关系最后求解【详解】因为所以分别取的中点则所以即三点共线且如图所示则由于为中点所以所以故答案为:【点睛】本题考查向量的线性运算但是在三角形中考查又和三角形面积综合在解析:16【分析】将230OA OB OC ++=化为()2OA OC OB OC +=-+,再构造向量()12OA OC +和()12OB OC +,得出比例关系,最后求解12.S S【详解】因为230OA OB OC ++=,所以()2OA OC OB OC +=-+,分别取AC ,BC 的中点D ,E ,则2OA OC OD +=,2OB OC OE +=. 所以2OD OE =-,即O ,D ,E 三点共线且2OD OE =.如图所示,则13OBC DBC S S ∆∆=,由于D 为AC 中点,所以12DBC ABC S S ∆∆=,所以16OBC ABC S S ∆∆=. 故答案为:16【点睛】本题考查向量的线性运算,但是在三角形中考查,又和三角形面积综合在一起,属于中档题.20.【分析】首先以点为原点建立空间直角坐标系利用向量的坐标表示再求取值范围【详解】如图建立平面直角坐标系当时取得最小值当时取得最大值所以的取值范围为故答案为:【点睛】关键点点睛:本题的关键是利用坐标法解解析:11,154⎡⎤⎢⎥⎣⎦【分析】首先以点B 为原点,建立空间直角坐标系,利用向量的坐标表示DM DN ⋅,再求取值范围. 【详解】如图,建立平面直角坐标系,(3A ,(3D ,(),0M x ,()1,0N x +,(2,3DM x =--,(1,3DN x =--,[]0,5x ∈,()()212335DM DN x x x x ⋅=--+=-+231124x ⎛⎫=-+ ⎪⎝⎭,当32x =时,取得最小值114,当5x =时,取得最大值15,所以DM DN ⋅的取值范围为11,154⎡⎤⎢⎥⎣⎦故答案为:11,154⎡⎤⎢⎥⎣⎦【点睛】关键点点睛:本题的关键是利用坐标法解决数量积的范围问题.三、解答题21.(1)332;(257【分析】 (1)由于()12AD AB AC =+,进而根据向量的模的计算求解即可; (2)由于3144BM AB AC =-+,()12AD AB AC =+,进而根据向量数量积得278BM AD ⋅=,故57cos BM AD BM AD θ⋅==. 【详解】解:(1)由已知,236cos 93AB AC π⋅=⨯=-, 又()12AD AB AC =+, 所以()222124AD AB AB AC AC =+⋅+()1279183644=-+=, 所以33AD =. (2)由(1)知,()131444BM AM AB AB AC AB AB AC =-=+-=-+, 所以()293117199361681616BM=⨯-⨯-+⨯=,从而319BM =. ()311442BM AD AB AC AB AC ⎛⎫⋅=-+⋅+= ⎪⎝⎭()3212799368888-⨯-⨯-+⨯=,所以2757cos 831933BM AD BM ADθ⋅=== 解法2:(1)以点A 为原点,AB 为x 轴,过点A 且垂直于AB 的直线为y 轴建系,则()0,0A ,()3,0B ,(C -,因为D 为边BC 的中点,所以0,2D ⎛ ⎝⎭,0,2AD ⎛= ⎝⎭,所以332AD =.(2)因为M 为中线AD 的中点,由(1)知,0,4M ⎛⎫ ⎪ ⎪⎝⎭,所以3,4BM ⎛⎫=- ⎪ ⎪⎝⎭,所以9164BM ==,278BM AD ⋅=,所以27cos8BM AD BM AD θ⋅=== 【点睛】本题考查向量的数量积运算,向量夹角的计算,考查运算求解能力与化归转化思想,是中档题.本题解题的关键在于向量表示中线向量()12AD AB AC =+,进而根据向量模的计算公式计算.22.(1)[ 1.1]A B y y -∈-;(2)31,22⎡⎤-⎢⎥⎣⎦. 【分析】(1)根据三角函数的定义写出点A 与点B 纵坐标,从而将A B y y -表示成关于α的三角函数;(2)写出向量数量积的坐标运算,即AO CB OA BC ⋅=⋅,再利用三角函数的有界性,即可得答案;【详解】由题意得:()sin ,sin 60A B y y αα︒==-,∴A B y y -()1sin sin 60sin sin cos 22ααααα︒⎛⎫=--=-⋅-⋅ ⎪ ⎪⎝⎭1sin sin 223πααα⎛⎫=+=+ ⎪⎝⎭ 02απ<,∴1sin 13πα⎛⎫-≤+≤ ⎪⎝⎭,∴[ 1.1]A B y y -∈-.(2)()()() (cos ,sin )1cos 60,sin 60AO CB OA BC αααα︒︒⋅=⋅=⋅---- ()()cos cos cos 60sin sin 60ααααα︒︒=-⋅--⋅- ()22133cos sin cos sin cos sin cos 2ααααααα=-+-⋅+⋅ 1cos 2α=-, 02απ≤<,3111cos 1cos 222αα∴-≤≤⇒-≤-≤, ∴31,22AO CB ⎡⎤⋅∈-⎢⎥⎣⎦. 【点睛】根据三角函数的定义及三角恒等变换、三角函数的有界性是求解本题的关键.23.(1)1162OR a b =+;(2)171,422⎡⎤⎢⎥⎣⎦. 【分析】(1)利用,,A R Q 三点共线和,,B R P 三点共线,结合平面向量共线定理,可构造方程组求得结果;(2)设BHt BA =,利用0BH AB ⋅=,结合平面向量线性运算将两个向量转化为用,a b 表示的向量,利用平面向量数量积的运算律可整理得到t 关于cos θ的函数形式,利用cos θ的范围即可求得结果.【详解】(1)设OR OA OQ λμ=+,,,A R Q 三点共线,1λμ∴+=,又:3:2OQ QB =,35OQ OB ∴=,35OR OA OB μλ∴=+;设OR mOP nOB =+,同理可得:1m n +=,3m OR OA nOB =+, ,OA OB 不共线,335m n λμ⎧=⎪⎪∴⎨⎪=⎪⎩,51331m n m n ⎧+=⎪∴⎨⎪+=⎩,解得:1212m n ⎧=⎪⎪⎨⎪=⎪⎩,1162OR OA OB ∴=+, 即1162OR a b =+. (2)设BH t BA =,则BH tBA =,()()1162RH BH BR tBA OR OB t OA OB OA OB ⎛⎫=-=--=--- ⎪⎝⎭ 11116262t OA t OB t a t b ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 又AB OB OA b a =-=-,BH AB ⊥,0BH AB ∴⋅=,()2211112262623t a t b b a t a t b t a b ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴-+-⋅-=-+-+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦14134244cos 54cos cos 06363t t t t t θθθ⎛⎫=-+-+-=-+-= ⎪⎝⎭, 整理可得:134cos 138cos 136354cos 3024cos 33024cos t θθθθθ--===+---, 2,33ππθ⎡⎤∈⎢⎥⎣⎦,11cos ,22θ⎡⎤∴∈-⎢⎥⎣⎦,171,422t ⎡⎤∴∈⎢⎥⎣⎦, 即BHBA 的取值范围为171,422⎡⎤⎢⎥⎣⎦. 【点睛】思路点睛:本题考查了平面向量线性运算和数量积运算的综合应用,处理数量积运算问题时,通常利用线性运算将所求向量进行等价转化,利用模长和夹角已知的两个向量来表示所求向量,如本题中利用,a b 表示出,BH AB ,再结合数量积的运算律来进行求解. 24.(Ⅰ)32-;(Ⅱ)1. 【分析】(I )建立坐标系,求出向量坐标,代入数量积公式计算;(II )利用向量坐标运算,得到三角函数,根据三角函数求出最大值.【详解】(Ⅰ)()AB BC AB AC AB →→→→→⋅=⋅- 213122AB AC AB →→→=⋅-=--=-. (Ⅱ)建立如图所示的平面直角坐标系,则(1,0)B ,13(,)22C -. 设(cos ,sin )P θθ,[0,]3θ2π∈,由AP x AB y AC →→→=+,得13(cos ,sin )(1,0)(2x y θθ=+-. 所以3cos ,sin 22y x y θθ=-=. 所以3cos sin 3x θθ=+,33y θ=, 2232311sin cos sin 2cos 233333xy θθθθθ=+=+- 2311(2cos 2)3223θθ=-+ 21sin(2)363πθ=-+, 因为2[0,]3πθ∈,72[,]666πππθ-∈-. 所以,当262ππθ-=,即3πθ=时,xy 的最大值为1. 【点睛】本题主要考查了平面向量的数量积运算,向量的坐标运算,正弦型函数的图象与性质,属于中档题.25.(1)3BC =;72BE =;(2)是定值,78. 【分析】 (1)由()22BC AC AB =-,()2212BE BO BC ⎡⎤=+⎢⎥⎣⎦,结合数量积公式得出BC 和BE ;(2)取BE 的中点N ,连接MN ,由ME MB =,得出MN BE ⊥,由BM BN NM =+,结合数量积公式计算BE BM ⋅,即可得出定值.【详解】(1)∵BC AC AB =-∴222211211cos1203BC AC AB AB AC =+-⋅=+-⨯⨯⨯︒=∴3BC =又()12BE BO BC =+ ∴()22211372132134424BE BO BC BO BC ⎛⎫=++⋅=++⨯⨯⨯= ⎪⎝⎭ ∴7BE = (2)取BE 的中点N ,连接MN∵ME MB =,∴MN BE ⊥,且BM BN NM =+∴()BE BM BE BN NM BE BN BE NM ⋅=⋅+=⋅+⋅211177022248BE BE BE =⋅+==⨯= ∴78BE BM ⋅=(为定值)【点睛】本题主要考查了利用定义计算数量积以及模长,涉及了向量加减法的应用,属于中档题.26.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =. 因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<,则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ, 使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=,故310 CGCB.【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.。
2023版新教材高中语文第四单元检测卷部编版必修下册
第四单元检测卷一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,17分)阅读下面的文字,完成1~5题。
材料一在“互联网+”的时代背景下,以媒介为载体的信息交互网络正联结起越来越多的社会关系。
阅读文本的生产、传播方式也发生了巨大变化,从平面纸质阅读到手机阅读、社交阅读等网络阅读,阅读媒介多样化趋势不行阻挡,这一进展趋势给传统的以纸质文本为中心的阅读教学带来新的机遇和挑战。
为更好地应对这一机遇与挑战,《一般高中语文课程标准(2017年版)》将“跨媒介阅读与沟通”加入学习任务群,使之正式成为语文教学的核心内容。
“媒介”一般指传播介质,如报纸、杂志、广播、电视、网络等,既包括静态的纸质文本、图片,也包括动态的声音、动画、视频等电子文本。
由于文本内容呈现形式的多样性,“阅读”的内涵不再局限于对书面文字的识记、理解、鉴赏、评价,而是进一步拓展到对图片、表格、声音、视频等多元信息的猎取、处理和应用。
与传统的纸质阅读相比,跨媒介阅读具有参与度高、自主性强、多样、快捷、便利等特点,人人都可以成为生活大事的发觉者、记录者、写作者、传播者和接受者。
“跨媒介阅读与沟通”的“跨”既强调“跨越”,更留意“整合”,不同的媒介形式特点各异,求同存异,将之有机整合并应用到语文课堂上来,可以丰富语文学习内容,加强语文学习与时代、与生活的联系。
“跨媒介阅读与沟通”应围绕言语活动开展。
阅读以不同媒介为载体的信息,首先应基于语言的建构与运用,引导同学理解多种媒介运用对语言的影响,将“跨媒介阅读与沟通”作为培育同学核心素养的手段,而非目的。
“跨媒介阅读与沟通”活动应整合丰富的语料,熬炼同学在多样的信息来源中去伪存真、辨识媒体立场的力量,在言语实践中形成价值推断和文化心理。
从本质上看,“跨媒介阅读与沟通”实际上是要求同学具备信息时代的“媒介素养”,但这里所说的“媒介素养”不是新闻传播学范畴的,而是语文学科范畴的“媒介素养”,其动身点和落脚点是引导同学反思并适应媒介技术对母语习得的影响,在不断接触、分析、推断、评价的过程中实现媒介素养与语文核心素养的融合。
高一数学必修4第二章综合检测题
第二章综合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列等式成立的是( ) A.MN →=NM →B .a ·0=0C .(a ·b )c =a (b ·c )D .|a +b |≤|a |+|b |[答案] D2.如果a ,b 是两个单位向量,那么下列四个结论中正确的是( )A .a =bB .a ·b =1C .a =-bD .|a |=|b | [答案] D[解析] 两个单位向量的方向不一定相同或相反,所以选项A ,C 不正确;由于两个单位向量的夹角不确定,则a ·b =1不成立,所以选项B 不正确;|a |=|b |=1,则选项D 正确.3.已知A (1,2),B (3,-1),C (3,4),则AB →·AC →等于( ) A .11 B .5 C .-1 D .-2 [答案] D4.在四边形ABCD 中,AB →·BC →=0,且AB →=DC →,则四边形ABCD 是( )A .平行四边形B .菱形C .矩形D .正方形[答案] C[解析] AB →=DC →表示AB →与DC →模相等,方向相同,AB 綊DC .故四边形ABCD 是平行四边形.又AB →·BC →=0,∴AB →⊥BC →,∴四边形ABCD 为矩形.5.在五边形ABCDE 中,(如图),AB →+BC →-DC →=( )A.AC →B.AD →C.BD →D.BE →[答案] B[解析] AB →+BC →-DC →=AB →+BC →+CD →=AD →. 6.若|a |=2,|b |=6,a ·b =-3,则|a +b |等于( ) A .23 B .34 C.23 D.34 [答案] D[解析] |a +b |2=(a +b )2=a 2+2a ·b +b 2=4-6+36=34.7.已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,且四边形ABCD 为矩形,则( )A .a +b +c +d =0B .a -b +c -d =0C .a +b -c -d =0D .a -b -c +d =0[答案] B[解析] BA →=OA →-OB →=a -b ,CD →=OD →-OC →=d -c ,又BA →=CD →,故a -b =d -c .8.如下图,M 、N 分别是AB 、AC 的一个三等分点,且MN →=λ(AC →-AB →)成立,则λ=( )A.12B.13 C.23 D .±13[答案] B[解析] MN →=13→且BC →=AC →-AB →.9.与向量a =(1,1)平行的单位向量为( ) A .(22,22)B .(-22,-22) C .(±22,±22)D .(22,22)或(-22,-22) [答案] D[解析] 与a 平行的单位向量为±a |a |10.若|a |=1,|b |=6,a ·(b -a )=2,则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2[答案] C[解析] a ·(b -a )=a ·b -a 2=1×6×cos θ-1=2. cos θ=12,θ∈[0,π],故θ=π3.11.(2012·全国高考浙江卷)设a 、b 是两个非零向量( ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b =|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b | [答案] C[解析] 利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a 、b 共线,即存在实数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a 、b 可为异向的共线向量;选项B :若a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D ;若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立.12.已知△ABC 中,AB →=a ,AC →=b ,a ·b <0,S △ABC =154,|a |=3,|b |=5,则a 与b 的夹角为( )A .30°B .-150°C .150°D .30°或150°[答案] C[解析] 由a ·b <0可知a ,b 的夹角θ为钝角,又S △ABC =12|a |·|b |sin θ,∴12×3×5×sin θ=154,∴sin θ=12⇒θ=150°. 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则A 、B 、C 、D 四点中一定共线的三点是________.[答案] A ,B ,D[解析] BD →=BC →+CD →=(-5a +6b )+(7a -2b )=2a +4b =2(a +2b )=2AB →.14.已知向量a =(1,1),b =(2,-3),若k a -2b 与a 垂直,则实数k 等于________.[答案] -1[解析] (k a -2b )·a =0,[k (1,1)-2(2,-3)]·(1,1)=0,即(k -4,k +6)·(1,1)=0,k -4+k +6=0,∴k =-1.15.如图,两块斜边长相等的直角三角形拼在一起,若AD →=xAB →+yAC →,则x =________,y =________.[答案] 2+32 32[解析] 连接AE ,则AE ∥BD ,且BD =3AE ,∴BD →=3AE →=3×12(AB →+AC →)=32(AB →+AC →),则AD →=AB →+BD →=AB →+32(AB →+AC →)=2+32AB →+32AC →.16.关于平面向量a 、b 、c ,有下列三个命题: ①若a ·b =a ·c ,则b =c ;②若a =(1,k ),b =(-2,6),a ∥b ,则k =-3;③非零向量a 和b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角为60°. 其中真命题的序号为________.(写出所有真命题的序号) [答案] ②[解析] 当a =0时,①不成立;对于②,若a ∥b ,则-2k =6,∴k =-3,②成立;对于③,由于|a |=|b |=|a -b |,则以|a |,|b |为邻边的平行四边形为菱形,如图.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)已知O 、A 、B 是平面上不共线的三点,直线AB 上有一点C ,满足2AC →+CB →=0,(1)用OA →、OB →表示OC →;(2)若点D 是OB 的中点,证明四边形OCAD 是梯形. [解析] (1)2AC →+CB →=0, 2(OC →-OA →)+(OB →-OC →)=0. 2OC →-2OA →+OB →-OC →=0. ∴OC →=2OA →-OB →.(2)如图,DA →=DO →+OA →=-12OB →+OA →=12(2OA →-OB →).故DA →=12OC →.故四边形OCAD 为梯形.18.(本题满分12分)已知点O (0,0)、A (1,2)、B (4,5)及OP →=OA →+tAB →.求:(1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限? (2)存在平行四边形OABP 吗?若存在,求出相应的t 值;若不存在,请说明理由.[解析] (1)OP →=OA →+tAB →=(1+3t,2+3t ). 若点P 在x 轴上,只需2+3t =0,即t =-23;若点P 在y 轴上,只需1+3t =0,即t =-13;若点P 在第二象限,则需⎩⎪⎨⎪⎧1+3t <0,2+3t >0,解得-23<t <-13.(2)假设存在平行四边形OABP ,则有OA →=(1,2),PB →=(3-3t,3-3t ).OA →=PB →,于是⎩⎪⎨⎪⎧3-3t =1,3-3t =2,无解,故不存在平行四边形OABP .[点拨] (1)中判断点P 的位置,即判断点P 的坐标的情况. (2)存在性探究问题一般先假设存在.19.(本题满分12分)已知向量a 、b 不共线,c =k a +b ,d =a -b , (1)若c ∥d ,求k 的值,并判断c 、d 是否同向; (2)若|a |=|b |,a 与b 夹角为60°,当k 为何值时,c ⊥d . [解析] (1)c ∥d ,故c =λd , 即k a +b =λ(a -b ). 又a 、b 不共线,∴⎩⎪⎨⎪⎧ k =λ,1=-λ.得⎩⎪⎨⎪⎧λ=-1,k =-1.即c =-d , 故c 与d 反向. (2)c ·d =(k a +b )·(a -b ) =k a 2-k a ·b +a ·b -b 2 =(k -1)a 2+(1-k )|a |2·cos60° 又c ⊥d ,故(k -1)a 2+1-k 2a 2=0.即(k -1)+1-k2=0.解得k =1.20.(本题满分12分)向量a 、b 、c 满足a +b +c =0,(a -b )⊥c ,a ⊥b ,若|a |=1,求|a |2+|b |2+|c |2的值.[解析] 由(a -b )⊥c 知(a -b )·c =0. 又c =-(a +b ),∴(a -b )·(a +b )=a 2-b 2=0.故|a |=|b |=1,又c 2=[-(a +b )]2=a 2+2a ·b +b 2=a 2+b 2=2, ∴|a |2+|b |2+|c |2=4.21.(本题满分12分)已知|a |=1,|b |=1,a 与b 的夹角为60°,x =2a -b ,y =3b -a ,则x 与y 的夹角的余弦值是多少?[解析] 由|a |=|b |=1,a 与b 的夹角为60°, 得a ·b =|a ||b |cos α=12.∵|x |2=x 2=(2a -b )2=4a 2-4a ·b +b 2=4-4×12+1=3,|y |2=y 2=(3b -a )2=9b 2-6a ·b +a 2=9-6×12+1=7,x ·y =(2a -b )·(3b -a )=7a ·b -2a 2-3b 2=-32,又x ·y =|x ||y |cos θ, ∴cos θ=x ·y |x ||y |=-2114.22.(12分)已知向量a =(3,-1),b =(12,32).(1)求证:a ⊥b ;(2)是否存在不等于0的实数k 和t ,使x =a +(t 2-3)b ,y =-k a +t b ,且x ⊥y ?如果存在,试确定k 和t 的关系;如果不存在,请说明理由.[解析] (1)a ·b =(3,-1)·(12,32)=32-32=0,∴a ⊥b .(2)假设存在非零实数k ,t 使x ⊥y ,则[a +(t 2-3)b ]·(-k a +t b )=0, 整理得-k a 2+[t -k (t 2-3)]a ·b +t (t 2-3)b 2=0.又a ·b =0,a 2=4,b 2=1.∴-4k +t (t 2-3)=0,即k =14(t 2-3t )(t ≠0),故存在非零实数k ,t ,使x ⊥y 成立,其关系为k =14(t 3-3t )(t ≠0).。
2021-2022学年高中语文(人教版必修4)课时跟踪检测(一) 窦娥冤 Word版含答案
课时跟踪检测(一) 窦娥冤(时间:40分钟满分:40分)一、基础巩固(15分,每小题3分)1.下列加点字的注音,全都正确的一组是( )A.嫡.亲(dí) 看觑.(qù)罪愆.(yān) 负屈衔.冤(xián)B.绣闼.(tà) 呆痴.(chī)斟.酌(zhēn) 鳏.寡孤独(ɡuān)C.盗跖.(zhí) 尸骸.(hé)恓.惶(xī) 杳.无音信(yǎo)D. 忤.逆(wǔ) 嗟.怨(jiē)埋.怨(mái) 古陌.荒阡(mò)解析:选B A项,“愆”应读qiān;C项,“骸”应读hái;D项,“埋”应读mán。
2.下列词语中,字形全都正确的一组是( )A.煞尾寒暄两全其美引吭高歌B.脉膊造孽身首不全苌弘化壁C.誓愿白炼揠苗助长湛湛青天D.亢旱伏状激流勇退不明不暗解析:选A B项,“膊”应为“搏”,“壁”应为“碧”;C项,“炼”应为“练”;D项,“激”应为“急”。
3.下列句子中,加点词语解释全对的一项是( )①刽子磨旗..、提刀磨旗:摇旗②行动些...行动些:行动起来③不提防遭刑宪..刑宪:拷打④怎不将天地也生.埋怨生:产生⑤向哥哥行.有句言行:排行⑥念窦娥葫芦提...当罪愆葫芦提:糊涂⑦兀的..不是我媳妇儿兀的:这,这个⑧只当你亡化的孩儿荐.荐:祭,超度亡灵A.①③⑤⑦B.②④⑥⑧C.①⑥⑦⑧ D.②③④⑤解析:选C ②行动些:走快些;③刑宪:刑罚;④生:甚、深;⑤行:那边。
4.下列各句中加点成语的使用,全都不正确的一项是( )①在那些困难的日子里,她们相互鼓舞,举案齐眉....。
在她的文章中说:“她不仅分担了我的苦痛,还给了我不少劝慰和鼓舞。
”②白芳礼老人在74岁以后的生命中,省吃俭用,用蹬三轮车积攒的35万元资助了近300名贫困同学,自己却一贫如洗....。
③造型奇怪的概念车通常都是车展上的呈现用车,一旦车展结束,便被丢进贮存室,从今杳无音信....。
第二章平面向量单元综合测试卷(带答案新人教A版必修4 )
第二章平面向量单元综合测试卷(带答案新人教A版必修4 )第二章平面向量单元综合测试卷(带答案新人教A版必修4 ) (120分钟 150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2013•三明高一检测)化简 - + - 得( ) A. B. C. D.0 2.已知a,b都是单位向量,则下列结论正确的是( ) A.a•b=1 B.a2=b2C.a∥b a=bD.a•b=0 3.已知A,B,C为平面上不共线的三点,若向量 =(1,1),n=(1,-1),且n• =2,则n• 等于( ) A.-2 B.2 C.0 D.2或-2 4.点C在线段AB上,且 = ,若 =λ,则λ等于( ) A. B. C.- D.- 5.若a=(1,2),b=(-3,0),(2a+b)∥(a-mb),则m= ( ) A.- B. C.2 D.-2 6.(2013•牡丹江高一检测)已知a+b=(1,2),c=(-3,-4),且b⊥c,则a在c方向上的投影是( ) A. B.-11C.-D.11 7.(2013•兰州高一检测)若|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为( ) A.30° B.60° C.120° D.150° 8.已知△ABC满足2= • + • + • ,则△ABC是( ) A.等边三角形B.锐角三角形 C.直角三角形 D.钝角三角形9.(2013•西城高一检测)在矩形ABCD中,AB= ,BC=1,E是CD上一点,且• =1,则• 的值为( ) A.3 B.2 C. D. 10.已知向量a=(1,2),b=(2,-3).若向量c满足(c+a)∥b,c⊥(a+b),则c= ( ) A. B. C. D.11.(2013•六安高一检测)△ABC中,AB边上的高为CD,若 =a, =b,a•b=0,|a|=1,|b|=2,则 = ( ) A. a- b B. a- b C. a- b D. a- b 12.在△ABC所在平面内有一点P,如果 + + = ,则△PAB与△ABC 的面积之比是( ) A. B. C. D. 二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.已知a=(2,4),b=(-1,-3),则|3a+2b|= . 14.已知向量a=(1, ),b=(-2,2 ),则a与b的夹角是. 15.(2013•江西高考)设e1,e2为单位向量.且e1,e2的夹角为,若a=e1+3e2,b=2e1,则向量a在b 方向上的射影为. 16.(2013•武汉高一检测)下列命题中:①a∥b 存在唯一的实数λ∈R,使得b=λa;②e为单位向量,且a∥e,则a=±|a|e;③|a•a•a|=|a|3;④a与b共线,b与c共线,则a与c共线;⑤若a•b=b•c且b≠0,则a=c. 其中正确命题的序号是. 三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知梯形ABCD中,AB∥CD,∠CDA=∠DAB=90°,CD=DA= AB. 求证:AC⊥BC. 18.(12分)(2013•无锡高一检测)设 =(2,-1), =(3,0), =(m,3). (1)当m=8时,将用和表示. (2)若A,B,C三点能构成三角形,求实数m应满足的条件. 19.(12分)在边长为1的等边三角形ABC中,设=2 , =3 . (1)用向量,作为基底表示向量 . (2)求• . 20.(12分)(2013•唐山高一检测)已知a,b,c是同一平面内的三个向量,其中a=(1,2). (1)若|b|=2 ,且a∥b,求b的坐标. (2)若|c|= ,且2a+c与4a-3c垂直,求a与c的夹角θ. 21.(12分)(能力挑战题)已知a=(1,cosx),b=(,sinx),x∈(0,π). (1)若a∥b,求的值. (2)若a⊥b,求sinx-cosx的值. 22.(12分)(能力挑战题)已知向量a,b满足|a|=|b|=1, |ka+b|= |a-kb|(k>0,k∈R). (1)求a•b 关于k的解析式f(k). (2)若a∥b,求实数k的值. (3)求向量a与b夹角的最大值.答案解析 1.【解析】选D. - + - = + - = - =0. 2.【解析】选B.因为a,b都是单位向量,所以|a|=|b|=1,所以|a|2=|b|2,即a2=b2.3.【解析】选B.因为n• =n•( - ) =n• -n• ,又n• =(1,-1)•(1,1)=1-1=0,所以n• =n• =2.4.【解析】选C.由 = 知,| |∶| |=2∶3,且方向相反(如图所示),所以 =- ,所以λ=- .5.【解析】选A.因为a=(1,2),b=(-3,0),所以2a+b=(-1,4),a-mb=(1+3m,2),又因为(2a+b)∥(a-mb),所以(-1)×2=4(1+3m),解得m=- . 【拓展提升】证明共线(或平行)问题的主要依据 (1)对于向量a,b,若存在实数λ,使得b=λa,则向量a与b共线(平行). (2)a=(x1,y1),b=(x2,y2),若x1y2-x2y1=0,则向量a∥b. (3)对于向量a,b,若|a•b|=|a|•|b|,则a与b共线. 向量平行的等价条件有两种形式,其一是共线定理,其二是共线定理的坐标形式.其中,共线定理的坐标形式更具有普遍性,不必考虑向量是否为零和引入参数的存在性及唯一性. 6.【解析】选C.a•c=[(a+b)-b]•c=(a+b)•c-b•c. 因为a+b=(1,2),c=(-3,-4),且b⊥c,所以a•c=(a+b)•c =(1,2)•(-3,-4)=1×(-3)+2×(-4)=-11,所以a在c方向上的投影是 = =- . 7.【解析】选C.因为c=a+b,c⊥a,所以c•a=(a+b)•a=a2+b•a=0,所以a•b=-a2=-|a|2=-12=-1,设向量a与b的夹角为θ,则cosθ= = =- ,又0°≤θ≤180°,所以θ=120°. 8.【解析】选C.因为= • + • + • ,所以2= • + • + • ,所以•( - - )= • ,所以•( - )= • ,所以• =0,所以⊥ ,所以△ABC是直角三角形. 【变式备选】在四边形ABCD中, =a+2b, =-4a-b, =-5a-3b,其中a,b不共线,则四边形ABCD为( ) A.平行四边形 B.矩形 C.梯形 D.菱形【解析】选C.因为 = + + =-8a-2b=2 ,所以四边形ABCD为梯形. 9.【解析】选B.如图所示,以A为原点,AB所在直线为x轴建立平面直角坐标系. A(0,0),B( ,0),C( ,1),设点E 坐标为(x,1),则 =(x,1), =( ,0),所以• =(x,1)•( ,0)= x=1,x= ,所以• = •( ,1)= × +1×1=2. 10.【解析】选D.设c=(x,y),则c+a=(x+1,y+2), a+b=(1,2)+(2,-3)= ,因为(c+a)∥b,c⊥(a+b),所以即解得所以c= . 【误区警示】解答本题易混淆向量平行和垂直的坐标表示,导致计算错误. 11.【解析】选D.因为a•b=0,所以⊥ ,所以AB= = ,又因为CD⊥AB,所以△ACD∽△ABC,所以 = ,所以AD= = = ,所以 = = = (a-b)= a- b. 12.【解题指南】先对 + + = 进行变形,分析点P所在的位置,然后结合三角形面积公式分析△PAB与△ABC的面积的关系. 【解析】选A.因为 + + = = - ,所以2 + =0, =-2 =2 ,所以点P是线段AC的三等分点(如图所示). 所以△PAB与△ABC的面积之比是 . 13.【解析】因为3a+2b=3(2,4)+2(-1,-3) =(6,12)+(-2,-6)=(4,6),所以|3a+2b|= =2 . 答案:2 14.【解析】设a与b的夹角为θ,a•b=(1,)•(-2,2 )=1×(-2)+ ×2 =4, |a|= =2,|b|= =4,所以cosθ= = = ,又0°≤θ≤180°,所以θ=60°. 答案:60° 15.【解析】设a,b的夹角为θ,则向量a在b方向上的射影为|a|cosθ=|a| = ,而a•b=(e1+3e2)•2e1=2+6cos =5,|b|=2,所以所求射影为 . 答案: 16.【解析】①错误.a∥b且a≠0 存在唯一的实数λ∈R,使得b=λa;②正确.e为单位向量,且a∥e,则a=±|a|e;③正确. = = = ;④错误.当b=0时,a与b共线,b与c共线,则a与c不一定共线;⑤错误.只要a,c在b方向上的投影相等,就有a•b=b•c. 答案:②③17.【证明】以A为原点,AB所在直线为x轴,建立直角坐标系如图,设AD=1,则A(0,0),B(2,0), C(1,1),D(0,1),所以 =(-1,1), =(1,1),• =-1×1+1×1=0,所以AC⊥BC. 18.【解析】(1)当m=8时, =(8,3),设 =x +y ,则 (8,3)=x(2,-1)+y(3,0)=(2x+3y,-x),所以所以所以 =-3 + . (2)因为A,B,C三点能构成三角形,所以,不共线, =(1,1), =(m-2,4),所以1×4-1×(m-2)≠0,所以m≠6. 19.【解析】(1) = + =- + . (2) • = •(- + ) = •(- )+ • =| |•| |cos150°+ | |•| |cos30° = ×1× + × ×1× =- . 20.【解析】(1)设b=(x,y),因为a∥b,所以y=2x;① 又因为|b|=2 ,所以x2+y2=20;② 由①②联立,解得b=(2,4)或b=(-2,-4). (2)由已知(2a+c)⊥(4a-3c),(2a+c)•(4a-3c)=8a2-3c2-2a•c=0,又|a|= ,|c|= ,解得a•c=5,所以cosθ= = ,θ∈[0,π],所以a与c的夹角θ= . 21.【解题指南】一方面要正确利用向量平行与垂直的坐标表示,另一方面要注意同角三角函数关系的应用. 【解析】(1)因为a∥b,所以sinx= cosx⇒tanx= ,所以 = = =-2. (2)因为a⊥b,所以 +sinxcosx=0⇒sinxcosx=- ,所以(sinx-cosx)2=1-2sinxcosx= . 又因为x∈(0,π)且sinxcosx<0,所以x∈ ⇒sinx-cosx>0,所以sinx-cosx= . 22.【解题指南】(1)先利用a2=|a|2,将已知条件两边平方,然后根据数量积定义和运算律化简、变形求f . (2)先根据k>0和a∥b,判断a与b同向,再利用数量积的定义列方程求k的值. (3)先用求向量a与b夹角的公式表示出夹角的余弦值,再利用配方法求余弦值的最小值,最后根据余弦函数的单调性求夹角的最大值. 【解析】(1)由已知|ka+b|= |a-kb| 有|ka+b|2=( |a-kb|)2,k2a2+2ka•b+b2=3a2-6ka•b+3k2b2. 又因为|a|=|b|=1,得8ka•b=2k2+2,所以a•b= 即f(k)= (k>0). (2)因为a∥b,k>0,所以a•b= >0,则a与b同向. 因为|a|=|b|=1,所以a•b=1,即 =1,整理得k2-4k+1=0,所以k=2± ,所以当k=2± 时,a∥b. (3)设a,b的夹角为θ,则cosθ= =a•b = = = .当 = ,即k=1时,cosθ取最小值,又0≤θ≤π,所以θ= . 即向量a与b夹角的最大值为 .。
高中政治单元综合检测一生活智慧与时代精神含解析新人教版必修4
生活智慧与时代精神(时间:45分钟满分:100分)一、判断题(正确的填“T”,错误的填“F”,每小题2分,共12分)1.世界观是人们对人类社会的总的看法。
( )点拨:F 世界观是人们对整个世界,既包括自然界也包括人类社会的总的看法和根本观点。
2.并非人人都有哲学思想,但人人都有世界观。
( )点拨:T3.哲学的基本问题就是哲学的基本派别。
( )点拨:F 哲学的基本问题是物质和意识的关系问题,而哲学的基本派别是唯物主义和唯心主义。
4.“天地合而万物生,阴阳接而变化起”,体现的是近代形而上学唯物主义思想。
( ) 点拨:F “天地合而万物生,阴阳接而变化起”,体现的是古代朴素唯物主义思想。
5.“存在就是被感知”与“理生万物”体现的是同一哲学思想。
( )点拨:F “存在就是被感知”体现的是主观唯心主义思想,“理生万物”体现的是客观唯心主义思想。
6.唯物主义是无产阶级科学的世界观和方法论,是指导我们认识世界和改造世界的强大思想武器。
( )点拨:F 古代朴素唯物主义和近代形而上学唯物主义也都有其自身的局限性,只有辩证唯物主义和历史唯物主义才是科学的世界观和方法论,是指导我们认识世界和改造世界的强大思想武器。
二、选择题(每小题4分,共48分)7.(2017·金华十校模拟)下列选项与“未有这事,先有这理”观点相一致的是( )A.我思故我在B.世界是一团永恒的活火C.吾心即宇宙 D.世界是上帝创造的解析:选D “未有这事,先有这理”和“世界是上帝创造的”都是客观唯心主义,“我思故我在”是主观唯心主义,“世界是一团永恒的活火”是古代朴素唯物主义,“吾心即宇宙”是主观唯心主义。
故选D。
8.(2017·台州模拟)孟子和老子都是春秋战国时期我国著名的思想家,孟子提出了“万物皆备于我”的思想,老子提出了“道生一,一生二,二生三,三生万物”的思想。
这两种思想的共同点是( )A.都承认客观事物依赖于人的主观精神B.都承认客观精神是世界的主宰和本原C.都否认思维决定存在D.都否认存在决定思维解析:选B “万物皆备于我”的思想和“道生一,一生二,二生三,三生万物”的思想,两者都是客观唯心主义,故选B。
政治必修4全册综合检测
部编版高中政治必修4全册综合检测一、选择题1. 5G技术商用后国家着手布置6G研发,预计到2030年可以商用。
未来的6G可实现超级AR、XR等技术,高级人工智能会主动与人交互,帮人处理各种事务,主动为人提供建议;6G与全息技术结合,不用手机就可以呈现三维立体像图。
5G商用后就着手6G研发体现了( )①批判性思维实现了互联网技术的不断升级②在对现存事物的肯定理解中包含否定的理解③矛盾具有特殊性,5G和6G技术各有其优点④科技创新有利于掌握引领发展的主动权A. ②④B. ②③C. ①④D. ①③2. 某班同学在学习“我国的制度优势”时,围绕“充分发挥公有制为主体、多种所有制经济共同发展,按劳分配为主体、多种分配方式并存,社会主义市场经济体制等社会主义基本经济制度的作用”开展探究,提出了以下观点,其中正确的是A. 完善基本经济制度,突破生产力的束缚B. 变革基本经济制度,适应上层建筑的要求C. 把基本经济制度优势更好转化为治理效能D. 消除社会基本矛盾,推动社会由低级向高级发展3. 生活中我们可能有这样的体验,导航软件生成的路线图并没有错,但跟着他还是容易走错。
如果换成全景图,并能标注出“我的位置”,感觉就会不同,这种体验表明①作为整体的全景图发挥了重要作用,主导着行程的方向②立足整体统筹全局,利用全景图能更好地规划行程③未显示全景图的导航路线图,不能单独发挥导向作用④明确自己在全局中的位置,有利于顺利抵达目的地A. ①③B. ①④C. ②③D. ②④4. 我国网民规模已过9亿,而60岁及以上网民占比仅为6.7%。
国务院办公厅印发的《关于切实解决老年人运用智能技术困难的实施方案》提出,应在购物、医疗、打车等各类日常生活场景中保留传统的、非智能的方式,同时推进互联网应用的“适老化改造”,开发大字版、语音版、简洁版等版本,方便老年人。
对此分析正确的是①世界是永恒发展的,老年人与现代生活之间的“数字鸿沟”无法消弭②智能技术的广泛应用已成为矛盾主要方面,要创造条件向次要方面转化③政府的干预体现了以人民为中心的发展理念,彰显了人本价值观④技术应用既要“求真”,更要“向善”,实现科学与人文的统一A. ①②B. ①③C. ②④D. ③④5. 进入新时代,我们要进行伟大斗争、建设伟大工程、推进伟大事业、实现伟大梦想,必须深入学习和运用马克思主义哲学,不断提高广大干部解决我国改革发展基本问题的本领。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合检测卷一、填空题(本大题共14小题,每小题5分,共70分) 1.已知△ABC 中,tan A =-512,则cos A =________.答案 -1213解析 ∵cos 2A +sin 2A =1,且sin A cos A =-512,∴cos 2A +(-512cos A )2=1且cos A <0,解得cos A =-1213.2.已知向量a =(2,1),a +b =(1,k ),若a ⊥b ,则实数k =________. 答案 3解析 ∵a =(2,1),a +b =(1,k ).∴b =(a +b )-a =(1,k )-(2,1)=(-1,k -1). ∵a ⊥b ,∴a ·b =-2+k -1=0,∴k =3.3.在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →=________. 答案 16解析 AB →·AC →=(AC →+CB →)·AC → =AC →2+CB →·AC →=AC →2+0=16.4.已知sin(π-α)=-2sin(π2+α),则sin αcos α=________.答案 -25解析 ∵sin(π-α)=-2sin(π2+α),∴sin α=-2cos α.∴tan α=-2. ∴sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1 =-2(-2)2+1=-25. 5.若|a |=2cos 15°,|b |=4sin 15°,a ,b 的夹角为30°,则a ·b =________. 答案3解析 由cos 30°=a ·b|a ||b |得32=a ·b 2cos 15°·4sin 15°=a ·b 4sin 30°, ∴a ·b = 3.6.函数y =A sin(ωx +φ) (ω>0,|φ|<π2,x ∈R )的部分图象如图所示,则函数表达式为________.答案 y =-4sin ⎝⎛⎭⎫π8x +π4 解析 由图象可知,A =4,且⎩⎪⎨⎪⎧6ω+φ=0-2ω+φ=-π,解得⎩⎨⎧ω=π8φ=-3π4.∴y =4sin(π8x -3π4)=-4sin(π8x +π4).7.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.答案 23解析 ∵AD →=2DB →, ∴CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,结合CD →=13CA →+λCB →,知λ=23.8.把函数f (x )=sin ⎝⎛⎭⎫-2x +π3的图象向右平移π3个单位可以得到函数g (x )的图象,则g ⎝⎛⎭⎫π4=________. 答案 1解析 f (x )=sin(-2x +π3)向右平移π3个单位后,图象对应函数解析式为f (x -π3)=sin[-2(x -π3)+π3]=sin(-2x +π)=sin 2x . ∴g (x )=sin 2x ,g (π4)=sin π2=1.9.已知向量a =(sin(α+π6),1),b =(4,4cos α-3),若a ⊥b ,则sin(α+4π3)=________.答案 -14解析 a ·b =4sin(α+π6)+4cos α- 3=23sin α+6cos α-3=43sin(α+π3)-3=0,∴sin(α+π3)=14.∴sin(α+4π3)=-sin(α+π3)=-14.10.若2α+β=π,则y =cos β-6sin α的最大值和最小值分别是________. 答案 7,-5解析 ∵β=π-2α,∴y =cos(π-2α)-6sin α =-cos 2α-6sin α=2sin 2α-1-6sin α =2sin 2α-6sin α-1=2⎝⎛⎭⎫sin α-322-112. 当sin α=1时,y min =-5;当sin α=-1时,y max =7.11.已知向量a =(1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ(θ为锐角),且a ∥b ,则tan θ=________. 答案 1解析 ∵a ∥b ,∴(1-sin θ)(1+sin θ)-12=0.∴cos 2θ=12,∵θ为锐角,∴cos θ=22,∴θ=π4,∴tan θ=1.12.已知A (1,2),B (3,4),C (-2,2),D (-3,5),则向量AB →在CD →上的投影为________. 答案2105解析 AB →=(2,2),CD →=(-1,3).∴AB →在CD →上的投影为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=2×(-1)+2×3(-1)2+32=410=2105. 13.已知直线ax +by +c =0与圆x 2+y 2=1相交于A 、B 两点且|AB |=3,则OA →·OB →=________. 答案 -12解析 如图,作OC ⊥AB ,且平分AB ,∴AC =32,OA =1,∴OC =12. ∴∠AOC =60°, 则∠AOB =120°,OA →·OB →=|OA →|·|OB →|cos ∠AOB =1×1×cos 120°=-12.14.给出下列四个命题:①函数y =tan x 的图象关于点⎝⎛⎭⎫k π+π2,0(k ∈Z )对称;②函数f (x )=sin|x |是最小正周期为π的周期函数;③设θ为第二象限的角,则tan θ2>cos θ2,且sin θ2>cos θ2;④函数y =cos 2x +sin x的最小值为-1.其中,正确的命题是________. 答案 ①④解析 ①由正切曲线,知点(k π,0),⎝⎛⎭⎫k π+π2,0是正切函数的对称中心.故正确.②f (x )=sin|x |不是周期函数.故错误.③∵θ∈⎝⎛⎭⎫π2+2k π,π+2k π,k ∈Z ,∴θ2∈⎝⎛⎭⎫k π+π4,k π+π2.当k =2n +1,k ∈Z 时,sin θ2<cos θ2.故错误.④y =1-sin 2x +sin x =-⎝⎛⎭⎫sin x -122+54,∴当sin x =-1时,y min =1-(-1)2+(-1)=-1.故正确. 二、解答题(本大题共6小题,共90分)15.(14分)已知tan α=12,求1+2sin (π-α)cos (-2π-α)sin 2(-α)-sin 2⎝⎛⎭⎫5π2-α的值.解 原式=1+2sin αcos αsin 2α-cos 2α=sin 2α+cos 2α+2sin αcos αsin 2α-cos 2α=(sin α+cos α)2(sin α-cos α)(sin α+cos α) =sin α+cos αsin α-cos α=tan α+1tan α-1,又∵tan α=12,∴原式=12+112-1=-3.16.(14分)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β). (1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b . (1)解 因为a 与b -2c 垂直,所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β=4sin(α+β)-8cos(α+β)=0,因此tan(α+β)=2.(2)解 由b +c =(sin β+cos β,4cos β-4sin β),得 |b +c |=(sin β+cos β)2+(4cos β-4sin β)2 =17-15sin 2β≤4 2.又当β=-π4+k π(k ∈Z )时,等号成立,所以|b +c |的最大值为4 2. (3)证明 由tan αtan β=16得4cos αsin β=sin α4cos β, 所以a ∥b .17.(14分)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈(0,π2).(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.解 (1)∵a ⊥b ,∴a ·b =sin θ-2cos θ=0, 即sin θ=2cos θ.又∵sin 2θ+cos 2θ=1, ∴4cos 2θ+cos 2θ=1, 即cos 2θ=15,∴sin 2θ=45.又θ∈(0,π2),∴sin θ=255,cos θ=55.(2)∵5cos(θ-φ)=5(cos θcos φ+sin θsin φ) =5cos φ+25sin φ=35cos φ, ∴cos φ=sin φ.∴cos 2φ=sin 2φ=1-cos 2φ,即cos 2φ=12.又∵0<φ<π2,∴cos φ=22.18.(16分)设函数f (x )=a ·(b +c ),其中向量a =(sin x ,-cos x ),b =(sin x ,-3cos x ),c =(-cos x ,sin x ),x ∈R .(1)求函数f (x )的最大值和最小正周期;(2)将函数y =f (x )的图象按向量d 平移,使平移后得到的图象关于坐标原点成中心对称,求长度最小的d .解 由题意,得f (x )=a ·(b +c )=(sin x ,-cos x )·(sin x -cos x ,sin x -3cos x )=sin 2x -2sin x cos x +3cos 2x =2+cos 2x -sin 2x =2+2sin ⎝⎛⎭⎫2x +34π. (1)f (x )的最大值为2+2,最小正周期是2π2=π.(2)由sin ⎝⎛⎭⎫2x +34π=0,得2x +3π4=k π,即x =k π2-3π8,k ∈Z .于是,d =⎝⎛⎭⎫3π8-k π2,-2,|d |=⎝⎛⎭⎫k π2-3π82+4(k ∈Z ).因为k 为整数,要使|d |最小,则只要k =1,此时d =⎝⎛⎭⎫-π8,-2即为所求.19.(16分)已知函数f (x )=4cos 4x -2cos 2x -1sin (π4+x )sin (π4-x ).(1)求f (-11π12)的值;(2)当x ∈[0,π4)时,求g (x )=12f (x )+sin 2x 的最大值和最小值.解 (1)f (x )=(1+cos 2x )2-2cos 2x -1sin (π4+x )sin (π4-x )=cos 22xsin (π4+x )cos (π4+x )=2cos 22xsin (π2+2x )=2cos 22x cos 2x=2cos 2x , ∴f (-11π12)=2cos(-11π6)=2cos π6= 3.(2)g (x )=cos 2x +sin 2x =2sin(2x +π4).∵x ∈[0,π4),∴2x +π4∈[π4,3π4).∴当x =π8时,g (x )max =2,当x =0时,g (x )min =1.20.(16分)已知函数y =12cos 2x +32sin x cos x +1,x ∈R .(1)求它的振幅、周期和初相; (2)用五点法作出它的简图;(3)该函数的图象是由y =sin x (x ∈R )的图象经过怎样的平移和伸缩变换得到的?解 y =12cos 2x +32sin x cos x +1=14cos 2x +34sin 2x +54 =12sin ⎝⎛⎭⎫2x +π6+54. (1)y =12cos 2x +32sin x cos x +1的振幅为A =12,周期为T =2π2=π,初相为φ=π6.(2)令x 1=2x +π6,则y =12sin ⎝⎛⎭⎫2x +π6+54 =12sin x 1+54, 列出下表,并描出如下图象:(3)方法一 将函数图象依次作如下变换:函数y =sin x 的图象函数y =sin ⎝⎛⎭⎫x +π6的图象函数y =sin ⎝⎛⎭⎫2x +π6的图象函数y =12sin ⎝⎛⎭⎫2x +π6的图象函数y =12sin ⎝⎛⎭⎫2x +π6+54的图象. 即得函数y =12cos 2x +32sin x cos x +1的图象.方法二 函数y =sin x 的图象函数y =sin 2x 的图象函数y =sin ⎝⎛⎭⎫2x +π6的图象y =12sin ⎝⎛⎭⎫2x +π6的图象y =12sin ⎝⎛⎭⎫2x +π6+54的图象. 即得函数y =12cos 2x +32sin x cos x +1的图象.。