新人教版九年级下第二十八章锐角三角函数课后提升练习及答案

合集下载

新人教版九年级下第28章锐角三角函数同步练习及答案

新人教版九年级下第28章锐角三角函数同步练习及答案

第二十八章 锐角三角函数测试1 锐角三角函数定义学习要求理解一个锐角的正弦、余弦、正切的定义.能依据锐角三角函数的定义,求给定锐角的三角函数值.课堂学习检测一、填空题1.如图所示,B 、B ′是∠MAN 的AN 边上的任意两点,BC ⊥AM 于C 点,B ′C ′⊥AM 于C ′点,则△B 'AC ′∽______,从而ACB A BC C B )()(='='',又可得 ①='''B A C B ______,即在Rt △ABC 中(∠C =90°),当∠A 确定时,它的______与______的比是一个______值; ②=''BA C A ______,即在Rt △ABC 中(∠C =90°),当∠A 确定时,它的______与______的比也是一个______; ③='''C A C B ______,即在Rt △ABC 中(∠C =90°),当∠A 确定时,它的______与______的比还是一个______.第1题图2.如图所示,在Rt △ABC 中,∠C =90°.第2题图①斜边)(sin =A =______, 斜边)(sin =B =______; ②斜边)(cos =A =______, 斜边)(cos =B =______;③的邻边A A ∠=)(tan =______, )(tan 的对边B B ∠==______.3.因为对于锐角的每一个确定的值,sin 、cos 、tan 分别都有____________与它______,所以sin 、cos、tan都是____________.又称为的____________.4.在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______,sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______.5.在Rt △ABC 中,∠C =90°,若a =1,b =3,则c =______,sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______.6.在Rt △ABC 中,∠B =90°,若a =16,c =30,则b =______,sin A =______,cos A =______,tan A =______, sin C =______,cos C =______,tan C =______.7.在Rt △ABC 中,∠C =90°,若∠A =30°,则∠B =______,sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______.二、解答题8.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3.求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR .9.已知Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cos B .综合、运用、诊断10.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .11.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,⋅=∠43sin AOC求:AB 及OC 的长.12.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,⋅=∠53sin AOC(1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC .13.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,⋅=31sin A(1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B .14.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B .拓展、探究、思考15.已知:如图,Rt △ABC 中,∠C =90°,按要求填空:(1),sin ca A =∴=⋅=c A c a ,sin ______; (2),cos cb A =∴b =______,c =______; (3),tan ba A =∴a =______,b =______; (4),23sin =B ∴=B cos ______,=B tan ______; (5),53cos =B ∴=B sin ______,=A tan ______;(6)∵=B tan 3,∴=B sin ______,=A sin ______.16.已知:如图,在直角坐标系xOy 中,射线OM 为第一象限中的一条射线,A 点的坐标为(1,0),以原点O 为圆心,OA 长为半径画弧,交y轴于B点,交OM于P点,作CA⊥x轴交OM于C点.设∠XOM=.求:P点和C点的坐标.(用的三角函数表示)17.已知:如图,△ABC中,∠B=30°,P为AB边上一点,PD ⊥BC于D.(1)当BP∶PA=2∶1时,求sin∠1、cos∠1、tan∠1;(2)当BP∶PA=1∶2时,求sin∠1、cos∠1、tan∠1.测试2 锐角三角函数学习要求1.掌握特殊角(30°,45°,60°)的正弦、余弦、正切三角函数值,会利用计算器求一个锐角的三角函数值以及由三角函数值求相应的锐角.2.初步了解锐角三角函数的一些性质.课堂学习检测一、填空题1.填表.锐角sincostan二、解答题2.求下列各式的值.(1)o 45cos 230sin 2-︒(2)tan30°-sin60°·sin30°(3)cos45°+3tan30°+cos30°+2sin60°-2tan45°(4)︒+︒+︒+︒-︒45sin 30cos 30tan 130sin 145cos 2223.求适合下列条件的锐角. (1)21cos =α(2)33tan =α(3)222sin =α(4)33)16cos(6=- α4.用计算器求三角函数值(精确到.(1)sin23°=______; (2)tan54°53′40″=______.5.用计算器求锐角(精确到1″).(1)若cos =,则=______;(2)若tan(2+10°31′7″)=,则=______.综合、运用、诊断6.已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A求此菱形的周长.7.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5.求:sin ∠ACB 的值.8.已知:如图,Rt△ABC中,∠C=90°,∠BAC=30°,延长CA 至D点,使AD=AB.求:(1)∠D及∠DBC;(2)tan D及tan∠DBC;(3)请用类似的方法,求°.9.已知:如图,Rt△ABC中,∠C=90°,3=BCAC,作∠DAC==30°,AD交CB于D点,求:(1)∠BAD;(2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .10.已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,31tan =∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .拓展、探究、思考11.已知:如图,∠AOB =90°,AO =OB ,C 、D 是上的两点,∠AOD >∠AOC ,求证:(1)0<sin ∠AOC <sin ∠AOD <1; (2)1>cos ∠AOC >cos ∠AOD >0;(3)锐角的正弦函数值随角度的增大而______;(4)锐角的余弦函数值随角度的增大而______.12.已知:如图,CA ⊥AO ,E 、F 是AC 上的两点,∠AOF >∠AOE .(1)求证:tan ∠AOF >tan ∠AOE ;(2)锐角的正切函数值随角度的增大而______.13.已知:如图,Rt △ABC 中,∠C =90°,求证:(1)sin 2A +cos 2A =1; (2)⋅=AA A cos sin tan14.化简:ααcos1⋅-(其中0°<<90°)2sin15.(1)通过计算(可用计算器),比较下列各对数的大小,并提出你的猜想:①sin30°______2sin15°cos15°;②sin36°______2sin18°cos18°;③sin45°°°;④sin60°______2sin30°cos30°;⑤sin80°______2sin40°cos40°;⑥sin90°______2sin45°cos45°.猜想:若0°<≤45°,则sin2______2sin cos.(2)已知:如图,△ABC中,AB=AC=1,∠BAC=2.请根据图中的提示,利用面积方法验证你的结论.16.已知:如图,在△ABC中,AB=AC,AD⊥BC于D,BE⊥AC于E,交AD于H点.在底边BC保持不变的情况下,当高AD变长或变短时,△ABC和△HBC的面积的积S△ABC·S△HBC的值是否随着变化请说明你的理由.测试3 解直角三角形(一)学习要求理解解直角三角形的意义,掌握解直角三角形的四种基本类型.课堂学习检测一、填空题1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示):在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c ,第1题图①三边之间的等量关系:__________________________________. ②两锐角之间的关系:__________________________________. ③边与角之间的关系:==B A cos sin ______;==B A sin cos _______;==BA tan 1tan _____; ==B Atan tan 1______. ④直角三角形中成比例的线段(如图所示).第④小题图在Rt△ABC中,∠C=90°,CD⊥AB于D.CD2=_________;AC2=_________;BC2=_________;AC·BC=_________.⑤直角三角形的主要线段(如图所示).第⑤小题图直角三角形斜边上的中线等于斜边的_________,斜边的中点是_________.若r是Rt△ABC(∠C=90°)的内切圆半径,则r=_________=_________.⑥直角三角形的面积公式.在Rt△ABC中,∠C=90°,S△ABC=_________.(答案不唯一)2.关于直角三角形的可解条件,在直角三角形的六个元素中,除直角外,只要再知道_________(其中至少_________),这个三角形的形状、大小就可以确定下来.解直角三角形的基本类型可分为已知两条边(两条_________或斜边和_________)及已知一边和一个锐角(_________和一个锐角或_________和一个锐角)3.填写下表:二、解答题4.在Rt △ABC 中,∠C =90°.(1)已知:a =35,235=c ,求∠A 、∠B ,b ;(2)已知:32=a ,2=b ,求∠A 、∠B ,c ;(3)已知:32sin =A ,6=c ,求a 、b ;(4)已知:,9,23tan ==b B 求a 、c ;(5)已知:∠A =60°,△ABC 的面积,312=S 求a 、b 、c 及∠B .综合、运用、诊断5.已知:如图,在半径为R 的⊙O 中,∠AOB =2,OC ⊥AB于C点.(1)求弦AB的长及弦心距;(2)求⊙O的内接正n边形的边长a n及边心距r n.6.如图所示,图①中,一栋旧楼房由于防火设施较差,想要在侧面墙外修建一外部楼梯,由地面到二楼,再从二楼到三楼,共两段(图②中AB、BC两段),其中CC′=BB′=3.2m.结合图中所给的信息,求两段楼梯AB与BC的长度之和(结果保留到0.1m).(参考数据:sin30°=,cos30°≈,sin35°≈,cos35°≈7.如图所示,某公司入口处原有三级台阶,每级台阶高为20cm,台阶面的宽为30cm,为了方便残疾人士,拟将台阶改为坡角为12°的斜坡,设原台阶的起点为A,斜坡的起点为C,求AC的长度(精确到1cm).拓展、探究、思考8.如图所示,甲楼在乙楼的西面,它们的设计高度是若干层,每层高均为3m,冬天太阳光与水平面的夹角为30°.(1)若要求甲楼和乙楼的设计高度均为6层,且冬天甲楼的影子不能落在乙楼上,那么建筑时两楼之间的距离BD至少为多少米(保留根号)(2)由于受空间的限制,甲楼和乙楼的距离BD=21m,若仍要求冬天甲楼的影子不能落在乙楼上,那么设计甲楼时,最高应建几层9.王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地多少距离10.已知:如图,在高2m,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要多少米(保留整数)测试4 解直角三角形(二)学习要求能将解斜三角形的问题转化为解直角三角形.课堂学习检测1.已知:如图,△ABC中,∠A=30°,∠B=60°,AC=10cm.求AB及BC的长.2.已知:如图,Rt△ABC中,∠D=90°,∠B=45°,∠ACD=60°.BC =10cm.求AD的长.3.已知:如图,△ABC中,∠A=30°,∠B=135°,AC=10cm.求AB及BC的长.4.已知:如图,Rt△ABC中,∠A=30°,∠C=90°,∠BDC=60°,BC=6cm.求AD的长.综合、运用、诊断5.已知:如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45°,又知河宽CD为50m.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,求山的高度及缆绳AC的长(答案可带根号).6.已知:如图,一艘货轮向正北方向航行,在点A处测得灯塔M在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B 处,测得灯塔M在北偏西45°,问该货轮继续向北航行时,与灯塔M之间的最短距离是多少(精确到海里,7323 ).17.已知:如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°.点D到地面的垂直距离mDE,求点B到地面的垂直距离BC.328.已知:如图,小明准备测量学校旗杆AB的高度,当他发现斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,测得水平地面上的影长BC=20m,斜坡坡面上的影长CD=8m,太阳光线AD与水平地面成26°角,斜坡CD与水平地面所成的锐角为30°,求旗杆AB的高度(精确到1m).9.已知:如图,在某旅游地一名游客由山脚A沿坡角为30°的山坡AB行走400m,到达一个景点B,再由B地沿山坡BC行走320米到达山顶C,如果在山顶C处观测到景点B的俯角为60°.求山高CD(精确到0.01米).10.已知:如图,小明准备用如下方法测量路灯的高度:他走到路灯旁的一个地方,竖起一根2m长的竹竿,测得竹竿影长为1m,他沿着影子的方向,又向远处走出两根竹竿的长度,他又竖起竹竿,测得影长正好为2m.问路灯高度为多少米11.已知:如图,在一次越野比赛中,运动员从营地A出发,沿北偏东60°方向走了500m3到达B点,然后再沿北偏西30°方向走了500m,到达目的地C点.求(1)A、C两地之间的距离;(2)确定目的地C在营地A的什么方向12.已知:如图,在1998年特大洪水时期,要加固全长为10000m的河堤.大堤高5m,坝顶宽4m,迎水坡和背水坡都是坡度为1∶1的等腰梯形.现要将大堤加高1m,背水坡坡度改为1∶.已知坝顶宽不变,求大坝横截面面积增加了多少平方米,完成工程需多少立方米的土石拓展、探究、思考13.已知:如图,在△ABC 中,AB =c ,AC =b ,锐角∠A =.(1)BC 的长;(2)△ABC 的面积.14.已知:如图,在△ABC 中,AC =b ,BC =a ,锐角∠A =,∠B =.(1)求AB 的长;(2)求证:.sin sin βαba=15.已知:如图,在Rt △ADC 中,∠D =90°,∠A =,∠CBD =,AB =a .用含a 及、的三角函数的式子表示CD 的长.16.已知:△ABC 中,∠A =30°,AC =10,25=BC ,求AB 的长.17.已知:四边形ABCD 的两条对角线AC 、BD 相交于E 点,AC =a ,BD =b ,∠BEC =(0°<<90°),求此四边形的面积.测试5 综合测试1.计算.(1)45tan 260tan 60cos 2-(2)60cos 30cos 60tan 30tan 45sin 30sin 2222+⋅++2.已知:如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AB =32,BC =12.求:sin ∠ACD 及AD 的长.3.已知:Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D 点,AB =2m ,BD =m -1,⋅=54cos A(1)用含m 的代数式表示BC ;(2)求m 的值;4.已知:如图,矩形ABCD 中,AB =3,BC =6,BE =2EC ,DM ⊥AE 于M 点.求DM 的长.5.已知:如图,四边形ABCD中,∠A=45°,∠C=90°,∠ABD=75°,∠DBC=30°,AB=2a.求BC的长.6.已知:如图,四边形ABCD中,∠A=∠C=90°,∠D=60°,AD.AB=3,求BC的长.357.已知:如图,△ABC内接于⊙O,BC=m,锐角∠A=,(1)求⊙O 的半径R ;(2)求△ABC 的面积的最大值.8.已知:如图,矩形纸片ABCD 中,BC =m ,将矩形的一角沿过点B 的直线折叠,使A 点落在DC 边上,落点记为A ′,折痕交AD 于E ,若∠A ′BE =.求证:⋅⋅=αα2sin cos mEB答案与提示第二十八章 锐角三角函数 测试11.△BAC ,AB ,AC ′.①ABBC ,对边,斜边,固定;②ABAC ,邻边,斜边,固定值;③ACBC ,对边,邻边,固定值.2.①∠A 的对边,,c a ∠B 的对边,;cb②∠A 的邻边,,c b ∠B 的邻边,;ca ③∠A 的对边,,b a ∠B 的邻边,⋅ab 3.唯一确定的值,对应,的函数,锐角三角函数.4.⋅34,53,54,43,54,53,155..3,1010,10103,31,10103,1010,106.⋅815,178,1715,158,1715,178,347..3,21,23,33,23,21,60o8.⋅==∠=∠=∠==∠37tan tan ,43cos cos ,47sin sin N TMR N TMR N TMR9.⋅===53cos ,20,16B AB AC10..2tan ,55cos ,552sin ===B B B11.AB =2AC =2AO ·sin ∠AOC =24cm ,cm 7422=-=AC OA OC 12.⋅=∠=∠==43tan ,54cos )2(;cm 332,cm 340)1(AOC AOC OC OA 13.(1)CD =AC ·sin A =4cm ;(2);cm 32212=⨯=CD AB S(3)⋅+=422tan B 14.⋅=31sin B15.(1);sin Aa (2);cos ,cos AbA c ⋅ (3);tan ,tan A a A b ⋅ (4);3,21(5);43,54(6)⋅1010,10103 16.P (cos ,sin ),C (1,tan ).提示:作PD ⊥x 轴于D点.17.(1).31tan ,211cos ,231sin =∠=∠=∠(2),231tan ,7721cos ,7211sin =∠=∠=∠ 提示:作AE ⊥BC 于E ,设AP =2.测试2 1.锐角30° 45° 60°sin21 22 23 cos23 22 21 tan33 132.(1)0; (2);123(3);222325-+(4)⋅-413 3.(1)=60°;(2)=30°;(3)°;(4)46°.4.(1);(2).5.(1)49°11'11″;(2)24°52'44″.6.104cm .提示:设DE =12x cm ,则得AD =13x cm ,AE =5x cm .利用BE =16cm .列方程8x =16.解得x =2. 7.,721提示:作BD ⊥CA 延长线于D 点.8.(1)∠D =15°,∠DBC =75°;(2);32tan ,32tan +=∠-=DBC D (3).125.22tan -=9.(1)15°;(2).32tan ,426cos ,426sin -=∠+=∠-=∠BAD BAD BAD10.⋅23,13132,13133提示:作DE ∥BA ,交AC 于E 点,或延长AD 至F ,使DF =AD ,连结CF .11.提示:作CE ⊥OA 于E ,作DF ⊥OA 于F . (3)增大, (4)减小. 12.(2)增大.13.提示:利用锐角三角函数定义证. 14.原式ααααcos sin 2cos sin 22-+=2)cos (sin αα-=|cos sin |αα-=⎩⎨⎧<<-<≤-=).450(sin cos ),9045(cos sinαααααα 15.(1)①~⑥略.sin2=2sincos .(2),2sin 212sin 12121αα=⨯⨯=⋅=∆BE AC S ABC,cos sin 21αα⋅=⨯=⋅=∆AD BD AD BC S ABC ∴sin2=2sin cos .16.不发生改变,设∠BAC =2,BC =2m ,则.)tan (tan 422m m m S S HBCABC =⋅=⋅∆∆αα测试31.①a 2+b 2=c 2; ②∠A +∠B =90°; ③;,,,ab b ac b c a④AD ·BD ,AD ·AB ,BD ·BA ,AB ·CD : ⑤一半,它的外心,2c b a -+(或⋅++cb a ab)⑥ab 21或ch 21(h 为斜边上的高)或A bc sin 21或B ac sin 21或).(21c b a r ++(r 为内切圆半径)2.两个元素,有一个是边,直角边,一条直角边,斜边,一条直角边.3.90°-∠A ,sin A ,cos A ;;sin ,tan ,90o Aa A a A ∠- ;90,tan ,22Ab a A b ac ∠-=+=.90,sin ,22B c aA a c b ∠-=-=4.(1)∠A =45°,∠B =45°,b =35;(2)∠A =60°,∠B =30°,c =4; (3);52,4==b a(4);133,6==c a (5).30,64,62,26=∠===B c b a5.(1)AB =2R ·sin ,OC =R ·cos ;(2)⋅⋅=⋅=n R r n R a n n180cos ,180sin 26.AB ≈6.40米,BC ≈5.61米,AB +BC ≈12.0米. 7.约为222cm . 8.(1)318米.(2)4层,提示:设甲楼应建x 层则.2130tan 3≤x9.m 310010.6米. 测试41.cm 3310,cm 3320==BC AB 2.)3515(+cm .3.cm 25;cm )535(=-=BC AB 提示:作CD ⊥AB 延长线于D 点. 4.34cm .5.山高m )31(50,m )31(25+=+AC 6.约为海里. 7.m 33.8.约为17m ,提示:分别延长AD 、BC ,设交点为E ,作DF ⊥CE 于F 点.9.约477.13m . 10.10m .11.(1)AC =1 000m ; (2)C 点在A 点的北偏东30°方向上.12.面积增加24m 2,需用240 000m 2土石.13.(1).cos 222α⋅-+=bc c b BC 提示:作CD ⊥AB 于D 点,则CD =b ·sin ,AD =b ·cos.再利用BC 2=CD 2+DB 2的关系,求出BC .(2)a bc sin 21⋅ 14.(1)AB =b ·cos+a ·cos . 提示:作CD ⊥AB 于D 点.(2)提示:由b sin =CD =a sin可得b sin=a sin ,从而βαsin sin ba =. 15.提示:AB =AD -BD =CD tan(90°-)-CD tan(90°-)=CD 〔tan(90°-)-tan(90°-)〕,)90tan()90tan(βα---=∴a CD 或⋅-=αββαtan tan tan tan a CD 16.535+或.535-提示:AB 边上的高CD 的垂足D 点可能在AB 边上(这时AB =)535+,也可能在AB 边的延长线上(这时535-=AB ).17..sin 21αab测试51.(1);23+ (2)⋅252.⋅==∠255,855sin AD ACD3.(1))1(2-=m m BC 或⋅=56m BC (2)⋅=725m4.⋅5185.a BC 2=.提示:作BE ⊥AD 于E 点.6.BC =6.提示:分别延长AB 、DC ,设它们交于E 点. 7.(1)⋅=αsin 2mR 提示:作⊙O 的直径BA ',连结A 'C . (2)⋅2tan42αm 提示:当A 点在优弧BC 上且AO ⊥BC 时,△ABC 有面积的最大值. 8.提示:⋅⋅=∠⋅='=αααα2sin cos 'sin cos cos mB CA BC B A EB第二十八章 锐角三角函数全章测试 一、选择题1.Rt △ABC 中,∠C =90°,若BC =4,,32sin =A 则AC 的长为( )A .6B .52C .53D .1322.⊙O 的半径为R ,若∠AOB =,则弦AB 的长为( )A .2sin 2αR B .2R sinC .2cos 2αRD .R sin3.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( )A .312B .12C .324D .3484.若某人沿倾斜角为的斜坡前进100m ,则他上升的最大高度是( )A .m sin 100αB .100sin mC .m cos 100βD .100cos m5.铁路路基的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为3m ,路基高为4m ,则路基的下底宽应为( ) A .15mB .12mC .9mD .7m6.P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 点,若∠APB =2,⊙O 的半径为R ,则AB 的长为( ) A .ααtan sin R B .ααsin tan R C .ααtan sin 2RD .ααsin tan 2R7.在Rt △ABC 中,AD 是斜边BC 上的高,若CB =a ,∠B =,则AD 等于( )A .a sin 2B .a cos 2C.a sincosD .a sin tan8.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么ABDC的值为( )A .sin ∠APCB .cos ∠APC C .tan ∠APCD .APC∠tan 19.如图所示,某人站在楼顶观测对面的笔直的旗杆AB .已知观测点C 到旗杆的距离(CE 的长度)为8m ,测得旗杆的仰角∠ECA 为30°,旗杆底部的俯角∠ECB 为45°,那么,旗杆AB 的高度是( )第9题图A .m )3828(+B .m )388(+C .m )33828(+D .m )3388(+10.如图所示,要在离地面5m 处引拉线固定电线杆,使拉线和地面成60°角,若考虑既要符合设计要求,又要节省材料,则在库存的l 1=5.2m 、l 2=6.2m 、l 3=7.8m 、l 4=10m ,四种备用拉线材料中,拉线AC 最好选用( )第10题图A .l 1B .l 2C .l 3D .l 4二、填空题11.在△ABC 中,∠C =90°,∠ABC =60°,若D 是AC 边中点,则tan ∠DBC 的值为______.12.在Rt △ABC 中,∠C =90°,a =10,若△ABC 的面积为3350,则∠A =______度.13.如图所示,四边形ABCD 中,∠B =90°,AB =2,CD =8,AC⊥CD ,若,31sin =∠ACB 则cos ∠ADC =______.第13题图14.如图所示,有一圆弧形桥拱,拱的跨度mAB,拱形的303半径R=30m,则拱形的弧长为______.第14题图15.如图所示,半径为r的圆心O在正三角形的边AB上沿图示方向移动,当⊙O的移动到与AC边相切时,OA的长为______.第15题图三、解答题16.已知:如图,AB=52m,∠DAB=43°,∠CAB=40°,求大楼上的避雷针CD的长.(精确到0.01m)17.已知:如图,在距旗杆25m 的A 处,用测角仪测得旗杆顶点C 的仰角为30°,已知测角仪AB 的高为1.5m ,求旗杆CD 的高(精确到0.1m).18.已知:如图,△ABC 中,AC =10,,31sin ,54sin ==B C 求AB .19.已知:如图,在⊙O 中,∠A =∠C ,求证:AB =CD (利用三角函数证明).20.已知:如图,P是矩形ABCD的CD边上一点,PE⊥AC于E,PF⊥BD于F,AC=15,BC=8,求PE+PF.21.已知:如图,一艘渔船正在港口A的正东方向40海里的B处进行捕鱼作业,突然接到通知,要该船前往C岛运送一批物资到A港,已知C岛在A港的北偏东60°方向,且在B的北偏西45°方向.问该船从B处出发,以平均每小时20海里的速度行驶,需要多少时间才能把这批物资送到A港(精确到1小时)(该船在C岛停留半个小时)).1412≈≈,(≈.26453,73.122.已知:如图,直线y=-x+12分别交x轴、y轴于A、B点,将△AOB折叠,使A点恰好落在OB的中点C处,折痕为DE.(1)求AE的长及sin∠BEC的值;(2)求△CDE的面积.23.已知:如图,斜坡PQ的坡度i=1∶3,在坡面上点O处有一根1m高且垂直于水平面的水管OA,顶端A处有一旋转式喷头向外喷水,水流在各个方向沿相同的抛物线落下,水流最高点M比点A高出1m,且在点A测得点M的仰角为30°,以O点为原点,OA所在直线为y轴,过O点垂直于OA的直线为x轴建立直角坐标系.设水喷到斜坡上的最低点为B,最高点为C.(1)写出A点的坐标及直线PQ的解析式;(2)求此抛物线AMC的解析式;(3)求|x C-x B|;(4)求B点与C点间的距离.。

【单元练】人教版初中九年级数学下册第二十八章《锐角三角函数》经典练习题(含答案解析)

【单元练】人教版初中九年级数学下册第二十八章《锐角三角函数》经典练习题(含答案解析)

一、选择题1.在ABC 中,若21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭,则C ∠的度数是( ) A .45︒ B .60︒C .75︒D .105︒C解析:C 【分析】根据偶次方和绝对值的非负性可得1cos 02A -=,1tan 0B -=,利用特殊角的三角函数值可得A ∠和B 的度数,利用三角形内角和定理即可求解. 【详解】解:21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭, 21cos 0,|1tan |02A B ⎛⎫∴-=-= ⎪⎝⎭,1cos 02A ∴-=,1tan 0B -=,则1cos 2A =,tan 1B =,解得:60A ∠=︒,45B ∠=︒, 则180604575C ∠=︒-︒-︒=︒. 故选:C . 【点睛】本题考查偶次方和绝对值的非负性、特殊角的三角函数值、三角形内角和定理,熟悉特殊角的三角函数值是解题的关键.2.如图,这是某市政道路的交通指示牌,BD 的距离为5m ,从D 点测得指示牌顶端A 点和底端C 点的仰角分别是60°和45°,则指示牌的高度,即AC 的长度是( )A .53mB .52mC .(5352mD .()535m D解析:D 【分析】由题意可得到BD=BC=5,根据锐角三角函数关系得出方程,然后解方程即可.【详解】解:由题意可得:∠CDB=∠DCB=45°, ∴BD=BC=5,设AC=x m ,则AB=(x +5)m , 在Rt △ABD 中,tan60°=AB BD, 则535x +=, 解得:535x =-, 即AC 的长度是()535m -; 故选:D . 【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键. 3.下表是小红填写的实践活动报告的部分内容,设铁塔顶端到地面的高度FE 为xm ,根据以上条件,可以列出的方程为 ( ) 题目测量铁塔顶端到地面的高度测量目标示意图相关数据10,45,50CD m αβ==︒=︒A .()10tan50x x =-︒B .()10cos50x x =-︒C .10tan50x x -=︒D .()10sin50x x =+︒A解析:A 【分析】过D 作DH ⊥EF 于H ,则四边形DCEH 是矩形,根据矩形的性质得到HE =CD =10,CE =DH ,求得FH =x−10,得到CE =x−10,根据三角函数的定义列方程即可得到结论. 【详解】过D 作DH ⊥EF 于H , 则四边形DCEH 是矩形, ∴HE =CD =10,CE =DH , ∴FH =x−10,∵∠FDH =α=45°, ∴DH =FH =x−10, ∴CE =x−10,∵tanβ=tan50°=EF CE =-10x x , ∴x =(x−10)tan 50°, 故选:A . 【点睛】本题考查了解直角三角形的应用,由实际问题抽象出边角关系的等式,正确的识别图形是解题的关键.4.下列计算中错误的是( ) A .sin60sin30sin30︒-︒=︒ B .22sin 45 cos 451︒+︒= C .sin 60tan 60sin 30︒︒=︒D .cos30tan 60cos60︒︒=︒A解析:A 【分析】根据特殊角的三角函数值、二次根式的运算即可得. 【详解】A、11sin 60sin 303022︒-︒==︒=,此项错误; B、222211sin 45 cos 45122︒+︒=+=+=⎝⎭⎝⎭,此项正确; C、sin 602tan 601sin 302︒︒===︒sin 60tan 60sin 30︒︒=︒,此项正确; D、cos302tan 601cos 602︒︒===︒cos30tan 60cos60︒︒=︒,此项正确; 故选:A . 【点睛】本题考查了特殊角的三角函数值、二次根式的运算,熟记特殊角的三角函数值是解题关键.5.如图,河坝横断面迎水坡AB 的坡比为1BC =3m ,则AB 的长度为( )A .6mB .33mC .9mD .63m A解析:A 【分析】根据坡比的概念求出AC ,根据勾股定理求出AB . 【详解】解:∵迎水坡AB 的坡比为1:3, ∴13BC AC =,即313AC =, 解得,AC =33, 由勾股定理得,AB 22BC AC =+=6(m ),故选:A . 【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度的概念是解题的关键. 6.如图,在A 处测得点P 在北偏东60︒方向上,在B 处测得点P 在北偏东30︒方向上,若2AB =米,则点P 到直线AB 距离PC 为( ).A .3米B 3米C .2米D .1米B解析:B 【分析】设点P 到直线AB 距离PC 为x 米,根据正切的定义用x 表示出AC 、BC ,根据题意列出方程,解方程即可. 【详解】解:设点P 到直线AB 距离PC 为x 米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:B . 【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.7.如图,在平面直角坐标系中,边长为2的正方形ABCD 的对角线AC 在x 轴上,点A 的坐标是()1,0,把正方形ABCD 绕原点O 旋转180︒,则点B 的对应点B '的坐标是( )A .(-1,-1)B .()2,1C .()2,1--D .()2,1--D解析:D 【分析】根据题意,画出图形,连接BD ,交x 轴于E ,根据正方形的性质可得AB=2,BD ⊥x 轴,AE=BE ,∠BAE=45°,利用锐角三角函数即可求出AE 和BE ,从而求出OE ,即可求出点B 的坐标,然后根据关于原点对称的两点坐标关系即可求出结论. 【详解】解:把正方形ABCD 绕原点O 旋转180︒,如图所示,连接BD ,交x 轴于E∵四边形ABCD 2∴2,BD ⊥x 轴,AE=BE ,∠BAE=45° ∴AE=BE=AB·sin ∠BAE=1 ∴OE=OA +AE=2 ∴点B 的坐标为(2,1)∴点B 绕点O 旋转180°的对应点B '的坐标(-2,-1) 故选D . 【点睛】此题考查的是正方形的性质,锐角三角函数和关于原点对称的两点坐标关系,掌握正方形的性质,锐角三角函数和关于原点对称的两点坐标关系是解题关键. 8.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=( )A .26B .2626C .2613D .1313B 解析:B 【分析】作BD ⊥AC 于D ,根据勾股定理求出AB 、AC ,利用三角形的面积求出BD ,最后在直角△ABD 中根据三角函数的意义求解. 【详解】解:如图,作BD ⊥AC 于D ,由勾股定理得,22223213,3332AB AC =+==+= ∵1113213222ABCSAC BD BD =⋅=⨯=⨯⨯, ∴2BD =, ∴2262sin 2613BD BAC AB ∠===. 故选:B . 【点睛】本题考查了勾股定理,解直角三角形,三角形的面积,三角函数的意义等知识,根据网格构造直角三角形和利用三角形的面积求出BD 是解决问题的关键.9.如图,在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB 沿射线AO 平移,平移后点A '的横坐标为43,则点B ′的坐标为( )A .(63,2)-B .(63,23)-C .()6,2-D .(63,2)-D解析:D 【详解】如解图,过点A 作AC x ⊥轴,过点A '作A D x '⊥轴,∵AOB 是等边三角形,∴4AO BO ==,60AOB ∠=︒,∴30AOC ∠=︒,∴·cos 23CO OA AOC ==,2AC =,∴(23,2)A -,∵30AOD AOC ∠'=∠=︒,43OD =,∴·t 34343an A D OD A OD ⨯=∠'==',∴(43,4)A '-,∴点A '是将点A 向右平移63个单位,向下平移6个单位得到的,∴点B '也是将点B 向右平移63个单位,向下平移6个单位得到的,∵()0,4B ,∴B '的坐标为(63,2)-.10.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°()()12323232323AC CD -====-++-.类比这种方法,计算tan22.5°的值为( )A 21B 2﹣1C 2D .12B 解析:B 【分析】作Rt △ABC ,使∠C =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,根据构造的直角三角形,设AC =x ,再用x 表示出CD ,即可求出tan22.5°的值. 【详解】解:作Rt △ABC ,使∠C =90°,∠ABC =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,设AC =x ,则:BC =x ,AB =2x ,CD =()1+2x ,()22.5==211+2AC xC tan taD xn D =∠=-︒故选:B. 【点睛】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.二、填空题11.已知ABC 与ABD △不全等,且3AC AD ==,30ABD ABC ∠=∠=︒,60ACB ∠=︒,则CD =________.或3【分析】如图△ABC ≌△ABP 当D′是PB 中点或点D″是BC 的中点时满足条件分别求解即可【详解】解:如图△ABC ≌△ABP ∴∴CAP 共线∴△BPC 是等边三角形当D′是PB 中点时AD′=BP=AC解析:3或3 【分析】如图,△ABC ≌△ABP ,当D′是PB 中点或点D″是BC 的中点时,满足条件,分别求解即可. 【详解】解:如图,△ABC ≌△ABP ,3AC AP ==,30ABP ABC ∠=∠=︒,60ACB ∠=︒,∴60APB ∠=︒,90CAB PAB ∠=∠=︒, ∴C ,A ,P 共线,BC BP AC AP ===, ∴△BPC 是等边三角形,当D′是PB 中点时,AD′=12BP=AC=3,此时ABC 与D'AB 满足条件, ∴D'90C P ∠=︒,∴CD′= PD′tan 60︒=3PD′=3,当点D″是BC 的中点时,此时ABC 与D AB "也满足条件, ∴CD″=3,∴满足条件的CD 的长为3或3. 故答案为:3或3. 【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是画出符合题意的图形,用分类讨论的思想思考问题.12.小芳同学在学习了图形的镶嵌和拼接以后,设计了一幅瓷砖贴纸(图1),它是由图2这种基本图形拼接而成。

人教版九年级下册数学第二十八章 锐角三角函数含答案解析

人教版九年级下册数学第二十八章 锐角三角函数含答案解析

人教版九年级下册数学第二十八章锐角三角函数含答案一、单选题(共15题,共计45分)1、如图,在⊙O中,E是直径AB延长线上一点,CE切⊙O于点E,若CE=2BE,则∠E的余弦值为()A. B. C. D.2、如图,在Rt△ABC中,CD是斜边AB上的高,则下列线段的比中不等于sinA 的是( )A. B. C. D.3、如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30C.30D.404、如图所示,已知:点A(0,0),B(,0),C(0,1).在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于()A. B. C. D.5、已知Rt△ABC中,∠A=90°,则是∠B的()A.正切;B.余切;C.正弦;D.余弦6、如图,在的正方形网格中,每个小正方形的边长都是1,的顶点都在这些小正方形的顶点上,那么的值为().A. B. C. D.7、如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()A. B. C. D.8、如图,已知Rt△ABC中,∠C=90°,BC=3, AC=4,则sinA的值为()..A. B. C. D.9、定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=4∠B.则cosB•sadA=()A.1B.C.D.10、Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且a:b=3:4,斜边c=15,则b的值是()A.12B.9C.4D.311、已知tanα=0.3249,则α约为()A.17°B.18°C.19°D.20°12、如图,在Rt△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于E,若BE=2 ,则AC=( )A.1B.2C.3D.413、如图,在一块矩形ABCD区域内,正好划出5个全等的矩形停车位,其中EF=a米,FG=b米,∠AEF=30°,则AD等于()A.(a+ b)米B.(a+ b)米C.(a+ b)米D.(a+ b)米14、如图,平面直角坐标系中,A(8,0),B(0,6),∠BAO,∠ABO的平分线相交于点C,过点C作CD∥x轴交AB于点D,则点D的坐标为()A.(,2)B.(,1)C.(,2)D.(,1)15、如图,已知A,B,C,D是⊙O上的点,AB⊥CD,OA=2,CD=2 ,则∠D 等于()A. B. C. D.二、填空题(共10题,共计30分)16、图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若,则BC长为________cm(结果保留根号).17、在三角形ABC中,AB=2,AC= ,∠B=45°,则BC的长________.18、如图,射线OC与x轴正半轴的夹角为30°,点A是OC上一点,AH⊥x轴于H,将△AOH绕着点O逆时针旋转90°后,到达△DOB的位置,再将△DOB沿着y轴翻折到达△GOB的位置,若点G恰好在抛物线y=x2(x>0)上,则点A 的坐标为________.19、如图,在△ABC中,∠C=90°,∠A=30°,BC=3,点D、E分别在AB、AC 上,将△ABC沿DE折叠,点A落在AC边的点F处.若F为CE的中点,则DF 的长为________.20、如图,在Rt△ABC中,∠C=90°,BC=4 ,AC=4,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若∠AB′F为直角,则AE的长为________.21、小华从斜坡底端沿斜坡走了100米后,他的垂直高度升高了50米,那么该斜坡的坡角为________度22、在Rt△ABC中,∠C=90°,sinA=,则cosA=________.23、如图,ABCD中,E是AD边上一点,AD=4 ,CD=3,ED= ,∠A=45.点P,Q分别是BC,CD边上的动点,且始终保持∠EPQ=45°.将CPQ沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,线段BP的长为________.24、把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是________.25、已知:正方形ABCD的边长为3,点P是直线CD上一点,若DP=1,则tan∠BPC的值是________.三、解答题(共5题,共计25分)26、计算:+(tan60﹣1)0+| ﹣1|﹣2cos30°.27、教育部布的《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动,某学校组织了一次测量探究活动,如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度1:,AB=10米,AE=21米,求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.41,≈1.73,tan53°≈,cos53°≈0.60)28、如图,B位于A南偏西37°方向,港口C位于A南偏东35°方向,B位于C正西方向. 轮船甲从A出发沿正南方向行驶40海里到达点D处,此时轮船乙从B出发沿正东方向行驶20海里至E处,E位于D南偏西45°方向.这时,E 处距离港口C有多远?(参考数据:tan37°≈0.75,tan35°≈0.70)29、周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)30、每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB (假定树干AB垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB原来的高度是多少米?(结果精确到个位,参考数据:)参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、A5、A6、D7、A8、C9、B10、A11、B12、B13、A14、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。

人教版九年级数学下册第二十八章: 锐角三角函数 练习(含答案)

人教版九年级数学下册第二十八章: 锐角三角函数 练习(含答案)

第二十八章 锐角三角函数一、单选题1.在Rt △ABC 中,∠C=90°,AC=12,BC=5,则sinA 的值为( )A .B .C .D . 2.(2016甘肃省兰州市)在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =( ) A .4 B .6 C .8 D .103.在Rt △ABC 中,∠C=90°,sinB=513,则tanA 的值为( ) A .513 B .1213 C .512 D .1254.Rt ABC 中,C 90∠=,若BC 2=,AC 3=,下列各式中正确的是 ( ) A .2sinA 3= B .2cosA 3= C .2tanA 3= D .2cotA 3= 5.如图,过点C (﹣2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB=( )A .25B .23C .52D .326.如图,某超市自动扶梯的倾斜角 为 ,扶梯长 为 米,则扶梯高 的长为( )A.米B.米C.米D.米7.聊城流传着一首家喻户晓的民谣:“东昌府,有三宝,铁塔、古楼、玉皇皋.”被人们誉为三宝之一的铁塔,初建年代在北宋早期,是本市现存最古老的建筑.如图,测绘师在离铁塔10米处的点C测得塔顶A的仰角为α,他又在离铁塔25米处的点D测得塔顶A的仰角为β,若tanαtanβ=1,点D,C,B在同一条直线上,那么测绘师测得铁塔的高度约为(参考≈3.162)()A.15.81米B.16.81米C.30.62米D.31.62米8.若某人沿坡角为α的斜坡前进100m,则他上升的最大高度是()A.100 αm B.100sinαm C.100cosαm D.100 αm9.某水坝的坡度i=1,坡长AB=20米,则坝的高度为()A.10米B.20米C.40米D.2010.如图,两建筑物的水平距离为32 m,从点A测得点C的俯角为30°,点D的俯角为45°,则建筑物CD的高约为()A.14 m B.17 m C.20 m D.22 m二、填空题11.2sin45°+2sin60°﹣=_____. 12.在Rt △ABC 中,∠C =90°,AB =5,BC =3,则sin A = .13.某同学沿坡比为1: 的斜坡前进了90米,那么他上升的高度是______米14.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为______.三、解答题15.计算:|﹣2|﹣2cos60°+(16)﹣1﹣(π0. 16.如图,为了测得某建筑物的高度AB ,在C 处用高为1米的测角仪CF ,测得该建筑物顶端A 的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A 的仰角为60°.求该建筑物的高度AB .(结果保留根号)17.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=13,AD=1.(1)求BC的长;(2)求tan∠DAE的值.18.如图,为了测量出楼房AC的高度,从距离楼底C处D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据: 53°≈0.8, 53°≈0.6, 53°≈43,计算结果用根号表示,不取近似值).答案1.D2.D3.D4.C5.B6.A7.A8.A9.A10.A1112.3513.4514.215.|﹣2|﹣2cos60°+(16)﹣1﹣(π﹣ )0 =2﹣2×12+6﹣1 =6.16.解:设AM x =米,在Rt AFM ∆中,45AFM ︒∠=,∴FM AM x ==,在Rt AEM ∆中,AM tan EMAEM ∠=,则tan AM EM x AEM ==∠, 由题意得,FM EM EF -=,即40x x -=,解得,60x =+,∴61AB AM MB =+=+答:该建筑物的高度AB为(61+米.17.解:(1)在△ABC 中,∵AD 是BC 边上的高,∴∠ADB=∠ADC=90°。

人教版九年级下册第二十八章 《锐角三角函数》单元练习题(含答案)

人教版九年级下册第二十八章 《锐角三角函数》单元练习题(含答案)

人教版九年级下册第二十八章《锐角三角函数》单元练习题(含答案)一、选择题1.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cos A的值等于()A.B.C.D.2.在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A.4B.2C.D.3.已知∠A为锐角,且tan A=,则∠A的取值范围是()A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°4.把Rt△ABC各边的长度都缩小为原来的得Rt△A′B′C′,则锐角A、A′的余弦值之间的关系是()A.cos A=cos A′B.cos A=5cos A′C.5cos A=cos A′D.不能确定5.Rt△ABC中,∠C=90°,tan A=,AC=6 cm,那么BC等于()A.8 cmB.cmC.cmD.cm6.在△ABC中,∠C=90°,已知tan A=,则cos B的值等于()A.B.C.D.7.在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A.B.4C.2D.58.已知∠A为锐角,且sin A<,那么∠A的取值范围是()A.0°<∠A<30°B.30°<∠A<60°C.60°<∠A<90°D.30°<∠A<90°分卷II二、填空题9.在Rt△ABC中,∠C=90°,BC=10,若△ABC的面积为,则∠A=________.10.若tan (x+10°)=1,则锐角x的度数为__________.11.在△ABC中,∠C=90°,如果tan B=3,则cos A=__________.12.如图,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以20海里/小时的速度向西北方向航行,我渔政船立即沿北偏东60°方向航行,1.5小时后,在我领海区域的C处截获可疑渔船,我渔政船的航行路程是________海里.13.如图,某电视塔AB和楼CD的水平距离为100 m,从楼顶C处及楼底D处测得塔顶A的仰角分别为45°和60°,试求塔高为__________,楼高为__________.14.在Rt△ABC中,∠C=90°,且tan A=3,则cos B的值为__________.15.如图,将△ABC放在每个小正方形边长为1的网格中,点A,B,C均在格点上,则tan A 的值是__________.16.△ABC中,∠C=90°,cos ∠A=0.3,AB=10,则AC=__________.三、解答题17.如图,某公园内有座桥,桥的高度是5米,CB⊥DB,坡面AC的倾斜角为45°,为方便老人过桥,市政部门决定降低坡度,使新坡面DC的坡度为i=∶3.若新坡角外需留下2米宽的人行道,问离原坡角(A点处)6米的一棵树是否需要移栽?(参考数据:≈1.414,≈1.732)18.课堂上我们在直角三角形中研究了锐角的正弦,余弦和正切函数,与此类似,在Rt△ABC 中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cot A=.(1)若∠A=45°,则cot 45°=__________;若∠A=60°,则cot 60°=__________;(2)探究tan A·cot A的值.19.已知Rt△ABC中,角A,B,C对应的边分别为a,b,c,∠C=90°,a:c=2:3,求tan A 的值.20.在Rt△ABC中,∠C=90°,∠A=30°,a=5,解这个直角三角形.21.如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF 交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.60,sin 76°≈0.97.cos 76°≈0.24,tan 76°≈4.00)第二十八章《锐角三角函数》单元练习题答案解析1.【答案】D【解析】∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB===5.∴cos A==,故选D.2.【答案】A【解析】如图,∵∠C=90°,∴cos B=,∴BC=AB cos B=6×=4,故选A.3.【答案】C【解析】∵tan 45°=1,tan 60°=,锐角的正切值随角增大而增大,又1<<,∴45°<∠A<60°.故选C.4.【答案】【解析】∵Rt△ABC各边的长度都缩小为原来的得Rt△A′B′C′,∴Rt△ABC∽Rt△A′B′C′,∴∠A=∠A′,∴cos A=cos A′.故选A.5.【答案】A【解析】∵Rt△ABC中,∠C=90°,tan A=,AC=6 cm,∴tan A===,解得BC=8,故选A.6.【答案】A【解析】设BC=2x,∵tan A=,∴AC=x,∴AB=3,∴cos B==,故选A.7.【答案】B【解析】∵cos B=,∴BC=AB·cos B=6×=4.故选B.8.【答案】A【解析】∵∠A为锐角,且sin 30°=,又∵当∠A是锐角时,其正弦随角度的增大而增大,∴0°<A<30°,故选A.9.【答案】60°【解析】∵在Rt△ABC中,∠C=90°,BC=10,若△ABC的面积为,∴S=AC·BC=,∴AC=,∵tan A===,∴∠A=60°.10.【答案】20°【解析】∵tan (x+10°)=1,∴tan (x+10°)==,∴x+10°=30°,∴x=20°.11.【答案】【解析】由tan B=3,可以设∠B的对边是3k,邻边是k,则根据勾股定理,得斜边是k=k,故cos A=.12.【答案】30【解析】作CD⊥AB于点D,垂足为D,在Rt△BCD中,∵BC=20×1.5=30(海里),∠CBD=45°,∴CD=BC·sin 45°=30×=15(海里),则在Rt△ACD中,AC==15×2=30(海里).13.【答案】100m(100-100)m【解析】设CD=x m,则∵CE=BD=100,∠ACE=45°,∴AE=CE·tan 45°=100.∴AB=100+x.在Rt△ADB中,∵∠ADB=60°,∠ABD=90°,∴tan 60°=,∴AB=BD,即x+100=100,∴x=100-100,即楼高100-100 m,塔高100m.14.【答案】【解析】解法1:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,tan A=3,设a=3x,b=x,则c=x,∴cos B===.解法2:利用同角、互为余角的三角函数关系式求解.又∵tan A==3,∴sin A=3cos A.又sin2A+cos2A=1,∴cos A=.∵A、B互为余角,∴cos B=sin (90°-B)=sin A=.15.【答案】【解析】作BD⊥AC于点D,∵BC=2,AC==3,点A到BC的距离为3,AB==,∴=,即=,解得BD=,∴AD===2,∴tan A===.16.【答案】3【解析】∵∠C=90°,AB=10,∴cos A===0.3,∴AC=3.17.【答案】解不需要移栽,理由:∵CB⊥AB,∠CAB=45°,∴△ABC为等腰直角三角形,∴AB=BC=5米,在Rt△BCD中,新坡面DC的坡度为i=∶3,即∠CDB=30°,∴DC=2BC=10米,BD=BC=5米,∴AD=BD-AB=(5-5)米≈3.66米,∵2+3.66=5.66<6,∴不需要移栽.【解析】根据题意得到三角形ABC为等腰直角三角形,求出AB的长,在直角三角形BCD中,根据新坡面的坡度求出∠BDC的度数为30,利用30度角所对的直角边等于斜边的一半求出DC的长,再利用勾股定理求出DB的长,由DB-AB求出AD的长,然后将AD+2与6进行比较,若大于则需要移栽,反之不需要移栽.18.【答案】解(1)由题意得:cot 45°=1,cot 60°=;(2)∵tan A=,cot A=,∴tan A·cot A=·=1.【解析】(1)根据题目所给的信息求解即可;(2)根据tan A=,cotA=,求出tan A·cot A的值即可.19.【答案】解设a=2k,c=3k.由勾股定理得b===k.则tan A===.【解析】设a=2k,c=3k,依据勾股定理可求得b的长度,然后依据锐角三角函数的定义解答即可.20.【答案】解在Rt△ABC中,∠B=90°-∠A=60°,∵tan B=,∴b=a×tan B=5×tan 60°=5,由勾股定理,得c==10.【解析】直角三角形的两个锐角互余,并且Rt△ABC中,∠C=90°则∠A=90-∠B=60°,解直角三角形就是求直角三角形中出直角以外的两锐角,三边中的未知的元素.21.【答案】解(1)如图,作DP⊥MN于点P,即∠DPC=90°,∵DE∥MN,∴∠DCP=∠ADE=76°,则在Rt△CDP中,DP=CD sin ∠DCP=40×sin 76°≈39(cm),答:椅子的高度约为39厘米;(2)作EQ⊥MN于点Q,∴∠DPQ=∠EQP=90°,∴DP∥EQ,又∵DF∥MN,∠AED=58°,∠ADE=76°,∴四边形DEQP是矩形,∠DCP=∠ADE=76°,∠EBQ=∠AED=58°,∴DE=PQ=20,EQ=DP=39,又∵CP=CD cos ∠DCP=40×cos 76°≈9.6(cm),BQ==≈24.4(cm),∴BC=BQ+PQ+CP=24.4+20+9.6≈54(cm),答:椅子两脚B、C之间的距离约为54 cm.【解析】(1)作DP⊥MN于点P,即∠DPC=90°,由DE∥MN知,∠DCP=∠ADE=76°,根据DP=CD sin ∠DCP可得答案;(2)作EQ⊥MN于点Q可得四边形DEQP是矩形,知DE=PQ=20,EQ=DP=39,再分别求出BQ、CP的长可得答案.人教版数学九年级下册第二十八章锐角三角函数 章末专题训练人教版数学九年级下册第二十八章锐角三角函数 章末专题训练一、选择题1.在Rt △ABC 中,∠C =90°,若将各边长度都扩大为原来的5倍,则∠A 的正弦值( D )A .扩大为原来的5倍B .缩小为原来的15C .扩大为原来的10倍D .不变2. 下列式子错误的是( D )A .cos40°=sin50°B .tan15°·tan75°=1 C.sin 225°+cos 225°=1 D .sin60°=2sin30°3. 如图所示,AB 为斜坡,D 是斜坡AB 上一点,斜坡AB 的坡度为i ,坡角为α,AC ⊥BM 于C ,下列式子:①i =AC ∶AB ;②i =(AC -DE)∶EC ;③i =tan α=DE BE;④AC =i ·BC.其中正确的有( C )A .1个B .2个C .3个D .4个4.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡度是(坡度是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是 ( A ) A.米B.米C. 15米D. 10米5.△ABC 在网格中的位置如图K -17-2所示(每个小正方形的边长都为1),AD ⊥BC 于点D ,下列选项中,错误..的是( C )图K-17-2A.sinα=cosα B.tanC=2C.sinβ=cosβ D.tanα=16.把Rt△ABC各边的长度都扩大3倍得到Rt△A′B′C′,那么锐角∠A、∠A′的余弦值的关系是( B )A.cosA=cosA′B.cosA=3cosA′C.3cosA=cosA′D.不能确定7. 如图,要在宽为22米的九洲大道AB两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直。

人教版九年级下《第28章锐角三角函数》提优拔高检测试题附答案

人教版九年级下《第28章锐角三角函数》提优拔高检测试题附答案

人教版九年级数学 第28章《锐角三角函数》提优拔高测试题完成时间:120分钟 满分:150分姓名 成绩一、选择题(本大题10小题,每小题4分,共40分。

每小题给 题号 1 2 3 4 5 6 7 8 9 10 答案1.如图所示,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为点D.若AC =5,BC =2,则sin ∠ACD 的值为( )A. 53B. 255C. 52D. 23第1题图 第3题图 第4题图2.在△ABC 中,若|sinA -12|+(cosB -23)2=0,则∠C=( )A. 30°B. 60°C. 90°D. 120°3.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan ∠OAB =12,则AB 的长是( )A .4B .2 3C .8D .4 34.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么ABDC的值为( ) A .sin ∠APC B .cos ∠APC C .tan ∠APC D .APCtan 1 5.已知抛物线y =-x 2-2x +3与x 轴交于A ,B 两点,将这条抛物线的顶点记为C ,连接AC ,BC ,则tan ∠CAB 的值为( )A. 3B. 55C. 255D .26.在△ABC 中,若|sinA -12|+(cosB -12)2=0,则∠C 的度数是( )A .30°B .45°C .60°D .90°7.如图,在Rt △ABC 中,∠C=90°,∠A=30°,E 为AB 上一点且AE :EB=4:1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( )A .33B .332 C .335 D .53第7题图 第8题图 第9题图8.如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若AB =4,BC =5,则tan ∠AFE 的值为( ) A. 43 B. 35 C. 34 D. 459.如图,在△ABC 中,∠C =90°,∠B =60°,D 是AC 上一点,DE ⊥AB 于E ,且CD =2,DE =1,则BC 的长为( ) A .2 B.433C .2 2D .4 3 10.如图,△ABC 中,∠ACB=90°,AB=10,tanA=12.点P 是斜边AB 上一个动点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q ,设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致为( )B .C .D .5分,共20分)得 分 评卷人得 分 评卷人11.如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF =.第11题图第12题图第13题图第14题图12.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF 为折痕.若AE=3,则sin∠BFD的值为.13.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=1 4,则线段AC的长为.14.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=6,则AE=.90分)15.(6分)计算:|-3|+2sin45°+tan60°-(-13)-1-12+(π-3)0.16.(8分)已知α为锐角,且tanα是方程x2+2x-3=0的一个根,求2sin2α+cos2α-3tan(α+15°)的值.17.(10分)如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果ABBC =23,求tan∠DCF的值.18.(10分)阅读材料:关于三角函数有如下的公式:sin(α±β)=sinαcosβ±cosαsinβ,tan(α±β)=tanα±tanβ1∓tanαtanβ.利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan15°=tan(45°-30°)=tan45°-tan30°1+tan45°tan30°=1-331+1×33=(3-3)(3-3)(3+3)(3-3)=12-636=2- 3.根据以上阅读材料,请选择适当的公式计算sin15°的值;19.(10分)如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A 处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示);(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行得分评卷人时间.(结果精确到0.1小时.参考数据:2≈1.41,3≈1.73,6≈2.45)20.(10分)某生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A,B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,3≈1.7)21.(10分)如图,在南北方向的海岸线MN上,有A,B两艘巡逻船,现均收到故障船C的求救信号.已知A,B两船相距100(√3+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D间的距离AC和AD(如果结果有根号,请保留根号);(2)已知距观测点D处100海里范围内有暗礁,若巡逻船A沿直线AC去营救船C,在去营救的途中有无触礁的危险?(参考数据:√2≈1.41,√3≈1.73)22.(12分)如图,游客在点A处坐缆车出发,沿A-B-D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600 m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,2≈1.41)23.(14分)已知:如图,直线y=-x+12分别交x轴、y轴于A、B点,将△AOB折叠,使A点恰好落在OB的中点C处,折痕为DE.(1)求AE的长及sin∠BEC的值;(2)求△CDE的面积.人教版九年级数学 第28章《锐角三角函数》提优拔高测试题参 考 答 案姓名 成绩一、选择题(本大题10小题,每小题4分,共40分。

人教版九年级数学下《第二十八章锐角三角函数》单元练习题含答案

人教版九年级数学下《第二十八章锐角三角函数》单元练习题含答案

第二十八章锐角三角函数一、选择题1.在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A. 4B. 2C.D.2.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,则sin A等于()A.B.C.D.3.在Rt△ABC中,∠C=90°,a=1,b=,则∠A等于()A. 30°B. 45°C. 60°D. 90°4.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h·cosα5.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A. 5米B. 6米C. 6.5米D. 12米6.Rt△ABC中,∠C=90°,AB=13,AC=5,则sin B的值为()A.B.C.D.7.在Rt△ABC中,∠C=90°,AB=6,AC=4,则cos A的值是()A.B.C.D.8.如图,在一笔直的海岸线l上有A、B两个观测站,C离海岸线l的距离(即CD的长)为2,从A 测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则AB的长()A. 2 kmB. (2+)kmC. (4-2) kmD. (4-) km9.在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是() A. 100tanα米B. 100cotα米C. 100sinα米D. 100cosα米10.把△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦函数值()A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定二、填空题11.若2cosα-=0,则锐角α=____________度.12.在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sin A=;②cos B=;③tan A=;④tan B=,其中正确的结论是__________(只需填上正确结论的序号)13.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则sin ∠BAC=____________.14.已知∠A的补角是120°,则tan A=________.15.如图是一斜坡的横截面,某人沿着斜坡从P处出发,走了13米到达M处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是____________.16.汽车沿着坡度为1∶7的斜坡向上行驶了50米,则汽车升高了____________米.17.已知0°<θ<30°,且sinθ=km+(k为常数且k<O),则m的取值范围是__________.18.在Rt△ABC中,∠C=90°,BC=3,sin A=,那么AB=__________.19.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则sin ∠ABC=________.20.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:≈1.73)三、解答题21.如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为(即AB∶BC=),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)22.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos 75°=0.2588,sin 75°=0.9659,tan 75°=3.732,=1.732,=1.414)23.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)(参考数据:sin 15°≈0.259,cos 15°≈0.966,tan 15°≈0.268,≈1.414)24.小明周日在广场放风筝,如图,小明为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为20米,小明的身高AB为1.75米,请你帮小明计算出风筝离地面的高度.(结果精确到0.1米,参考数据≈1.41,≈1.73)25.如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin 53°=0.80,cos 53°=0.60,tan 53°=0.33,=1.41)26.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求cos B的值.27.如图是某小区的一个健身器材,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1 m).(参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75)28.在△ABC中,∠C=90°,AC=7,BC=24,求sin A,sin B的值.答案解析1.【答案】A【解析】如图,∵∠C=90°,∴cos B=,∴BC=AB cos B=6×=4,故选A.2.【答案】B【解析】sin A==,故选B.3.【答案】A【解析】如图所示:∵在Rt△ABC中,∠C=90°,a=1,b=,∴tan A==.∴∠A=30°,故选A.4.【答案】B【解析】∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos ∠BCD=,∴BC==,故选B.5.【答案】A【解析】在如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC===5,∴小车上升的高度是5 m.故选A.6.【答案】A【解析】∵Rt△ABC中,∠C=90°,AB=13,AC=5,∴sin B==.故选A.7.【答案】B【解析】cos A===.故选B.8.【答案】C【解析】在CD上取一点E,使BD=DE,可得∠EBD=45°,AD=DC=2,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC.设AB=x,则DE=BD=AD-AB=2-x,∴EC=BE=BD=(2-x),∵DE+EC=CD,∴2-x+(2-x)=2,解得x=4-2,即AB=4-2.故选C.9.【答案】B【解析】∵∠BAC=α,BC=100 m,∴AB=BC·cotα=100cotαm.故选B.10.【答案】A【解析】因为△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A的大小没改变,故锐角A的余弦函数值也不变.故选A.11.【答案】45°【解析】∵2cosα-=0,∴cosα=,又∵cos 45°=,∴锐角α=45°.12.【答案】②③④【解析】如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sin A==,故①错误;∴∠A=30°,∴∠B=60°,∴cos B=cos 60°=,故②正确;∵∠A=30°,∴tan A=tan 30°=,故③正确;∵∠B=60°,∴tan B=tan 60°=,故④正确.故答案为②③④.13.【答案】【解析】∵A(0,1),B(0,-1),∴AB=2,OA=1,∴AC=2,由勾股定理,得OC==,∴在Rt△AOC中,sin ∠OAC=sin ∠BAC==.14.【答案】【解析】∵∠A的补角是120°,∴∠A=180°-120°=60°,∴tan A=tan 60°=.15.【答案】5∶12【解析】如图所示,由题意可知,PM=13 m,MC=5米,∴PC==12,∴MC∶PC=5∶12,故答案为5∶12.16.【答案】5【解析】∵坡度为1∶7,∴设坡角是α,则sinα==,∴上升的高度是50×=5(米).17.【答案】<m<【解析】∵0°<θ<30°,∴sin 0°<sinθ<sin 30°,即0<km+<,∴<km<,∴<m<.18.【答案】18【解析】在Rt△ABC中,∵∠C=90°,sin A==,∴AB=3×6=18.19.【答案】【解析】∵小正方形边长为1,∴AB2=8,BC2=10,AC2=2;∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠CAB=90°,∴sin ∠ABC===.20.【答案】208【解析】由题意可得:tan 30°===,解得:BD=30,tan 60°===,解得DC=90,故该建筑物的高度为BC=BD+DC=120≈208(m).21.【答案】解∵AF⊥AB,AB⊥BE,DE⊥BE,∴四边形ABEF为矩形,∴AF=BE,EF=AB=2,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,∵=,AB=2,∴BC=2,在Rt△AFD中,DF=DE-EF=x-2,∴AF===(x-2),∵AF=BE=BC+CE.∴(x-2)=2+x,解得x=6.答:树DE的高度为6米.【解析】由于AF⊥AB,则四边形ABEF为矩形,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,得到=,求出BC,在Rt△AFD中,求出AF,由AF=BC+CE 即可求出x的长.22.【答案】解过B作BD⊥AC,∵∠BAC=75°-30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理,得BD=AD=×20=10(海里),在Rt△BCD中,∠C=15°,∠CBD=75°,∴tan ∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.【解析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.23.【答案】解过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO·sin 15°≈30×0.259≈7.77(cm)AD=AO·co s 15°≈30×0.966≈28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+BD=36.75≈36.8(cm).答:AB的长度为36.8 cm.【解析】过O点作OD⊥AB交AB于D点,根据∠A=15°,AO=30可知OD=AO·sin 15°,AD=AO·cos 15°,在Rt△BDO中根据∠OBC=45°可知,BD=OD,再根据AB=AD+BD即可得出结论.24.【答案】解∵在Rt△CBE中,sin 60°=,∴CE=BC·sin 60°=20×≈17.3 m,∴CD=CE+ED=17.3+1.75=19.05≈19.1 m.答:风筝离地面的高度是19.1 m.【解析】先根据锐角三角函数的定义求出CE的长,再由CD=CE+ED即可得出结论.25.【答案】解(1)如图,作PC⊥AB于C,在Rt△PAC中,∵PA=100,∠PAC=53°,∴PC=PA·sin ∠PAC=100×0.80=80,在Rt△PBC中,∵PC=80,∠PBC=∠BPC=45°,∴PB=PC=1.41×80≈113,即B处与灯塔P的距离约为113海里;(2)∵∠CBP=45°,PB≈113海里,∴灯塔P位于B处北偏西45°方向,且距离B处约113海里.【解析】(1)根据方向角的定义结合已知条件在图中画出点B,作PC⊥AB于C,先解Rt△PAC,得出PC=PA·sin ∠PAC=80,再解Rt△PBC,得出PB=PC=1.41×80≈113;(2)由∠CBP=45°,PB≈113海里,即可得到灯塔P位于B处北偏西45°方向,且距离B处约113海里.26.【答案】解∵∠C=90°,MN⊥AB,∴∠C=∠ANM=90°,∴∠A+∠B=90°,∠A+∠AMN=90°,∴∠B=∠AMN,又AN=3,AM=4,∴MN==,∴cos B=cos ∠AMN==.【解析】根据“同角的余角相等”,可得∠B=∠AMN,又AN=3,AM=4,由勾股定理得MN=,故 cos B=cos ∠AMN.27.【答案】解作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos 70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1 m,答:端点A到地面CD的距离是1.1 m.【解析】作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,求出AF、EF即可解决问题.28.【答案】解在△ABC中,∠C=90°,AC=7,BC=24,由勾股定理,得AB===25,sin A==,sin B==.【解析】根据勾股定理,可得AC的长,根据锐角的正弦为对边比斜边,可得答案.。

人教版九年级数学下《第28章锐角三角函数》专项训练含答案

人教版九年级数学下《第28章锐角三角函数》专项训练含答案

第28章锐角三角函数专项训练专训1“化斜为直”构造直角三角形的方法名师点金:锐角三角函数是在直角三角形中定义的,解直角三角形的前提是在直角三角形中进行,对于非直角三角形问题,要注意观察图形特点,恰当作辅助线,将其转化为直角三角形来解.无直角、无等角的三角形作高1.如图,在△ABC中,已知BC=1+3,∠B=60°,∠C=45°,求AB的长.(第1题)有直角、无三角形的图形延长某些边2.如图,在四边形ABCD中,AB=2,CD=1,∠A=60°,∠D=∠B=90°,求四边形ABCD的面积.(第2题)有三角函数值不能直接利用时作垂线3.如图,在△ABC中,点D为AB的中点,DC⊥AC,sin∠BCD=13,求tan A的值.(第3题)求非直角三角形中角的三角函数值时构造直角三角形4.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=12∠BAC,求tan∠BPC的值.(第4题)专训2巧用构造法求几种特殊角的三角函数值名师点金:对于30°、45°、60°角的三角函数值,我们都可通过定义利用特殊直角三角形三边的关系进行计算;而在实际应用中,我们常常碰到像15°、22.5°、67.5°等一些特殊角的三角函数值的计算,同样我们也可以构造相关图形,利用数形结合思想进行巧算.巧构造15°与30°角的关系的图形计算15°角的三角函数值1.求sin15°,cos15°,tan15°的值.巧构造22.5°与45°角的关系的图形计算22.5°角的三角函数值2.求tan22.5°的值.巧用折叠法求67.5°角的三角函数值3.小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC边上的点F处,求出67.5°角的正切值.(第3题)巧用含36°角的等腰三角形中的相似关系求18°、72°角的三角函数值4.求sin18°,cos72°的值.巧用75°与30°角的关系构图求75°角的三角函数值5.求sin75°,cos75°,tan75°的值.专训3应用三角函数解实际问题的四种常见问题名师点金:在运用解直角三角形的知识解决实际问题时,要学会将千变万化的实际问题转化为数学问题,要善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关系,若不是直角三角形,应尝试添加辅助线,构造出直角三角形进行解答,这样才能更好地运用解直角三角形的方法求解.其中仰角、俯角的应用问题,方向角的应用问题,坡度、坡角的应用问题要熟练掌握其解题思路,把握解题关键.定位问题1.某校兴趣小组从游轮拍摄海河两岸美景.如图,游轮出发点A与望海楼B的距离为300 m,在A处测得望海楼B位于A的北偏东30°方向,游轮沿正北方向行驶一段时间后到达C,在C处测得望海楼B位于C的北偏东60°方向,求此时游轮与望海楼之间的距离BC.(3取1.73,结果保留整数)(第1题)坡坝问题2.如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE=20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F 处,使新的背水坡BF的坡角∠F=30°,求AF的长度 .(结果精确到1米,参考数据:2≈1.414,3≈1.732)(第2题)测距问题3.一条东西走向的高速公路上有两个加油站A,B,在A的北偏东45°方向上还有一个加油站C,C到高速公路的最短距离是30千米,B,C间的距离是60千米,想要经过C修一条笔直的公路与高速公路相交,使两路交叉口P到B,C 的距离相等,请求出交叉口P到加油站A的距离.(结果保留根号)测高问题4.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B 的仰角为45°,其中点A,C,E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度.(结果保留根号)(第4题)专训4利用三角函数解判断说理问题名师点金:利用三角函数解答实际中的“判断说理”问题:其关键是将实际问题抽象成数学问题,建立解直角三角形的数学模型,运用解直角三角形的知识来解决实际问题.航行路线问题1.如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.(第1题)工程规划问题2.A,B两市相距150千米,分别从A,B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心、45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接A,B两市的高速公路.问连接A,B两市的高速公路会穿过风景区吗?请说明理由.(第2题)拦截问题3.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1 000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离.(结果不取近似值)(第3题)台风影响问题4.如图所示,在某海滨城市O附近海面有一股强台风,据监测,当前台风中心位于该城市的南偏东20°方向200 km的海面P处,并以20 km/h的速度向北偏西65°的PQ方向移动,台风侵袭的范围是一个圆形区域,当前半径为60 km,且圆的半径以10 km/h的速度不断扩大.(1)当台风中心移动 4 h时,受台风侵袭的圆形区域半径增大到________km;当台风中心移动t(h)时,受台风侵袭的圆形区域半径增大到____________km.(2)当台风中心移动到与城市O距离最近时,这股台风是否会侵袭这座海滨城市?请说明理由.(参考数据:2≈1.41,3≈1.73)专训5三角函数在学科内的综合应用名师点金:1.三角函数与其他函数的综合应用:此类问题常常利用函数图象与坐标轴的交点构造直角三角形,再结合锐角三角函数求线段的长,最后可转化为求函数图象上的点的坐标.2.三角函数与方程的综合应用:主要是与一元二次方程之间的联系,利用方程根的情况,最终转化为三角形三边之间的关系求解.3.三角函数与圆的综合应用:主要利用圆中的垂径定理、直径所对的圆周角是直角等,将圆中的边角关系转化为同一直角三角形的边角关系求解.4.三角函数与相似三角形的综合应用:此类问题常常是由相似得成比例线段,再转化成所求锐角的三角函数.三角函数与一次函数的综合应用1.如图,直线y=kx-1与x轴、y轴分别交于B,C两点,tan∠OCB=1 2 .(1)求点B的坐标和k的值;(2)若点A(x,y)是直线y=kx-1上的一个动点(且在第一象限内),在点A 的运动过程中,试写出△AOB的面积S与x的函数关系式.(第1题)三角函数与二次函数的综合应用2.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴直线x =1交x轴于点B,连接EC,AC,点P,Q为动点,设运动时间为t秒.(1)求点A的坐标及抛物线对应的函数解析式;(第2题)(2)如图,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?三角函数与反比例函数的综合应用3.如图,反比例函数y=kx(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=3 2 .(1)求k的值;(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y=kx(x>0)的图象恰好经过DC的中点E,求直线AE对应的函数解析式;(3)若直线AE与x轴交于点M,与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论,并说明理由.(第3题)三角函数与方程的综合应用4.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c.已知a,b是关于x 的一元二次方程x2-(c+4)x+4c+8=0的两个根,且9c=25a sin A.(1)试判断△ABC的形状;(2)△ABC的三边长分别是多少?5.已知关于x的方程5x2-10x cosα-7cosα+6=0有两个相等的实数根,求边长为10 cm 且两边所夹的锐角为α的菱形的面积.三角函数与圆的综合应用6.如图,AD 是△ABC 的角平分线,以点C 为圆心、CD 为半径作圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B =∠CAE ,EF FD =4 3.(1)求证:点F 是AD 的中点; (2)求cos ∠AED 的值;(3)如果BD =10,求半径CD 的长.(第6题)7.如图,AB 为⊙O 的直径,直线CD 切⊙O 于点D ,AM ⊥CD 于点M ,BN ⊥CD 于N.(1)求证:∠ADC =∠ABD ; (2)求证:AD 2=AM²AB;(3)若AM =185,sin ∠ABD =35,求线段BN 的长.(第7题)三角函数与相似三角形的综合应用8.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是边AD 上一点,连接FE 并延长交BC 的延长线于点G ,连接BF ,BE ,且BE ⊥FG.(1)求证:BF =BG ;(2)若tan ∠BFG =3,S △CGE =63,求AD 的长.(第8题)专训6全章热门考点整合应用名师点金:本章主要学习锐角三角函数的定义,锐角三角函数值,解直角三角形,以及解直角三角形的实际应用,重点考查运用解直角三角形的知识解决一些几何图形中的应用和实际应用,是中考的必考内容.其主要考点可概括为:2个概念,1个运算,2个应用,2个技巧.2个概念概念1:锐角三角函数1.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,CD⊥AB于点D,求∠BCD的三个三角函数值.(第1题)概念2:解直角三角形2.如图,在Rt△ABC中,∠ACB=90°,sin B=35,D是BC上一点,DE⊥AB于点E,CD=DE,AC+CD=9,求BE,CE的长.(第2题)1个运算——特殊角的三角函数值与实数运算3.计算:(1)tan30°sin60°+cos230°-sin245°tan45°;(2)14tan245°+1sin230°-3cos230°+tan45°cos60°-sin40°cos50°.2个应用应用1:解直角三角形在学科内应用4.如图,在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,过点P作PE⊥AP,交射线DC于点E,射线AE交射线BC于点F,设BP=a.(1)当点P在线段BC上时(点P与点B,C都不重合),试用含a的代数式表示CE的长;(2)当a=3时,连接DF,试判断四边形APFD的形状,并说明理由;(3)当tan∠PAE=12时,求a的值.(第4题)应用2:解直角三角形的实际应用5.如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道.为了搞好工程预算,需测算出A ,B 间的距离.一小船在点P 处测得A 在正北方向,B 位于南偏东24.5°方向,前行1 200 m ,到达点Q 处,测得A 位于北偏西49°方向,B 位于南偏西41°方向.(1)线段BQ 与PQ 是否相等?请说明理由.(2)求A ,B 间的距离(参考数据cos 41°≈0.75).(第5题)6.如图,为了测量山顶铁塔AE 的高,小明在27 m 高的楼CD 底部D 测得塔顶A 的仰角为45°,在楼顶C 测得塔顶A 的仰角为36°52′.已知山高BE 为56 m ,楼的底部D 与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin 36°52′≈0.60,tan 36°52′≈0.75)(第6题)2个技巧技巧1:“化斜为直”构造直角三角形解三角形的技巧 7.如图,在△ABC 中,∠A =30°,tan B =32,AC =23,求AB 的长.(第7题)技巧2:“割补法”构造直角三角形求解的技巧8.如图所示,已知四边形ABCD,∠ABC=120°,AD⊥AB,CD⊥BC,AB=303,BC=503,求四边形ABCD的面积.(要求:用分割法和补形法两种方法求解)(第8题)答案专训11.解:如图,过点A作AD⊥BC,垂足为点D.设BD=x,在Rt△ABD中,AD=BD²tan B=x²tan60°=3x.在Rt△ACD中,∵∠C=45°,∴∠CAD=90°-∠C=45°,∴∠C=∠CAD,∴CD=AD=3x.∵BC=1+3,∴3x+x=1+3,解得x=1,即BD=1.在Rt△ABD中,∵cos B=BD AB ,∴AB=BDcos B=1cos60°=2.(第1题)(第2题)2.解:如图,延长BC ,AD 交于点E. ∵∠A =60°,∠B =90°,∴∠E =30°. 在Rt △ABE 中,BE =AB tan E =2tan 30°=23, 在Rt △CDE 中,EC =2CD =2, ∴DE =EC²cos 30°=2³32= 3. ∴S 四边形ABCD =S Rt △ABE -S Rt △ECD=12AB²BE-12CD²ED=12³2³23-12³1³3=332. 点拨:本题看似是四边形问题,但注意到∠B =90°,∠A =60°,不难想到延长BC ,AD 交于点E ,构造出直角三角形,将所求问题转化为直角三角形问题来解决.3.解:如图,过点B 作BE ⊥CD ,交CD 的延长线于点E. ∵点D 是AB 的中点,∴AD =DB.又∵∠ACD =∠BED =90°,∠ADC =∠BDE , ∴△ACD ≌△BED ,∴CD =DE ,AC =BE.在Rt △CBE 中,sin ∠BCE =BE BC =13,∴BC =3BE. ∴CE =BC 2-BE 2=22BE , ∴CD =12CE =2BE =2AC.∴tan A =CD AC =2AC AC= 2. 方法点拨:构造直角三角形,把所要求的量与已知量建立关系是解题的关键.(第3题)(第4题)4.解:如图,过点A 作AE ⊥BC 于点E , ∵AB =AC =5,∴BE =12BC =12³8=4,∠BAE =12∠BAC.∵∠BPC =12∠BAC ,∴∠BPC =∠BAE.在Rt △BAE 中,由勾股定理得 AE =AB 2-BE 2=52-42=3, ∴tan ∠BPC =tan ∠BAE =BE AE =43.专训21.解:如图,在Rt △ABC 中,∠BAC =30°,∠C =90°,延长CA 到D ,使AD =AB ,则∠D =15°,设BC =a ,则AB =2a ,AC =3a ,∴AD =2a ,CD =(2+3)a.在Rt △BCD 中,BD =BC 2+CD 2=a 2+(7+43)a 2=(6+2)a. ∴sin 15°=sin D =BC BD =a (6+2)a =6-24;cos15°=cos D=CDBD=(2+3)a(6+2)a=6+24;tan15°=tan D=BCCD=a(2+3)a=2- 3.(第1题)(第2题)2.解:如图,在Rt△ABC中,∠C=90°,AC=BC,延长CA到D,使DA=AB,则∠D=22.5°,设AC=BC=a,则AB=2a,∴AD=2a,DC=(2+1)a,∴tan22.5°=tan D=BCCD=a(2+1)a=2-1.3.解:∵将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点E处,∴AB=BE,∠AEB=∠EAB=45°,还原后,再沿过点E的直线折叠,使点A落在BC边上的点F处,∴AE=EF,∠EAF=∠EFA=45°÷2=22.5°,∴∠FAB=67.5°.设AB=x,则AE=EF=2x,∴tan∠FAB=tan67.5°=FBAB=2x+xx=2+1.4.解:如图,作△ABC,使∠BAC=36°,AB=AC,∠ABC的平分线BD交AC 于D点,过点A作AE⊥BC于E点,设BC=a,则BD=AD=a,易得△ABC∽△BCD,∴ABBC=BCCD,∴ABa=aAB-a,即AB2-a²AB-a2=0,∴AB=5+12a(负根舍去),∴sin18°=sin∠BAE=BEAB=5-14,cos72°=cos∠ABE=BEAB=5-14.(第4题)(第5题)5.解:方法1:利用第1题的图形求解.易知∠CBD =75°, ∴sin 75°=CD BD =(2+3)a (6+2)a =6+24,cos 75°=BC BD=a (6+2)a =6-24,tan 75°=CD BC=(2+3)aa=2+ 3. 方法2:如图,作△ABD ,使∠ADB =90°,∠DAB =30°,延长BD 到C ,使DC =DA ,过B 作BE ⊥AC 于E ,则∠BAE =75°,设AD =DC =a ,则AC =2a ,BD =33a ,AB =233a ,∴BC =BD +CD =⎝ ⎛⎭⎪⎫33+1a.则CE =BE =BC²sin 45°=6+326a ,∴AE =AC -CE =32-66a ,∴sin 75°=sin ∠BAE =BEAB =32+66a 233a =6+24, cos 75°=cos ∠BAE =AE AB =6-24,tan 75°=tan ∠BAE =BE AE=2+ 3.专训3(第1题)1.解:根据题意可知AB =300 m .如图所示,过点B 作BD ⊥AC ,交AC 的延长线于点D.在Rt △ADB 中,因为∠BAD =30°,所以BD =12AB =12³300=150(m ).在Rt △CDB 中,因为sin ∠DCB =BD BC ,所以BC =BD sin ∠DCB =150sin 60°=3003≈173(m ). 答:此时游轮与望海楼之间的距离BC 约为173 m .点拨:本题也可过C 作CD ⊥AB 于D ,由已知得BC =AC ,则AD =12AB =150m ,所以在Rt △ACD 中,AC =AD cos 30°=15032≈173(m ).所以BC =AC ≈173 m .2.解:在Rt △ABE 中,∠BEA =90°,∠BAE =45°,BE =20米, ∴AE =20米.在Rt △BEF 中,∠BEF =90°,∠F =30°,BE =20米, ∴EF =BE tan 30°=2033=203(米).∴AF =EF -AE =203-20≈20³1.732-20=14.64≈15(米). AF 的长度约是15米. 3.解:分两种情况:(1)如图①,在Rt △BDC 中,CD =30千米,BC =60千米. ∴sin B =CD BC =12,∴∠B =30°. ∵PB =PC ,∴∠BCP =∠B =30°.∴在Rt △CDP 中,∠CPD =∠B +∠BCP =60°,∴DP =CD tan ∠CPD =30tan 60°=103(千米).在Rt △ADC 中,∵∠A = 45°, ∴AD =DC =30千米.∴AP =AD +DP =(30+103)千米.(第3题)(2)如图②,同理可求得DP =103千米,AD =30千米. ∴AP =AD -DP =(30-103)千米.故交叉口P 到加油站A 的距离为(30±103)千米.点拨:本题运用了分类讨论思想,针对P 点位置分两种情况讨论,即P 可能在线段AB 上,也可能在BA 的延长线上.4.解:(1)在Rt △DCE 中,DC =4米,∠DCE =30°,∠DEC =90°,∴DE =12DC =2米;(第4题)(2)如图,过点D 作DF ⊥AB ,交AB 于点F , 则∠BFD =90°,∠BDF =45°,∴∠DBF =45°,即△BFD 为等腰直角三角形, 设BF =DF =x 米,∵四边形DEAF 为矩形,∴AF =DE =2米,即AB =(x +2)米, 在Rt △ABC 中,∠ABC =30°, ∴BC =AB cos 30°=x +232=2x +43=3(2x +4)3(米),∵∠DCE=30°,∠ACB=60°,∴∠DCB=90°,在Rt△BCD中,BD=2BF=2x米,DC=4米,根据勾股定理得:2x2=(2x+4)23+16,解得:x=4+43或x=4-43(舍去),则大楼AB的高度为(6+43)米.专训41.解:若继续向正东方向航行,该货船无触礁危险.理由如下:如图,过点C作CD⊥AM于点D.依题意,知AB=24³3060=12(海里),∠CAB=90°-60°=30°,∠CBD=90°-30°=60°.在Rt△DBC中,tan∠CBD=tan60°=CD BD ,∴BD=33CD.在Rt△ADC中,tan∠CAD=tan30°=CDAD,∴AD=3CD.又∵AD=AB+BD,∴3CD=12+33CD,解得CD=63海里.∵63>9,∴若继续向正东方向航行,该货船无触礁危险.技巧点拨:将这道航海问题抽象成数学问题,建立解直角三角形的数学模型.该货船有无触礁危险取决于岛C到航线AB的距离与9海里的大小关系,因此解决本题的关键在于求岛C到航线AB的距离.(第1题)(第2题)2.解:不会穿过风景区.理由如下:如图,过C 作CD ⊥AB 于点D ,根据题意得:∠ACD =α,∠BCD =β,则在Rt △ACD 中,AD =CD²tan α,在Rt △BCD 中,BD =CD²tan β.∵AD +DB =AB ,∴CD²tan α+CD²tan β=AB ,∴CD =AB tan α+tan β=1501.627+1.373=1503=50(千米).∵50>45,∴连接A ,B 两市的高速公路不会穿过风景区.3.解:如图,过B 作AB 的垂线,过C 作AB 的平行线,两线交于点E ;过C 作AB 的垂线,过D 作AB 的平行线,两线交于点F ,则∠E =∠F =90°,拦截点D 处到公路的距离DA =BE +CF.在Rt △BCE 中,∵∠E =90°,∠CBE =60°,∴∠BCE =30°,∴BE =12BC =12³1 000=500(米);在Rt △CDF 中,∵∠F =90°,∠DCF =45°,CD =1 000米, ∴CF =22CD =5002(米). ∴DA =BE +CF =(500+5002)米,即拦截点D 处到公路的距离是(500+5002)米.(第3题)(第4题)4.解:(1)100;(60+10t)(2)不会,理由如下:过点O 作OH ⊥PQ 于点H ,如图.在Rt △POH 中,∠OHP =90°,∠OPH =65°-20°=45°,OP =200 km ,∴OH =PH =OP²sin ∠OPH =200³sin 45°=1002≈141(km ). 设经过x h 时,台风中心从P 移动到H ,台风中心移动速度为20 km /h , 则20x =1002,∴x =5 2.此时,受台风侵袭的圆形区域半径应为60+10³52≈130.5(km ). 台风中心在整个移动过程中与城市O 的最近距离OH ≈141 km ,而台风中心从P 移动到H 时受侵袭的圆形区域半径约为130.5 km ,130.5 km <141 km ,因此,当台风中心移动到与城市O 距离最近时,城市O 不会受到台风侵袭.专训51.解:(1)把x =0代入y =kx -1,得y =-1,∴点C 的坐标是(0,-1),∴OC =1.在Rt △OBC 中,∵tan ∠OCB =OB OC =12,∴OB =12. ∴点B 的坐标是⎝ ⎛⎭⎪⎫12,0.把B ⎝ ⎛⎭⎪⎫12,0的坐标代入y =kx -1,得12k -1=0.解得k =2.(2)由(1)知直线AB 对应的函数关系式为y =2x -1,所以△AOB 的面积S 与x 的函数关系式是S =12OB²y=12³12(2x -1)=12x -14.2.解:(1)∵抛物线的对称轴为直线x =1,矩形OCDE 的三个顶点分别是C(3,0),D(3,4),E(0,4),点A 在DE 上,∴点A 坐标为(1,4),设抛物线对应的函数解析式为y =a(x -1)2+4,把C(3,0)的坐标代入抛物线对应的函数解析式,可得a(3-1)2+4=0,解得a =-1.故抛物线对应的函数解析式为y =-(x -1)2+4,即y =-x 2+2x +3. (2)依题意有OC =3,OE =4,∴CE =OC 2+OE 2=32+42=5, 当∠QPC =90°时,∵cos ∠QCP =PC CQ =OC CE, ∴3-t 2t =35,解得t =1511;当∠PQC =90°时,∵cos ∠QCP =CQ PC =OCCE , ∴2t 3-t =35,解得t =913.∴当t =1511或t =913时,△PCQ 为直角三角形. 3.解:(1)先求出A 点的坐标为(2,3),∴k =6.(2)易知点E 纵坐标为32,由点E 在反比例函数y =6x 的图象上,求出点E 的坐标为⎝ ⎛⎭⎪⎫4,32,结合A 点坐标为(2,3),求出直线AE 对应的函数解析式为y =-34x +92. (3)结论:AN =ME.理由:在解析式y =-34x +92中,令y =0可得x =6,令x=0可得y =92.∴点M(6,0),N ⎝ ⎛⎭⎪⎫0,92.(第3题)方法一:如图,延长DA交y轴于点F,则AF⊥ON,且AF=2,OF=3,∴NF=ON-OF=32.根据勾股定理可得AN=52.∵CM=6-4=2,EC=3 2,∴根据勾股定理可得EM=5 2,∴AN=ME.方法二:如图,连接OE,延长DA交y轴于点F,则AF⊥ON,且AF=2,∵S△EOM =12OM²EC=12³6³32=92,S△AON=12ON²AF=12³92³2=92,∴S△EOM=S△AON.∵AN和ME边上的高相等,∴AN=ME.4.解:(1)∵a,b是关于x的方程x2-(c+4)x+4c+8=0的两个根,∴a +b=c+4,ab=4c+8.∴a2+b2=(a+b)2-2ab=(c+4)2-2(4c+8)=c2.∴△ABC为直角三角形.又∵(a-b)2=(a+b)2-4ab=(c+4)2-4(4c+8)=c2-8c-16,∴不能确定(a-b)2的值是否为0,∴不能确定a是否等于b,∴△ABC的形状为直角三角形.(2)∵△ABC是直角三角形,∠C=90°,∴sin A=a c .将其代入9c=25a sin A,得9c=25a²ac,9c2=25a2,3c=5a.∴c=53a.∴b=c2-a2=⎝⎛⎭⎪⎫53a2-a2=43a.将b=43a,c=53a代入a+b=c+4,解得a=6.∴b=43³6=8,c=53³6=10,即△ABC的三边长分别是6,8,10.5.解:∵一元二次方程有两个相等的实数根,∴(-10cosα)2-20(-7cosα+6)=0,解得cosα=-2(舍去)或cosα=35 .设在一内角为α的直角三角形中,α的邻边长为3k(k>0),∴斜边长为5k,则α的对边长为(5k)2-(3k)2=4k,∴sinα=4 5,则菱形一边上的高为10sinα=8 cm,∴S菱形=10³8=80 cm2.6.(1)证明:∵AD是△ABC的角平分线,∴∠BAD=∠DAC.∵∠ADE=∠BAD+∠B,∠DAE=∠CAD+∠CAE,且∠B=∠CAE,∴∠ADE=∠DAE,∴ED=EA.∵ED为⊙O的直径,∴∠DFE=90°,∴EF⊥AD,∴点F是AD的中点.(2)解:如图,连接DM,则DM⊥AE.设EF=4k,DF=3k,则ED=EF2+DF2=5k.∵12AD²EF=12AE²DM,∴DM=AD²EFAE=6k²4k5k=245k,∴ME=DE2-DM2=75k,∴cos∠AED=MEDE=725.(3)解:∵∠CAE=∠B,∠AEC为公共角,∴△AEC∽△BEA,∴AE BE=CE AE,∴AE2=CE²BE,∴(5k)2=52k²(10+5k).∵k>0,∴k=2,∴CD=52k=5.(第6题)(第7题)7.(1)证明:如图,连接OD,∵直线CD切⊙O于点D,∴∠CDO=90°,∵AB为⊙O的直径,∴∠ADB=90°,∴∠1+∠2=∠2+∠3=90°,∴∠1=∠3,∵OB=OD,∴∠3=∠4,∴∠ADC=∠ABD.(2)证明:∵AM⊥CD,∴∠AMD=∠ADB=90°,∵∠1=∠4,∴△ADM∽△ABD,∴AMAD=ADAB,∴AD2=AM²AB.(3)解:∵sin∠ABD=35,∴sin∠1=35,∵AM=185,∴AD=6,∴AB=10,∴BD=AB2-AD2=8,∵BN⊥CD,∴∠BND=90°,∴∠DBN+∠BDN=∠1+∠BDN=90°,∴∠DBN=∠1,∴sin∠NBD=35,∴DN=245,∴BN=BD2-DN2=32 5.8.(1)证明:∵四边形ABCD是矩形,∴∠D=∠DCG=90°,∵点E是CD的中点,∴DE=CE.∵∠DEF=∠CEG,∴△EDF≌△ECG,∴EF=EG.又∵BE⊥FG,∴BE是FG的中垂线,∴BF=BG.(2)解:∵BF=BG,∴∠BFG=∠G,∴tan∠BFG=tan G=3,设CG=x,则CE=3x,∴S△CGE =32x2=63,解得x=23(负值舍去),∴CG=23,CE=6,又易通过三角形相似得出EC2=BC²CG,∴BC=63,∴AD=6 3.专训61.思路导引:求∠BCD的三个三角函数值,关键要弄清它们的定义.由于∠BCD是Rt△BCD中的一个内角,根据定义,仅一边BC是已知的,此时有两条路可走,一是设法求出BD或CD,二是把∠BCD转化成∠A,显然走第二条路较方便,因为在Rt△ABC中,三边均可得出,利用三角函数的定义即可求出答案.解:在Rt△ABC中,∵∠ACB=90°,∴∠BCD+∠ACD=90°.∵CD⊥AB,∴∠ACD+∠A=90°,∴∠BCD=∠A.在Rt△ABC中,由勾股定理,得AB=AC2+BC2=10,∴sin∠BCD=sin A=BCAB=45,cos∠BCD=cos A=ACAB=35,tan∠BCD=tan A=BCAC=43.2.思路导引:由sin B=DEDB=ACAB=35,可设DE=CD=3k,则DB=5k,求得BC=8k,AC=6k,AB=10k.再由AC+CD=9,可列出以k为未知数的方程,进而求出各边的长.在Rt△BDE中,由勾股定理求BE的长,过C作CF⊥AB于点F,再用勾股定理求出CE的长.解:∵sin B=35,∠ACB=90°,DE⊥AB,∴sin B=DEDB=ACAB=35.设DE=CD=3k,则DB=5k,∴CB=8k,AC=6k,AB=10k.∵AC+CD=9,∴6k+3k=9,∴k=1,∴DE=3,DB=5,∴BE=52-32=4.过点C作CF⊥AB于点F,如图,则CF∥DE,∴DECF=BEBF=BDBC=58,求得CF=245,BF=325,∴EF=12 5.在Rt△CEF中,CE=CF2+EF2=1255.(第2题)点拨:方程思想是一种重要的思想方法,运用方程思想可以建立已知量和待求量之间的关系式,平时学习时,应该不断积累用方程思想解题的方法.3.解:(1)原式=33³32+⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫222³1=12+34-12=34.(2)原式=14³12+1⎝ ⎛⎭⎪⎫122-3³⎝ ⎛⎭⎪⎫322+112-1=14+4-3³34+2-1=3.4.解:设CE =y ,(1)∵四边形ABCD 是矩形,∴AB =CD =4,BC =AD =5,∠B =∠BCD =∠D =90°.∵BP =a ,CE =y ,∴PC =5-a ,DE =4-y ,∵AP ⊥PE ,∴∠APE =90°,∴∠APB +∠CPE =90°,∵∠APB +∠BAP =90°,∴∠CPE =∠BAP ,∴△ABP ∽△PCE ,∴BP CE =AB PC, ∴y =-a 2+5a 4,即CE =-a 2+5a 4.(2)四边形APFD 是菱形,理由如下:当a =3时,y =-32+5³34=32,即CE=32,∵四边形ABCD 是矩形, ∴AD ∥BF ,∴△AED ∽△FEC ,∴AD CF =DECE,∴CF =3, 易求PC =2,∴PF =PC +CF =5.∴PF =AD ,∴四边形APFD 是平行四边形,在Rt △APB 中,AB =4,BP =3,∠B =90°,∴AP =5=PF ,∴四边形APFD 是菱形.(3)根据tan ∠PAE =12可得APPE =2,易得△ABP ∽△PCE ,∴BP CE =AB PC =AP PE =2,得a y =45-a =2或a y =4a -5=2,解得a =3,y =1.5或a =7,y =3.5.∴a =3或7.5.解:(1)相等.理由如下:由已知条件易知,∠QPB =90°-24.5°=65.5°,∠PQB =90°-41°=49°,∴∠PBQ =180°-65.5°-49°=65.5°. ∴∠PBQ =∠BPQ.∴BQ =PQ.(2)由(1),得BQ =PQ =1 200 m .由已知条件易知∠AQP =90°-49°=41°. 在Rt △APQ 中,AQ =PQ cos ∠AQP ≈1 2000.75=1 600(m ).又∵∠AQB =∠AQP +∠PQB =90°, ∴在Rt △AQB 中,AB =AQ 2+BQ 2≈ 1 6002+1 2002=2 000(m ).∴A ,B 间的距离约是2 000 m .点拨:证明线段相等常利用全等三角形的对应边相等或等角对等边;计算线段的长度常利用锐角三角函数或勾股定理.6.解:如图,过点C 作CF ⊥AB 于点F.(第6题)设铁塔高AE =x m ,由题意得EF =BE -CD =56-27=29(m ), AF =AE +EF =(x +29)m .在Rt △AFC 中,∠ACF =36°52′,AF =(x +29)m , 则CF =AF tan 36°52′≈x +290.75=⎝ ⎛⎭⎪⎫43x +1163(m ),在Rt △ABD 中,∠ADB =45°,AB =(x +56)m ,则BD =AB =(x +56)m , ∵CF =BD ,∴x +56≈43x +1163,解得x ≈52.答:该铁塔的高AE 约为52 m .7.解:如图,过点C 作CD ⊥AB ,垂足为D. 在Rt △ACD 中,∵AC =23,∠A =30°,∴CD =12AC =3,AD =AC ²cos 30°=23³32=3.在Rt △BCD 中,CD DB =tan B =32,∴DB =2CD 3=233=2,∴AB =AD +DB =3+2=5.(第7题)方法总结:在不含直角三角形的图形中,如果求与三角形有关的线段长、非特殊角的某个三角函数、面积等问题,一般可通过分割图形、作高等方法,把问题转化为解直角三角形得以解决,引辅助线的技巧是解此类题的关键.8.解法1:如图①所示,过点B 作BE ∥AD 交DC 于点E ,过点E 作EF ∥AB 交AD 于点F ,则BE ⊥AB ,EF ⊥AD.∴四边形ABEF 是矩形.∴EF =AB ,AF =BE.∵∠ABC =120°,∴∠CBE =120°-90°=30°,∠D =180°-120°=60°.在Rt △BCE 中,BE =BC cos ∠CBE =503cos 30°=50332=100,EC =BC²tan ∠CBE =503³tan 30°=503³33=50. 在Rt △DEF 中, DF =EF tan D =AB tan 60°=3033=30. ∴AD =AF +DF =BE +DF =100+30=130. ∴S四边形ABCD =S梯形ABED +S △BCE=12(AD +BE)²AB+12BC²EC=12³(130+100)³303+12³503³50=4 700 3.(第8题)解法2:如图②所示,延长DA ,CB 交于点E ,则∠ABE =180°-∠ABC =60°,∠E =90°-∠ABE =30°. 在Rt △ABE 中,AE =AB²tan 60°=303³3=90,BE=ABcos60°=30312=60 3.∴CE=BE+BC=603+503=110 3.在Rt△DCE中,DC=CE²tan30°=1103³33=110.∴S四边形ABCD =S△DCE-S△ABE=12DC²CE-12AB²AE=12³110³1103-12³303³90=4 700 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十八章 锐角三角函数 28.1 锐角三角函数
1.三角形在正方形风格纸巾中的位置如图28-1-3所示,则sin α的值是( )
图28-1-3
A.34
B.43
C.35
D.45
2.如图28-1-4,某商场自动扶梯的长l 为10米,该自动扶梯到达的高度h 为6米,自
动扶梯与地面所成的角为θ,则tan θ=( )
图28-1-4
A.34
B.43
C.35
D.45 3.cos30°=( ) A.12 B.22 C.3
2
D. 3 4.在△ABC 中,∠A =105°,∠B =45°,tan C =( ) A.12 B.3
3 C .1 D. 3 5.若0°<A <90°,且4sin 2A -2=0,则∠A =( ) A .30° B .45° C .60° D .75°
6.按GZ1206型科学计算器中的白键MODE ,使显示器左边出现DEG 后,求cos9°的值,以下按键顺序正确的是( )
A.cos 9
B.cos 2ndF 9
C.9cos
D.92ndF cos
7.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c .已知2a =3b ,求∠B 的三角函数值.
8.下列结论中正确的有( ) ①sin30°+sin30°=sin60°; ②sin45°=cos45°; ③cos25°=sin65°;
④若∠A 为锐角,且sin A =cos28°,则∠A =62°. A .1个 B .2个 C .3个 D .4个 9.如图28-1-5,直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,
使点A 与B 点重合,折痕为DE ,则tan ∠CBE =( )
图28-1-5
A.247
B.73
C.724
D.13
10.如图28-1-6,AD 是BC 边上的高,E 为AC 边上的中点,BC =14,AD =12,sin B =45
. (1)求线段CD 的长; (2)求tan ∠EDC 的值.
图28-1-6
28.2 解直角三角形及其应用
1.在Rt △ABC 中,∠C =90°,cos B =2
3
,则a ∶b ∶c 为( )
A .2∶5∶ 3
B .2∶5∶3
C .2∶3∶13
D .1∶2∶3 2.等腰三角形的底角为30°,底边长为2 3,则腰长为( ) A .4 B .2 3 C .2 D .2 2 3.如图28-2-9,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AC =6,AB =9,则AD
的长为( )
A .6
B .5
C .4
D .3
图28-2-9 图28-2-10
4.轮船航行到C 处时,观测到小岛B 的方向是北偏西65°,那么同时从B 处观测到轮船的方向是( )
A .南偏西65°
B .东偏西65°
C .南偏东65°
D .西偏东65° 5.如图28-2-10,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向点C 处测得
AC =a ,∠ACB =α,那么AB =( )
A .a sin α
B .a tan α
C .a cos α D.a
tan α
6.如图28-2-11,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树
之间的水平距离BE 为5 m ,AB 为1.5 m(即小颖的眼睛距地面的距离),那么这棵树高是( )
图28-2-11
A.⎝⎛


5 33+32m
B.⎝⎛⎭⎫5 3+3
2m C.5 33 m
D .4 m
7.在Rt △ABC 中,∠C =90°,a =2,∠B =45°,则 ①∠A =45°;②b =2;③b =2 2;④c =2;⑤c =2 2. 上述说法正确的是________(请将正确的序号填在横线上).
8.一船上午8点位于灯塔A 的北偏东60°方向,在与灯塔A 相距64海里的B 港出发,向正西方向航行,到9时30分恰好在灯塔正北的C 处,则此船的速度为__________.
9.如图28-2-12,某校教学楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22°
时,教学楼在建筑物的墙上留下高2米的影子CE ;而当光线与地面夹角是45°时,教学楼顶A 在地面上的影子F 与墙角C 有13米的距离(B ,F ,C 在一条直线上).
(1)求教学楼AB 的高度;
(2)学校要在A ,E 之间挂一些彩旗,请你求出A ,E 之间的距离(结果保留整数;参考数
据:sin22°≈38,cos22°≈1516,tan22°≈2
5
).
图28-2-12
10.如图28-2-13,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A 到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=30°,∠ABD=45°,BC=50 m.请你帮小明计算他家到公路l的距离AD的长度(精确到0.1 m;参考数据:2≈1.414,3≈1.732).
图28-2-13
第二十八章 锐角三角函数 28.1 锐角三角函数 【课后巩固提升】
1.C 2.A 3.C 4.B 5.B 6.A
7.解:由2a =3b ,可得a b =3
2
.
设a =3k ,b =2k (k >0),由勾股定理,得 c =a 2+b 2=(3k )2+(2k )2=13k .
∴sin B =b c =2k 13k =2 1313,cos B =a c =3k 13k
=3 1313,tan B =b a =2k 3k =2
3.
8.C
9.C 解析:设CE =x ,则AE =8-x ,由折叠性质知,AE =BE =8-x ,在Rt △CBE
中,由勾股定理,得BE 2=CE 2+BC 2,即(8-x )2=x 2+62,解得x =7
4
.
∴tan ∠CBE =CE BC =746=7
24
.
10.解:(1)在Rt △ABD 中,sin B =AD AB =4
5,又AD =12,
∴AB =15.BD =152-122=9. ∴CD =BC -BD =14-9=5.
(2)在Rt △ADC 中,E 为AC 边上的中点,∴DE =CE ,
∴∠EDC =∠C .∴tan ∠EDC =tan C =AD CD =12
5
.
28.2 解直角三角形及其应用 【课后巩固提升】 1.B 2.C
3.C 解析:∵AC =6,AB =9,又∵cos A =AD AC =AC AB ,即AD 6=6
9
,∴AD =4.
4.C 5.B
6.A 解析:∵∠CAD =30°,AD =BE =5 m ,∴CD =AD ·tan ∠CAD =5tan30°=5 3
3
(m),
∴CE =CD +DE =⎝⎛⎭

5 33+32m.
7.①②⑤ 8.64 33海里/时 解析:∵航行的距离BC =AB ·sin ∠BAC =64×32=32 3.航行的时间
为32小时,∴此船的速度为32 3÷32=64 33
(海里/时). 9.解:(1)如图D73,过点E 作EM ⊥AB ,垂足为M . 设AB 为x .在Rt △ABF 中,∠AFB =45°, ∴BF =AB =x .
∴BC =BF +FC =x +13.
在Rt △AEM 中,∠AEM =22°,AM =AB -BM =AB -CE =x -2,
∴tan22°=AM ME ·x -2x +13=2
5
,x =12.
即教学楼的高12 m.
(2)由(1),可得ME =BC =x +13=12+13=25.
在Rt △AME 中,cos22°=ME AE .∴AE =ME cos22°≈25
15
16
≈27,
即A ,E 之间的距离约为27 m.
图D73
10.解:设小明家到公路的距离AD 的长度为x m. 在Rt △ABD 中,∵∠ABD =45°,∴BD =AD =x .
在Rt △ACD 中,∵∠ACD =30°,∴tan ∠ACD =AD
CD

即tan30°=x
x +50,解得x =25(3+1)≈68.3.。

相关文档
最新文档