高二数学月考

合集下载

新疆高二下学期第一次月考数学试题(解析版)

新疆高二下学期第一次月考数学试题(解析版)

高二下学期第一次月考数学试题一、单选题1.某物体的运动路程s (单位:m )与时间t (单位:s )的关系可用函数表示,则该()21s t t t =++物体在s 时的瞬时速度为( ) 1t =A .0m/s B .1m/s C .2m/s D .3m/s【答案】D【分析】根据瞬时速度的概念即可利用平均速度取极限求解. 【详解】该物体在时间段上的平均速度为[]1,1t +∆,当无限趋近于0时,无限趋()()()()()22111111113t t s t s s t t t t+∆++∆+-+++∆-∆===+∆∆∆∆Δt 3t +∆近于3,即该物体在s 时的瞬时速度为3m/s . 1t =故选:D2.曲线在点(1,-2)处的切线的倾斜角为( ) 43y x x =-A .B .C .D .6π4π3π23π【答案】B【分析】根据导数的几何意义求解.【详解】因为,所以,故所求切线的倾斜角为.343y x '=-11x y ='=4π故选:B .3.函数的单调递增区间为( )21=ln 22y x x -+A . B .C .D .()1,1-()0,1[)1,+∞()0,∞+【答案】C【分析】先对函数求导,然后令导函数大于0解出不等式,并结合函数的定义域,即可得到本题答案.【详解】因为,所以,21=ln 22y x x -+211x y x x x -'=-=令,得或,0y >'A A A A 1x <-1x >又函数的定义域为,所以函数的单调递增区间为, {}0x x >[1,)+∞故选:C4.若函数在区间上单调递增,则实数k 的取值范围是( )()331f x x kx =-+()1,+∞A . B . C . D .(),1-∞(],1-∞[)1,-+∞[)1,+∞【答案】B【分析】利用函数在区间上的导函数为非负数,列不等式,解不等式即可求得的取值()f x (1,)+∞k 范围.【详解】由题意得,在区间上恒成立, 22()333()0f x x k x k '=-=-≥(1,)+∞即在区间上恒成立,2k x ≤(1,)+∞又函数在上单调递增,得, 2y x =(1,)+∞21x >所以,即实数的取值范围是. 1k ≤k (,1]-∞故选:B5.已知函数的导函数图象如下图所示,则原函数的图象是( )()y f x =()y f x '=()y f x =A .B .C .D .【答案】B【分析】根据函数的单调性与导数的关系以及导数的变化可得结果.【详解】由图可知,当时,,则函数在上为增函数, 11x -<<()0f x ¢>()f x ()1,1-当时,单调递增,故函数在上的增长速度越来越快,10x -<<()f x '()f x ()1,0-当时,单调递减,故函数在上的增长速度越来越慢. 01x <<()f x '()f x ()0,1B 选项中的图象满足题意. 故选:B.6.函数在区间上的最大值为( ) ()cos sin f x x x x =-[]π,0-A .1 B .C .D .π323π2【答案】B【分析】求出函数的导数,判断函数的单调性,即可求得答案. 【详解】由题意得, ()cos sin cos sin f x x x x x x x '=--=-当时,,,[]π,0x ∈-sin 0x ≤()0f x '≤所以在区间单调递减,故函数最大值为, ()f x []π,0-()ππf -=故选:B7.“一笔画”游戏是指要求经过所有路线且节点可以多次经过,但连接节点间的路线不能重复画的游戏,下图是某一局“一笔画”游戏的图形,其中为节点,若研究发现本局游戏只能以为起,,A B C A 点为终点或者以为起点为终点完成,那么完成该图“一笔画”的方法数为( )C C AA .种B .种C .种D .种6122430【答案】C【分析】采用分步乘法可计算得到以为起点,为终点的方法数,再利用分类加法计数原理求得A C 结果.【详解】以为起点时,三条路线依次连接即可到达点,共有种选择;自连接到A B 326⨯=B C 时,在右侧可顺时针连接或逆时针连接,共有种选择,C 2以为起点,为终点时,共有种方法;∴A C 6212⨯=同理可知:以为起点,为终点时,共有种方法;C A 12完成该图“一笔画”的方法数为种.∴121224+=故选:C.8.过去的一年,我国载人航天事业突飞猛进,其中航天员选拔是载人航天事业发展中的重要一环.已知航天员选拔时要接受特殊环境的耐受性测试,主要包括前庭功能、超重耐力、失重飞行、飞行跳伞、着陆冲击五项.若这五项测试每天进行一项,连续5天完成.且前庭功能和失重飞行须安排在相邻两天测试,超重耐力和失重飞行不能安排在相邻两天测试,则选拔测试的安排方案有( ) A .24种 B .36种C .48种D .60种【答案】B【分析】根据特殊元素“失重飞行”进行位置分类方法计算,结合排列组合等计数方法,即可求得总的测试的安排方案种数.【详解】①若失重飞行安排在第一天则前庭功能安排第二天,则后面三天安排其他三项测试有种安排方法,33A 6=此情况跟失重飞行安排在第五天则前庭功能安排第四天安排方案种数相同;②若失重飞行安排在第二天,则前庭功能有种选择,超重耐力在第四、第五天有种选择,剩12C 12C 下两种测试全排列,则有种安排方法,22A 112222C C A 8=此情况与失重飞行安排在第四天方安排方案种数相同;③若失重飞行安排在第三天,则前庭功能有种选择,超重耐力在第一、第五天有种选择,剩12C 12C 下两种测试全排列,则有种安排方法;22A 112222C C A 8=故选拔测试的安排方案有种. 6282836⨯+⨯+=故选:B.二、多选题9.某高一学生想在物理、化学、生物、政治、历史、地理这六门课程中选三门作为选科科目,则下列说法正确的有( )A .若不选择政治,选法总数为种25C B .若物理和化学至少选一门,选法总数为1225C C C .若物理和历史不能同时选,选法总数为种3164C C -D .若物理和化学至少选一门,且物理和历史不同时选,选法总数为种 121244(C C C )-【答案】AC【分析】根据组合数性质判断A ;若物理和化学至少选一门,分物理和化学选一门和物理和化学都选,求出选法数,判断B ;物理和历史不能同时选,即六门课程中任意选3门减去物理和历史同时选的选法数,判断C ;物理和化学至少选一门,且物理和历史不同时选,分三种情况考虑,求得选法数,判断D.【详解】对于A, 若不选择政治,选法总数为种,正确;3255C C =对于B ,若物理和化学选一门,选法总数为, 1224C C 若物理和化学都选,则选法数有种,2124C C 故物理和化学至少选一门,选法总数为种,而,B 错误;12212424C C C C 16+=1225C C 20=对于C, 若物理和历史不能同时选,即六门课程中任意选3门有种选法,36C 减去物理和历史同时选的选法数,故选法总数为种,C 正确;14C 3164C C -对于D,当物理和化学中只选物理时,有种选法; 23C 当物理和化学中只选化学时,有种选法; 24C 当物理和化学中都选时,有种选法,13C 故物理和化学至少选一门,且物理和历史不同时选,选法总数为种,而,D 错误,221343C +C +C =12121244C C C 8-=故选:AC 10.下列等式正确的是( )A .B .()111A A m m n n n +++=()()!2!1n n n n =--C .D .A C !mm n nn =11A A m m n n n m+=-【答案】ABD【分析】利用排列数公式、组合数公式,逐项计算判断作答.【详解】对于A ,,A 正确;()11!(1)!(1)()![(1)(1)]!1A A mm n n n n n n n m n m +++=+⋅=-+-++=对于B ,,B 正确; ()()!(1)!(1)(2)!2!1(1)1n n n n n n n n n n n ⋅--⋅-===----对于C ,,而与不一定相等,则与不一定相等,C 不正确;A C !m m nnm =!m !n A !m n m A !m n n 对于D ,,D 正确. 111!!A A (1)!()!m m n n n n n m n m n m n m +⋅==-----=故选:ABD11.如图是函数的导函数的图像,则下列判断正确的是( )()y f x =()f x 'A .在区间上,单调递增 ()2,1-()f xB .在区间上,单调递增 ()1,2()f xC .在区间上,单调递增 ()4,5()f xD .在区间上,单调递增 ()3,2--()f x 【答案】BC【分析】当,则单调递增,当,则单调递减,据此可得答案. ()0f x ¢>()f x ()0f x '<()f x 【详解】由题图知当时,,()()1245,,,x x ∈∈()0f x ¢>所以在区间上,单调递增,BC 正确; ()()1245,,,()f x 当时,,当时,,所以在区间上,单调递减.()2,1x ∈--()0f x '<()1,1x ∈-()0f x ¢>()2,1--()f x 在上递增,A 错误;()1,1-当时,,所以在区间上,单调递减,D 错误; ()3,2x ∈--()0f x '<()3,2--()f x 故选:BC12.已知函数,则( ) 321()()3f x x ax x a =+-∈R A .当时,函数的极大值为0a =()f x 23-B .若函数图象的对称中心为,则 ()f x (1,(1))f 1a =-C .若函数在上单调递增,则或 ()f x R 1a ≥1a ≤-D .函数必有3个零点 ()f x 【答案】BD【分析】根据函数极大值的定义,结合函数的导数的性质、函数零点的定义逐一判断即可.【详解】A 项:当时,,则,所以在单调递增,在0a =31()3f x x x =-2()1f x x '=-()f x (,1)-∞-单调递减,在单调递增,所以极大值为,故错误; (1,1)-(1,)+∞()f x 12(1)133f -=-+=B 项:因为函数图象的对称中心为,()f x (1,(1))f所以有,故正确;()()()()21121101f x f x f a x a ++-=⇒+=⇒=-C 项:恒成立,显然必有两根,则2()210f x x ax =+-≥'()0f x '=()121212,,10x x x x x x <⋅=-<()f x 在递减,故错误;()12,x x D 项:必有2相异根,且非零,()2221111001010333f x x ax x x x ax x ax ⎛⎫=+-=⇒=+-=+-= ⎪⎝⎭或,故必有3个零点,故正确. ()f x 故选择:BD三、填空题13.已知函数,则在处的切线方程为___________.()e sin 2xf x x =-()f x ()()0,0f 【答案】10x y +-=【分析】由导数的几何意义求切线的斜率,利用点斜式求切线方程.【详解】因为,()e sin 2xf x x =-所以,,()00e sin 01f =-=()e 2cos 2xf x x =-'所以,()00e 2cos 01f =-=-'切线方程为, 即. ()10y x -=--10x y +-=故答案为:.10x y +-=14.函数有极值,则实数的取值范围是______.()322f x x x ax a =-++a 【答案】1(,3-∞【分析】求出函数的导数,再利用存在变号零点求出a 的范围作答.()f x '()f x '【详解】函数定义域为R ,求导得:,()322f x x x ax a =-++2()32f x x x a '=-+因为函数有极值,则函数在R 上存在变号零点,即有两个不等实根, ()f x ()f x '()0f x '=即有方程有两个不等实根,于是得,解得,2320x x a -+=4120a ∆=->13a <所以实数的取值范围是.a 1(,)3-∞故答案为:1(,)3-∞15.某公司新开发了4件不同的新产品,需放到三个不同的机构A ,B ,C 进行测试,每件产品只能放到一个机构里,则所有测试的情况有________种(结果用具体数字表示). 【答案】81【分析】利用分步乘法原理求解即可【详解】由题意可知,每一个新产品都有3种放法,所以由分步乘法原理可得 4件不同的新产品共有种放法, 333381⨯⨯⨯=故答案为:8116.已知,则_________.233A C 0!4m -+=m =【答案】2或3【分析】利用排列数公式,组合数公式进行计算即得.【详解】,233A C 0!4m -+= ,又,3A 6m∴=323216⨯=⨯⨯=所以或. 2m =3m =故答案为:2或3.四、解答题17.求下列函数的导数. (1); ln(21)y x =+(2); sin cos xy x=(3). 1()23()()y x x x =+++【答案】(1) 221y x '=+(2) 21cos y x'=(3) 231211y x x =++'【分析】利用导数的运算法则求解. 【详解】(1)解:因为, ln(21)y x =+所以; 221y x '=+(2)因为, sin cos xy x=所以; ()2222cos sin 1cos cos x xy xx +'==(3)因为, 1()23()()y x x x =+++,326116x x x =+++所以.231211y x x =++'18.已知函数.()322f x x ax b =-+(1)若函数在处取得极小值-4,求实数a ,b 的值; ()f x 1x =(2)讨论的单调性.()f x 【答案】(1) 33a b =⎧⎨=-⎩(2)答案不唯一,具体见解析【分析】(1)根据求导和极值点处导数值为0即可求解;(2)求导,分类讨论的取值即可求解. a 【详解】(1),则 ()262f x x ax '=-()()1014f f ⎧=⎪⎨=-'⎪⎩即解得,经验证满足题意,62024a a b -=⎧⎨-+=-⎩33a b =⎧⎨=-⎩(2)()()26223f x x ax x x a '=-=-令解得或 ()0f x '=0x =3a x =1°当时,在上单调递增0a =()f x ()∞∞-,+2°当时,在,上单调递增,上单调递减a<0()f x ,3a ⎛⎫-∞ ⎪⎝⎭()0∞,+,03a ⎛⎫ ⎪⎝⎭3°当时,在,(上单调递增,上单调递减0a >()f x ()0∞-,,3a ⎛⎫+∞ ⎪⎝⎭0,3a ⎛⎫ ⎪⎝⎭19.已知函数.()e 2x f x ax a =++(1)若为的一个极值点,求实数a 的值并此函数的极值; 0x =()f x (2)若恰有两个零点,求实数a 的取值范围. ()f x 【答案】(1),极小值为,无极大值12a =-12(2) ,⎛-∞ ⎝【分析】(1)由求得,结合函数的单调性求得的极值. ()00f '=a ()f x (2)由分离常数,利用构造函数法,结合导数求得的取值范围. ()0f x =a a 【详解】(1),依题意,()e 2x f x a '=+()10120,2f a a =+==-'此时,所以在区间递减;()e 1xf x '=-()f x ()()(),0,0,f x f x '-∞<在区间递增. ()()()0,,0,f x f x '+∞>所以的极小值为,无极大值. ()f x ()110122f =-=(2)依题意①有两个解,()e 20x f x ax a =++=,所以不是①的解,121e 02f -⎛⎫-=> ⎪⎝⎭12x =-当时,由①得,12x ≠-e 21xa x =-+构造函数,()e 1212x g x x x ⎛⎫=-≠- ⎪+⎝⎭,()()()()22e 212e 21e 2121x xx x x g x x x +--'=-=-⋅++所以在区间递增;()()111,,,,0,222g x g x ⎛⎫⎛⎫'-∞--> ⎪ ⎪⎝⎭⎝⎭在区间递减.()()1,,0,2g x g x ⎛⎫'+∞< ⎪⎝⎭当时,;当时,,12x <-()0g x >12x >-()0g x <与的图象有两个交点, 121e 22g ⎛⎫=-= ⎪⎝⎭y a =()y g x =则需a <综上所述,的取值范围是. a ,⎛-∞ ⎝【点睛】根据极值点求参数,要注意的是由求得参数后,要根据函数的单调区间进行验()00f x '=证,因为导数为零的点,不一定是极值点.利用导数研究函数的零点,可以考虑分离常数法,通过分离常数,然后利用构造函数法,结合导数来求得参数的取值范围.20.已知一条铁路有8个车站,假设列车往返运行且每个车站均停靠上下客,记从车站上车到A B 车站下车为1种车票().A B ≠(1)该铁路的客运车票有多少种?(2)为满足客运需要,在该铁路上新增了个车站,客运车票增加了54种,求的值.n n 【答案】(1)56(2)3【分析】根据条件利用排列公示建立方程就可以解决.【详解】(1)铁路的客运车票有.288756A =⨯=(2)在新增了个车站后,共有个车站,因为客运车票增加了54种,则, n 8n +285654n A +-=所以,解得.28(8)(7)110n A n n +=++=3n =21.现有如下定义:除最高数位上的数字外,其余每一个数字均比其左边的数字大的正整数叫“幸福数”(如346和157都是三位“幸福数”).(1)求三位“幸福数”的个数;(2)如果把所有的三位“幸福数”按照从小到大的顺序排列,求第80个三位“幸福数”.【答案】(1)个84(2)589【分析】(1)由幸福数的定义结合组合公式求解即可;(2)分类讨论最高位数字,由组合公式结合分类加法计数原理得出第80个三位“幸福数”.【详解】(1)根据题意,可知三位“幸福数”中不能有0,故只需在数字1,2,3,…,9中任取3个,将其从小到大排列,即可得到一个三位“幸福数”,每种取法对应1个“幸福数”,则三位“幸福数”共有个.39C 84=(2)对于所有的三位“幸福数”,1在最高数位上的有个, 28C 28=2在最高数位上的有个,27C 21=3在最高数位上的有个,2615C =4在最高数位上的有个,25C 10=5在最高数位上的有个.24C 6=因为,28211510680++++=所以第80个三位“幸福数”是最高数位为5的最大的三位“幸福数”,为589.22.为响应国家提出的“大众创业万众创新”的号召,小王大学毕业后决定利用所学专业进行自主创业,生产某小型电子产品.经过市场调研,生产该小型电子产品需投入年固定成本2万元,每生产x 万件,需另投入流动成本万元.已知在年产量不足4万件时,,在年产量不小()W x ()3123W x x x =+于4万件时,.每件产品售价6元.通过市场分析,小王生产的产品当年能全部售()64727W x x x=+-完.(1)写出年利润(万元)关于年产量(万件)的函数解析式.(年利润=年销售收入-年固定成()P x x 本-流动成本.)(2)年产量为多少万件时,小王在这一产品的生产中所获年利润最大?最大年利润是多少? 【答案】(1); ()3142,0436425,4x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当年产量为8万件时,所获年利润最大,为9万元.【分析】(1)分以及,分别求解得出表达式,写成分段函数即可;04x <<4x ≥()P x (2)当时,求导得出.然后根据基本不等式求出时,的最值,04x <<()max 10()23P x P ==4x ≥()P x 比较即可得出答案.【详解】(1)由题意,当时,;当时,04x <<()33116224233x x x x x P x ⎛⎫=--+=-+- ⎪⎝⎭4x ≥. ()64646272725P x x x x x x ⎛⎫=--+-=-- ⎪⎝⎭所以. ()3142,0436425,4x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当时,,令,解得.04x <<()24P x x '=-+()0P x '=2x =易得在上单调递增,在上单调递减,所以当时,()P x ()0,2()2,404x <<. ()max 10()23P x P ==当时,, 4x ≥()6425259P x x x ⎛⎫=-+≤-= ⎪⎝⎭当且仅当,即时取等号. 64x x=8x =综上,当年产量为8万件时,所获年利润最大,为9万元.。

高二数学月考卷-答案

高二数学月考卷-答案

高二数学月考卷答案一、选择题(每题1分,共5分)1. 若函数f(x) = 2x + 1是单调递增的,则f(3)与f(5)的大小关系是()A. f(3) > f(5)B. f(3) = f(5)C. f(3) < f(5)答案:C2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|答案:B3. 已知等差数列{an}的公差为2,且a1 = 3,则第10项a10等于()A. 19B. 21C. 23答案:B4. 若向量a = (2, 3),向量b = (4, 1),则2a 3b等于()A. (10, 11)B. (10, 9)C. (8, 11)答案:A5. 在三角形ABC中,若a = 4, b = 6, sinA = 3/5,则sinB等于()A. 3/5B. 4/5C. 3/4答案:B二、判断题(每题1分,共5分)1. 任何两个实数的和都是实数。

()答案:√2. 若a > b,则ac > bc。

()答案:×3. 互为相反数的两个数的平方相等。

()答案:√4. 两条平行线上的任意两个角都相等。

()答案:×5. 对角线互相垂直的四边形一定是矩形。

()答案:×三、填空题(每题1分,共5分)1. 若log2(3x 1) = 4,则x = _______。

答案:52. 已知等比数列{bn}的首项为3,公比为2,则b3 = _______。

答案:123. 在直角坐标系中,点P(2, 3)关于x轴的对称点坐标为_______。

答案:(2, 3)4. 若|a| = 5,|b| = 7,则|a + b|的最小值为_______。

答案:25. 设函数f(x) = x^2 2x + 1,则f(x)的最小值为_______。

答案:0四、简答题(每题2分,共10分)1. 请简要说明什么是函数的单调性。

答案:函数的单调性是指在其定义域内,随着自变量的增大(或减小),函数值也随之增大(或减小)的性质。

高二数学月考卷1

高二数学月考卷1

高二数学月考卷1一、选择题(每题1分,共5分)1. 函数f(x) = (x² 1)/(x 1)的定义域是()A. RB. {x | x ≠ 1}C. {x | x ≠ 0}D. {x | x ≠ 1}2. 若向量a = (2, 3),向量b = (1, 2),则2a 3b = ()A. (8, 1)B. (8, 1)C. (8, 1)D. (8, 1)3. 二项式展开式(x + y)⁵中x²y³的系数是()A. 5B. 10C. 20D. 304. 已知等差数列{an}中,a1 = 3,a3 = 9,则公差d为()A. 2B. 3C. 4D. 65. 若复数z满足|z 1| = |z + 1|,则z在复平面上的对应点位于()A. 实轴上B. 虚轴上C. y = x上D. y = x上二、判断题(每题1分,共5分)1. 任何两个实数的和都是实数。

()2. 若矩阵A的行列式为0,则A不可逆。

()3. 两条平行线上的任意一对对应线段比例相等。

()4. 双曲线的渐近线一定经过原点。

()5. 若函数f(x)在区间[a, b]上单调递增,则f'(x) > 0。

()三、填空题(每题1分,共5分)1. 若log₂x = 3,则x = ______。

2. 若等差数列{an}中,a4 = 8,a7 = 19,则a10 = ______。

3. 圆的标准方程(x h)² + (y k)² = r²中,(h, k)表示圆的______。

4. 若sinθ = 1/2,且θ是第二象限的角,则cosθ = ______。

5. 矩阵A = [[1, 2], [3, 4]]的行列式|A| = ______。

四、简答题(每题2分,共10分)1. 简述矩阵乘法的定义。

2. 请解释什么是反函数。

3. 简述等差数列的通项公式。

4. 请说明直线的斜率的意义。

5. 简述三角函数的周期性。

高二月考数学试卷及答案

高二月考数学试卷及答案

高二年级第一次月考数学试卷说明:1.本试卷分为第Ⅰ卷和第Ⅱ卷两部分,总分150分,考试时间为120分钟。

2.第Ⅰ卷为单项选择题,共60分;第Ⅱ卷为非选择题,共90分。

请将答案答在答题卡上,交卷时只交答题卡。

第Ⅰ卷 选择题 (共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求)1.命题“∀x >0,都有x 2-x ≤0”的否定是 BA .∃x 0>0,使得x 02-x 0≤0B .∃x 0>0,使得x 02-x 0>0C .∀x >0,都有x 2-x >0D .∀x ≤0,都有x 2-x >02.一个年级有12个班,每个班有50名学生,随机编为1~50号,为了了解他们的课外兴趣爱好,要求每班编号是40号的学生留下来进行问卷调查,这里运用的抽样方法是 DA .分层抽样法B .抽签法C .随机数表法D .系统抽样法3. 设x 是实数,则“x >0”是“|x |>0”的 AA .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要4.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球个数的标准差为0.3.有下列几种说法:①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.其中正确的个数为 DA .1B .2C .3D .45. 从装有2个红球和2个白球的袋内任取2个球,则互斥而不对立的两个事件是CA.至少有1个红球和全是白球B.至少有1个白球和全是白球C.恰有1个白球和恰有两个白球D.至少有1个白球和全是红球6.先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是DA.81B. 83C. 85D. 87 7.阅读如图所示的程序框图,运行相应的程序,则输出S 的值为 CA .14B .20C .30D .558根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 BA .63.6万元B .65.5万元C .67.7万元D .72.0万元9. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 DA .2B .3C .5D .710. 动点P 与点1(05)F ,与点2(05)F -,满足126PF PF -=,则点P 的轨迹方程为D A.221916x y -=B.221169x y -+=C.221(3)169x y y -+=≥D.221(3)169x y y -+=-≤ 11.双曲线两条渐近线的夹角为60º,该双曲线的离心率为 AA .332或2B .332或2 C .3或2 D .3或2 12. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1·k 2的值为 D A.12 B .-12 C.13 D .-13解析 设点M (x ,y ),A (x 1,y 1),B (-x 1,-y 1),则y 2=b 2-b 2x 2a 2,y 12=b 2-b 2x 12a 2, 所以k 1·k 2=y -y 1x -x 1·y +y 1x +x 1=y 2-y 12x 2-x 12=-b 2a 2=c 2a 2-1=e 2-1=-13, 即k 1·k 2的值为-13. 答案 D第Ⅱ卷二、填空题:(本大题共4小题,每小题5分,共20分)13. 两根相距6m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2m 的概率为 . 1314.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 02+2ax 0+2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值范围是________.a ≤-2或a ≥115.椭圆2214x y +=的弦AB 的中点为1(1,)2P ,则弦AB 所在直线的方程是 . 220x y +-=16.如图,在平面直角坐标系xOy 中,A 1,A 2,B 1,B 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为________.27-5解 直线A 1B 2的方程为x -a +y b =1,直线B 1F 的方程为x c +y -b=1,二者联立,得 T (2ac a -c ,b (a +c )a -c ),则M (ac a -c ,b (a +c )2(a -c ))在椭圆x 2a 2+y 2b 2=1(a >b >0)上, ∴c 2(a -c )2+(a +c )24(a -c )2=1, c 2+10ac -3a 2=0,e 2+10e -3=0,解得e =27-5.三.解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(1)已知x,y (2)估计使用年限为10年时,维修费用是多少?( ∑i =15x 2i =90,∑i =15x i y i =112.3, b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2)解: (1)计算得:x =4,y =5,b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2=112.3-5×4×590-5×42=1.23, 于是:a ^=y -b ^ x =5-1.23×4=0.08,即得线性回归方程y ^=1.23x +0.08.8分(2)把x =10代入线性回归方程y ^=1.23x +0.08得y =12.38,因此,估计使用10年维修费用是12.38万元.……………………………………………………………12分18. (本小题满分12分) 已知命题p :方程x 22m +y 29-m=1表示焦点在y 轴上的椭圆,命题q :双曲线y 25-x 2m =1的离心率e ∈(62,2),如果p ∨q 真,p ∧q 假,求实数m 的取值范围.解: 若p 真,则有9-m >2m >0,即0<m <3.若q 真e 2=1+b 2a 2=1+m 5∈(32,2),即52<m <5. ∵p ∨q 为真,p ∧q 为假,∴p 与q 一真一假.①若p 真、q 假,则0<m <3,且m ≥5或m ≤52,即0<m ≤52; ②若p 假、q 真,则m ≥3或m ≤0,且52<m <5,即3≤m <5. 故所求范围为:0<m ≤52或3≤m <5. 19. (本小题满分12分) 黄种人群中各种血型的人所占的比例如下:不能互相输血,小明是B 型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解:(1)对任一人,其血型为A 、B 、AB 、O 型血的事件分别记为A ′、B ′、C ′、D ′,它们是互斥的.由已知,有P (A ′)=0.28,P (B ′)=0.29,P (C ′)=0.08,P (D ′)=0.35.因为B 、O 型血可以输给B 型血的人,故“可以输给B 型血的人”为事件B ′∪D ′.根据互斥事件的加法公式,有P (B ′∪D ′)=P (B ′)+P (D ′)=0.29+0.35=0.64.(2)由于A 、AB 型血不能输给B 型血的人,故“不能输给B 型血的人”为事件A ′∪C ′,且P (A ′∪C ′)=P (A ′)+P (C ′)=0.28+0.08=0.36.∴任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36.20. (本小题满分12分) 一汽车厂生产A 、B 、C 三类轿车,每类轿车均有舒适型和标准A 类轿车10辆.(1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.解:(1)设该厂本月生产轿车为n 辆,由题意得,50n =10100+300,所以n =2 000. z =2 000-100-300-150-450-600=400. ……………………………………4分(2)设所抽样本中有m 辆舒适型轿车,因为用分层抽样的方法在C 类轿车中抽取一个容量为5的样本,所以4001 000=m 5,解得m =2,也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S 1,S 2,B 1,B 2,B 3,则从中任取2辆的所有基本事件为(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,S 3),(S 1,S 2),(B 1,B 2),(B 2,B 3),(B 1,B 3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2).所以从中任取2辆,至少有1辆舒适型轿车的概率为710.…………………………8分 (3)样本的平均数为x =18(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9, 那么与样本平均数之差的绝对值不超过0.5的数为9.4,8.6,9.2,8.7,9.3,9.0这6个数,总的个数为8.所以该数与样本平均数之差的绝对值不超过0.5的概率为68=0.75. …………12分 21.(本小题满分12分)已知椭圆C :22221x y a b+= (0)a b >>的一个顶点为A (2,0),离心率为2,直线(1)y k x =-与椭圆C 交于不同的两点M ,N.(1)求椭圆C 的方程;(2)当AMN ∆的面积为3时,求k 的值. 【答案】22142x y += 1k =± 22.(本小题满分12分)设F 1、F 2分别为椭圆C :22228by a x + =1(a >b >0)的左、右两个焦点. (1)若椭圆C 上的点A (1,23)到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标;(2)设点K 是(1)中所得椭圆上的动点,求线段F 1K 的中点的轨迹方程;(3)已知椭圆具有性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN 之积是与点P 位置无关的定值.试对双曲线12222=-by a x 写出具有类似特性的性质,并加以证明.解:(1)椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1、F 2两点的距离之和是4,得2a =4,即a =2.又点A (1,23)在椭圆上,因此222)23(21b+=1得b 2=3,于是c 2=1. 所以椭圆C 的方程为3422y x +=1,焦点F 1(-1,0),F 2(1,0). (2)设椭圆C 上的动点为K (x 1,y 1),线段F 1K 的中点Q (x ,y )满足:2,2111y y x x =+-=, 即x 1=2x +1,y 1=2y . 因此3)2(4)12(22y x ++=1.即134)21(22=++y x 为所求的轨迹方程. (3)类似的性质为:若M 、N 是双曲线:2222by a x -=1上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN 之积是与点P 位置无关的定值.设点M 的坐标为(m ,n ),则点N 的坐标为(-m ,-n ),其中2222b n a m -=1. 又设点P 的坐标为(x ,y ),由mx n y k m x n y k PN PM ++=--=,, 得k PM ·k PN =2222mx n y m x n y m x n y --=++⋅--, 将22222222,a b n b x a b y =-=m 2-b 2代入得k PM ·k PN =22a b .。

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。

天津高二下学期第一次月考数学试题(解析版)

天津高二下学期第一次月考数学试题(解析版)

一、单选题1.下列各式正确的是( ) A .B . ()cos sin x x '=()ln x x a a a '=C . D .ππsin cos 1212'⎛⎫= ⎪⎝⎭()5615xx --'=-【答案】B【分析】根据基本初等函数的求导公式判断.【详解】;;,,只有B 正确.(cos )sin x x '=-πsin 012'⎛⎫= ⎪⎝⎭56()5x x --'=-()ln x xa a a '=故选:B .2.函数的单调递减区间是( ) (e 3)()x f x x =-A . B . C . D .(),2-∞()0,3()1,4()2,+∞【答案】A【分析】求出导函数,由得减区间. ()f x '()0f x '<【详解】由已知, ()(3)(2)x x x f x e x e x e '=+-=-时,,时,,2x <()0f x '<2x >()0f x '>所以的减区间是,增区间是; ()f x (,2)-∞(2,)+∞故选:A .3.曲线在处的切线l 与坐标轴围成的三角形的面积为( )()2ln f x x x =x e =A .B .C .D .24e 2e 22e 22e 【答案】D【解析】先利用导数的几何意义求出切线方程,再分别求出直线与两坐标轴的交点坐标,即可得l 到切线l 与坐标轴围成的三角形的面积.【详解】由,得,则,,所以曲线在()2ln f x x x =()22ln f x x '=+()2f e e =()224f e '=+=()f x 处的切线的方程为,即.令得;令得.所以直x e =l ()24y e x e -=-42y x e =-0x =2y e =-0y =2ex =线与两坐标轴的交点坐标分别为,,所以切线与坐标轴围成的三角形的面积为l ()0,2e -,02e ⎛⎫⎪⎝⎭l . 212222e e e ⨯⨯=故选D.4.若对任意的实数恒成立,则实数的取值范围是( ) 0,ln 0x x x x a >--≥a A . B .C .D .(,1]-∞-(,1]-∞[1,)-+∞[1,)+∞【答案】A【解析】构造函数,利用导数研究函数在单调性,并计算()ln f x x x x a =--()f x ()0,∞+,可得结果.()min 0f x ≥【详解】令,()ln f x x x x a =--()0,x ∈+∞则,令()'ln f x x =()'01f x x =⇒=若时,01x <<()'0f x <若时,1x >()'0f x >所以可知函数在递减,在递增 ()f x ()0,1()1,+∞所以()()min 11f x f a ==--由对任意的实数恒成立 0,ln 0x x x x a >--≥所以 ()min 101f x a a =--≥⇒≤-故选:A【点睛】本题考查利用导数解决恒成立问题,关键在于构建函数,通过导数研究函数性质,属基础题.5.已知R 上的可导函数的图象如图所示,则不等式的解集为( )()f x ()()20x f x '->A .B . ()(),21,-∞-+∞ ()()212-∞-,,UC .D .()(),12,-∞+∞ ()()1,12,-+∞ 【答案】D【分析】由函数图象得出和的解,然后用分类讨论思想求得结论. ()0f x '>()0f x '<【详解】由图象知的解集为,的解集为,()0f x '>(,1)-∞-(1,)⋃+∞()0f x '<(1,1)-或,(2)()0x f x '->20()0x f x -⇔'>⎧⎨>⎩20()0x f x -<<'⎧⎨⎩所以或,解集即为. 2x >11x -<<()()1,12,-+∞ 故选:D .6.若函数在区间内存在单调递增区间,则实数的取值范围是( )2()ln 2f x x ax =+-1,22⎛⎫⎪⎝⎭a A . B . C . D .(,2]-∞-1,8⎛⎫-+∞ ⎪⎝⎭12,8⎛⎫-- ⎪⎝⎭(2,)-+∞【答案】D【分析】求出函数的导数,问题转化为在有解,进而求函数的最值,即212a x >-1(,2)221()2g x x =可求出的范围.a 【详解】∵, 2()ln 2f x x ax =+-∴,1()2f x ax x'=+若在区间内存在单调递增区间,则有解,()f x 1(,2)21()0,(,2)2f x x '>∈故, 212a x >-令,则在单调递增, 21()2g x x =-21()2g x x =-1(,2)2,1()()22∴>=-g x g 故. 2 a >-故选:D.7.已知函数在处有极值10,则的值为( ) 322()f x x ax bx a =--+1x =a b 、A ., B .,或, 4a =-11b =3a =3b =-4a =-11b =C ., D .以上都不正确1a =-5b =【答案】A【解析】根据条件函数在处有极值10,则有且,解出的值,然后()f x 1x =1(1)0f =()01f '=a b 、再代入检验是否满足条件,得出答案【详解】解:函数的导数为, 2()32f x x ax b '=--因为函数在处有极值10, 322()f x x ax bx a =--+1x =所以且.1(1)0f =()01f '=即,解得或. 2320110a b a b a --=⎧⎨--+=⎩33a b =⎧⎨=-⎩411a b =-⎧⎨=⎩当,,,3a =3b =-22()3633(1)0f x x x x '=-+=-…此时函数单调递增,所以此时函数没有极值,所以不满足条件. 所以经检验值当,时,满足条件. 4a =-11b =故选:A .【点睛】本题考查函数取极值的情况,求参数的值,注意要检验,属于中档题. 8.定义在R 上的偶函数,其导函数,当x ≥0时,恒有,若()f x ()f x '()()02xf x f x '+-<,则不等式的解集为( ) 2()()g x x f x =()(12)g x g x <-A .(,1)B .(∞,)∪(1,+∞)13-13C .(,+∞)D .(∞,)13-13【答案】A【分析】由已知可得,即在上单调递减,再利用函数的奇偶()[2()()]0g x x f x xf x ''=+<()g x [0,)+∞性、单调性,求解题设不等式即可.【详解】当时,,又, 0x ≥2()2()()[2()()]g x xf x x f x x f x xf x '=+''=+()()()()022x xf x f x f x f x ''+-=+<∴,即在上单调递减. ()0g x '<()g x [0,)+∞∵是定义在R 上的偶函数, ()f x ∴是定义在R 上的偶函数,()g x 由不等式,则有, ()(12)g x g x <-(||)(|12|)g x g x <-∴,解得:. |||12|x x >-113x <<∴不等式的解集为. ()(12)g x g x <-1(,1)3故选:A9.设函数与是定义在同一区间上的两个函敉,若对任意的,都有()f x ()g x [],a b [],x a b ∈,则称与在上是“k 度和谐函数”,称为“k 度密切区()()()0f x g x k k -≤>()f x ()g x [],a b [],a b 间”.设函数与在上是“e 度和谐函数”,则m 的取值范围是( ) ()ln f x x =()1mx g x x -=1,e e ⎡⎤⎢⎥⎣⎦A .B .[]e 1,1--[]1,e 1-+C .D .1e,1e e ⎡⎤-+⎢⎥⎣⎦11e,1e e ⎡⎤+-+⎢⎥⎣⎦【答案】B【分析】由新定义转化为不等式恒成立,再转化为求函数的最值,从而得出结论. 【详解】由题意在时恒成立,即在时恒成1ln e mx x x --≤1[e]e x ∈,1e ln e m x m x-≤+≤+1[e]e x ∈,立, 设,则,1()ln h x x x=+22111()x h x x x x -'=-=时,,单调递减,时,,单调递增, 11ex ≤<()0h x '<()h x 1e x <≤()0h x '>()h x 所以,又,,所以,min ()(1)1h x h ==1(e 1e h =-1(e)1e 1e h =+<-max ()e 1h x =-因此由在时恒成立得:1e ln e m x m x-≤+≤+1[e]e x ∈,且,所以.e 1m -≤e e 1m +≥-1e 1m -≤≤+故选:B .【点睛】方法点睛:不等式恒成立问题的处理方法,解决函数不等式恒成立的常用方法是分离参数法,即不等式变形把参数与自变量分离,然后构造新函数,利用导数求得函数的最值,然后解相x 应不等式得参数范围.二、填空题10.已知函数的导函数为,且满足,则________. ()f x ()f x '()()121f x xf x'=+()1f '=【答案】1【分析】根据题意,求导可得,然后令,即可得到结果. ()f x '1x =【详解】因为,则, ()()121f x xf x '=+()()2121f x f x''=-令,可得,解得. 1x =()()1211f f ''=-()11f '=故答案为: 111.函数的单调减区间为_______ . ()219ln 2f x x x =-【答案】.()0,3【解析】利用导数研究函数单调性即可得到结论. 【详解】解:∵,, ()219ln 2f x x x =-0x >则,299()x f x x x x'-=-=由,即,解得 ,()0f x '<290x -<33x -<<,即函数的单调减区间为, 0,03x x >∴<< ()0,3故答案为:.()0,3【点睛】本题主要考查函数单调区间的求解,根据函数的导数和单调性之间的关系是解决本题的关键.12.函数的图象在点处的切线的倾斜角为__________ ()cos x f x e x =(0,(0))f 【答案】4π【详解】因为, ()cos sin x x f x e x e x -'=00(0)cos 0sin 01f e e -'==所以函数的图象在点处的切线的倾斜角为()cos x f x e x =(0,(0))f 4π13.已知函数对区间上任意的都有,则实数m 的最小3()3f x x x =-[3,2]-1,x 2x ()()12f x f x m -≤值是________. 【答案】20【分析】求出在上的最大值和最小值后由两者差可得的范围,即得的最小值、 ()f x [3,2]-m m 【详解】,则=0,,当或时,,3()3f x x x =-2()33f x x '=-1x =±31x -≤<-12x <≤()0f x '>递增,当时,,递减.()f x 11x -<<()0f x '<()f x 所以,,又,, ()(1)2f x f =-=极大值()2f x =-极小值(3)18f -=-(2)2f =所以在上,,[3,2]-()2,()18f x f x ==-最大值最小值所以的最大值为,即,所以的最小值为20. 12()()f x f x -2(18)20--=20m ≥m 故答案为:20.【点睛】本题考查用导数研究函数的最值,解题关键是命题对区间上任意的都有[3,2]-1,x 2x ,转化继.()()12f x f x m -≤12()()()()f x f x f x f x -≤-最大值最小值14.当时,函数有两个极值点,则实数m 的取值范围___________.0x >()22x f x e mx =-+【答案】 2e m >【分析】函数有两个极值点转化为方程有两个不同的实数根,等价于与有两个2xe m x =y m =2x e y x=不同的交点,构造函数,即可求出结果.()(0)2xe h x x x =>【详解】有两个极值点, 2()2xf x e mx =-+所以有两个不同的实数根,'()20x f x e mx =-+=即有两个不同的实数根,2xe m x=等价于与有两个不同的交点,y m =2xe y x =设, ()(0)2x e h x x x =>2(1)'()(0)2x e x h x x x -=>当单调递减, (0,1),'()0,()x h x h x ∈<当单调递增, (1+),'()0,()x h x h x ∈∞>,所以 min ()(1)2eh x h ==当;0()x h x →→+∞,+()x h x →∞→+∞,所以与要有两个不同的交点,只需y m =2xe y x=2e m >故答案为:2em >【点睛】方法点睛:含参方程有根的问题转化为函数图像的交点问题,数形结合,是常用的方法.本题考查了运算求解能力和数形结合思想,属于一般题目.三、双空题15.(1)设函数,其中,若存在唯一的整数,使得,则()()e 21xf x x ax a =--+1a <0x ()00f x <a 的取值范围是________.(2)已知,,若,,使得成立,则实数a 的()e xf x x =()()21g x x a =-++1x ∃2x ∈R ()()21f x g x ≤取值范围________. 【答案】3,12e ⎡⎫⎪⎢⎣⎭1,e ⎡-+∞⎫⎪⎢⎣⎭【分析】(1)根据题意转化为存在唯一的整数,使得在直线的下方,求导得0x ()0g x y ax a =-,然后结合图像即可得到结果;()g x '(2)根据题意,将问题转化为,然后求导得极值,即可得到结果.()()min max f x g x ≤【详解】(1)函数,其中,()()e 21xf x x ax a =--+1a <设,()()e 21,xg x x y ax a =-=-因为存在唯一的整数,使得,0x ()00f x <所以存在唯一的整数,使得在直线的下方, 0x ()0g x y ax a =-因为,所以当时,,()()e 21xg x x '=+12x <-()0g x '<当时,,12x =-()12min 12e 2g x g -⎛⎫=-=- ⎪⎝⎭当时,, 0x =()()01,1e>0g g =-=直线恒过点,斜率为,y ax a =-()1,0a 故,且,解得 ()01a g ->=-()113e g a a --=-≥--32ea >所以的取值范围是a 3,12e ⎡⎫⎪⎢⎣⎭(2),,使得成立,等价于,1x ∃2x ∈R ()()21f x g x ≤()()min max f x g x ≤因为,所以,()e x f x x =()()1e xf x x '=+当时,,则函数递减; 1x <-()0f x '<()f x 当时,,则函数递增; 1x >-()0f x ¢>()f x 所以时,,=1x -()min 1ef x =-因为,所以,()()21g x x a =-++()max g x a =所以,则实数的取值范围是.1e a -≤m 1,e ⎡-+∞⎫⎪⎢⎣⎭故答案为: (1);(2)3,12e ⎡⎫⎪⎢⎣⎭1,e ⎡-+∞⎫⎪⎢⎣⎭四、解答题16.已知函数(a ,),其图象在点处的切线方程为()()322113f x x ax a x b =-+-+b ∈R ()()1,1f .30x y +-=(1)求a ,b 的值;(2)求函数的单调区间和极值; ()f x (3)求函数在区间上的最大值. ()f x []2,5-【答案】(1),;1a =83b =(2)的增区间是和,减区间是,极大值是,极小值是;()f x (,0)-∞(2,)+∞(0,2)8(0)3f =()423f =(3)最大值是,最小值是. 5834-【分析】(1)由出导函数,计算和,由切线方程列方程组解得; ()f x '(1)f '(1)f ,a b (2)由得增区间,由得减区间,从而可得极值;()0f x '>()0f x '<(3)结合(2)可得函数在上的单调性,再计算出区间端点处的函数值,,与[2,5]-(2)f -(5)f (2)中极值比较可得最值.【详解】(1),,22()21f x x ax a '=-+-22(1)1212f a a a a '=-+-=-,2212(1)133f a a b a a b =-+-+=-+-又图象在点处的切线方程为,()()1,1f 30x y +-=所以,解得; 222121(303a a a a b ⎧-=-⎪⎨+-+--=⎪⎩183a b =⎧⎪⎨=⎪⎩(2)由(1)得,,3218()33f x x x =-+2()2(2f x x x x x '=-=-)或时,,时,,0x <2x >()0f x '>02x <<()0f x '<所以的增区间是和,减区间是, ()f x (,0)-∞(2,)+∞(0,2)极大值是,极小值是;8(0)3f =()423f =(3)由(2)知在和上递增,在上单调递减, ()f x [2,0]-[2,5](0,2)又,, (2)4f -=-58(5)3f =所以在上的最大值是,最小值是. ()f x [2,5]-5834-17.已知函数,其中是自然对数的底数,.()()21e xf x ax x =+-e a R ∈(1)若,求的单调区间;a<0()f x (2)若,函数的图象与函数的图象有个不同的交点,求实数的1a =-()f x ()321132g x x x m =++3m 取值范围.【答案】(1)答案见解析(2) 31,1e 6⎛⎫--- ⎪⎝⎭【分析】(1)求得,对实数的取值进行分类讨论,分析导数的符号变()()221e xf x ax a x '⎡⎤=++⎣⎦a 化,由此可得出函数的增区间和减区间;()f x (2)由可得出,构造函数()()f x g x =()232111e 32xm x x x x -=-+++,可知直线与函数的图象有三个交点,利用导数分析函()()232111e 32x h x x x x x =-+++y m =-()h x 数的单调性与极值,数形结合可得出实数的取值范围.()h x m 【详解】(1)解:当时,因为,该函数的定义域为, 0a <()()21e xf x ax x =+-R ,()()()()2221e 1e 21e x x xf x ax ax x ax a x '⎡⎤=+++-=++⎣⎦由可得或. ()0f x '=0x =21a x a+=-①当时,即当时,210a a+-<12a <-由可得或,由可得, ()0f x '<21a x a +<-0x >()0f x ¢>210a x a+-<<此时函数的单调递减区间为、,单调递增区间为; ()f x 21,a a +⎛⎫-∞- ⎪⎝⎭()0,∞+21,0a a +⎛⎫-⎪⎝⎭②当时,即当时,对任意的,且不恒为零, 210a a+-=12a =-x R ∈()0f x '≤()f x '此时函数的减区间为,无增区间; ()f x (),-∞+∞③当时,即当时,210a a+->102a -<<由可得或,由可得, ()0f x '<0x <21a x a +>-()0f x ¢>210a x a+<<-此时函数的单调递减区间为、,单调递增区间为.()f x (),0∞-21,a a ∞+⎛⎫-+ ⎪⎝⎭210,a a +⎛⎫- ⎪⎝⎭综上所述,当时,函数的单调递减区间为、,单调递增区间为12a <-()f x 21,a a +⎛⎫-∞- ⎪⎝⎭()0,∞+; 21,0a a +⎛⎫- ⎪⎝⎭当时,函数的减区间为,无增区间; 12a =-()f x (),-∞+∞当时,函数的单调递减区间为、,单调递增区间为102a -<<()f x (),0∞-21,a a ∞+⎛⎫-+ ⎪⎝⎭. 210,a a +⎛⎫- ⎪⎝⎭(2)解:当时,,1a =-()()21e x f x x x =-+-由可得,可得, ()()f x g x =()232111e 32x x x x x m -+-=++()232111e 32x m x x x x -=-+++令,则, ()()232111e 32x h x x x x x =-+++()()()2e 1x h x x x '=++由可得或,由可得.()0h x '>1x <-0x >()0h x '<10x -<<所以,函数的增区间为、,减区间为,()h x (),1-∞-()0,∞+()1,0-函数的极大值为,极小值为, ()h x ()311e 6h -=+()01h =因为函数、的图象有三个交点,()f x ()g x 所以,直线与函数的图象有三个交点,如下图所示:y m =-()h x由图可知,当时,即当时, 311e 6m <-<+311e 6m --<<-直线与函数的图象有三个交点,y m =-()h x 因此,实数的取值范围是. m 31,1e 6⎛⎫--- ⎪⎝⎭【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与轴的交点问题,突出导数的工具作用,体现了转化与化x 归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由分离变量得出,将问题等价转化为直线与函数()0f x =()a g x =y a =的图象的交点问题.()y g x =18.已知函数()ln 1x f x me x =--(1)设是的极值点,求m ,并求的单调区间;2x =()f x ()f x (2)当时,求证:1m >()1f x >(3)当时,求证: 1m e>()0f x >【答案】(1),在上单调递减,在上单调递增; 21=2m e ()y f x =()0,2()2,∞+(2)证明见解析;(3)证明见解析.【分析】(1)先由是的极值点求出m ,再直接求单调区间;2x =()f x (2)用分析法,只需证明即可,构造函数,利用导数证明ln 20x e x -->()()ln 20x g x e x x =-->,即证;()min 0g x >(3)先判断时,,构造函数,利用导数证明当1m e >()ln 1xe f x x e >--()()ln 10x e p x x x e=-->时,,即证.0x >()()10p x p =≥【详解】解:定义域为 ()ln 1x f x me x =--()01()x f x me x=∞'+-,,(1)∵是的极值点,2x =()f x ∴,解得:. 21(2)=02f me '=-21=2m e 此时, 22111()ln 1()22x x f x e x f x e e e x'=--=-,当时;当时;02x <<()0f x '<2x >()0f x '>所以在上单调递减,在上单调递增.()y f x =()0,2()2,∞+(2)当时,,只需证即可.1m >()1ln 2ln 2x x f x me x e x -=-->--ln 20x e x -->令,则 ()()ln 20x g x e x x =-->()()111x x g x e =xe x x=--'令,则,()()10x h x xe x =->()0x x h x e xe '=>+∵∴存在,使得即,也可化为()121110,110,22h e h e ⎛⎫=-<=-> ⎪⎝⎭01,12x ⎛⎫∈ ⎪⎝⎭()00h x =0010x x e =-00ln 0x x +=∴在上,,则单调递减;在上,,则单调递增.()00x ,()0g x '<()g x ()0x +∞,()0g x '>()g x 所以 ()()000000000min 1ln 221221012x x g x g x =e x =e x x x x x ⎛⎫=--+->++-=-><< ⎪⎝⎭∵即证.(3)当时,, 1m e >()ln 1xe f x x e>--令,则 ()()ln 10x e p x x x e=-->()1x e p x e x '=-令,解得x =1, ()10x e p x =e x'=-∴在上,,则单调递减;在上,,则单调递增. ()01,()0p x '<()p x ()1+∞,()0p x '>()p x ∴,故当时,.()()min 10p x =p =0x >()()10p x p =≥∴时,都有. 1m e>()0f x >【点睛】导数的应用主要有:(1)利用导数研究原函数的单调性,求极值(最值);(2)利用导数求参数的取值范围.(3)构造新函数,利用导数判断单调性,证明不等式成立19.已知函数,.()ln f x x x =()()1g x a x a =+-(1)求函数的极值;()()()h x f x g x =-(2)若存在时,使成立,求的取值范围.[]1,e x ∈()223f x x ax ≥-+-a (3)若不等式对任意恒成立,求实数的取值范围.()()()12e x h x x a a -≤--+[)1,x ∈+∞a 【答案】(1)函数有极小值,无极大值;()h x ()ee a a h a =-(2); 32e e a ≤++(3).(],0-∞【分析】(1)由题可得,然后根据导数与函数极值的关系即得;()()ln 1x x x h x a a =-++(2)由题可得存在,成立,构造函数,利用导[]1,e x ∈32ln a x x x ≤++()[]32ln ,1,e F x x x x x=++∈数求函数的最值即得;(3)设,由题可得对任意恒成立,利用导数可得()()1e xg x x a =--()()ln 1g x g x ≤-[)1,x ∈+∞,进而可得只需在上单调递增,即在0ln 1x x ≤≤-()()1e x g x x a =--[)0,+∞()()e 0x g x x a '=-≥上恒成立,即得.[)0,+∞【详解】(1)因为,()()()()ln 1h x x x x a x a f x g =-=++-∴,()()ln 1n 1l h x x a x a -+='+-=由,可得,由,可得,()0h x '<0e a x <<()0h x '>e a x >∴在上单调递减,在上单调递增, ()h x ()0,e a ()e ,a+∞所以,当时,函数有极小值,无极大值;e a x =()h x ()e e a a h a =-(2)由,可得, ()222ln 3f x x x x ax =≥-+-32ln a x x x≤++即存在,成立, []1,e x ∈32ln a x x x≤++设,则, ()[]32ln ,1,e F x x x x x =++∈()()()22132310x x F x x x x -+'=+-=≥所以函数在上单调递增,, ()F x []1,e ()()max 3e 2e eF x F ==++所以; 32e ea ≤++(3)由题可知对任意恒成立, ()()()1ln 12ex x x a x x a --+≤--[)1,x ∈+∞即对任意恒成立, ()()()1ln ln 1e 11ex x x a x a ---≤---⎡⎤⎣⎦[)1,x ∈+∞设,则对任意恒成立,()()1e x g x x a =--()()ln 1g x g x ≤-[)1,x ∈+∞下面证明对任意恒成立,0ln 1x x ≤≤-[)1,x ∈+∞设,,()ln 1t x x x =-+[)1,x ∈+∞则在上恒成立,且仅在时取等号, ()1110x t x x x-'=-=≤[)1,+∞=1x 所以在上单调递减,()ln 1t x x x =-+[)1,+∞∴,即,()()10t x t ≤=0ln 1x x ≤≤-所以对任意恒成立,只需在上单调递增, ()()ln 1g x g x ≤-[)1,x ∈+∞()()1e xg x x a =--[)0,+∞即在上恒成立,()()e 0x g x x a '=-≥[)0,+∞所以在上恒成立,a x ≤[)0,+∞所以,即实数的取值范围为.0a ≤a (],0-∞【点睛】方法点睛:恒(能)成立问题的解法:若在区间上有最值,则()f x D (1)恒成立:;; ()()min ,00x D f x f x ∀∈>⇔>()()max ,00x D f x f x ∀∈<⇔<(2)能成立:;. ()()max ,00x D f x f x ∃∈>⇔>()()min ,00x D f x f x ∃∈<⇔<若能分离常数,即将问题转化为:(或),则 ()a f x >()a f x <(1)恒成立:;; ()()max a f x a f x >⇔>()()min a f x a f x <⇔<(2)能成立:;. ()()min a f x a f x >⇔>()()max a f x a f x <⇔<。

浙江杭州学军中学2024年高二下学期6月月考数学试题(解析版)

浙江杭州学军中学2024年高二下学期6月月考数学试题(解析版)

2023学年第二学期高二数学学科测试卷(五)1.已知集合一.单选题:本题共8小题,每小题5分,共40分(){}{}2ln 1,11M y y x N x x ==−=−<<,则()A.M N =B.[]1,0M N ∩=−C.()1,0M N =− D.()()1,RM N =−+∞ 【答案】D 【解析】【分析】由对数型函数的值域结合集合运算判定选项即可.【详解】由题意可得()22110ln 10x x≥−>⇒−≤,即(],0M =−∞,所以M N ≠,(]1,0M N ∩=−,()()R 1,M N ∞∪=−+ ,即A 、B 、C 三选项错误,D 正确.故选:D2.已知角α的终边上一点()4,3A ,且()tan 2αβ+=,则()tan 3πβ−=( )A.12B.12−C.52D.52−【答案】B 【解析】【分析】先通过三角函数的定义求出tan α,代入()tan tan tan 1tan tan αβαβαβ++=−求出tan β,继而求出()tan 3πβ−的值.【详解】 角α的终边上一点()4,3A ∴3tan 4α=()3tan tan tan 4tan 231tan tan 1tan 4βαβαβαββ+++===−−,解得1tan 2β=.∴()1tan 3tan 2πββ−=−=−.故选:B.3. 函数()2ln 23y x x =−−+的单调递减区间为( ) A. (),1∞−− B. ()1,∞−+ C. ()1,1− D. ()1,∞+【答案】C 【解析】【分析】先求出定义域,再利用复合函数同增异减求出函数的单调递减区间. 【详解】令2230x x −−+>得31x −<<, 故()2ln 23y x x =−−+的定义域为()3,1−,ln y t =在()0,t ∞∈+上单调递增,由复合函数单调性满足同增异减可得,只需求出223t x x =−−+在()3,1−上的单调递减区间,()222314t x x x =−−+=−++在()1,1−上单调递减,故数()2ln 23y x x =−−+的单调递减区间为()1,1−.故选:C4. 下列图像中,不可能成为函数()3mx x x=−的图像的是( ).A. B. C. D.【答案】C 【解析】【分析】利用导数讨论函数的单调性和讨论函数值的正负得到答案. 【详解】因为()3m f x x x =−,{}|0x x ≠,所以()223mf x x x′=+ 当0m =时()30mf x x x=−=,{}|0x x ≠无解,且()2230m f x x x ′=+>此时()f x 在(),0∞−,()0,∞+单调递增,D 选项符合此种情况.当0m >时()430m x m f x x x x−=−==有两个解,且()2230m f x x x ′=+>此时()f x 在(),0∞−,()0,∞+单调递增,B 选项符合此种情况.当0m <时()43m x mf x x x x−=−=当0x <时易知()0f x <,0x >时()0f x >所以函数图像不可能是C. 故选:C5. 已知向量a ,b 满足1a = ,()1,1b = ,a b +=a 在b 上的投影向量的坐标为( ) A. 11,22B.C. ()1,1D. 【答案】A 【解析】【分析】根据投影向量的定义以及向量的坐标运算求解即可.【详解】因为(1,1)=b ,所以222||112b =+= ,又||1,a =把||a b +两边平方得22||||25a b a b ++⋅= ,即125a b +⋅= ,解得1a b ⋅= ,所以a 在b 的投影向量坐标为2111(1,1),222||a b b b ⋅⋅==, 故选:A.6. “欢乐颂”是尊称为“乐圣”“交响乐之王”的神圣罗马帝国音乐家贝多芬一生创作的重要作品之一.如图,以时间为横轴、音高为纵轴建立平面直角坐标系,那么写在五线谱中的音符就变成了坐标系中的点,如果这些点在函数()4sin 0,2y x πωϕωϕ=+><的图象上,且图象过点,224π,相邻最大值与最小值之间的水平距离为2π,则是函数的单调递增区间的是( )A. ,34ππ−−B. 75,2424ππ−C. 53,248ππD. 53,84ππ【答案】B 【解析】【分析】由题意求出最小正周期,从而求出ω,再利用特殊点求出ϕ的值,从而得到函数的解析式,利用正弦函数的单调性求解单调增区间,即可得到结果. 【详解】因为函数图象相邻最大值与最小值之间的水平距离为2π,所以函数的周期为22ππ×=,所以22πωπ==,又图象过点(224)π,,所以4sin 2224πϕ×+=,可得1sin 122πϕ += ,则有2126k ππϕπ+=+或52,126k k Z ππϕπ+=+∈, 即212k πϕπ=+或32,4k k Z πϕπ=+∈, 又2πϕ<,所以12πϕ=,所以4sin 212yx π+,令2222122k x k πππππ−+≤+≤+,解得75,2424k x k k Z ππππ−+≤≤+∈, 所以函数的单调区间为75,,2424k k k Z ππππ−++∈,当0k =时,函数的单调递增区间为75,2424ππ−,故选项B 正确. 故选:B .7. 已知函数()2ln 1212x x x f x mx mx x +>= −+≤,,,若()()g x f x m =−有三个零点,则实数m 的取值范围是( ) A. 71,4B. (]1,2C. 41,3D. []1,3【答案】C 【解析】【分析】由题可知1x >时,函数()()g x f x m =−至多有一个零点,进而可得1x ≤时,要使得()()222mg x f x m x mx =−=−−有两个零点,然后根据二次函数的性质结合条件即得. 【详解】当1x >时,()ln f x x x =+单调递增且()ln 1f x x x =+>,此时()()g x f x m =−至多有一个零点,若()()g x f x m =−有三个零点,则1x ≤时,函数有两个零点;当1x >时,()ln 1f x x x =+>,故1m >; 当1x ≤时,要使()()222mg x f x m x mx =−=−−有两个零点, 则2Δ80214202m m mm m =−−><−−≥, 所以403m <≤,又1m >, 所以实数m 的取值范围是41,3.故选:C.8. 张衡是中国东汉时期伟大的天文学家、数学家, 他曾在数学著作《算罔论》中得出结论:圆周率的平方除以十六约等于八分之五. 已知在菱形ABCD中,AB BD ==, 将ABD △沿BD 进行翻折,使得AC =. 按张衡的结论, 三棱锥A BCD −外接球的表面积约为( ) A. 72B.C.D. 【答案】B 【解析】【分析】由球的性质确定三棱锥A BCD −外接球的球心位置和球的半径,由此可求球的表面积. 【详解】如图1,取BD 的中点M ,连接AM CM ,.由AB AD BD ===ABD △为正三角形,且3AM CM ===,所以1cos 3AMC ∠=−,则sin AMC ∠==, 以M 为原点,MC 为x 轴,MD 为y 轴,过点M 且与平面BCD 垂直的直线为z 轴建立空间直角坐标系如图2,则(3,0,0)C , (10A −,.设O 为三棱锥A BCD −的外接球球心,则O 在平面BCD 的投影必为BCD △的外心,则设(10)O h ,,.由222||||R OA OC ==可得22222220)20h h ++−=++,解得h =,所以22||6R OC ==.由张衡的结论,2π5168≈,所以π≈则三棱锥A BCD −的外接球表面积为24πR ≈ 故选:B .二. 多选题:本题共3小题,每小题6分,共18分,在每小题给出的选项中有多项符合题目要求,全部选对得6分,部分选对得3分,有选错的得0分.9. ABC 中,D 为边AC 上的一点,且满足12AD DC =,若P 为边BD 上的一点,且满足()0,0AP mAB nAC m n =+>>,则下列结论正确的是( )A. 21m n +=B. mn 的最大值为112C.41m n+的最小值为6+ D. 229m n +的最小值为12【答案】BD 【解析】【分析】根据平面向量共线定理可知A 错误;根据()133mnm n =⋅,利用基本不等式可求得最大值,知B 正确; 由()41413m n m n m n+=++,利用基本不等式可求得最小值,知C 错误; 利用基本不等式可得()222392m n m n++≥,知D 正确.【详解】对于A ,3AP mAB nAC mAB nAD =+=+,,,B P D 三点共线,31m n ∴+=,A 错误;对于B ,31m n += ,()21131333212m n mn m n + ∴=⋅≤×=(当且仅当3m n =时取等号),B 正确;对于C ,(414112777n m m n m n m n m n +=++=++≥+=+ (当且仅当12n m m n =,即m =时取等号),C 错误; 对于D ,()22231922m n m n ++≥=(当且仅当3m n =时取等号),D 正确. 故选:BD.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:一正二定三相等. (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.10. 对于数列{}n a ,若存在正数M ,使得对一切正整数n ,都有n a M ≤,则称数列{}n a 是有界的.若这样的正数M 不存在,则称数列{}n a 是无界的.记数列{}n a 的前n 项和为n S ,下列结论正确的是( )A. 若1n a n=,则数列{}n a 是无界的B. 若1sin 2nn a n =,则数列{}n S 是有界的 C. 若()1nn a =−,则数列{}n S 是有界的D. 若212n a n =+,则数列{}n S 是有界的 【答案】BC 【解析】【分析】利用有界数列与无界数列的定义,结合放缩法与等比数列的前n 项和公式即可得解. 【详解】对于A ,111n a n n==≤ 恒成立, ∴存在正数1M =,使得n a M ≤恒成立, ∴数列{}n a 是有界的,A 错误;对于B ,1sin 1n −≤≤ ,111sin 222n n nn a n∴−≤=⋅≤,212111221111111222212nn nn n S a a a− ∴=+++<+++==−<− , 2121111112222n nn n S a a a=+++>−+++=−+>−,所以存在正数1M =,使得n S M ≤恒成立,∴则数列{}n S 是有界的,B 正确;对于C ,因为()1nn a =−,所以当n 为偶数时,0n S =;当n 为奇数时,1n S =−;1n S ∴≤,∴存在正数1M =,使得n S M ≤恒成立,∴数列{}n S 是有界的,C 正确;对于D ,()()22144114421212121n n n n n n =<=− −+−+,2221111111121241233352121nS n n n n n ∴=++++⋅⋅⋅≤+−+−+⋅⋅⋅+− −+182241222212121n n n n n n n=+−=+=−++++; 221y x x =−+ 在()0,∞+上单调递增,21,213n n∴−∈+∞ +, ∴不存在正数M ,使得n S M ≤恒成立, ∴数列{}n S 是无界的,D 错误.故选:BC.11. 已知函数()f x 及其导函数()f x ′的定义域均为R ,若()f x 是奇函数,()()210f f =−≠,且对任意x ,R y ∈,()()()()()f x y f x f y f x f y ′′+=+,则( )A. ()112f ′=B. ()90f =C.()2011k f k ==∑D.()2011k f k =′=−∑【答案】BD 【解析】【分析】根据赋值法,结合原函数与导函数的对称性,奇、偶函数的定义、函数周期性进行求解即可.【详解】令1xy ==,得()()()2211f f f =′,因为()()210f f =−≠, 所以()112f ′=−,所以A 错误; 令1y =,得()()()()()111f x f x f f x f +=′′+①,所以()()()()()111f x f x f f x f −=′−′−+, 因为()f x 是奇函数,所以()f x ′是偶函数,所以()()()()()111f x f x f f x f −′′=−+②,由①②, 得()()()()()()12111f x f x f f x f x f x +==−−′+−−, 即()()()21f x f x f x +=−+−, 所以()()()()()()()32111f x f x f x f x f x f x f x +=−+−+=++−+=, 所以()f x ,()f x ′是周期为3的函数,所以()()900f f ==,()()()()()()2011236120k f k f f f f f = =++×++= ∑,所以B 正确,C 错误; 因为()()()12112f f f =−=′=−′′,在①中令0x =得()()()()()10101f f f f f ′=+′,所以()01f ′=,()()()()()()2011236121k f k f f f f f =′ =++×++′=− ′′′′∑,所以D 正确. 故选:BD .【点睛】对于可导函数()f x 有: 奇函数的导数为偶函数 偶函数的导数为奇函数若定义在R 上的函数()f x 是可导函数,且周期为T ,则其导函数()f x ′是周期函数,且周期也为T三. 填空题:本题共3小题,每小题5分,共15分.12. 已知复数z 满足()()12i 1i z =++(其中i 为虚数单位),则z =_____________.【解析】【分析】根据复数的乘法运算求出复数z ,即可求得答案. 【详解】由题意得()()12i 1i 13i z =++=−+,故z =,13. 某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为 (用数字作答). 【答案】:35【解析】【分析】三门文化课排列,中间有两个空,若每个空各插入1节艺术课,则排法种数为32332A A ×,若两个空中只插入1节艺术课,则排法种数为31133233()216A A A A = ,三门文化课中相邻排列,则排法种数为3434144A A =,而所有的排法共有66720A =种,由此求得所求事件的概率.【详解】解:把语文、数学、外语三门文化课排列,有33A 种方法,这三门课中间存在两个空,在两个空中,①若每个空各插入1节艺术课,则排法种数为32133272A A A =, ②若两个空中只插入1节艺术课,则排法种数为31133233()216A A A A = , ③若语文、数学、外语三门文化课相邻排列,把三门文化课捆绑为一个整体, 然后和三门艺术课进行排列,则排法种数为3434144A A =,而所有的排法共有66720A =种,故在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为7221614437205++=,故答案为:35. 【点睛】本题主要考查等可能事件的概率,体现了分类讨论的数学思想,属于基础题.14. 已知()221:21O x y +−= ,()()222:369O x y −+−= ,过x 轴上一点P 分别作两圆切线,切点分别是M ,N ,求PM PN +的最小值为_____________.【解析】【分析】根据圆的切线的几何性质可推出PM PN +=可看作点(0)Pt,到((0,,A B 的距离的和,结合几何意义即可求得答案. 【详解】由题意知()221:21O x y +−= 的圆心为(0,2),半径11r =,()()222:369O x y −+−= 的圆心为(36),,半径23r =,的设(0)P t,,则||PM =,PN ===则PM PN +==,设((0,,A B ,则||||||||||PM PNPA PB AB +≥=+, 当且仅当,,P A B 三点共线时取等号,此时PM PN +的最小值为AB ==,四. 解答题:本题共577分,其中第15题13分,第16题和第17题每题15分,第18题和第19题每题17分,解答题应写出文字说明、证明过程或演算步骤.15. 已知ABC 的角,,A B C 的对边分别为 ,,a b c ,且sin (cos cos )sin sin sin A c B b C c B c C b B +−=+,(1)求角A ;(2)若AD 平分BAC ∠交线段BC 于点D ,且2,2AD BD CD ==,求ABC 的周长. 【答案】(1)23A π=(2)9+ 【解析】【分析】(1)先利用余弦定理化简cos cos c B b C +,然后代入已知式子中利用正弦定理统一成边的形式,再利用余弦定理可求出角A ,(2)由ABCBAD CAD S S S =+ 结合AD 平分BAC ∠,23A π=可得22bc b c =+,作AE BC ⊥于E ,则由ABD ACD S S 结合已知条件可得2c b=,解方程组可求得,b c ,再利用余弦定理可求出a ,从而可求出三角形的周长.【小问1详解】由余弦定理得222222cos cos 22a c b a b c c B b C c b a ac ab+−+−+=×+×=所以sin (cos cos )sin sin sin A c B b C c B c C b B +−=+可化为sin sin sin sin a A c B c C b B −=+ 再由正弦定理,得222a cb c b −=+,得222c b a bc +−=−,所以2221cos 22b c a A bc +−==−. 因(0,)A π∈, 所以23A π= 【小问2详解】因为AD 平分BAC ∠,所以3BAD CAD π∠=∠=. 由1211sin sin sin 232323ABC BAD CAD S S S b c c AD b AD πππ=+⇒⋅=⋅+⋅ , 得22bc b c =+. 作AE BC ⊥于E ,则1sin2321sin 23ABD ACD c AD S c BD S b DC b AD ππ⋅==⇒==⋅ .由222bc b c c b =+= ,解得6,3,c b == 由余弦定理,得2222cos 63a b c bc A =+-=,所以a =故ABC的周长为9+16. 如图,在正方体1111ABCD A B C D −中,E .F 分别是棱1DD ,11A D 的中点.为(1)证明:1B E ⊥平面ACF . (2)求二面角B AF C −−的余弦值. 【答案】(1)证明见解析 (2【解析】分析】(1)法一:建立空间直角坐标系,得到10AF EB ⋅= ,10AC EB ⋅=,所以1AF EB ⊥,1AC EB ⊥,证明出线面垂直;法二:作出辅助线,先由线面垂直得到1AC EB ⊥,再根据三角形全等得到1AF A E ⊥,进而得到AF ⊥平面11A B E ,得到1AF EB ⊥,从而证明出1B E ⊥平面ACF ; (2)利用空间向量求解二面角余弦值. 【小问1详解】法一:以D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系.设正方体1111ABCD A B C D −的棱长为2,则()2,0,0A ,()2,2,0B ,()0,2,0C ,()1,0,2F ,()0,0,1E ,()12,2,2B . ()1,0,2AF =−,()2,2,0AC =−,()12,2,1EB =.因为10AF EB ⋅=,10AC EB ⋅=,所以1AF EB ⊥,1AC EB ⊥. 【的因为AF AC A = ,,AF AC ⊂平面ACF ,所以1B E ⊥平面ACF . 法二:连接1A E ,BD ,11B D .在正方体1111ABCD A B C D −中,1B B ⊥平面ABCD ,所以1B B AC ⊥.因为BD AC ⊥,1B B BD B ∩=,1,B B BD ⊂平面11B BDD ,所以AC ⊥平面11B BDD . 因为1EB ⊂平面11B BDD ,所以1AC EB ⊥.因为11A B ⊥平面11ADD A ,AF ⊂平面11ADD A ,所以11A B AF ⊥.在正方形11ADD A ,E ,F 分别是边1DD ,11A D 的中点,可得111A AF D A E ≌△△,所以111A AF D A E ∠∠=,1111190EA A A AF EA A D A E ∠∠∠∠+=+=,所以1AF A E ⊥.因为1111A B A E A = ,111,A B A E ⊂平面11A B E ,所以AF ⊥平面11A B E . 因为1EB ⊂平面11A B E ,所以1AF EB ⊥.因为AC AF A ∩=,,AF AC ⊂平面ACF ,所以1B E ⊥平面ACF . 【小问2详解】结合(1)可得1EB为平面ACF 的一个法向量.()0,2,0AB =.设平面ABF 的法向量为(),,n x y z = ,则()()()()0,2,0,,201,0,2,,20AB n x y z y AF n x y z x z ⋅=⋅== ⋅=−⋅=−+=, 解得0y =,令2x =,得1z =,所以()2,0,1n =,111cos ,E nB n EB n EB ⋅==⋅. 由图可知二面角B AF C−−为锐角,故二面角BAF C −−.17. 已知某系统由一个电源和并联的,,A B C 三个元件组成,在电源电压正常的情况下,至少一个元件正常工作才可保证系统正常运行,电源及各元件之间工作相互独立.(1)电源电压X (单位:V )服从正态分布()404N ,,且X 的累积分布函数为()()F x P X x =≤,求()()4438F F −.(2)在统计中,指数分布常用于描述事件发生的时间间隔.已知随机变量T (单位:天)表示某元件的使用寿命,T 服从指数分布,其累积分布函数为()()001104tt G t P T t t <=≤= −≥ ,,.(ⅰ)设120t t >>,证明:()()1212P T t T t P T t t >>=>−;(ⅱ)若第n 天只有元件A 发生故障,求第1n +天系统正常运行条件概率. 附:若随机变量Y 服从正态分布()2N µσ,,则()0.6827P Y −µ<σ=,()20.9545P Y −µ<σ=,()30.9973P Y −µ<σ=.【答案】(1)0.8186 (2)(ⅰ)证明见解析(ⅱ)716【解析】【分析】(1)根据正态分布的对称性即可结合()()F x P X x =≤的定义求解;(2)(ⅰ)根据条件概率的计算公式集合()()Fx P X x =≤的定义以及()G t 的定义域即可求解,(ⅱ)根据独立事件的概率公式求解即可..【小问1详解】由题设得()738420.682P X =<<,()536440.954P X =<<,所以()()()()()()4438443840443840F F F X F X F X F X −=≤−≤=≤≤+≤≤1(0.68270.9545)0.81862=+= 【小问2详解】(ⅰ)由题设得:120t t >>的()[]12111122222()()()1()1()()()1()1()P T t T t P T t P T t G t P T t T t P T t P T t P T t G t >∩>>−≤−>>====>>−≤−112122111(1)444111(1)44t t t t t t −=−−==−−, ()()2112121211()4t t P T t t P T t t G t t −>−=−≤−=−−=,所以()()1212P T t T t P T t t >>=>−. (ⅱ)由(ⅰ)得()()1111(1)1(1)4P T n T n P T P T G >+>=>=−≤=−=,所以第1n +天元件,B C 正常工作的概率均为14. 为使第1n +天系统仍正常工作,元件,B C 必须至少有一个正常工作, 因此所求概率为2171(1)416−−=.18. 已知双曲线()2222Γ:10,0x y a b a b−=>>的实轴长为2O 的方程为222x y +=,过圆O 上任意一点P 作圆O 的切线l 交双曲线于A ,B 两点.(1)求双曲线Γ的方程; (2)求证:π2AOB ∠=; (3)若直线l 与双曲线的两条渐近线的交点为C ,D ,且AB CD λ=,求实数λ的范围.【答案】(1)2212y x −=(2)证明见解析 (3)λ∈【解析】【分析】(1)由题意列式求出212a ,c===,即可得答案;(2)分类讨论,求出00y =和00x =时,结论成立;当000x y ≠时,利用圆222x y +=在()00,P x y 处的切线方程为002x x y y +=,联立双曲线方程,可得根与系数的关系式,计算OA OB ⋅的值,即可证明结论; (3)求出弦长AB 以及CD的表达式,可得λ=. 【小问1详解】由题意知双曲线()2222Γ:10,0x y a b a b−=>>的实轴长为2故22222a c a c ab == =+,解得212a ,c===,故双曲线Γ的方程为2212y x −=;【小问2详解】证明:设()00,P x y ,则22002x y +=,当00y =时,不妨取)P ,此时不妨取,AB,则0OA OB ⋅= ,即π2AOB ∠=; 同理可证当00x =时,有π2AOB ∠=; 当000x y ≠时,圆222x y +=在()00,P x y 处的切线方程为()0000x y y x x y −=−−, 即002x x y y +=; 由2200122y x x x y y −= += 可得()222000344820x x x x x −−+−=, 因为切线l 交双曲线于A ,B 两点,故2002x <<,()()22220000340,Δ16434820x x x x −≠=−−−>, 设()()1122,,,A x y B x y ,则20012122200482,3434x x x x x x x x −+=⋅=−−,故()()121212*********OA OB x x y y x x x x x x y ⋅=+=+−−⋅ ()212012012201422x x x x x x x x x =+−++ − ()22220000222200082828143423434x x x x x x x x −− =+−+−−−−22002200828203434x x x x −−=−=−−, 故OA OB ⊥,综合上述可知π2AOB ∠=; 【小问3详解】由(2)可得当000x y ≠时,2002x <<,AB ==2212y x −=的渐近线方程为y =,联立002y x x y y=+=,得C,同理可得C ,则CD =022*******234|y ||y ||x y ||x |=−−,由于AB CD λ=,故234AB CDx λ==−由于2002x<<,则λ; 当00y =时,不妨取)P ,则4|AB ||=,此时λ=; 当00x =时,不妨取(P ,则2|AB ||=,此时λ=综合上述可知λ∈. 19. 给定常数0c >,定义函数()24f x x c x c =++−+,数列123,,,a a a 满足*1(),n n a f a n N +=∈.(1)若12a c =−−,求2a 及3a ; (2)求证:对任意*1,n n n N a a c +∈−≥,; (3)是否存在1a ,使得12,,,n a a a 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由. 【答案】见解析 【解析】【详解】(1)因为0c >,1(2)a c =−+,故2111()242a f a a c a c ==++−+=,3122()2410a f a a c a c c ==++−+=+(2)要证明原命题,只需证明()f x x c ≥+对任意x R ∈都成立,()24f x x c x c x c x c ≥+⇔++−+≥+即只需证明24+x c x c x c ++≥++若0x c +≤,显然有24+=0x c x c x c ++≥++成立;若0x c +>,则24+4x c x c x c x c x c ++≥++⇔++>+显然成立第21页/共21页综上,()f x x c ≥+恒成立,即对任意的*n ∈N ,1n n a a c +−≥ (3)由(2)知,若{}n a 为等差数列,则公差0d c ≥>,故n 无限增大时,总有0n a > 此时,1()2(4)()8n n n n n a f a a c a c a c +++−+++即8d c =+ 故21111()248a f a a c a c a c ==++−+=++, 即111248a c a c a c ++=++++,当10a c +≥时,等式成立,且2n ≥时,0n a >,此时{}n a 为等差数列,满足题意; 若10a c +<,则11448a c a c ++=⇒=−−, 此时,230,8,,(2)(8)n a a c a n c ==+=−+ 也满足题意; 综上,满足题意的1a 的取值范围是{}[,)8c c −+∞∪−−.【考点定位】考查数列与函数的综合应用,属难题.。

数学高二月考试卷

数学高二月考试卷

数学高二月考试卷一、选择题(每题5分,共60分)1. 椭圆frac{x^2}{25}+frac{y^2}{16}=1的长轴长为()A. 5B. 4C. 10D. 8.2. 双曲线x^2-frac{y^2}{3}=1的渐近线方程为()A. y = ±√(3)xB. y=±(√(3))/(3)xC. y = ± 3xD. y=±(1)/(3)x3. 抛物线y^2=2px(p>0)的焦点坐标为()A. ((p)/(2),0)B. (-(p)/(2),0)C. (0,(p)/(2))D. (0,-(p)/(2))4. 已知向量→a=(1,2),→b=(x,1),若→a⊥→b,则x=()A. - 2B. 2C. -(1)/(2)D. (1)/(2)5. 若直线y = kx + 1与圆x^2+y^2=1相切,则k=()A. ±√(3)B. ±1C. ±2D. ±√(2)6. 在空间直角坐标系中,点P(1,2,3)关于xOy平面的对称点为()A. (1,2,- 3)B. (-1,2,3)C. (1,-2,3)D. (-1,-2,-3)7. 设等差数列{a_n}的首项a_1=2,公差d = 3,则a_5=()A. 14B. 17C. 20D. 23.8. 等比数列{b_n}中,b_1=1,公比q = 2,则b_4=()A. 8B. 16C. 32D. 64.9. 函数y=sin(2x+(π)/(3))的最小正周期为()A. πB. 2πC. (π)/(2)D. (2π)/(3)10. 已知函数f(x)=x^3-3x^2+1,则函数f(x)的单调递增区间为()A. (-∞,0)∪(2,+∞)B. (0,2)C. (-∞,1)∪(3,+∞)D. (1,3)11. 若∫_0^a(2x + 1)dx=6,则a=()A. 2B. 3C. 4D. 5.12. 从5名男生和3名女生中任选3人参加志愿者活动,则所选3人中至少有1名女生的选法共有()A. 46种B. 56种C. 70种D. 80种。

高二上学期数学第一次月考试题

高二上学期数学第一次月考试题

高二上学期数学第一次月考试题高二上学期数学第一次月考试题一、选择题(共30题,每题2分,共60分)1. 设函数f(x) = 2x^2 + 3x - 1,那么f(-1)的值为()A. -2B. 0C. 2D. 42. 若函数y = x^2 - 4ax + 4a^2 - 1的图象与x轴相切,则a的值为()A. 0B. 1C. 2D. 43. 已知函数y = ax^2 + bx + c的图象经过点(1, 1)和(2, 4),则a, b, c 的值分别为()A. 1, 1, -1B. 1, 2, -1C. 1, -1, 1D. 1, 1, 14. 已知函数y = ax^2 + bx + c的图象与x轴相切,且切点的横坐标为2,纵坐标为0,那么a, b, c的值分别为()A. 1, 2, -2B. 2, -4, 4C. -1, 4, -4D. -2, 4, -45. 在△ABC中,已知∠C = 90°,AC = 5,AB = 12,那么BC的值为()A. 5B. 13C. 17D. 256. 已知∠A = 60°,BC = 3,AC = 4,那么AB的值为()A. 3B. 4C. 5D. 67. 已知∠A = 30°,∠B = 60°,那么∠C的值为()A. 30°B. 60°C. 90°D. 120°8. 在△ABC中,∠A = 40°,∠B = 70°,那么∠C的值为()A. 50°B. 70°C. 80°D. 90°9. 在△ABC中,∠A = 45°,∠B = 60°,那么∠C的值为()A. 45°B. 60°C. 75°D. 90°10. 在△ABC中,∠A = 30°,∠B = 60°,AD ⊥ BC,那么∠ADC的值为()A. 45°B. 60°C. 75°D. 90°11. 已知△ABC中,∠A = 30°,∠B = 60°,AD ⊥ BC,那么AD与BC的比值为()A. 1:√3B. 1:2C. √3:2D. 2:√312. 线段AB的中点为M,线段AC的中点为N,若AM = 4,AN = 3,那么BC 的值为()A. 2B. 3C. 4D. 613. 在△ABC中,∠A = 30°,∠B = 60°,D为BC上的点,且AD ⊥ BC,那么BD:DC的值为()A. 1:2B. 1:√3C. 2:1D. √3:114. 已知△ABC中,∠A = 30°,∠B = 60°,AD ⊥ BC,那么AD:DB:DC的值为()A. 1:√3:2B. 1:2:√3C. 1:√3:1D. 1:1:115. 若点A(x, y)到点B(3, 2)的距离为√10,且点A在直线x - y = 1上,则点A的坐标为()A. (2, 1)B. (1, 2)C. (1, 3)D. (2, 2)二、填空题(共5小题,每题4分,共20分)16. 若a + b = 3,ab = 2,那么a^2 + b^2的值为________。

高二数学月考试题

高二数学月考试题

如图乙.
(1)已知 M , N 为 PB , PE 上的动点,求证: MN DE ;
(2)在翻折过程中,当二面角 P ED B 为 60°时,求直线 CE 与平面 PCD 所成角的正
弦值.
22.(12
分)已知椭圆 E :
x2 a2
y2 b2
1 a
b
0 上任意一点到其左右焦点 F1 、 F2 的距离之
BAA1 DAA1 600 ,则异面直线 AB1 与 BC1 所成角的余弦值是( )
A. 3 3
B.
2 3
C. 3 6
D.
1 3
8.已知数列{an} 的前 n 项和
Sn
3 2
n2
1 2
n
,设 bn
1 an an 1
, Tn
为数列{bn}的前 n 项和,
试卷第 1页,共 4页
若对任意的 n N*,不等式 Tn 9n 3 恒成立,则实数 的取值范围为( )
中项.数列bn是等差数列,且 b1 a1, b3 a1 a2 a3.
(1)求数列an,bn 的通项公式;
(2)设 cn an bn ,求数列cn的前 n 项和 Sn .
18.(12 分)已知圆 C 与 y 轴相切,圆心在 x 轴下方并且与 x 轴交于 A(1, 0),B 9, 0 两点.
1,
0,
1

A
2,1,
3
为直线
l
上一点,点
P
1,
0,
2
为直线
l 外一点,则点 P 到直线 l 的距离为 3
C.若
P
在线段
AB
上,则
AP
t
AB0
t
1

贵州省高二上学期第一次月考数学试题(解析版)

贵州省高二上学期第一次月考数学试题(解析版)

高二上学期第一次月考数学试题一、单选题1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则( ) ()U A B ⋃=ðA .{−2,3} B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得:,则. {}1,0,1,2A B ⋃=-(){}U 2,3A B =- ð故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.2.复数等于31(i )i -A .8 B .-8C .8iD .-8i【答案】D【分析】利用复数的除法及乘方运算即得.【详解】因为.331(i )(i i)8i i -=+=-故选:D.3.在中,已知,则角为( ) ABC A 1,6AC BC B π===C A .B .C .或D .或2π4π2π6π6π56π【答案】C【分析】直接利用正弦定理即可得出答案.【详解】解:在中,已知,ABC A 1,6AC BC B π===因为, sin sin AC BCB A=所以sin sin BC BA AC⋅=所以或, 3A π=23π所以或.2C π=6π故选:C.4.若,,,则 0.52a =πlog 3b =22πlog sin 5c =A . B .C .D .a b c >>b a c >>c a b >>b c a >>【答案】A【详解】因为,,,因此选A 0.521a =>π0log 31b <=<22πlog sin 05c =<5.在平行六面体中,若,则( )1111ABCD A B C D -11BD xAB y AD z AA =++(),,x y z =A . B . ()1,1,1()1,1,1-C . D .()1,1,1-()1.1.1-【答案】D【分析】利用向量的加法公式,对向量进行分解,进而求出,,的值.1BDx y z 【详解】解:,又因,, 1111BD BB B D =+ 11BB AA = 11B D BD AD AB ==- ,∴111BD AA AD AB xAB y AD z AA =+-=++,,,1x ∴=-1y =1z =故选:.D6.设有直线m 、n 和平面、.下列四个命题中,正确的是 αβA .若m ∥,n ∥,则m ∥nααB .若m ,n ,m ∥,n ∥,则∥ ⊂α⊂αββαβC .若,m ,则m α⊥β⊂α⊥βD .若,m ,m ,则m ∥ α⊥β⊥β⊄αα【答案】D【详解】当两条直线同时与一个平面平行时,两条直线之间的关系不能确定,故A 不正确, B 选项再加上两条直线相交的条件,可以判断面与面平行,故B 不正确, C 选项再加上m 垂直于两个平面的交线,得到线面垂直,故C 不正确, D 选项中由α⊥β,m ⊥β,m ,可得m ∥α,故是正确命题, ⊄α故选D7.某校共有学生2000名,各年级男、女生人数表1,已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. 现用分层抽样的方法在全校抽取64名学生,则应在初三年级抽取的学生人数为初一年级 初二年级 初三年级女生 373 x y 男生 377 370zA .24B .18C .16D .12【答案】C【详解】试题分析:由题意可知,因此三年级的总人数为,所以应0.19,3802000xx =∴=500y z +=在三年级抽取的学生人数为人,故选C. 50064162000⨯=【解析】分层抽样.8.定义域为的奇函数的图象关于直线对称,当时,,则R ()f x 1x =[]0,1x ∈()31x f x =-( )(2000)(2001)(2002)(2021)f f f f ++++= A .-2 B .0 C .2 D .4【答案】C【分析】根据函数的奇偶性和对称性可以确定函数的周期,利用周期性进行求解即可. 【详解】因为函数的图象关于直线对称,所以, ()f x 1x =(1)(1)f x f x -=+因此有,可得,因为函数是奇函数, ()(2)f x f x =-()(2)f x f x -=+()f x 所以可得,即有,从而, ()(2)f x f x -=+(2)(4)f x f x -+=+()(4)f x f x =+因此该函数的周期为,当时,,所以,4[]0,1x ∈()31x f x =-(0)0,(1)2f f ==的图象关于直线对称,,,()f x 1x =(2)(0)0f f ==(3)(1)(1)2f f f =-=-=- (2000)(2001)(2002)(2021)(0)(1)(2)(1)5[(0)(1)(2)(3)](0)(1)50022,f f f f f f f f f f f f f f ++++=++++=+++++=⨯++= 故选:C二、多选题9.下列函数中,既为奇函数又在定义域内单调递增的是( ) A . B .1010x x y -=-()22log 1y x =+C . D .3y x =|sin |y x =【答案】AC【解析】分别利用奇偶性的定义判断每个选项中函数的奇偶性,对于符合奇函数的选项再接着判断其单调性即可.【详解】四个函数的定义域为,定义域关于原点对称x R ∈A :记,所以,所以函数是奇函数,又因()1010-=-x x f x ()1010()x x f x f x --=-=-()1010-=-x x f x 为是增函数,是减函数,所以是增函数,符合题意;B :记10x y =10x y -=1010x x y -=-,则,所以函数是偶函数,不符合题()22()log 1=+g x x ()22()log 1()⎡⎤-=-+=⎣⎦g x x g x ()22()log 1=+g x x 意;C :记,则,所以函数是奇函数,根据幂函数的性3()h x x =33)()()(=-=--=-h x h x x x 3()h x x =质,函数是增函数,符合题意;D :记,则,所以3()h x x =()|sin |=t x x ()|sin()||sin |()-=-==t x x x t x 函数为偶函数. ()|sin |=t x x 故选:AC10.分别抛掷两枚质地均匀的硬币,设事件“第一枚正面朝上”,事件“第二枚正面朝上”,A =B =下列结论中正确的是( ) A .该试验样本空间共有个样本点 B . 4()14P AB =C .与为互斥事件D .与为相互独立事件A B A B 【答案】ABD【分析】由题可得样本空间及事件样本点,结合互斥事件,独立事件的概念及古典概型概率公,A B 式逐项分析即得.【详解】对于A :试验的样本空间为:正,正,正,反,反,正,反,反,共{(Ω=)()()()}4个样本点,故A 正确;对于B :由题可知正,正,正,反,正,反,反,反, {(A =)()}{(B =)()}显然事件,事件都含有“正,反这一结果,故,故B 正确; A B ()()14P AB =对于C :事件,事件能同时发生,因此事件不互斥,故C 不正确; A B ,A B 对于D :,,,所以,故D 正确.()2142P A ==()2142P B ==()14P AB =()()()P AB P A P B =故选:ABD.11.函数(其中)的图象如图所示,则下列说法正确的是()()sin f x A x ωϕ=+π0,0,2A ωϕ>><( )A .是函数的周期 2π()f xB . π3ϕ=C .为了得到的图象,只需将的图象向左平移个单位长度()cos2g x x =()f x 6πD .为了得到的图象,只需将的图象向左平移个单位长度 ()cos2g x x =()f x π12【答案】ABD 【分析】根据可得最小正周期,再求得,代入分析可得,可判断7ππ4123T =-2ω=7π12x =π3ϕ=AB ,再结合三角函数图象变化的性质判断CD 即可. 【详解】对A ,由图可知,,最小正周期T 满足,所以, 1,A =7πππ41234T =-=T π=所以是函数的周期,故正确; 2π()f x A 对B ,,即,将代入可得,得2π2πω==()()sin 2f x x ϕ=+7π12x =7π3π22π,122k k ϕ⨯+=+∈Z ,又,所以,故B 正确; π2π3k ϕ=+π2ϕ<π3ϕ=对C ,由上述结论可知,为了得到,应将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭()cos2sin 22g x x x π⎛⎫==+ ⎪⎝⎭()f x向左平移个单位长度.故C 错误,D 正确.12π故选:ABD.12.如图,已知正方体的棱长为2,,,分别为,,的中点,1111ABCD A B C D -E F G AB AD 11B C 以下说法正确的是( )A .三棱锥的体积为2 C EFG -B .平面1A C ⊥EFGC .异面直线EF 与AGD .过点,,作正方体的截面,所得截面的面积是EFG 【答案】BD【分析】对A ,直接由锥体体积公式求解判断;对BC ,结合建系法直接判断;对D ,补全截面直接判断.【详解】对A ,,故A 错误;111321332C EFG ECF V S CC -=⋅⋅=⋅⋅=△对B ,以为轴,为轴,为轴,建立空间直角坐标系,DA x DC y 1DD z ,,则,,()()()()()10,2,0,2,0,2,1,0,0,2,1,0,1,2,2C A E F G ()2,0,0A ()12,2,2A C =-- ()1,1,0EF =,,,则平面,B 正确;()0,2,2EG = 10A C EF ⋅= 10A C EG ⋅=1A C ⊥EFG对C ,,,,故C 错误; ()1,1,0EF = ()1,2,2AG =-cos ,EF 对D ,作中点,的中点,的中点,连接,则正六边形11C D N 1BB M 1DD T ,,,,GN GM FM TN ET,故D 正确.EFMGNT 26S ==故选:BD三、填空题13.已知向量,,,若与垂直,则_________.)a =()0,1b =(c k = 2a b + ck =【答案】3-【分析】利用向量坐标垂直数量积为0求参数. k 【详解】解:由题意得:因为与垂直,所以,即2a b + c()20a b c +⋅= 20a c b c ⋅+⋅=,解得. 0+=3k =-故答案为:3-14.已知函数,则____________. ()22,0,0x x f x x x ⎧<=⎨≥⎩142log f f ⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭【答案】/ 120.5【分析】根据分段函数解析式计算可得.【详解】解:因为,212241122222log log log -==-=-又,所以,()22,0,0x x f x x x ⎧<=⎨≥⎩12141222log f f -⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭所以. 1411222log f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故答案为:1215.如图,已知球O 的面上四点,DA ⊥平面ABC .AB ⊥BC ,DA =AB =BCA B C D 、、、O 的体积等于________.【答案】92π【详解】由题意,三角形DAC ,三角形DBC 都是直角三角形,且有公共斜边, 所以DC 边的中点就是球心(到D 、A 、C 、B 四点距离相等), 所以球的半径就是线段DC 长度的一半,即, 1322R DC ===所以球的体积.34932V R ππ==故答案为:.92π16.如图,直三棱柱中,,点分别是棱111ABC A B C -12,1,120AA AB AC BAC ∠====E F 、1AB CC 、的中点,一只蚂蚁从点出发,绕过三棱柱的一条棱爬到点处,则这只蚂蚁爬行的E 111ABC A B C -F 最短路程是__________.【分析】要使爬行的最短路程,只要将底面和侧面展在同一个平面,连接,求出ABC 11BCC B EF 的长度即可.EF 【详解】若将底面沿展开使其与侧面在同一个平面,连接,因为ABC AC 11ACC A EF 120BAC ∠= ,所以与棱不相交,所以不合题意,EF若将底面沿展开和侧面展在同一个平面,连接,则与棱相交,符合题ABC BC 11BCC B EF EF BC 意,此时为这只蚂蚁爬行的最短路线,如图所示,EF过作的平行线,过作的平行线,交于点,交于,E 1BBF 11B CG EG BCH 因为,点分别是棱的中点,12,1,120AA AB AC BAC ∠====E F 、1AB CC 、所以,,1,12BE CF HG ===30ABC ∠=︒BC =所以1,4EH BH ==所以, 15144FG EG ===+=所以, EF ===四、解答题17.如图,在棱长为2的正方体中,为线段的中点,为线段的中1111ABCD A B C D -E 1DD F 1BB 点.(1)求直线与平面所成角的余弦值.CE 1AB E(2)求直线到平面的距离. 1FC 1AB E 【答案】(2) 23【分析】(1)建立空间直角坐标系,利用向量法求得直线与平面所成角的正弦值,再由CE 1AB E 平方关系求余弦值.(2)利用向量法证明平面,求得点到平面的距离即可. 1//FC 1AB E F1AB E 【详解】(1)建立如图所示空间直角坐标系,则,,,,,,,,(0,0,0)D ()2,0,0A (0,2,0)C ()12,2,2B 1(0,0,2)D ()0,0,1E (2,2,0)B ()10,2,2C ,(2,2,1)F 所以,,()2,0,1AE =- ()10,2,2AB = (0,2,1)CE =-设平面的法向量为,1AB E (),,n x y z =,令,可得, 120220n AE x z n AB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ 1x =2,2y z =-=故可取.()1,2,2n =-设直线与平面所成角,CE 1AB E θ所以,可得sin θcos θ===直线与平面CE 1AB E (2)由(1)知,,平面的法向量为,()12,0,1FC =- 1(0,0,1)B F =-1AB E ()1,2,2n =-因为,所以,1210(2)120n FC ⋅=-⨯+⨯-+⨯= 1n FC ⊥ 又平面,所以平面,1FC ⊄1AB E 1//FC 1AB E 设到平面的距离为,F 1AB E d 则, 23d =由直线与平面平行的性质知,直线到平面的距离为.1FC 1AB E 2318.在中,内角的对边分别为,且.ABC A , , AB C , , a b c sin cos b A B =(1)求角的大小;B (2)①,②,③,角.3b =sin 2sin C A =c =a C 【答案】(1);(2)答案见解析.3π【分析】(1)由正弦定理化边为角,可求得;B (2)选①②,由正弦定理化角为边,再由余弦定理可得,由勾股定理逆定理得角;选①③,aC 由正弦定理求得,得角,在直角三角形中求得;选②③,由正弦定理直接求得,再由sin C C a a 勾股定理逆定理得角.C 【详解】解:(1)因为在中,内角,,的对边分别为,,,ABC A A B C a b c 所以,()0AB C π∈,,,由正弦定理,可将化为,,sin cos b A B =sin sin cos B A AB =sin 0A ≠则,即;sin B B =tan B =3B π=(2)若选①②,由可得,sin 2sin C A =2c a =因为,由余弦定理可得,3b =2222cos b a cac B =+-则,解得22952a a =-a =由得. 222c a b =+2C π=若选①③,由正弦定理可得,,则,所以,则; sin sin C B cb =sin 1C =2C π=6A π=因此 sin ac A ==若选②③,由可得,因为得.sin 2sin C A =2c a =c =a =222c a b =+2C π=19.近年来,我国居民体重“超标”成规模增长趋势,其对人群的心血管安全构成威胁,国际上常用身体质量指数衡量人体胖瘦程度是否健康,中国成人的数值标准是:()()22kg BMI m =体重身高BMI 为偏瘦;为正常;为偏胖;为肥胖.下面是BMI 18.5<18.5BMI 23.9≤<24BMI 27.9≤<BMI 28≥社区医院为了解居民体重现状,随机抽取了100个居民体检数据,将其值分成以下五组:BMI ,,,,,得到相应的频率分布直方图.[)12,16[)16,20[)20,24[)24,28[]28,32(1)根据频率分布直方图,求的值,并估计该社区居民身体质量指数的样本数据中位数;a BMI (2)现从样本中利用分层抽样的方法从,的两组中抽取6个人,再从这6个人中随机[)16,20[)24,28抽取两人,求抽取到两人的值不在同一组的概率.BMI 【答案】(1); 0.04a =23(2)815【分析】(1)根据频率分步直方图中所有矩形面积和为1计算的值,根据中位数左边的频率和a 为求解中位数即可;0.5(2)根据分层抽样的定义可求得在,分别抽取人和人,再利用列举法即可求得[)16,20[)24,2824概率.【详解】(1)根据频率分步直方图可知组距为,所有矩形面积和为,41所以,解得;()0.010.10.080.0241a ++++⨯=0.04a =因为,两组频率之和为,而的频率为, [)12,16[)16,20()0.010.0440.2+⨯=[)20,240.140.4⨯=故中位数在之间,设为,[)20,24x 则,解得,()0.2200.10.5x +-⨯=23x =即该社区居民身体质量指数的样本数据中位数为.BMI 23(2)由频率分步直方图可知的频数为,的频数为[)16,201000.04416⨯⨯=[)24,281000.08432⨯⨯=,所以两组人数比值为,1:2按照分层抽样抽取人,则在,分别抽取人和人,6[)16,20[)24,2824记这组两个样本编号为,这组编号为,[)16,201,2[)24,283,4,5,6故从人随机抽取人所有可能样本的构成样本空间:62()()()()()()()()(){1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,Ω=()()()()()()3,4,3,5,3,6,4,5,4,6,5,6}设事件“从6个人中随机抽取两人,抽取到两人的值不在同一组”A =BMI 则,()()()()()()()(){}1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6A =故,即从这6个人中随机抽取两人,抽取到两人的值不在同一组的概率为. ()815P A =BMI 81520.已知函数.()2cos cos f x x x x =(1)求函数的最大值;()f x (2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平()y f x =移个单位,得到函数的图象,求函数的单调递减区间. π6()y g x =()g x 【答案】(1)32(2), ππ2π,2π22k k ⎛⎫-+ ⎪⎝⎭Z k ∈【分析】(1)根据降幂公式,结合余弦函数的最值进行求解即可;(2)根据三角函数图象的变换性质,结合正弦函数的单调性进行求解即可.【详解】(1) ()21cos 211cos cos 2cos 22222x f x x x x x x x +===+, π1cos(2)32x =++∴当时,取得最大值; πcos 213x ⎛⎫+= ⎪⎝⎭()f x 32(2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),()y f x =得到,再把得到的图象向左平移个单位, π1cos()32y x =++π6得到的图象, ππ11cos(sin 6322y x x =+++=-+所以,当单调递增时,单调递减, ()1sin 2g x x =-+sin y x =()g x 故函数的单调递减区间为,. ()g x ππ2π,2π22k k ⎛⎫-+ ⎪⎝⎭Z k ∈21.如图,在四面体中,平面,,,.M 是的A BCD -AD ⊥BCD BC CD ⊥2AD =BD =AD 中点,P 是的中点,点Q 在线段上,且.BM AC 3AQ QC =(1)证明:平面;//PQ BCD (2)若二面角的大小为,求的大小.C BMD --60︒BDC ∠【答案】(1)证明见解析;(2).60︒【分析】(1)取中点,连接,先证明面面平行再证明线面平行;MD G ,PG QG (2)根据三垂直线作法先找到二面角的平面角,然后根据线段长度关系求解出C BM D --BDC ∠的大小.【详解】(1)取中点,连接,如下图所示:MD G ,PG QG因为为中点,为中点,所以,M AD G MD 3AG GD =又因为,所以,所以, 3AQ QC =AQ AG QC GD=//QG CD 又因为为中点,为中点,所以,P BM G MD //PG BD 又,所以平面平面,,PG QG G BD CD D == //GPQ BCD 又平面,所以平面;PQ ⊂GPQ //PQ BCD(2)设,过作交于点,过作交于点,连接,如BDC θ∠=C CH BD ⊥BD H H HI BM ⊥BM I IC 下图所示:因为平面,所以,又,所以平面,AD ⊥BCD AD CH ⊥AD BD D = CH ⊥ABD 因为平面,所以,又因为,,BM ⊂ABD CH BM ⊥HI BM ⊥HI CH H = 所以平面,所以,所以二面角的平面角为, BM ⊥HIC BM IC ⊥C BM D --60HIC ∠=︒因为,所以,BC CD BD CH ⨯=⨯cos CH θθ=又因为,所以,所以, 90BCH CBD θ∠=︒-∠=sin sin BH BCH BCθ∠==2BH θ=又因为,所以, 1sin 3HI MD MBD BH BM ∠====2HI θ=又因为为直角三角形且,HIC A 60HIC ∠=︒所以,所以, 3cos tan 60sin HC HI θθ︒====tan θ=60θ=︒所以的大小为.BDC ∠60︒【点睛】本题考查空间中线面平行的证明和几何法求解二面角有关的问题,对学生的空间位置关系的理解能力与证明能力要求较高,难度一般.证明线面平行除了可以使用判定定理之外,还可以通过面面平行来证明.22.已知函数,的对称轴为且.()2f x x bx c =-+()f x 1x =()01f =-(1)求、的值;b c (2)当时,求的取值范围;[]0,3x ∈()f x (3)若不等式成立,求实数的取值范围.()()2log 2f k f >k 【答案】(1),2b =1c =-(2)[]22-,(3)或01k <<4k >【分析】(1)利用二次函数的对称性可求得的值,由可求得的值; b ()01f =-c (2)利用二次函数的基本性质可求得的取值范围;()f x (3)由可得出关于的不等式,解之即可.()()2log 2f k f >k 【详解】(1)解:二次函数的对称轴方程为,可得,且. ()f x 12b x ==2b =()01f c ==-因此,,.2b =1c =-(2)解:由(1)可知,当时,. ()221f x x x =--[]0,3x ∈()()[]2122,2f x x =--∈-(3)解:由,可得, ()()2log 21f k f >=-()222log 2log 0k k ->可得或,解得或. 2log 0k <2log 2k >01k <<4k >。

高二第一次月考数学试卷

高二第一次月考数学试卷

1、一个数的三分之一加上5等于16,这个数是多少?A. 36B. 33C. 45D. 30(答案:A)2、如果一个矩形的长度是8厘米,宽度是3厘米,则它的周长是多少?A. 30厘米B. 22厘米C. 24厘米D. 20厘米(答案:B)3、在一个等边三角形中,每个角的度数是多少?A. 45度B. 60度C. 75度D. 90度(答案:B)4、某班有40名学生,男生占三分之二,男生有多少人?A. 20人B. 25人C. 30人D. 28人(答案:C)5、一辆车以每小时60公里的速度行驶,3小时能行驶多远?A. 180公里B. 150公里C. 200公里D. 180米(答案:A)6、一个立方体的边长是4厘米,则它的体积是多少立方厘米?A. 16B. 32C. 48D. 64(答案:D)7、在一个排列中,数字1到5的排列组合中,有多少种不同的排列方式?A. 60B. 120C. 100D. 80(答案:B)8、如果一个圆的半径是7厘米,那么它的面积大约是多少平方厘米?(取π为3.14)A. 150.86B. 140.00C. 120.56D. 120.88(答案:A)9、一个角的补角是30度,这个角是多少度?A. 60度B. 90度C. 120度D. 150度(答案:A)10、在一次班级测验中,平均分数为75分,如果全部学生人数是20人,那么总分数是多少?A. 1500B. 1600C. 1700D. 1800(答案:A)。

2024-2025学年安徽省县中联盟高二(上)月考数学试卷(10月份)(A卷)(含答案)

2024-2025学年安徽省县中联盟高二(上)月考数学试卷(10月份)(A卷)(含答案)

2024-2025学年安徽省县中联盟高二(上)月考数学试卷(10月份)(A卷)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.直线x+3y+2=0的倾斜角为( )A. 30°B. 60°C. 120°D. 150°2.已知i+zz=−i,则z的虚部为( )A. 1B. 12C. −12D. −13.已知向量a=(1,m,−1),b=(1,−1,1),若(a+b)⊥b,则m=( )A. 4B. 3C. 2D. 14.已知一条入射光线经过A(−2,3),B(−1,1)两点,经y轴反射后,则反射光线所在直线方程为( )A. 2x+y+1=0B. 2x−y+1=0C. 2x−y−1=0D. 2x+y−3=05.如图,已知A,B,C是边长为1的小正方形网格上不共线的三个格点,点P为平面ABC外一点,且AP,AB =AP,AC=120°,|AP|=3,若AO=AB+AC,则|OP|=( )A. 42B. 35C. 6D. 376.已知直线l1:(m+2)x+(m2−1)y−3=0与l2:3x+(m+1)y+m−5=0平行,则m=( )A. −1或52B. 52C. −1D. 17.已知点A(−1,0),点B为曲线y=x2+3(x>−1)上一动点,记过A,B两点的直线斜率为k AB,则k AB的最小值为( )A. 1B. 2C. 3D. 48.在四面体ABCD中,AB=AC=AD=2,AB⊥平面ACD,∠CAD=60°,点E,F分别为棱BC,AD上的点,且BE=3EC,AD=3FD,则直线AE与直线CF夹角的余弦值为( )A. 37035B. 27035C. 7035D. 7070二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.设M ,N 是两个随机事件,若P(M)=13,P(N)=16,则下列结论正确的是( )A. 若N ⊆M ,则P(M ∪N)=13B. 若M ∩N =⌀,则P(M +N)=0C. 若P(M ∩N)=118,则M ,N 相互独立D. 若M ,N 相互独立,则P(−M ∪−N )=11810.已知m ∈R ,直线l 的方程为(m−1)x +(m +1)y +2=0,则( )A. ∃m ∈R ,使得直线l 与直线x−y−1=0垂直B. 当直线l 在x 轴上的截距为−2时,l 在y 轴上的截距为−23C. ∀m ∈R ,直线l 不过原点D. 当m ∈[0,+∞)时,直线l 的斜率的取值范围为(−1,1]11.在坐标系O θ−xyz(0<θ<π)中,x ,y ,z 轴两两之间的夹角均为θ,向量i ,j ,k 分别是与x ,y ,z 轴的正方向同向的单位向量.空间向量a =xi +yj +zk(x,y,z ∈R),记a θ=(x,y,z),则( )A. 若a θ=(x 1,y 1,z 1),b θ=(x 2,y 2,z 2),则a θ+b θ=(x 1+x 2,y 1+y 2,z 1+z 2)B. 若a 0=(x 1,y 1,z 1),b 0=(x 2,y 2,z 2),则a 0⋅b 0=x 1x 2+y 1y 2+z 1z 2C. 若OA π3=(0,0,2),OB π3=(0,2,0),OC π3=(2,0,0),则三棱锥O−ABC 的体积为2 23D. 若a π3=(a,a,0),b π3=(0,0,b),且ab ≠0,则a ,b 夹角的余弦值的最小值为−33三、填空题:本题共3小题,每小题5分,共15分。

广东省部分学校2024—2025学年高二上学期第一次月考联考数学试卷

广东省部分学校2024—2025学年高二上学期第一次月考联考数学试卷

2024—2025学年高二上学期第一次月考联考高二数学试卷本试卷共5页 满分150分,考试用时120分钟注意事项:1. 答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.已知()()2,1,3,1,1,1a b =−=− ,若()a a b λ⊥− ,则实数λ的值为( )A .2−B .143−C .73D .22.P 是被长为1的正方体1111ABCD A B C D −的底面1111D C B A 上一点,则1PA PC ⋅ 的取值范围是( )A .11,4 −−B .1,02 −C .1,04 −D .11,42 −−3.已知向量()4,3,2a =− ,()2,1,1b = ,则a 在向量b 上的投影向量为( ) A .333,,22 B .333,,244 C .333,,422 D .()4,2,24.在棱长为2的正方体1111ABCD A B C D −中,E ,F 分别为棱1AA ,1BB 的中点,G 为棱11A B 上的一点,且()102A G λλ=<<,则点G 到平面1D EF 的距离为( )AB C D 5.已知四棱锥P ABCD −,底面ABCD 为平行四边形,,M N 分别为棱,BC PD 上的点,13CM CB =,PN ND =,设AB a =,AD b =,AP c = ,则向量MN 用{},,a b c 为基底表示为( )A .1132a b c ++B .1162a b c −++ C .1132a b c −+ D .1162a b c −−+ 6.在四面体OABC 中,空间的一点M 满足1146OM OA OB OC λ=++ .若,,MA MB MC 共面,则λ=( ) A .12 B .13 C .512 D .7127.已知向量()()1,21,0,2,,a t t b t t =−−= ,则b a − 的最小值为( ) AB C D 8.“长太息掩涕兮,哀民生之多艰”,端阳初夏,粽叶飘香,端午是一大中华传统节日.小玮同学在当天包了一个具有艺术感的肉粽作纪念,将粽子整体视为一个三棱锥,肉馅可近似看作它的内切球(与其四个面均相切的球,图中作为球O ).如图:已知粽子三棱锥P ABC −中,PAPB AB AC BC ====,H 、I 、J 分别为所在棱中点,D 、E 分别为所在棱靠近P 端的三等分点,小玮同学切开后发现,沿平面CDE 或平面HIJ 切开后,截面中均恰好看不见肉馅.则肉馅与整个粽子体积的比为( ).A B C D 二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分)9.如图,在棱长为2的正方体1111ABCD A B C D −中,E 为1BB 的中点,F 为11A D 的中点,如图所示建立空间直角坐标系,则下列说法正确的是( )A .13DB =B .向量AE 与1AC C .平面AEF 的一个法向量是()4,1,2−D .点D 到平面AEF 10.在正三棱柱111ABC A B C −中,1AB AA =,点P 满足][1([0,1,0,])1BP BC BB λµλµ=+∈∈ ,则下列说法正确的是( )A .当1λ=时,点P 在棱1BB 上B .当1µ=时,点P 到平面ABC 的距离为定值C .当12λ=时,点P 在以11,BC B C 的中点为端点的线段上 D .当11,2λµ==时,1A B ⊥平面1AB P 11.布达佩斯的伊帕姆维泽蒂博物馆收藏的达・芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达・芬奇方砖拼成图2的组合,这个组合再转换成图3所示的几何体.若图3中每个正方体的棱长为1,则( )A .122CG AB AA =+B .直线CQ 与平面1111DC B A 所成角的正弦值为23C .点1C 到直线CQD .异面直线CQ 与BD 三、填空题(本大题共3小题,每小题5分,共15分)12.正三棱柱111ABC A B C −的侧棱长为2,底面边长为1,M 是BC 的中点.在直线1CC 上求一点N ,当CN 的长为 时,使1⊥MN AB .13.四棱锥P ABCD −中,PD ⊥底面ABCD ,底面ABCD 是正方形,且1PD =,3AB =,G 是ABC 的重心,则PG 与平面PAD 所成角θ的正弦值为 .14.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮那,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m AB =,10m BC =,且等腰梯形所在平面、等腰三角形所在平面与平面ABCD 的夹角的正切值均为,则该五面体的所有棱长之和为 .四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题13分)如图,在长方体1111ABCD A B C D −中,11,2AD AA AB ===,点E 在棱AB 上移动.(1)当点E 在棱AB 的中点时,求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)当AE 为何值时,直线1A D 与平面1D EC 所成角的正弦值最小,并求出最小值.16.(本小题15分)如图所示,直三棱柱11ABC A B C −中,11,92,0,,CA CB BCA AA M N °==∠==分别是111,A B A A 的中点.(1)求BN 的长;(2)求11cos ,BA CB 的值.(3)求证:BN ⊥平面1C MN .17.(本小题15分)如图,在四棱维P ABCD −中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求直线PB 与平面PCD 所成角的正切值;(2)在PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AM AP的值;若不存在,说明理由. 18.(本小题17分) 如图1,在边长为4的菱形ABCD 中,60DAB ∠=°,点M ,N 分别是边BC ,CD 的中点,1AC BD O ∩=,AC MN G ∩=.沿MN 将CMN 翻折到PMN 的位置,连接PA ,PB ,PD ,得到如图2 所示的五棱锥P ABMND −.(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)若平面PMN ⊥平面MNDB ,线段PA 上是否存在一点Q ,使得平面QDN 与平面PMN 所成角的余弦值为Q 的位置;若不存在,请说明理由. 19.(本小题17分)如图,四棱锥P ABCD −中,四边形ABCD 是菱形,PA ⊥平面,60ABCD ABC ∠= ,11,,2PA AB E F ==分别是线段BD 和PC 上的动点,且()01BE PF BD PC λλ==<≤.(1)求证://EF 平面PAB ;(2)求直线DF 与平面PBC 所成角的正弦值的最大值;(3)若直线AE 与线段BC 交于M 点,AH PM ⊥于点H ,求线段CH 长的最小值.。

山西省高二下学期第一次月考数学试题(解析版)

山西省高二下学期第一次月考数学试题(解析版)

一、单选题1.已知集合,,则( ) {}12M x x =-<(){}ln 1N x y x ==+A . B .C .D .N M ⊆M N ⊆M N ⋂=∅M N =R 【答案】B【分析】化简集合,判断两个集合之间的关系即可得答案. 【详解】由题可得,, {}13M x x =-<<{}1N x x =>-所以,且 ,,. M N ⊆M N M N M =≠∅I R M N N =≠ 故选:B.2.已知向量,,且,则实数( ) ()2,a m = ()3,4b m =- a b ⊥ m =A .3 B .1C .D .131-【答案】B【分析】根据向量垂直的坐标表示可直接构造方程求得结果. 【详解】由得:,a b ⊥ ()2340a b m m ⋅=-+= 解得:. 1m =故选:B.3.在中,角,,的对边分别为,,,若,且,则角的余弦值为ABC A A B C a b c 3a c =13c b =A ( )A .B .C .D .15141613【答案】C【分析】根据余弦定理即得. 【详解】由题可得,,3a c =3b c =试题. ()()22222233cos 223c c c b c a A bc c c+-+-==⋅⋅16=故选:C .4.设为所在平面内一点,,则( )D ABC A 3BC CD =A .B .1433AD AB AC =-+1334AD AB AC =-C .D .4133AD AB AC =+ 4133AD AB AC =- 【答案】A【分析】根据给定条件,利用平面向量的线性运算求解作答.【详解】在中,,ABC A 3BC CD =.1114()3333AD AC CD AC BC AC AC AB AB AC =+=+=+-=-+故选:A5.在中,三角形三条边上的高之比为,则为( ) ABC A 2:3:4ABC A A .钝角三角形 B .直角三角形C .锐角三角形D .等腰三角形【答案】A【分析】由题可得三角形三条边之比为,然后利用余弦定理,求出最大边所对角的余弦值,6:4:3即可判断出结果.【详解】因为三角形三条边上的高之比为,2:3:4所以三角形三条边之比为,即,111::2346:4:3不妨设,6,4,3,0a x b x c x x ===>则最大角的余弦值为,22216911362c 44os 023x x x A x x +-==-<⋅⋅因此角为钝角,三角形为钝角三角形. A 故选:A.6.定义在上的偶函数满足,且在区间上递增,则( ) R ()f x ()()22f x f x +=-[]2,0-A .B .()216log 63f f f ⎛⎫<< ⎪⎝⎭()2166log 3f f f⎛⎫<< ⎪⎝⎭C .D . ()216log 63f f f ⎛⎫<< ⎪⎝⎭()2166log3f ff ⎛⎫<< ⎪⎝⎭【答案】B【分析】由条件求出函数的周期,再根据函数的单调性结合条件即得. 【详解】∵定义在R 上的偶函数,所以, ()()f x f x -=又满足,()f x ()()22f x f x +=-所以, ()()()()()42222f x f x f x f x f x +=++=--=-=所以是周期为4的函数,又函数在区间上递增, ()f x ()f x []2,0-所以在区间上递减,()f x []0,2所以,,()()62f f =()2222161616log log 4log log 3333f f f f ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为,,所以,3223<3223<322222log 4log 3l 3g 202o ==>>>>所以,即.()()22log 3f f f <<()2166log 3f f f ⎛⎫<< ⎪⎝⎭故选:B .7.已知是的外心,,,则( ) O ABC A 4AB =u u u r 2AC = ()AO AB AC ⋅+=A .10B .9C .8D .6【答案】A【分析】根据三角形外心的性质,结合数量积的几何意义以及数量积运算律,即可求得答案. 【详解】如图,O 为的外心,设为的中点, ABC A ,D E ,AB AC 则,,OD AB OE AC ⊥⊥故()AO AB AC AO AB AO AC ⋅+=+⋅⋅||||cos |||co |s AO AB AO AC OAD OAE ⋅∠+=∠⋅⋅⋅||||||||AD AB AE AC +=⋅⋅ , 2222111||41||2222210AB AC +=⨯+⨯⋅==故选:A8.在中,角所对的边分别为,,,若,则ABC A ,,A B C a b c 2022sin sin sin c C b B a A -=的值为( )()sin sin tan tan tan cos cos A BC A B A B ⋅+⋅⋅A .2013 B .C .2029D .2029220212【答案】D【分析】对,利用正、余弦定理整理得,根据题意结2022sin sin sin c C b B a A -=22021cos 2ab C c =合三角恒等变换分析运算即可.【详解】∵,由正弦定理可得:, 2022sin sin sin c C b B a A -=2222022c b a -=整理得:,22222021a b c c +-=由余弦定理可得:,故 22cos 2021ab C c =22021cos 2ab C c =()sin sin sin sin sin sin tan tan tan cos cos tan cos cos cos cos A BA B A B C A B A BC A BA B ⋅⋅=+⋅⋅⎛⎫+⋅⋅ ⎪⎝⎭()()22sin sin sin sin sin sin cos cos sin tan sin cos cos sin sin sin cos A B A B A B C ab CC C A B A B C c A B C⋅⋅⋅⋅====⋅⋅+⋅⋅+. 222021202122cc ==故选:D.二、多选题9.下列说法中错误的是( )A .若,,则B .a b ∥ b c∥a c ∥()()()a b c a b c b a c ⋅=⋅=⋅C .若,则D .a b a c ⋅=⋅b c = ()2222a ba ab b +=+⋅+ 【答案】ABC【分析】根据共线向量的概念,向量数量积的概念及运算法则逐项分析即得.【详解】对于A ,若时,,不一定能推出,故A 错误;0b →→=a b ∥b c ∥ a c ∥ 对于B ,不妨考虑不共线且不互相垂直时,向量与向量不共线,所以不能推,,a b c →→→()a b c ⋅()a b c ⋅ 出,故B 错误;()()a b c a b c ⋅=⋅对于C ,若且时,则,而不一定相等,故C 错误;a b ⊥ a c ⊥ a b a c ⋅=⋅,b c 对于D ,根据数量积的运算法则可知,故D 正确.()2222a ba ab b +=+⋅+故选:ABC.10.在中,,则的面积可以是( )ABC ∆1,6AB AC B π===ABC ∆AB .1 CD【答案】AD【分析】由余弦定理求出,再根据三角形的面积公式即可求出答案. BC 【详解】解:∵,1,6AB AC B π===由余弦定理得,2222cos AC AB BC AB BC B =+-⋅⋅∴, 2320BC BC -+=∴,或, 1BC =2BC =∴由的面积公式得或, ABC ∆1sin 2ABC S AB BC B ∆=⋅⋅⋅ABC S ∆=ABC S ∆=故选:AD .【点睛】本题主要考查三角形的面积公式的应用,考查余弦定理解三角形,属于基础题. 11.在中,,,则下列说法正确的是( ) ABC A cos 2C 1BC =5AC =A . B .的面积为2 4sin 5C =ABC A C.D .ABC A ABC A 【答案】ABD【分析】利用二倍角公式求出,根据同角三角函数的基本关系求出,再由余弦定理求出cosC sin C ,由正弦定理求出外接圆的直径,利用面积公式及等面积法判断B 、D ;c 【详解】解:因为,cos 2C 223cos 2cos 12125C C =-=⨯-=所以,,故A 、B 正确; 4sin 5==C 114sin 152225ABC S ab C ==⨯⨯⨯=A 由余弦定理,即,所以,2222cos c a b ab C =+-222315215205c =+-⨯⨯⨯=c =所以外接圆的直径,故C 错误; 2sin c R C ===设的内切圆半径为,则,即,所以ABC A r ()12ABCS a b c r =++△(11522r ++=r =D 正确; 故选:ABD12.设P 为所在平面内一点,则下列说法正确的是( )ABC A A .若,则点P 是的重心0PA PB PC ++=ABC A B .若,则点P 是的垂心PA PB PB PC PC PA ⋅=⋅=⋅ABC A C .若,,则点P 是的内心 (||||AB ACAP AB AC λ=+,[)0λ∈+∞ABC A D .若,则点P 是的外心()()()0PA PB BA PB PC CB PC PA AC +⋅=+⋅=+⋅=ABC A 【答案】ABD【分析】对于A :以,为邻边作平行四边形PADB ,M 为PD 的中点,利用向量的线性运算PA PB得到,即可证明;对于B :利用数量积运算证明出,,得到P 为||2||PC PM =PB CA ⊥PA BC ⊥的垂心,即可证明;对于C :在边AB ,AC 上分别取点E ,F ,使,,ABC A ||ABAE AB =||AC AF AC = 以AE ,AF 为邻边作平行四边形AEGF ,则四边形AEGF 为菱形,即可判断;对于D :证明出,,,即可证明.||||PA PB = ||||PB PC = ||||PC PA =【详解】对于A :若,则.0PA PB PC ++= PA PB PC +=-以,为邻边作平行四边形PADB ,M 为PD 的中点,则,所以,又PA PBPA PB PD += PD PC =- ,所以,故P 为的重心. 2PD PM=||2||PC PM = ABC A 所以A 正确;对于B :若,则,即,即,所以PA PB PB PC ⋅=⋅ 0PA PB PB PC ⋅-⋅=()0PB PA PC ⋅-= 0PB CA ⋅= .PB CA ⊥同理,则,故P 为的垂心.PA PB PA PC ⋅=⋅u u r u u r u u r u u u rPA BC ⊥ABC A 故B 正确;对于C :在边AB ,AC 上分别取点E ,F ,使,,则,以AE ,||ABAE AB =||AC AF AC = ||||1AE AF == AF 为邻边作平行四边形AEGF ,则四边形AEGF 为菱形.连接AG ,则AG 为的角平分线,由,所以点P 在角平分线AG 上,故点P 的||||AB AC AP AB AC λ⎛⎫=+ ⎪⎝⎭轨迹一定通过的内心. ABC A 所以C 错误;对于D :若,则,同理有22()()()0PA PB BA PA PB PA PB PA PB +⋅=+⋅-=-= ||||PA PB = ,,故P 为的外心.||||PB PC = ||||PC PA =ABCA所以D 正确. 故选:ABD三、填空题13.在△ABC 中,,则=__________ ()()()a c a c b b c +-=+A ∠【答案】2π3【分析】由可得,再由余弦定理可得结果. ()()()a c a c b b c +-=+222b c a bc +-=-【详解】 ()()()a c a c b b c +-=+ 222a c b bc ∴--=222b c a bc -∴+=-,2221cos 222b c a bc A bc bc +--===-所以,故答案为. 23A π∠=23π【点睛】本题主要考查余弦定理及特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条2222cos a b c bc A =+-222cos 2b c a A bc+-=件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数30,45,60o o o 值,以便在解题中直接应用.14.若,且,则的最小值为______.0a >20a b +=21a b -+【答案】5【分析】由,且,得到,进而有,利用基本不等式求0a >20a b +=20a b =->22121a b b b -+=--+解.【详解】解:因为,且, 0a >20a b +=所以,20a b =->则,2212115a b b b -+=--+≥=当且仅当,即时,等号成立, 22b b-=-1b =-所以的最小值为5,21a b -+故答案为:515.探空气球是将探空仪器带到高空进行温度、大气压力、湿度、风速、风向等气象要素测量的气球,利用探空仪将实时探测到的大气垂直方向上的气象数据反馈给地面雷达,通过数据处理,成为全球预报员制作天气预报的重要依据.大气压强对气球能达到的最大高度和停留时间有非常大的影响.已知大气压强随海拔高度的变化规律是,其中是海平面()Pa p ()m h ()0e 0.000126k hp p k -⋅==0p 大气压强.若探空气球在两处测得的大气压强分别为,,且,那么两处的海,A B 1p 2p 122p p =,A B 拔高度的差约为______m.(参考数据:) ln20.693≈【答案】5500【分析】根据题意结合对数运算求解. 【详解】设两处的海拔高度分别为,,A B 12,h h 由题意可得:,且, 121020e e k h k h p p p p -⋅-⋅⎧=⋅⎨=⋅⎩122p p =即,且,12002ee k h k h p p -⋅-⋅⋅=⋅00p ≠可得,两边同时取对数可得:,122e e k h k h -⋅-⋅=()1212,ln lne 2ln 2e k h k h k h k h -⋅-⋅-⋅-⋅==即,整理得, 12ln 2k h k h -⋅-⋅=21ln 20.69355000.000126h h k -=≈=即两处的海拔高度的差约为5500 m. ,A B 故答案为:5500.16.已知为的垂心(三角形的三条高线的交点),若,则H ABC A 1235AH AB AC =+sin BAC ∠=______.【分析】由题可得,,利用,得2235=-+BH AB AC 1335=- CH AB AC 0BH AC ⋅= 0CH AB ⋅= ,,可得, 再利用平方关系结合条件即得.3cos 5AC BAC AB∠= 5cos 9AB BAC AC ∠= 21cos 3BAC ∠=【详解】因为,1235AH AB AC =+所以,同理,2235BH BA AH AB AC =+=-+1335CH CA AH AB AC =+=-由H 为△ABC 的垂心,得,即, 0BH AC ⋅= 22035AB AC AC ⎛⎫-+⋅= ⎪⎝⎭可知,即, 222cos 53AC AC AB BAC =∠ 3cos 5AC BAC AB∠=同理有,即,可知,即0CH AB ⋅= 13035AB AC AB ⎛⎫-⋅= ⎪⎝⎭213cos 35AB AC AB BAC =∠ ,5cos 9ABBAC AC∠= 所以, ,又, 21cos 3BAC ∠=2231cos 2sin 113∠∠=-=-=BAC BAC ()0,πBAC ∠∈所以 sin BAC ∠四、解答题17.已知,,且与的夹角为.1a = 2b = a b 2π3(1)求.()()23a b a b +⋅-(2)求.2a b +【答案】(1)5-【分析】(1)先求得,再利用数量积的运算律求解;a b ⋅(2)先求得,根据向量模的求法,结合数量积的运算律求解.a b ⋅【详解】(1)解:因为,,且与的夹角为,1a = 2b = a b 2π3所以,c 2π3o 1s a b a b ⋅-⋅=⋅=所以()()2223253a b a b a a b b +⋅-=-⋅- ;()22151325=⨯-⨯--⨯=-(2), 2a b +===18.在中,角,,的对边为,,,已知. ABC A A B C a b c ()12cos b A c +=(1)证明:; 2A B =(2)若,求的值. 23a b =cb【答案】(1)证明见解析; (2). 54【分析】(1)根据给定条件,利用正弦定理边化角,再利用和差角的正弦公式推理作答. (2)由已知结合余弦定理角化边,代入计算作答.【详解】(1)在中,由及正弦定理得:, ABC A ()12cos b A c +=sin 2sin cos sin B B A C +=而,因此, ()C A B π=-+sin 2sin cos sin()sin cos cos sin B B A A B A B A B +=+=+即有,显然,有, sin sin cos cos sin sin()B A B A B A B =-=-sin 0B >sin()0A B ->即,角B 为锐角,又,,因此, 0A B ->0πA B <-<()πB A B A +-=<B A B =-所以. 2A B =(2)在中,由及余弦定理得:,整理得,ABC A ()12cos b A c +=22222b c a b b c bc+-+⋅=22bc a b =-而,即,于是,又,即23a b =32a b =22235()24bc b b b =-=0b >54c b =所以. 54c b =19.如图,在矩形中,和分别是边和上的点,满足,.OACB E F AC BC 3AC AE =3BC BF=(1)若,其中,,求,的值;OC OE OF λμ=+ λμ∈R λμ(2)连接分别交,于,两点.记,,以,为基底来表示.AB OC OE M N CO a = CA b = a b CN 【答案】(1); 33,44λμ==(2). 1142CN a b =+【分析】(1)根据给定的图形,利用作基底,结合平面向量基本定理求解作答.,OA OB (2)结合(1)中信息,利用平面向量基本定理确定点的位置,即可求解作答.N 【详解】(1)在矩形中,,,则OACB 3AC AE = 3BC BF = 1133OE OA AE OA AC OA OB =+=+=+ ,,因此1133OF OB BF OB BC OB OA =+=+=+ , 11()()()()3333O OA OB OB OA C OA OB λμμλλμ++=+++=+ 又,不共线,于是,解得, OC OA OB =+ ,OA OB 1313μλλμ⎧+=⎪⎪⎨⎪+=⎪⎩33,44λμ==所以. 33,44λμ==(2)为与的交点,则, N AB OE 1(),R 33t ON tOE t OA OB tOA OB t ==+=+∈ ,, (1)33t t AN ON OA tOA OB OA t OA OB =-=+-=-+ AB OB OA =- 又,即存在,,则, //AN AB R m ∈AN mAB = (1)3t t OA OB mOA mOB -+=-+ 因为不共线,因此,解得, ,OA OB 13t m t m -=-⎧⎪⎨=⎪⎩31,44t m ==显然与的交点是线段、的中点,则,即是线段的中AB OC M AB OC 1142AN AB AM == N AM 点,所以. 11111111()22224242CN CA AN CA AM CA CM CA CM CA CM CA a b =+=+=+-=+=+=+ 20.已知函数的最小正周期为,的图象过点,且()()π2sin 03,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭T ()f x (),1T ,将的图象向左平移个单位长度后得到函数的图象. ()π3f x f x ⎛⎫-= ⎪⎝⎭()f x π4()g x (1)求函数在上的值域; ()g x π0,2⎡⎤⎢⎥⎣⎦(2)在上恰有两个不同的实数解,求的取值范围. ()()2x g x +=[]0,m m【答案】(1)⎡-⎣(2) 11π5π,124⎡⎤⎢⎥⎣⎦【分析】(1)利用函数的最小正周期公式表示点,代入求解角,再根据对称性()f x (),1T ()f x ϕ求解,得到函数,根据图像平移变换得到函数,并求其在给定区间上的值域;ω()f x ()g x(2)化简变形,通过恰有两个不同的实数()()()F x x g x =+()()2x g x +=解,限制的取值范围,从而得解.m 【详解】(1)因为函数的最小正周期为, ()()π2sin 03,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭T 所以,. 2πT ω=0ω>由于的图象过点,即过,代入得 ()f x (),1T 2π,1ω⎛⎫ ⎪⎝⎭,即. ()()2π2sin 2sin 2π2sin 1f x ωϕϕϕω⎛⎫=⋅+=+== ⎪⎝⎭1sin 2ϕ=则,或,又, πZ π2,6k k ϕ=+∈5π2π,Z 6k k ϕ=+∈π2ϕ<所以取. π0,6k ϕ==由于,则的图象关于对称, ()π3f x f x ⎛⎫-= ⎪⎝⎭()f x π6x =故,则. ππππ,Z 662k k ω+=+∈26,Z k k ω=+∈又因为,则令.03ω<<0,2k ω==故. ()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭将的图象向左平移个单位长度后得. ()f x π4()ππ2π2sin 22sin 2463g x x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当,, π0,2x ⎡⎤∈⎢⎣⎦2π2π5π2,333x ⎡⎤+∈⎢⎥⎣⎦令,在单调递减,在单调递增, 2π23t x =+()2sin h t t =2π3π,32⎡⎤⎢⎥⎣⎦3π5π,32⎡⎤⎢⎥⎣⎦当时,取最小值,最小值为;当时,3π2t =()h t 2-2π3t =()h t所以,()h t ⎡∈-⎣所以函数在上的值域为. ()g x π0,2⎡⎤⎢⎥⎣⎦⎡-⎣(2)因为,, ()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭()2π2sin 23g x x ⎛⎫=+ ⎪⎝⎭令 ()()()π2π22sin 263F x x g x x x ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭, πππ22cos 24sin 2663x x x ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由于在上恰有两个不同的实数解,()2F x =[]0,m 则在上恰有两个不同的实数解, π1sin 232x ⎛⎫+= ⎪⎝⎭[]0,m 当,, []0,x m ∈πππ2,2333x m ⎡⎤+∈+⎢⎥⎣⎦当时,,或,或, π1sin 232x ⎛⎫+= ⎪⎝⎭π5π236x +=π13π236x +=π17π236x +=所以依题意,解得. 13ππ17π2636m ≤+<11π5π124m ≤<所以的取值范围. m 11π5π,124⎡⎤⎢⎥⎣⎦21.在中,内角,,所对的边分别为,,.ABC AA B C a b c cos sin C c A =(1)求角的大小;C(2)已知,若为锐角三角形,求的取值范围.c =ABC A a b +【答案】(1) π3(2)【分析】(1,再根据cos sin C c A =cos sin sin A C C A =求解;(),0,πA C ∈(2)由(1)求得,再由,利用三角函数24sin c R C ==2sin 2sin a b R A R B +=+6A π⎛⎫=+ ⎪⎝⎭的性质求解.【详解】(1)解:在中, ,ABCA cos sin C c A =,cos sin sin A C C A =因为,(),0,πA C ∈所以,即sin sin A C C ≠=tan C =则; π3C =(2)由(1)知:, 24sin c R C ===所以,2sin 2sin a b R A R B +=+, 2π4sin sin 3A A ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭, 34sin2A A ⎛⎫= ⎪ ⎪⎝⎭, 6A π⎛⎫=+ ⎪⎝⎭因为为锐角三角形,ABC A 所以所以,则,解得, π02π02π02A B C ⎧<<⎪⎪⎪<<⎨⎪⎪<<⎪⎩π022ππ032A B A ⎧<<⎪⎪⎨⎪<=-<⎪⎩ππ62A <<所以,则,ππ2π663A <+<1sin 126A π⎛⎫<+≤ ⎪⎝⎭所以a b <+≤所以的取值范围是.a b +22.已知函数.()()2ln e 2e 3x x f x a =-+(1)若的定义域为,求的取值范围;()f x R a (2)若,使得在区间上单调递增,且值域为,求的取值范围.,m n ∃∈R ()f x [],m n [],m n a 【答案】(1); 13a >(2). 2334a ≤< 【分析】(1)由题可得恒成立,然后利用参变分离结合函数的性质即得; 2e 2e 30x x a -+>(2)根据复合函数的单调性结合条件可得,且,进而可得在上0a >1e m a ≤2330ax x -+=1,a ⎡⎫+∞⎪⎢⎣⎭有两个不等实根,然后根据二次函数的性质即得.【详解】(1)因为的定义域为,, ()f x R ()()2ln e 2e 3x x f x a =-+所以,即恒成立, 2e 2e 30x x a -+>2222e 3321113e e e e 33x x x x x a -⎛⎫>=-+=--+ ⎪⎝⎭因为,,当时等号成立, 10e x >23211113333e e e x x x ⎛⎫+=--+≤ ⎪⎝⎭-1e 13x =所以,即的取值范围为; 13a >a 13a >(2)因为函数在其定义域上为增函数,要使在区间上单调递增, ln y x =()f x [],m n 则函数在区间上单调递增,又为增函数,2e 2e 3x x u a =-+[],m n e x t =所以在上为增函数,显然时不合题意,223y at t =-+e ,e m n ⎡⎤⎣⎦0a ≤所以,且, 0a >1e m a≤又在区间上单调递增,且值域为,()f x [],m n [],m n 所以,即, ()()()()22ln e 2e 3ln e 2e 3m m n n f m a m f n a n ⎧=-+=⎪⎨=-+=⎪⎩22e 3e 30e 3e 30m m n n a a ⎧-+=⎨-+=⎩所以在上有两个不等实根, 2330ax x -+=1,a ⎡⎫+∞⎪⎢⎣⎭则,解得, ()22Δ312031211330a a aa a a ⎧⎪=-->⎪⎪>⎨⎪⎪⎛⎫⋅-⋅+≥⎪ ⎪⎝⎭⎩2334a ≤<所以的取值范围为. a 2334a ≤<【点睛】方法点睛:恒(能)成立问题的解法:若在区间上有最值,则()f x D (1)恒成立:;;()()min ,00x D f x f x ∀∈>⇔>()()max ,00x D f x f x ∀∈<⇔<(2)能成立:;. ()()max ,00x D f x f x ∃∈>⇔>()()min ,00x D f x f x ∃∈<⇔<若能分离常数,即将问题转化为:(或),则 ()a f x >()a f x <(1)恒成立:;; ()()max a f x a f x >⇔>()()min a f x a f x <⇔<(2)能成立:;. ()()min a f x a f x >⇔>()()max a f x a f x <⇔<。

高二数学第一次月考试卷

高二数学第一次月考试卷

高二数学第一次月考试卷一、选择题(每题5分,共60分)1.设α,β为两个不同的平面,l,m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若 α∥β,则l∥m;②若l⊥m,则 α⊥β.那么().A.①是真命题,②是假命题B.①是假命题,②是真命题C.①②都是真命题D.①②都是假命题2.如图,ABCD-A1B1C1D1为正方体,下面结论错误..的是().A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1角为60°3.关于直线m,n与平面 α,β,有下列四个命题:①m∥α,n∥β 且 α∥β,则m∥n;②m⊥α,n⊥β 且 α⊥β,则m⊥n;③m⊥α,n∥β 且 α∥β,则m⊥n;④m∥α,n⊥β 且 α⊥β,则m∥n.其中真命题的序号是().A.①②B.③④C.①④D.②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线其中假.命题的个数是().A.1 B.2 C.3 D.45.下列命题中正确的个数是().①若直线l上有无数个点不在平面 α 内,则l∥α②若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都没有公共点A.0个B.1个C.2个D.3个6.两直线l1与l2异面,过l1作平面与l2平行,这样的平面().A.不存在B.有唯一的一个C.有无数个D.只有两个7.下列说法正确的是()A.若直线21,ll的斜率相等,则直线21,ll一定平行;B.若直线21,ll平行,则直线21,ll斜率一定相等;C.若直线21,ll中,一个斜率不存在,另一斜率存在,则直线21,ll一定相交;D.若直线21,ll斜率都不存在,则直线21,ll一定平行。

2023-2024学年全国高中高二下数学苏教版月考试卷(含解析)

2023-2024学年全国高中高二下数学苏教版月考试卷(含解析)

2023-2024学年全国高二下数学月考试卷考试总分:110 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 已知为虚数单位,复数满足=,则复数对应的点位于复平面内的( )A.第一象限B.第二象限C.第三象限D.第四象限2. 设集合=,集合=,则=( )A.B.C.D.3. 已知直线经过椭圆 的左焦点 ,且与椭圆在第二象限的交点为,与轴的交点为 ,是椭圆的右焦点,且 ,则椭圆的方程为()A.B.C.D.i z (1+2i)z 4+3i z M {x |−5x +6<0}x 2N {x |x >0}M ∪N {x |x >0}{x |x <3}{x |x <2}{x |2<x <3}2x −y +4=02–√2–√+=1(a >b >0)x 2a 2y 2b 2F 1M y N F 2|MN|=|M |F 2+=1x 240y 24+=1x 25y 2+=1x 210y 2+=1x 29y 25抛物线的焦点到准线的距离是( )A.B.C.D.5. 已知平面向量,,若,则( )A.B.C.D.6. 规定:若双曲线与双曲线 的渐近线相同,则称双曲线与双曲线为“等渐双曲线”设为双曲线右支上一点,,分别为双曲线的左顶点和右焦点,为等边三角形,双曲线 与双曲线 为”等渐双曲线”,且双曲线 的焦距为,则双曲线的标准方程是( )A.B.C.D.7. 若抛物线的准线经过双曲线的一个焦点,则实数的值是( )A.B.C.D.=8x y 21248a →=(−4,3)−2=(k,−6)a →b →⊥a →b →k =8−8434−434C 1C 2C 1C 2.M :−=1(a >0,b >0)C 1x 2a 2y 2b 2A F C 1△MAF C 1:−=1(>0,>0)C 2x 2a ′2y 2b ′2a ′b ′C 282–√C 2−=1x 230y 22−=1x 22y 230−=1x 260y 24−=1x 24y 260=4x y 22–√−=1x 2y 2mm 12348. 已知椭圆的离心率,则的取值范围是( )A.B.C.D.二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 已知椭圆的左、右焦点分别为,,且,点在椭圆内部,点在椭圆上,则以下说法正确的是( )A.的最小值为B.椭圆的短轴长可能为C.椭圆的离心率的取值范围为D.若,则椭圆的长轴长为10. 已知直线,动直线,则下列结论正确的是A.存在,使得的倾斜角为B.对任意的,与都有公共点C.对任意的,与都不重合D.对任意的,与都不垂直11. 数学家华罗庚曾说:“数缺形时少直观,形少数时难人微.”事实上,很多代数问题可以转化为几何问题加以解决,例如,与相关的代数问题,可以转化为点与点之间的距离的几何问题.结合上述观点,可得方程的解为( )A.B. C.+=1x 24y 2m e >2–√2m (0,1)∪(2,+∞)(0,2)∪(8,+∞)(−∞,2)(−∞,2)∪(8,+∞)C :+=1(a >b >0)x 2a 2y 2b 2F 1F 2||=2F 1F 2P (1,1)Q |Q |+|QP|F 12a −1C 2C (0,)−15–√2=PF 1−→−Q F 1−→−C +5–√17−−√:x −y −1=0l 1:(k +1)x +ky +k =0(k ∈R)l 2()k l 290∘k l 1l 2k l 1l 2k l 1l 2+(x −a)2(y −b)2−−−−−−−−−−−−−−−√A (x,y)B (a,b)|−|+4x +5x 2−−−−−−−−−√−4x +5x 2−−−−−−−−−√=223–√33–√6−23–√3–√D.12. 已知抛物线的焦点为,过点倾斜角为的直线与抛物线交于,两点(点在第一象限),与抛物线的准线交于,则以下结论正确的是( )A.B.为的中点C.D.卷II (非选择题)三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13. 抛物线的准线方程为________.14. 直线的斜率为________.15. 设点是椭圆上异于长轴端点的任意一点,,为两焦点,动点满足,则动点的轨迹方程为________.16. 已知双曲线的左、右焦点分别为,过点作圆的切线交双曲线右支于点,若,则双曲线的离心率为________.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )17. 已知双曲线的离心率为,点为上位于第二象限的动点.若点的坐标为,求双曲线的方程;设,分别为双曲线的右顶点、左焦点,是否存在常数,使得,如果存在,请求出的值;如果不存在,请说明理由.18. 已知点,圆.(1)若直线=与圆相交于,两点,且弦的长为,求的值;(2)求过点的圆的切线方程.19. 已知函数,,.−3–√6C :=10x y 2F F 60∘l C A B AD |AF|=10F AD 2|BD|=|BF||BF|=83y =8x 2y =−5x +9Q +=1x 236y 29F 1F 2P ++=PF 1−→−PF 2−→−PQ −→−0→P −=1x 2a 2y 2b 2(a >b >0),F 1F 2F 1+=x 2y 2a 2M ∠M =F 1F 2π4C :−=1(a >0,b >0)x 2a 2y 2b22A C (1)A (−2,3)C (2)B F C λ∠AFB =λ∠ABF λM(3,1)+=4C :(x −1)2(y −2)2ax −y +40C A B AB 23–√a M C =(2sin x,sin x −cos x)a →=(cos x,cos x +sin x)b →3–√f (x)=⋅a →b →0,]π求的最小正周期及在区间上的最大值和最小值;若,,求的值.20. 已知抛物线,为其焦点,点在抛物线上,且,过点作抛物线的切线,为上异于点的一个动点,过点作直线交抛物线于,两点.求抛物线的方程;若,求直线的斜率,并求的取值范围. 21. 已知过点的曲线的方程为.求曲线的标准方程;已知点,为直线上任意一点,过作的垂线交曲线于点,,求的最大值. 22. 已知双曲线的中心在原点,焦点,在坐标轴上,一条渐近线方程为,且过点.求双曲线方程;若点在此双曲线上,求.(1)f (x)f (x)[0,]π2(2)f ()=x 065∈[,]x 0π4π2cos 2x 0C :=2px y 2F Q (1,y)(y >0)C |FQ|=2Q C l 1P (,)x 0y 0l 1Q P l 2C A B (1)C (2)|PQ =|PA|⋅|PB||2l 2x 0P (1,)32C +=2a +(x −1)2y 2−−−−−−−−−−−√+(x +1)2y 2−−−−−−−−−−−√(1)C (2)F (1,0)A x =4F AF C BD |BD||AF|F 1F 2y =x (4,−)10−−√(1)(2)M(3,m)⋅MF 1−→−−MF 2−→−−参考答案与试题解析2023-2024学年全国高二下数学月考试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】D【考点】复数的运算复数的代数表示法及其几何意义【解析】把已知等式变形,然后利用复数代数形式的乘除运算化简复数,求出复数对应的点的坐标得答案.【解答】由=,得,则复数对应的点的坐标为,位于复平面内的第四象限.2.【答案】A【考点】并集及其运算【解析】可求出集合,然后进行并集的运算即可.【解答】∵=,=,∴=.3.【答案】z z (1+2i)z 4+3i z ====2−i 4+3i 1+2i (4+3i)(1−2i)(1+2i)(1−2i)10−5i 5z (2,−1)M M {x |2<x <3}N {x |x >8}M ∪N {x |x >0}D【考点】椭圆的标准方程椭圆的定义【解析】此题暂无解析【解答】解:由题意得,直线与轴的交点为,又直线过椭圆的左焦点 ,∴,即,∵直线与椭圆在第二象限的交点为,与轴的交点为,且,∴,即,又由,∴椭圆的方程为.故选.4.【答案】C【考点】抛物线的求解【解析】本题主要考查抛物线的基本性质.【解答】解:,∴抛物线的焦点到准线的距离是.故选.5.【答案】D【考点】2x −y +4=02–√2–√x (−2,0)2x −y +4=02–√2–√+=1(a >b >0)x 2a 2y 2b 2F 1(−2,0)F 1c =22x −y +4=02–√2–√M y N(0,4)2–√|MN|=|M |F 2|M |+|M |=|N|=2a F 1F 2F 1a =|N|==312F 112+(4222–√)2−−−−−−−−−−√=−=9−4=5b 2a 2c 2+=1x 29y 25D ∵2p =8,∴p =4=8x y 24C数量积判断两个平面向量的垂直关系平面向量的坐标运算【解析】此题暂无解析【解答】解:由,,得.若,则,解得.故选.6.【答案】B【考点】双曲线的渐近线双曲线的标准方程【解析】此题暂无解析【解答】解:据题意可知, ,a →=(−4,3)−2=(k,−6)a →b →=b →−(−2)a →a →b →2=(−4,3)−(k,−6)2=(,)−4−k 292⊥a →b →⋅=(−4,3)⋅(,)a →b →−4−k 292=8+2k +=0272k =−434D =,+=(=32b ′a ′b a a ′2b ′282–√2)2,(a +c))–√,−(a +c))–√由分析知,点坐标为 或 ,点在双曲线上,∴ .又∴,∴ 解得故双曲线 的标准方程是 .故选7.【答案】A【考点】抛物线的标准方程双曲线的标准方程【解析】此题暂无解析【解答】此题暂无解答8.【答案】B【考点】椭圆的离心率【解析】答案未提供解析.【解答】解:,M (,(a +c))−a +c 23–√2(,−(a +c))−a +c 23–√2M C 1−=1(−a +c 2)2a 2(a +c 34)2b 2=+,c 2a 2b 2(=15b a )2==b ′a ′b a 15−−√.=2,=30.a ′2b ′2C 2−=1x 22y 230B.e =>1−b 2a 2−−−−−−√2–√22,当时,或,∴或.故选.二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】A,C,D【考点】椭圆的标准方程椭圆的离心率椭圆的定义【解析】【解答】解:选项,由椭圆的第一定义得,当且仅当,,三点共线,且在与中间时,等号成立,故正确;选项,若,即,因为,所以,则椭圆方程为,所以,点在椭圆外,故错误;选项,因为在椭圆内部,所以,解得,所以,故正确;选项,因为,所以点的坐标为,所以,故正确.故选.10.【答案】∴<b 2a 212∴m >0<m 412<4m 120<m <2m >8B A |Q |+|QP|=2a −|Q |+|QP|F 1F 2≥2a −|P|=2a −1F2F2P Q P F 2Q B 2b =2b =1c =1a =2–√+=1x 22y 2+1>112P C P =>1b 2a −1a 2aa >+15–√2e =∈(0,)c a −15–√2D =PF 1−→−Q F 1−→−Q (−3,−1)2a=|Q |+|Q |F 1F 2=+(−3+1+(−1)2)2−−−−−−−−−−−−−−−√(−3−1+(−1)2)2−−−−−−−−−−−−−−−√=+5–√17−−√ACDA,B,D【考点】两条直线垂直与倾斜角、斜率的关系直线的倾斜角【解析】(1)根据题目所给信息进行求解即可.【解答】解:已知动直线 ,当时,斜率不存在,其倾斜角为,选项正确;联立,可得,此方程有解,即两直线存在交点,选项正确;当时,动直线成立,此时两直线重合,选项错误;当时,,与不垂直,当时,,即对任意的,与都不垂直,选项正确.故选.11.【答案】A,C【考点】双曲线的应用双曲线的定义点到直线的距离公式【解析】【解答】解:由,得,其几何意义为平面内一点与两定点,距离之差的绝对值为.平面内与两定点,距离之差的绝对值为的点的轨迹是双曲线.设该双曲线的方程为,,:(k +1)x +ky +k =0(k ∈R)l 2k =090°A {x −y −1=0(k +1)x +ky +k =0(2k +1)x =0B k =−12:==l 2k +11k −1k −1C k =0:x =0l 2l 1k ≠0⋅=1×=−1−≠−1k l 1k l 2k +1−k 1k k l 1l 2D ABD |−|=2+4x +5x 2−−−−−−−−−√−4x +5x 2−−−−−−−−−√|−|=2+(x +2)2(1−0)2−−−−−−−−−−−−−−−√+(x −2)2(1−0)2−−−−−−−−−−−−−−−√(x,1)(−2,0)(2,0)2(−2,0)(2,0)2−=1(a >0x 2a 2y 2b 2b >0)则 解得,.所以该双曲线的方程是.联立方程组 解得.故选.12.【答案】A,B【考点】抛物线的性质直线的倾斜角解三角形抛物线的定义【解析】无【解答】解:如图,分别过点,作抛物线的准线的垂线,垂足分别为点,,抛物线的准线与轴交于点,则,由于直线的倾斜角为,轴,由抛物线定义可知,,则为正三角形,所以,则,所以,,正确;因为,,所以点为的中点,正确;2a =2,c =2,=+,c 2a 2b 2a =1b =3–√−=1x 2y 23y =1,−=1,x 2y 23x =±23–√3AC A B C m E M m x P |PF|=5l 60∘AE//x |AE|=|AF|△AEF ∠EFP =∠AEF =60∘∠PEF =30∘|AF|=|EF|=2|PF|=10A |AE|=|EF|=2|PF|PF//AE因为,所以,所以,错误;,错误.故选.三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13.【答案】【考点】抛物线的性质【解析】先将抛物线的方程化为准线方程,进而根据抛物线的性质可求得答案.【解答】解:∵抛物线,可化为,∴,即,∴抛物线的准线方程为.故答案为:.14.【答案】【考点】直线的斜截式方程直线的斜率【解析】根据直线的斜截式方程,结合题中的数据即可得到已知直线的斜率值.【解答】∠DAE =60∘∠ADE =30∘|BD|=2|BM|=2|BF|C |BF|=|DF|=|AF|=1313103D AB y =−132y =8x 2=y x 2182p =18p =116y =−132y =−132−5解:∵直线中,一次项系数,∴直线的斜率为.故答案为:.15.【答案】【考点】轨迹方程椭圆的标准方程【解析】设, ,由,可得,,利用在椭圆上,即可求解.【解答】解:设,,又,,,,,,∵动点满足,则,,,即.故答案为:.16.【答案】【考点】双曲线的离心率双曲线的标准方程【解析】此题暂无解析【解答】解:设切点为,连接,作作,垂足为,y =−5x +9k =−5y =−5x +9−5−5+=1(x ≠±2)x 24y 2P (x,y)Q (,)x 0y 0++=PF 1−→−PF 2−→−PQ −→−0→=3x x 0=3y y 0Q (,)x 0y 0P(x,y)Q(,)x 0y 0(−c,0)F 1(c,0)F 2(≠±6)x 0=(−c −x,−y)PF 1−→−=(c −x,−y)PF 2−→−=(−x,−y)PQ −→−x 0y 0P ++=PF 1−→−PF 2−→−PQ −→−0→=3x x 0=3y y 0∴+=19x 2369y 29+=1(x ≠±2)x 24y 2+=1(x ≠±2)x 24y 23–√N ON F 2A ⊥MN F 2A由,且为的中位线,可得,,即有,在直角三角形中,可得,即有,由双曲线的定义可得,可得,∴,∴.故答案为:.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )17.【答案】解:∵离心率.∴,又,∴双曲线方程,把点代入双曲线方程得,,解得,故双曲线的方程为:.由知:双曲线方程,∴.①当直线的斜率不存在时,则,∴,此时;②当直线的斜率存在时,设,其中∵,故,故渐近线方程为:,∴,又 ,|ON|=a ON △A F 1F 2A =2a F 2N =F 1−c 2a 2−−−−−−√|A|=2b F 1M A F 2|M |=2a F 22–√|M |=2b +2a F 1|M |−|M |=2b +2a −2a =2a F 1F 22–√b =a 2–√c ==a +a 2b 2−−−−−−√3–√e ==c a3–√3–√(1)e ==2c ac =2a =−=3b 2c 2a 2a 2C :−=1x 2a 2y 23a 2A (−2,3)−=14a 293a 2=1a 2C −=1x 2y 23(2)(1)C :−=1x 2a 2y 23a 2B (a,0),F (−2a,0)AF ∠AFB =,|FB|=3a,|AF|==3a 90∘b 2a ∠ABF =45∘λ=2AF ∠AFB =α,∠ABF =β,A (,)x 0y 0<−a ,y >0.x 0e =2c =2a,b =a 3–√y =±x 3–√α∈(0,),β∈(0,)2π3π3tan α=,tan β=y 0+2a x 0y 0a −x 0,∴,又,∴综上:存在常数满足.【考点】双曲线的标准方程双曲线的离心率双曲线的应用双曲线的渐近线【解析】此题暂无解析【解答】解:∵离心率.∴,又,∴双曲线方程,把点代入双曲线方程得,,解得,故双曲线的方程为:.由知:双曲线方程,∴.①当直线的斜率不存在时,则,∴,此时;②当直线的斜率存在时,设,其中∵,故,故渐近线方程为:,∴,又 ,=2(a −)y 0x 0(a −−3(−1)x 0)2a 2x 20a 2=2(a −)y 0x 0(a −−3(−)x 0)2x 20a 2==2y 0(a −)+3(+a)x 0x 0y 0+2a x 0tan α=tan 2βα,2β∈(0,)2π3α=2β.λ=2∠AFB =2∠ABF (1)e ==2c ac =2a =−=3b 2c 2a 2a 2C :−=1x 2a 2y 23a 2A (−2,3)−=14a 293a 2=1a 2C −=1x 2y 23(2)(1)C :−=1x 2a 2y 23a 2B (a,0),F (−2a,0)AF ∠AFB =,|FB|=3a,|AF|==3a 90∘b 2a ∠ABF =45∘λ=2AF ∠AFB =α,∠ABF =β,A (,)x 0y 0<−a ,y >0.x 0e =2c =2a,b =a 3–√y =±x 3–√α∈(0,),β∈(0,)2π3π3tan α=,tan β=y 0+2a x 0y 0a −x 0,∴,又,∴综上:存在常数满足.18.【答案】根据题意,圆:=,圆心为,半径=,若弦的长为,则圆心到直线=的距离,又由圆心为,直线=,则有,解得;根据题意,分种情况讨论:当切线斜率不存在时,其方程为=,与圆相切,符合条件,当切线斜率存在时,设其方程为=,圆心到它的距离,解得,切线方程为=,所以过点的圆的切线方程为=或=.【考点】圆的切线方程直线与圆相交的性质【解析】(1)由直线与圆的位置关系可得圆心到直线=的距离,结合点到直线的距离公式可得,解可得的值,即可得答案;(2)根据题意,分切线的斜率是否存在种情况讨论,分别求出切线的方程,综合即可得答案.【解答】根据题意,圆:=,圆心为,半径=,若弦的长为,则圆心到直线=的距离,又由圆心为,直线=,则有,解得;根据题意,分种情况讨论:=2(a −)y 0x 0(a −−3(−1)x 0)2a 2x 20a 2=2(a −)y 0x 0(a −−3(−)x 0)2x 20a 2==2y 0(a −)+3(+a)x 0x 0y 0+2a x 0tan α=tan 2βα,2β∈(0,)2π3α=2β.λ=2∠AFB =2∠ABF O 1(x −1+(y −2)2)24(1,2)r 2AB 23–√ax −y +40d ==1−22()3–√2−−−−−−−−−√(1,2)ax −y +40d ==1|a +2|+1a 2−−−−−√a =−342x 3y −1k(x −3)=2|2k +1|+1k 2−−−−−√k =343x −4y −50M x 33x −4y −50ax −y +40d d ==1|a +2|+1a 2−−−−−√a 2O 1(x −1+(y −2)2)24(1,2)r 2AB 23–√ax −y +40d ==1−22()3–√2−−−−−−−−−√(1,2)ax −y +40d ==1|a +2|+1a 2−−−−−√a =−342当切线斜率不存在时,其方程为=,与圆相切,符合条件,当切线斜率存在时,设其方程为=,圆心到它的距离,解得,切线方程为=,所以过点的圆的切线方程为=或=.19.【答案】解:,其最小正周期为.又,,,.,,又,,,.【考点】二倍角的正弦公式二倍角的余弦公式两角和与差的余弦公式三角函数的化简求值三角函数的最值【解析】此题暂无解析【解答】解:,其最小正周期为.又,x 3y −1k(x −3)=2|2k +1|+1k 2−−−−−√k =343x −4y −50M x 33x −4y −50(1)f (x)=⋅=sin 2x −cos 2x a →b →3–√=2sin(2x −)π6πx ∈[0,]π2∴2x −∈[−,]π6π65π6∴f =2(x)max f =−1(x)min (2)∵f ()=x 065∴sin(2−)=x 0π635∈[,]x 0π4π2∴2−∈[,]x 0π6π35π6∴cos(2−)=−x 0π645∴cos 2=cos(2−)cos −x 0x 0π6π6sin(2−)sin x 0π6π6=−3+43–√10(1)f (x)=⋅=sin 2x −cos 2x a →b →3–√=2sin(2x −)π6πx ∈[0,]π2,,.,,又,,,.20.【答案】解:因为点在抛物线上,所以,所以,所以抛物线的方程为: .由可知,.设切线的方程为:,代入,得,由,得,所以切线的方程为:.因为在直线上,所以.设直线方程为:,代入,得.设,,则且,得,所以.又,所以,所以 (由题意取负),所以直线的斜率为,代入,得,所以,所以.又,所以的取值范围为:且.【考点】圆锥曲线的综合问题∴2x −∈[−,]π6π65π6∴f =2(x)max f =−1(x)min (2)∵f ()=x 065∴sin(2−)=x 0π635∈[,]x 0π4π2∴2−∈[,]x 0π6π35π6∴cos(2−)=−x 0π645∴cos 2=cos(2−)cos −x 0x 0π6π6sin(2−)sin x 0π6π6=−3+43–√10(1)Q |FQ|=1+=2p 2p =2C =4x y 2(2)(1)Q (1,2)l 1y −2=k (x −1)=4x y 2k −4y −4k +8=0y 2Δ=0k =1l 1y =x +1P (,)x 0y 0l 1=−1x 0y 0l 2x −=m(y −)x0y 0=4x y 2−4my +4m −4=0y 2y 0x 0A (,)x 1y 1B (,)x 2y 2{+=4m,y 1y 2=4m −4,y1y 2y 0x 0Δ=16−16m +16>0m 2y 0x 0−m +>0m 2y 0x0|PA|⋅|PB|=|−|⋅|−|1+m 2−−−−−−√y1y 01+m 2−−−−−−√y2y 0=(1+)(−)(−)m 2y 1y 0y 2y 0=(1+)[−(+)+]m 2y 1y 2y 0y 1y 2y 20=(1+)(4m −4−4m +)m 2y 0x 0y 0y 20=(1+)[−4(−1)]m 2y 20y 0=(1+)(−2m 2y 0)2|PQ =2|2(−2)y 021+=2m 2m =±1l 2−1Δ>01++>0y 0x 02(+1)>0x 0>−1x0≠1x 0x 0>−1x 0≠1x 0抛物线的标准方程抛物线的定义【解析】【解答】解:因为点在抛物线上,所以,所以,所以抛物线的方程为: .由可知,.设切线的方程为:,代入,得,由,得,所以切线的方程为:.因为在直线上,所以.设直线方程为:,代入,得.设,,则且,得,所以.又,所以,所以 (由题意取负),所以直线的斜率为,代入,得,所以,所以.又,所以的取值范围为:且.21.【答案】解:将代入曲线的方程得.由椭圆定义可知曲线的轨迹为以,为焦点的椭圆,所以的标准方程为.设,,由题意知,直线的斜率不为,可设的方程为,则的方程为,所以,所以.(1)Q |FQ|=1+=2p 2p =2C =4x y 2(2)(1)Q (1,2)l 1y −2=k (x −1)=4x y 2k −4y −4k +8=0y 2Δ=0k =1l 1y =x +1P (,)x 0y 0l 1=−1x 0y 0l 2x −=m(y −)x 0y 0=4x y 2−4my +4m −4=0y 2y 0x 0A (,)x 1y 1B (,)x 2y 2{+=4m,y 1y 2=4m −4,y 1y 2y 0x 0Δ=16−16m +16>0m 2y 0x 0−m +>0m 2y 0x 0|PA|⋅|PB|=|−|⋅|−|1+m 2−−−−−−√y 1y 01+m 2−−−−−−√y 2y 0=(1+)(−)(−)m 2y 1y 0y 2y 0=(1+)[−(+)+]m 2y 1y 2y 0y 1y 2y 20=(1+)(4m −4−4m +)m 2y 0x 0y 0y 20=(1+)[−4(−1)]m 2y 20y 0=(1+)(−2m 2y 0)2|PQ =2|2(−2)y 021+=2m 2m =±1l 2−1Δ>01++>0y 0x 02(+1)>0x 0>−1x 0≠1x 0x 0>−1x 0≠1x 0(1)P (1,)32C a =2C (−1,0)(1,0)C +=1x 24y 23(2)B (,)x 1y 1D (,)x 2y 2BD 0BD x =my +1AF y =−m(x −1)A (4,−3m)AF ==3(4−1+(−3m −0)2)2−−−−−−−−−−−−−−−−−−√+1m 2−−−−−−√将直线与椭圆的方程联立得,所以,,所以,所以.令,所以.令,.因为,所以在上单调递增,所以,所以,所以的最大值为【考点】椭圆的标准方程轨迹方程直线与椭圆结合的最值问题【解析】(1)将点的坐标代入曲线的方程可求出的值,再由曲线方程的几何意义即可求出曲线的方程;设,设直线的方程为,令即可求出点坐标,再由两点间距离公式即可求出,将直线的方程为与椭圆的方程联立消去,利用根与系数关系求出,由弦长公式的最小值即可.【解答】解:将代入曲线的方程得.由椭圆定义可知曲线的轨迹为以,为焦点的椭圆,所以的标准方程为.设,,BD C x =my +1,+=1,x 24y 23(3+4)+6my −9=0m 2y 2+=y 1y 2−6m 3+4m 2=y 1y 2−93+4m 2|BD|=+1m 2−−−−−−√−4(+)y 1y 22y 1y 2−−−−−−−−−−−−−−√=12(+1)m 23+4m 2=|BD ||AF |4+1m 2−−−−−−√3+4m 2t =≥1+1m 2−−−−−−√==|BD ||AF |4t 3+1t 243t +1t f (t)=3t +1t t ≥1(t)=3−=>0f ′1t 23−1t 2t 2f (t)=3t +1t [1,+∞)f (t)=3t +≥f (1)=41t =≤=1|BD ||AF |43t +1t 44|BD||AF |1.P C 4C C (2)B (,)D (,)x 1y 1x 2y 2BD x =my +1x =4A |AF |BD x =my +1C x +,y 1y 2y 1y 2(1)P (1,)32C a =2C (−1,0)(1,0)C +=1x 24y 23(2)B (,)x 1y 1D (,)x 2y 2由题意知,直线的斜率不为,可设的方程为,则的方程为,所以,所以.将直线与椭圆的方程联立得,所以,,所以,所以.令,所以.令,.因为,所以在上单调递增,所以,所以,所以的最大值为22.【答案】解:∵双曲线的中心在原点,焦点,在坐标轴上,一条渐近线方程为,∴设双曲线方程为,,∵双曲线过点,∴,即,∴双曲线方程为.∵点在此双曲线上,∴,解得.∴,或,∵,,∴当时,,,;当时,,,.BD 0BD x =my +1AF y =−m(x −1)A (4,−3m)AF ==3(4−1+(−3m −0)2)2−−−−−−−−−−−−−−−−−−√+1m 2−−−−−−√BD C x =my +1,+=1,x 24y 23(3+4)+6my −9=0m 2y 2+=y 1y 2−6m 3+4m 2=y 1y 2−93+4m 2|BD|=+1m 2−−−−−−√−4(+)y 1y 22y 1y 2−−−−−−−−−−−−−−√=12(+1)m 23+4m 2=|BD ||AF |4+1m 2−−−−−−√3+4m 2t =≥1+1m 2−−−−−−√==|BD ||AF |4t 3+1t 243t +1t f (t)=3t +1t t ≥1(t)=3−=>0f ′1t 23−1t 2t 2f (t)=3t +1t [1,+∞)f (t)=3t +≥f (1)=41t =≤=1|BD ||AF |43t +1t 44|BD||AF | 1.(1)F 1F 2y =x −=λx 2y 2λ≠0(4,−)10−−√16−10=λλ=6−=1x 26y 26(2)M(3,m)−=196m 26m =±3–√M(3,)3–√M(3,−)3–√(−2,0)F 13–√(2,0)F 23–√M(3,)3–√=(−2−3,−)MF 1−→−−3–√3–√=(2−3,−)MF 2−→−−3–√3–√⋅=−12+9+3=0MF 1−→−−MF 2−→−−M(3,−)3–√=(−2−3,)MF 1−→−−3–√3–√=(2−3,)MF 2−→−−3–√3–√⋅=−12+9+3=0MF 1−→−−MF 2−→−−=0−→−−−→−−故.【考点】直线与双曲线结合的最值问题双曲线的标准方程平面向量数量积坐标表示的应用【解析】(1)设双曲线方程为,,由双曲线过点,能求出双曲线方程.(2)由点在此双曲线上,得.由此能求出的值.【解答】解:∵双曲线的中心在原点,焦点,在坐标轴上,一条渐近线方程为,∴设双曲线方程为,,∵双曲线过点,∴,即,∴双曲线方程为.∵点在此双曲线上,∴,解得.∴,或,∵,,∴当时,,,;当时,,,.故.⋅=0MF 1−→−−MF 2−→−−−=λx 2y 2λ≠0(4,−)10−−√M(3,m)m =±3–√⋅MF 1−→−−MF 2−→−−(1)F 1F 2y =x −=λx 2y 2λ≠0(4,−)10−−√16−10=λλ=6−=1x 26y 26(2)M(3,m)−=196m 26m =±3–√M(3,)3–√M(3,−)3–√(−2,0)F 13–√(2,0)F 23–√M(3,)3–√=(−2−3,−)MF 1−→−−3–√3–√=(2−3,−)MF 2−→−−3–√3–√⋅=−12+9+3=0MF 1−→−−MF 2−→−−M(3,−)3–√=(−2−3,)MF 1−→−−3–√3–√=(2−3,)MF 2−→−−3–√3–√⋅=−12+9+3=0MF 1−→−−MF 2−→−−⋅=0MF 1−→−−MF 2−→−−。

2023.3雅礼中学高二第一次月考数学参考答案

2023.3雅礼中学高二第一次月考数学参考答案

雅礼中学高二月考试卷2023.3数学参考答案一、单项选择题二、多项选择题三、填空题13.4-14.2816.1ln,2e ⎛⎫+∞ ⎪⎝⎭四、解答题17.【解析】(1)因为2sin 3sin C A =,根据正弦定理可知()2223c a a =+=,则4a =,故5b =,6c =,2221cos 028a b c C ab +-==>,(2)显然c b a >>,若ABC △为钝角三角形, 则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++,又0a >,则2230a a --<, 即()()130a a +-<,解得13a -<<,则03a <<,由三角形三边关系可得12a a a ++>+, 可得1a >, ∵a Z ∈,故2a =.18.【解析】(1)显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+,所以2223n n a a +=+,即13n n b b +=+,且12112b a a ==+=, 所以{}n b 是以2为首项,3为公差的等差数列, 于是12b =,25b =,31n b n =-. (2)()()20123201351924620S a a a a a a a a a a a a =++++=++++++++()12310123101111b b b b b b b b =-+-+-++-+++++()110102103002b b +⨯=⨯-=.19.【解析】(1)在DCM △中,1DC =,2CM =,60DCM ∠=︒,由余弦定理可得DM , 所以222DM DC CM +=, ∴DM DC ⊥. 由题意DC PD ⊥且PDDM D =,∴DC ⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥, 又//AB DC , 所以AB PM ⊥.(2)由PM MD ⊥,AB PM ⊥, 而AB 与DM 相交, 所以PM ⊥平面ABCD ,因为AM ,所以PM =,取AD 中点E ,连接ME ,则ME ,DM ,PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则()2,0A ,(0,0,P ,)D ,()0,0,0M ,)1,0C-,又N 为PC 中点,所以122N ⎛- ⎝,352AN ⎛=⎝. 由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量()0,1,0n =,从而直线AN 与平面PDM所成角的正弦值为5sin 27AN n AN nθ⋅===+. 20.【解析】(1)若乙笔试部分三个环节一个都没有通过或只通过一个,则不能参与面试,故乙末能参与面试的概率1211113211211143243243243224P =⨯⨯+⨯⨯+⨯⨯+⨯⨯=. (2)X 的可能取值为0,1,2,3,4,5,()3110327P X ⎛⎫=== ⎪⎝⎭,()2131221C 339P X ⎛⎫==⋅⨯= ⎪⎝⎭, ()223211112C 334218P X ⎛⎫==⋅⨯⨯⨯= ⎪⎝⎭,()322321121113173C 34233424227P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯⨯+⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 322321131213117434242334254PX C ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯+⨯⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()3231153429P X ⎛⎫==⨯⨯= ⎪⎝⎭.则X 的分布列为故. (3)由(2)可知,甲成为在职教师的概率223121315C 9334218P ⎛⎫=+⨯⨯⨯⨯= ⎪⎝⎭甲, 乙成为在职教师的概率1123131243448P ⎛⎫=-⨯⨯=⎪⎝⎭乙. ()121717179012345279182754927E X =⨯+⨯+⨯+⨯+⨯+⨯=21.【解析】(1)抛物线的准线为2px =-,当MD 与x 轴垂直时,点M 的横坐标为p , 此时32pMF p =+=, 所以2p =,所以抛物线C 的方程为24y x =;(2)设211,4y M y ⎛⎫ ⎪⎝⎭,222,4y N y ⎛⎫ ⎪⎝⎭,233,4y A y ⎛⎫ ⎪⎝⎭,244,4y B y ⎛⎫⎪⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my --=,0∆>,124y y =-, 由斜率公式可得12221212444MN y y k y y y y -==+-,34223434444AB y y k y y y y -==+-, 直线112:2x MD x y y -=⋅+, 代入抛物线方程可得()1214280x y y y --⋅-=,0∆>,138y y =-,所以322y y =,同理可得412y y =, 所以()34124422MN AB k k y y y y ===++,又因为直线MN 、AB 的倾斜角分别为α,β, 所以tan tan 22MN AB k k αβ===, 若要使αβ-最大,则0,2πβ⎛⎫∈ ⎪⎝⎭, 设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 1242k k k k αβαβαβ--===≤=+++,当且仅当12k k =即k =时,等号成立,所以当αβ-最大时,2AB k =,设直线:AB x n =+,代入抛物线方程可得240y n --=,0∆>,34124416y y n y y =-==-,所以4n =,所以直线:4AB x =+.22.【解析】(1)∵()2ln 2a f x x x x =-+,定义域为()0,+∞, 由题意知()110f x ax x'=-+≥对任意的0x >恒成立,即221111124a x x x ⎛⎫≥-=--+ ⎪⎝⎭, ∵21111244x ⎧⎫⎪⎪⎛⎫--+=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭, 故14a ≥.因此,实数a 的取值范围是1,4⎡⎫+∞⎪⎢⎣⎭; (2)∵()2a f x ax =-, 即2ln 22a a x x x ax -+=-, 设()2ln 22a ag x x x x ax =-+-+,则()()()1111ax x g x ax a x x--'=-+-=,当1a =时,()()210x g x x-'=≥,函数()y g x =在()0,+∞上单调递增, ∵()11g =-,()14ln 402g =+>,故函数()y g x =有唯一零点; 当()1,a e ∈时,()()()11ax x g x x--'=,令()0g x '>,得10x a<<或1x >; 令()0g x '<,得11x a<<. 函数()y g x =在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,1a ⎛⎫⎪⎝⎭上单调递减,在()1,+∞上单调递增, 极大值为1111ln 1ln 12222a a g a a a a a a ⎛⎫=---+=---+⎪⎝⎭, 设()1ln 122a H a a a =---+, 则()()22211110222a H a a a a-'=-+=>恒成立, 故函数()y H a =单调递增, 故()()12022e H a H e e<=--<, 故函数()y g x =在()0,1上无零点. ∵()11g =-,()9144ln 4ln 4022g a =-+>+>, 故函数()y g x =在()1,+∞上有唯一零点. 综上所述,当[)1,a e ∈时,方程()2af x ax =-有且仅有一个根.。

高二月考数学试题

高二月考数学试题

高二月考数学试题 总分150分一.选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.关于频率分布直方图,下列有关说法正确的是 ( D ) A .直方图的高表示取某数的频率。

B .直方图的高表示该组上的个体在样本中出现的频率。

C .直方图的高表示取某组上的个体在样本中出现的频数与组距的比值。

D .直方图的高表示取该组上的个体在样本中出现的频率与组距的比值。

2.下列说法错误..的是 ( C ) A .命题“若0232=+-x x 则 1=x ”的逆否命题为:“若1≠x , 则0232≠+-x x ”。

B .“1=x ”是“0232=+-x x ”的充分不必要条件。

C .若p q 且为假命题,则p .q 均为假命题。

D .对于命题p :x R ∃∈,使得210x x ++<. 则⌝p :x R ∀∈, 均有210x x ++≥。

3.若函数f (x )=2x 2-1的图象两点(1,1)及(1+Δx ,1+Δy ),则xy∆∆等于( C ) A .4 B .4x C .4+2Δx D .4+2Δx 2 3.已知点A(1, -2, 11),B(4, 2, 3),C(6, -1, 4),则△ABC 的形状是 ( C ) A .等腰三角形 B .正三角形 C .直角三角形 D .等腰直角三角形4.椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是 ( D ) A 855 B 455833 D 4335.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为 ( A ) A .y =-3x +2 B .y =3x -4 C .y =-4x +3 D .y =4x -5 5.已知四面体ABCD 中,AB ,AC ,AD 两两互相垂直,给出下列命题:①AB CD AC BD AD BC ⋅=⋅=⋅;②2222|AB AC AD ||AB ||AC ||AD |++=++;则下列关于以上两个命题的真假性判断正确的是 ( A ) A .①真②真 B .①假②真 C .①假②假 D .①假②真6.已知动点P (x ,y )到点(1,2)的距离等于到直线3x+4y-11=0的距离,则P 点的轨迹是 ( A )A .直线B .抛物线C .双曲线D .椭圆7.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为 ( B ) A .2 B .4 C .2- D . 4-8.过点(0,1)作直线,使它与抛物线x y 42=仅有一个公共点,这样的直线有 ( C )A.1条B.2条C. 3条D. 0条 9.双曲线的渐近线方程为3y x 4=±,则双曲线的离心率为 ( D ) A .53 B .54 C 515 D .5534或10.下面有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,问其中不公平的游戏是(D )游戏1 游戏2 游戏33个黑球和一个白球 一个黑球和一个白球 2个黑球和2个白球 取1个球,再取1个球 取1个球 取1个球,再取1个球 取出的两个球同色→甲胜 取出的球是黑球→甲胜 取出的两个球同色→甲胜 取出的两个球不同色→乙胜 取出的球是白球→乙胜 取出的两个球不同色→乙胜 A. 游戏1和游戏3 B. 游戏1 C. 游戏2 D. 游戏3二.填空题(本大共6小题,每小题6分,共36分)11.写出命题:“R x ∃∈,使23+x =0”的否定3R,x +20x ∀∈≠使。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宣城市励志中学2010-2011学年度第二学期第一次月考
高二数学(文科)试卷
制卷人:李华 审核人:汪成胶,吴伟 试卷满分:150分 考试时间:120分钟 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分) 1,i 是虚数单位,
=-i
2i
5 ( ) A.1+2i B.-1-i C.1-2i D .-1+2i
2.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则 ( ) A .B A U ⋃= B . B A C U U ⋃=)(
C .)(B C A U U ⋃=
D .)()(B C A C U U U ⋃=
3.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( )
A .1
B .—1
C .1或—1
D .1或—1或0
4.函数b x k y ++=)12(在实数集上是增函数,则
( )
A .21-
>k B .2
1
-<k C .0>b D .0<b
5.下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是
( )
6.已知函数2
3212
---=
x x x
y 的定义域为
( )
A ]1,(-∞
B .]2,(-∞
C .]1,21()21,(-
⋂--∞ D . ]1,2
1()21,(-⋃--∞ 7.设⎪⎩

⎨⎧<=>+=)0(,0)0(,)
0(,1)(x x x x x f π,则=-)]}1([{f f f
( )
A .1+π
B .0
C .π
D .1-
8.函数y=x
x ++
-19
12
是 ( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数 9.下列关系式中,成立的是 ( )
A .10log 514log 3103>⎪⎭⎫ ⎝⎛>
B . 4log 5110log 30
31>⎪⎭⎫
⎝⎛>
C . 0
3135110log 4log ⎪⎭⎫ ⎝⎛>> D .0
33
1514log 10log ⎪⎭⎫
⎝⎛>>
10.已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为 ( )
A .)2,1[-
B .]1,1[-
C .)2,2(-
D .)2,2[-
二、填空题:请把答案填在题中横线上(每小题5分,共25分).
11.化简)3
1
()3)((65
613
1212132b a b a b a ÷-=
12.含有三个实数的集合既可表示成}1,,
{a
b
a ,又可表示成}0,,{2
b a a +,则=+20112010b a .
13.当a >0且a ≠1时,函数f (x)=a
-2x -3
-3必过定点 .
14.函数y=x x --+12的定义域是 . 15.设函数c bx x x x f ++=)(,给出四个命题: ①0=c 时,有)()(x f x f -=-成立;
②c b ,0=﹥0时,方程0)(=x f ,只有一个实数根; ③)(x f y =的图象关于点(0,c )对称; ④方程0)(=x f ,至多有两个实数根.
上述四个命题中所有正确的命题序号是 。

宣城市励志中学2010-2011学年度第二学期第一次月考
数学(文科)答题卷
二、填空题:请把答案填在题中横线上(每小题5分,共25分). 11. 12. 13. 14. 15
三、解答题:解答应写出文字说明、证明过程或演算步骤(共75分). 16.(12分)已知,全集U={x|-5≤x ≤3},A={x|-5≤x<2},B={x|-1≤x<1},求C U A ,C U B ,C U (A ∪B)
17.(12分) 计算(1).(1-2i)(3+4i)(-2+i)
(2).
=++i
43i
21
……………………………………………………………装 订 线…………………………………………………………………………
18.(12分)设函数.)
2(,2)
2(,2)(2⎩⎨
⎧>≤+=x x x x x f (1)求)9(f 的值; (2)若8)(0=x f ,求.0x
19.(12分) 设函数⎩⎨⎧≥+-<++=)
0(,3)
0(,)(2x x x c bx x x f ,若,1)2(),0()4(-=-=-f f f
(1)求函数)(x f 的解析式;
(2)画出函数)(x f 的图象,并说出函数)(x f 的单调区间。

20.(13分)在经济学中,函数)(x f 的边际函数为)(x Mf ,定义为
)()1()(x f x f x Mf -+=,某公司每月最多生产100台报警系统装置。

生产x 台
的收入函数为2203000)(x x x R -=(单位元),其成本函数为4000500)(+=x x C (单位元),利润的等于收入与成本之差. ①求出利润函数)(x p 及其边际利润函数)(x Mp ;
②求出的利润函数)(x p 及其边际利润函数)(x Mp 是否具有相同的最大值; ③你认为本题中边际利润函数)(x Mp 最大值的实际意义.
21.(14分)已知()()1,011log ≠>-+=a a x
x
x f a 且 (1)求()x f 的定义域; (2)证明()x f 为奇函数;
(3)求使()x f >0成立的x 的取值范围.。

相关文档
最新文档