单调性与最大(小)值-说课稿
新课标人教(A)必修一 函数单调性说课稿
课题:函数的单调性儋州市第一中学数学组黄礼燕一、教材分析1、教材内容本节课是人教版第一章《集合与函数概念》§1.3.1单调性与最大(小)值的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题.2、教材所处地位、作用函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、学会通过函数图像来判断函数的单调性、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一.从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法.3、教学目标(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性的方法;(2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.(3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质.4、重点与难点教学重点(1)领会函数单调性概念,体验函数单调性的形式化过程.(2)运用函数单调性的定义判断一些函数的单调性.教学难点(1)突破抽象,深刻理解函数单调性形式化的概念(2)利用函数单调性的定义判断和证明函数的单调性.二、教法分析与学法指导本节课是一节较为抽象的数学概念课,因此,教法上要注意:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性.2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达.4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.在学法上:1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃.三、教学过程教学设计说明本节课是一节概念课.函数单调性的本质是利用解析的方法来研究函数图象的性质,如何将图形特征用严谨的数学语言来刻画是本节课的难点之一.另一难点是学生在高中阶段第一次接触代数证明,如何进行严格的推理论证并完成规范的书面表达.围绕以上两个难点,在本节课的处理上,我着重注意了以下几个问题: 1、重视学生的亲身体验.具体体现在两个方面:①将新知识与学生的已有知识建立了联系.如:学生对一次函数、二次函数和反比例函数的认识,学生对“y 随x 的增大而增大”的理解;②运用新知识尝试解决新问题.如:对函数1)(+=x xx f 在定义域上的单调性的讨论. 2、重视学生发现的过程.如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程.3、重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实践运用定义.4、重视课堂问题的设计.通过对问题的设计,引导学生解决问题.。
《函数的单调性与最大(小)值》教学设计
函数的单调性与最大(小)值教学设计一、内容和内容解析1.内容函数的单调性2. 内容解析函数的单调性是主要的函数性质之一,它刻画了函数的增、减变化规律. 因为现实世界中的运动变化过程、增减趋势是主要的变化规律之一,而引进函数单调性的概念为刻画这种变化规律提供了方法,所以研究函数的单调性具有重要的现实意义;另一方面,方程、不等式等问题的求解,可以利用函数单调性进行解决. 因此,函数单调性在数学内外都有重要的应用.函数的单调性是函数的局部性质,即它通常是在函数定义域的某个子集上具有的性质;而函数奇偶性、周期性、最大值、最小值是函数在整个定义域上的性质,属于函数的整体性质.另外,通过研究函数的单调性,就容易得到函数的最大(小)值.从初中到高中,函数单调性概念的形成,经历了从定性到定量的过程,体现了数学概念逐渐抽象、严格化的过程,对于数学一般概念的学习具有借鉴意义.初中阶段,对函数图象从左到右上升(下降)转化为“y随x的增大而增大(减小)”进行刻画,学生经历了从图象直观到函数值随自变量的变化而变化的转化过程;高中阶段,通过引入数学符号,并采用“?x1,x2∈D”的方式,进一步将“y随x的增大而增大(减小)”转化为精确的定量关系,即用不等式刻画“增大”“减小”,从而使定性刻画上升到定量刻画,实现了变化规律的精确化表达.这样一种从形象直观到定性刻画再到抽象的符号语言刻画的研究过程,以及通过引入数学符号、借助代数语言精确定量地刻画变化规律的方法,体现了数学抽象的一般过程,对于培养学生的数学抽象能力具有重要意义.基于以上分析,确定教学重点:函数单调性的符号语言刻画.二、目标和目标解析1.目标(1)借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义;(2)会用定义证明简单函数的单调性;(3)会根据问题的实际意义,求函数的最大值、最小值;(4)在抽象函数单调性的过程中感悟数学概念的抽象过程及符号表示的作用.2.目标解析达成上述目标的标志是:(1)知道用符号语言刻画函数单调性时,“任意”“都有”等关键词的含义;能够从函数图象,或通过代数推理,得出函数的单调递增、单调递减区间;知道函数的单调性反映了现实世界中事物在量的增加或减小上的变化趋势.(2)会用函数单调性的定义,按一定的步骤证明函数的单调性;(3)会用函数最大值、最小值的定义,按一定的步骤求函数的最大(小)值;(4)经历从图象直观到文字语言描述再到符号语言刻画的过程,感悟通过引入“?x1,x2∈D”的符号表示,把一个含有“无限”的问题转化为一种“有限”方式表示的方法,感受数学符号语言的作用.三、教学问题诊断分析学生在初中阶段已经学习了一次函数、正比例函数、反比例函数和二次函数,对于每一类函数都研究了函数值随自变量的增大而变化的规律,能够理解函数图象从左到右上升或下降这一性质,可以用“y随x的增大而减小(增大)”这样的文字语言来描述.高中阶段,要通过引入“?x1,x2∈D,当x1教学中,要利用一次函数、二次函数等,借助一定的教学媒体,如用信息技术展示函数值随自变量变化而变化的情况,用表格形式加强自变量从小到大时函数值的大小变化趋势等,数形结合地提出问题,给学生设置一条从定性到定量、从粗糙到精确的归纳过程,引导学生逐步抽象出函数单调性的定义,再通过辨析、练习帮助学生理解定义.根据以上分析,确定教学难点是:符号语言的引入;对“任意”“都有”等涉及无限取值的语言的理解和使用.四、教学支持条件分析为使学生更好地理解单调性的形式化定义,降低归纳定义过程中的难度,可利用计算工具,采用动态方式展现函数值随自变量值变化的规律,并体会自变量取值的任意性.五、教学过程设计(一)引入引导语:我们知道函数是描述事物变化规律的数学模型,这样我们可以通过研究函数的性质获得对客观世界中事物变化规律的认识.比如,通过研究函数值随自变量值的变化规律,可以得到函数所刻画的现实问题的变化规律.什么叫函数性质呢?总体而言,函数性质就是“变化中的规律性,变化中的不变性”.因此,我们研究函数性质,就是要学会在运动变化中发现规律.问题1:请看下面的函数图象,从中你发现了函数图象的哪些特征?你觉得它们反映了函数的哪些方面的性质?师生活动:教师利用PPT展示例子,学生观察图象后回答问题.学生的回答有可能涉及到很多方面,教师引导学生关注函数图象从左到右升降变化的特点、对称性、最高点或最低点等.教师指出:函数图象所反映的这些特点就是函数的性质.本节课我们先研究如何用精确定量的方法刻画函数值随自变量的增大而增大(或减小)的变化规律.设计意图:通过实例,使学生感受研究函数性质的必要性;结合初中已学的用定性方法刻画函数单调性的知识,明确学习任务.(二)单调性性质及其定量刻画方法的抽象1.具体实例的分析问题2:在初中我们研究过二次函数y=a(x-h)2+k,从它的图象可以看出:如果a>0,当x师生活动:学生自主活动,也可以小组讨论,然后再组织全班交流.设计意图:用自己的语言表述,可以促使学生对单调性理解的具体化,使定性描述向定量刻画发展.学生一般会转述为“x增大了,对应的函数值y减小.”追问1:“x增大了”怎么用符号语言表示?“对应的函数值y减小”又该如何表示?y=x2为例,观察下表,你能用数学符号刻画x、y的数量变化关系吗?师生活动:一般地,学生会从表格中看到具体数值的变化规律,如当x从-4增大到-3,则f(x)从f(-4)=16减小到f(-3)=9;当x从-3增大到-2,则f(x)从f(-3)=减小到f(-2)=4;当x从-2增大到-1,则f(x)从f(-2)=4增大到f(-1)=1;……追问2:(1)这样的变化过程能写得完吗?怎么办?(2)这个变化过程中的数量关系有什么特点,你能概括一下上述变化过程的共同点吗?师生活动:学生通过从具体到抽象,可以得到:只要x1<x2,就有f(x1)>f(x2)如果学生有可能,教师可以进行启发帮助,或者直接给出上述表述.追问3:这里对x1,x2有什么要求?只取(-∞,0]上的某些数是否可以?你能举例说明吗?师生活动:让学生展开讨论,教师应当进行适当引导,并举出一些例子(反例)进行说明,最终要让学生明确,应该是区间(-∞,0]上的任意两个数.追问4:所以,更严格的表达应该是怎样的?师生活动:让学生说出“任取x1,x2∈(-∞,0],教师总结:这里,我们借助代数符号语言,通过归纳,给出了一个与“无限”相关的变化规律的数学描述,体现了代数的力量.其中,任取x1,x2∈(-∞,0],把“无穷”的问题转化成了具体可操作的有限过程.追问5:对于函数y=x2,你能模仿上述方法,给出“在区间[0,∞)上,y 随x的增大而增大”的符号语言刻画吗?设计意图:这个环节是本课的重点,其核心是通过从具体到抽象的过程,让学生学会用严格的代数语言刻画“在区间D上,当x增大时,相应的f(x)随着减小”.在“图象从左到右下降—y随x的增大而减小—任取x1,x2∈D,当x1注意:因为函数的单调性是一个比较难以理解的概念,学生第一次遇到要用一个数学符号语言刻画一个涉及“无限取值的问题”,大多数学生很难独立想到其中的数学方法,所以教学中可以采取先由教师教学启发性讲解,使学生理解“在区间D上,y随x的增大而减小”,可以用“任取x1,x2∈D,当x1 练习:请你模仿上述过程,用严格的符号语言刻画f(x)=|x|和f(x)=-x2的单调性.2.单调性定义的抽象问题3:请你归纳关于函数f(x)=x2,f(x)=|x|和f(x)=-x2的单调性的刻画方法,给出函数y= f(x)在区间D上单调性的符号刻画.师生活动:先由学生独立完成,然后小组交流,再组织全班交流. 在充分交流的基础上,教师给出严格的单调性定义表述.3.单调性定义的辨析问题4:(1)设A是区间D上某些自变量的值组成的集合,而且?x1,x2∈A,当x1(2)函数的单调性是对定义域内某个区间而言的,你能举出在整个定义域内是单调递增的函数例子吗?你能举出在定义域内的某些区间上单调递增但在另一些区间上单调递减的函数例子吗?师生活动:先由学生独立思考完成,再组织全班交流.教师可以提醒学生用多种方法表示函数(特别是利用图象直观说明问题).设计意图:这里的问题(1)是引导学生辨析定义中的“任意”二字;问题(2)既是为了区分“单调递增”与“增函数”、“单调递减”与“减函数”等概念,同时也是为了引导学生认识函数在不同区间上单调递增(递减),但在它们的并集上不一定保持单调递增(递减)的性质.(三)单调性定义的简单应用例1.根据定义,研究函数f(x)=kx+b(k≠0)的单调性.师生活动:先让学生独立思考,讨论研究思路,然后再给出严格的表述(可以让几个学生板书),教师再引导学生对进行点评.这里教师应该强调:(1)研究一个函数的单调性,需要利用单调性的定义,考察在定义域的哪些区间上单调递增、在哪些区间上单调递减;(2)具体的操作方法是,在条件x1设计意图:对于一次函数的单调性,初中是通过观察图象得到的,学习了单调性的定义后,利用定义通过严格的逻辑推理对结论进行了证明,体现了形式化定义的作用.同时,通过比较简单的推理过程,让学生理解用单调性定义考察函数单调性的基本过程.例2.物理学中的玻意耳定律p=k/v(k为正常数)告诉我们,对于一定量的气体,当其体积V减小时,压强p将增大.试对此用函数的单调性证明.师生活动:先让学生独立思考“体积V减小时,压强p增大”的含义,建立与函数单调性性质的联系,再让学生独立给出证明,可让几个学生进行板书,完成后再进行点评完善.在给出完整证明后,给出追问:你能总结例1、例2的解题过程,归纳一下用单调性定义研究或证明一个函数的单调性的基本步骤吗?设计意图:例2是一个物理学中的公式,本例要使学生体会函数模型可以用来刻画现实世界中的现象,而数学研究的不是每一个现象而是从中抽象概括出来的一般问题,将一些不同的现象抽象成一类函数,通过研究这一类函数的性质获得事物的变化规律.另外,通过追问,要让学生总结出证明函数单调性的基本步骤:第一步,确定函数的定义域I;第二步,?x1,x2∈I,且设x1<x2,并将x1,x2代入f(x),得f(x1),f(x2);第三步,将f(x1)-f(x2)进行代数变形,转化为可以直接用实数大小关系、不等式的基本性质等判断其符号或大小关系的式子;第四步,得出相应的单调区间.例3.根据定义证明函数在区间(1,+∞)上单调递增.师生活动:先由学生独立思考并写出证明过程,可选几名学生板书,然后再进行全班交流.要引导学生进一步总结证明步骤,明确代数变形的方向.设计意图:利用单调性的定义,通过严格的代数推理,获得函数在(1,+∞)上单调递增的性质,这在没有函数单调性定义的时候是做不到的,可以使学生进一步体会到定义的作用;同时,也可以使学生体会代数证明的一般方法,培养学生的逻辑推理、数学运算等素养.(四)课堂小结问题5:回答下列问题.(1)什么叫函数的单调性?你能举出一些具体例子吗?(2)你认为,在理解函数的单调性时应把握好哪些关键问题?(3)结合本节课的学习过程,你对函数性质的研究内容和方法有什么体会?师生活动:学生独立思考的基础上回答,教师再进行归纳.设计意图:(1)让学生准确叙述单调递增、单调递减、增函数、减函数等概念,通过举例使学生进一步把握函数单调性的要点;(2)引导学生进一步理解“函数有意义”是讨论函数单调性的前提,“?x1,x2∈I,且设x1<x2”的含义,如何对f(x1)-f(x2)进行代数变形等等;(3)要使学生体会“从定性到定量”的研究思路,即通过图象直观及文字语言刻画得到函数性质的定性刻画,再用符号语言进行定量刻画,从而使函数性质得到严谨的数学表达.六、目标检测设计1. 请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.。
函数的单调性说课稿
函数的单调性(1) 说课稿一.说教材1.地位及重要性函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内。
函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的应用。
通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。
也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。
2.教学目标(1)了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;(2)了解能用图形语言正确表述具有单调性的函数的图象特征;(3)明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。
3.教学重难点重点是对函数单调性的有关概念的本质理解。
难点是利用函数单调性的概念证明或判断具体函数的单调性。
二.说教法根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的模式。
力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。
三.说学法在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。
然后通过对函数单调性的概念的学习理解,最终把问题解决。
整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。
四.说过程通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。
单调性与最大(小)值 --优质教案 (5)
《1.3.1单调性与最大(小)值(第1课时)》教学设计课型:新授课一、教学内容解析函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都要经历直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.函数的单调性是学习不等式、极限、导数等其它数学知识的重要基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材.二、教学目标按照教学大纲的要求,根据教材和学情,确定如下教学目标:1.从实际问题出发,使学生通过观察、思考,直观感知函数的单调性.通过探究,讨论函数图像的变化趋势与y值随自变量x的变化情况之间的关系.让学生体验“任意”二字的含义,将图形语言与自然语言建立联系.在此过程中培养学生细心观察、认真分析、严谨论证的良好思维习惯.2.从具体的二次函数2x,0(+∞上为增函数入手,通过学生对“y值y=在区间)随x的增大而增大”的逐层深入认识,将自然语言转化为数学符号语言,教师再加以合理引导,顺利突破本课第一个难点。
使学生从形与数两方面理解增、减函数的概念,掌握运用函数图像和单调性的定义判断函数单调性的方法.在此,让学生领会数形结合的数学思想方法,经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.3.通过对增、减函数概念的深入挖掘,初步掌握证明函数单调性的方法与步骤,培养学生归纳、概括、抽象的能力和语言表达能力,提高学生的推理论证能力.三、学生学情分析学生在初中学习了一次函数、二次函数、反比例函数的基础上对函数的增减性有一个初步的感性认识,已具备了一定的观察事物能力和抽象思维能力,但对于感性思维向理性思维的过渡仍有一定的障碍,对于自然语言向符号语言的转化,学生会觉得比较困难.另外,单调性的证明是学生在函数学习中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.四、重、难点分析重点:增、减函数概念的形成及单调性的初步应用.难点:增、减函数的概念形成以及根据定义证明函数的单调性.五、教学策略分析本节课是函数单调性的起始课,根据新课改的教学理念,结合本节课的教学内容和学生的认知水平,主要采用让学生自主探究、独立思考、合作交流、探究成果展示及教师启发引导的教学方式进行教学.同时使用多媒体辅助教学,增强直观性,提高教学效果和教学质量.在学生的学法上我重视让学生利用图形直观启迪思维,完成从感性认识到理性思维的质的飞跃.让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.六、教学过程(一)创设情境引例某品牌电热水壶,烧开一壶水需要6分钟,水开后自动断电,50分钟后冷却至室温.(1)你能描述一下,水温随时间的变化时如何变化的吗?(2)你能用图像表示出这种变化关系吗?(3)你能将“图像的变化趋势”与“水温随着时间的增加而变化”相结合起来吗?这是一个实际问题,在描述上述变化关系时,把定义域分成了两个区间去研究.函数图像上升、下降的趋势反应的是函数的一个基本性质------函数的单调性.(通过朴素的实际问题,让学生把增、减函数的图形语言与自然语言对应起来,同时为理解函数的单调性是函数的局部性质打下伏笔.)(二)自主探究1. 个人独立完成或学习小组合作完成.任意写出一个函数的解析式及定义域,画出草图,任意列出一些自变量和相应的函数值,将“图像的上升、下降趋势”与“y 值随x 的变化”结合起来.2.展示探究成果. 探究成果预设:)(2R x x y ∈= }0{1≠=x x xyX<0 x>0)(2R x x y ∈=,在),(+∞-∞上,y 值随x 的增大而增大,图像是上升的.)0,(-∞∈x 时,y 值随x 的增大}0{1≠=x x xy 当而减小,图像是下降的;当),0(+∞∈x 时,y 值也随x 的增大而减小,图像也是下降的.教师追问:能不能说xy 1=的图像在整个定义域上是下降的?能不能说整个定义域上y 值随x 的增大而减小?3.教师用几何画板演示二次函数2x y =的函数值y 随x 的变化而变化的过程,并任意选取自变量给出相应的y 值,让学生再次感受图像上升与y 随x 的增大而增大相对应;图像下降与y 随x 的增大而减小相对应.(三)抽象出增、减函数的定义1.问题引导:究竟如何理解“y 随x 的增大而增大”呢?学生探讨,得出“y 随x 的增大而增大”可以用符号语言表示为“当21x x <时,都有)()(21x f x f <”.函数2x y =,在),0(+∞∈x 上满足,当21x x <时,)()(21x f x f <,则2x y =在),0(+∞上是增函数.2.一般的,对于函数x f y (=),在定义域的某个区间),(b a 上,如何说明它是增函数呢?让学生归纳出增函数的定义:一般地,设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 上的任意两个自变量21,x x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f 在区间D 上是增函数.用图像刻画增函数.3.对比增函数的定义,由学生归纳出减函数的定义. 一般地,设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 上的任意两个自变量21,x x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间D 上是减函数.用图像刻画减函数。
单调性与最大(小)值说课稿
单调性与最大(小)值说课稿各位评委,各位老师,大家好,今天我说课的题目是高中数学必修一第一章第三节第一课时《函数的基本性质——单调性与最大(小)值》(板书题目),我将从说教材、说教法,说学法,说教学程序,说板书设计,说反思等六个方面来介绍我的构思和见解,恳请在座的专家评委批评指正。
一、说教材1、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、幂函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.2.学习目标根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:知识目标:(1)函数单调性的定义,这是本节课的重点,(2)函数单调性的证明,这是本节课的难点,要求学生在已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。
能力目标引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.情感目标在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.二、说教法“授人以鱼,不如授人以渔”,在教学中,要注重展开探索过程,充分利用好函数图象的直观性、发挥多媒体教学的优势。
本节课主要采用问答式教学法、探究式教学法进行教学,教师在课堂中只起着主导作用,让学生在教师的提问中自觉的发现新知,探究新知,并且加入激励性的语言以提高学生的积极性,提高学生参与知识形成的全过程,从而达到学习目标。
学具准备:直尺、铅笔等三、说学法现代教学,学生是教学活动的主题,他们在学习过程中的参与状态和参与度是影响教学效果最重要的因素。
单调性与最大小值说课稿教案精修订
单调性与最大小值说课稿教案GE GROUP system office room 【GEIHUA16H-GEIHUA《单调性与最大(小)值》说课稿各位领导、专家:你们好!我说课的内容是《普通高中课程标准实验教科书数学》(必修一)§1.3.1《单调性与最大(小)值》,下面谈谈我的教学设想。
一、教材分析1.教学内容本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
2.教材的地位和作用函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。
掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。
3.教材的重点﹑难点﹑关键教学重点:函数单调性的概念和判断某些函数单调性的方法。
明确单调性是一个局部概念.教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。
教学关键:从学生的学习心理和认知结构出发,讲清楚概念的形成过程.4.学情分析高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。
从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强.二、目标分析(一)知识目标:1.知识目标:理解函数单调性的概念,掌握判断一些简单函数的单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。
2.能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。
《函数的单调性与最大(小)值》教学设计(第一课时)完美版
《函数的单调性与最大(小)值》教学设计(第1课时)一.教材地位分析《单调性与最大(小)值(1)》系新课标实验教材必修Ⅰ第一章第三节内容,该节中内容包括:函数的单调性、函数的奇偶性。
它是在学习了函数的基础上进一步研究函数必不可少的一部分内容。
二.教学目标设计1.知识与技能:1)使学生理解函数单调性的的概念,并能判断一些简单函数在给定区间上的单调性。
2)启发学生能够发现问题、提出问题,培养学生分析问题、认识问题的能力和创造的解决问题的能力。
3)通过观察—猜想—推理—证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。
{2.过程与方法:1)通过渗透数形结合的数学思想,对学生进行辨证唯物注意的思想教育。
2)探究与活动,明白考虑问题要细致,说理要明确。
3.情感态度与价值观:营造亲切、活跃的课堂气氛,实施多元化评价,激励学生,使学生尝试成功,以点燃学生的学习热情,理性认识生活中的增长、递减现象。
三.教学重点和难点设计教学重点:领会函数单调性的实质,明确单调性是一个局部概念。
教学难点:利用函数的单调性的定义证明具体函数的单调性。
`四.学情、教法分析及教材处理按现行新教材结构体系,学生只学过一次函数、反比例函数、正比例函数、二次函数,所以对函数的单调性研究也只能限于这几种函数。
学生的现有认知结构中能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性、发挥好多媒体教学的优势;同时,学生在概念的掌握上缺少系统性、严谨性,在教学中须加强。
根据以上分析本节课教学方法以在多媒体辅助下的启发式教学为主。
五.教具准备多媒体课件(Ppowerpoint)六.教学流程设计<:七.教学情境设计 1.【情景导入】2.【新课探究】3.【讲解例1】4.【知识迁移】5.【讲解例2】6.【知识巩固】7.【课堂小结】(通过提问的形式,让学生总结)八.情景设计说明1.注重创设问题情景,通过学生观察,提出问题并建立数学模型解决问题,让学生了解数学的实际应用。
单调性说课稿
单调性说课稿一、说教材在数学学科中,函数是一个重要的概念。
函数的性质与特征对于理解和应用数学知识都起着至关重要的作用。
而其中一个重要的性质就是单调性。
在中学数学教学中,单调性是一个常见的概念。
学生往往对于单调性有一定的直观认识,但缺乏系统性的理解和应用。
本次说课将以《单调性》为主题,通过引导学生深入理解单调性的内涵和应用,培养学生的逻辑思维和问题解决能力。
二、设计目标1. 知识目标(1)全面了解单调性的定义和性质;(2)理解函数的递增和递减的概念;(3)掌握判定函数单调性的方法。
2. 能力目标(1)培养学生观察、分析和推理问题的能力;(2)能够运用单调性概念解答问题。
3. 情感目标(1)培养学生的探究精神和思辨能力;(2)激发学生对数学的兴趣和热爱。
三、教学重难点1. 教学重点(1)引导学生深入理解单调性的概念;(2)培养学生分析问题和判定函数单调性的能力。
2. 教学难点(1)使学生理解单调性的定义,能够准确把握递增和递减的概念;(2)培养学生掌握判定函数单调性的方法,运用方法解题。
四、教学过程1. 创设情境通过与学生的互动,引导学生思考一个问题:获得一辆汽车的速度与行驶时间之间的关系,能不能判断汽车是否在匀速行驶?2. 引入学习通过对问题的讨论,引导学生了解到函数的单调性和速度的关系。
然后,引入单调性的概念,向学生解释单调递增、单调递减和单调函数的定义。
3. 知识讲解在这一环节,通过例题讲解和归纳总结,进一步巩固学生对单调性的理解。
教师以图示和实例的形式,反复演示如何判断函数的单调性。
同时,教师让学生观察函数图像,从图中寻找单调递增和单调递减的特点。
4. 学生探究将学生分为小组,每个小组给出一到两个函数图像,要求小组讨论,并判断函数的单调性。
然后,小组汇报自己的分析和判断结果。
在这个过程中,教师给予及时的指导和反馈。
5. 拓展运用通过运用判定单调性的方法,解决实际问题,如某人的体重变化问题、物体的运动问题等。
单调性与最大(小)值 说课稿 教案 教学设计
单调性与最大(小)值【教学目标】1.知识与技能:(1)通过函数图象了解函数最大值、最小值在图象上的特征。
(2)会用函数的解析式和数学语言刻画函数最大值和最小值的概念。
(3)了解函数最值在实际中的应用,会求简单的函数的最值。
2.过程与方法:从已有知识出发,通过学生的观察、归纳、抽象和推理论证培养学生的数学能力,进一步领会数形结合和分类的思想方法。
3.情感态度价值观:通过知识的探究过程,突出学生的主观能动性,培养学生认真分析、科学论证的数学思维习惯.【重点难点】1.教学重点:理解函数的最值。
2.教学难点:运用函数的单调性求函数的最值。
【教学策略与方法】1.教学方法:问题引导,主动探究,启发式教学.2.教具准备:多媒体【教学过程】教学流程教师活动学生活动设计意图一、情境引入;喷泉喷出的抛物线型水柱到达“最高点”后便下落,经历了先“增”后“减”的过程,从中我们发现单调性与函数的最值之间似乎有着某种“联系”,让我们来研究——函数的最大值与最小值.1.观察与思考;问题1. 这两个函数图象有何共同特征?问题 2. 设函数y=f(x)图象上最高点的纵坐标为M,则对函数定义域内任意自变量x,学生通过对图像的观察,进行口答。
遵循学生的认知规律,从感性的图像入手来体会函数的单调性,进而为抽象出单调性的数学概念打下基础。
yx o x图M2()([2,6])1=∈-f x x x f(x)与M 的大小关系如何?环节二:二、观察思考,归纳抽象,形成概念; 问题1.函数最大值的“形”的定义: 当函数图象有最高点,我们就说这个函数有最大值。
当函数图象无最高点时,我们说这个函数没有最大值。
问题2.函数图象最高点的数的刻画: 函数图象在最高点处的函数值是函数在整个定义域上最大的值。
对应函数 而言,即对于任意的()y f x = ,都有0()()f x f x ≤函数最大值定义一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有________; (2)(2)存在x0∈I ,使得_______。
单调性与最值说课稿
例题三:综合应用问题
题目
已知函数$f(x) = ln(x+1) - ax$在$(0, +infty)$上单调递减,求实数$a$的取值 范围。
单调递减函数在其定义域内,随着自变量的增加,函数值减小,因此最小值出现在 定义域的右端点,最大值出现在左端点。
对于非单调函数,其最值可能出现在定义域的端点或函数的拐点处,需要结合函数 的单调性进行分析。
利用单调性求最值方法
01
02
03
04
第一步
确定函数的定义域;
第二步
判断函数在定义域内的单调性 ;
单调性与最值说课稿
汇报人:XXX 2024-01-22
目录
• 课程介绍与目标 • 单调性概念及性质 • 最值概念及性质 • 单调性与最值关系探讨 • 典型例题解析与讨论 • 学生自主练习与互动环节 • 课程总结与拓展延伸
01
课程介绍与目标
Chapter
说课内容
01
单调性的定义及性 质
02
最值的定义及求法
02
单调性概念及性质
Chapter
单调性定义
单调增
对于函数$f(x)$,若在其定义域内任意取两个数$x_1$和 $x_2$,当$x_1 < x_2$时,都有$f(x_1) leq f(x_2)$,则称函 数$f(x)$在该区间内单调增。
单调减
对于函数$f(x)$,若在其定义域内任意取两个数$x_1$和 $x_2$,当$x_1 < x_2$时,都有$f(x_1) geq f(x_2)$,则称 函数$f(x)$在该区间内单调减。
高一数学函数单调性与最大(小)值说课稿范文
高一数学函数单调性与最大(小)值说课稿范文
教材是进行教学的评判凭据,是学生获取知识的重要来源。
小编准备了高一数学函数单调性与最大(小)值说课稿,具体请看以下内容。
各位评委老师,大家好!
我是本科数学**号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》(可以在这时候板书课题,以缓解紧张)。
我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。
恳请在座的专家评委批评指正。
一、教材分析
1、教材的地位和作用
(1)本节课主要对函数单调性的学习;
(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)
(3)它是历年高考的热点、难点问题。
单调性与最大(小)值教案
龙文教育个性化辅导教案提纲
学生:日期: 年月日第次时段:
A. -1
B. 0
C. 1
D. 2 2. 函数|1|2y x =++的最小值是( ). A. 0 B. -1 C. 2 D. 3 3. 函数2y x x =+-的最小值是( ).
A. 0
B. 2
C. 4
D. 2
4. 已知函数()f x 的图象关于y 轴对称,且在区间(,0)-∞上,当1x =-时,()f x 有最小值3,则在区间(0,)+∞上,当x = 时,()f x 有最 值为 .
5. 函数21,[1,2]y x x =-+∈-的最大值为 ,最小值为 .
总结与反思: 课后作业:
1. 作出函数223y x x =-+的简图,研究当自变量x 在下列范围内取值时的最大值与最小值. (1)10x -≤≤; (2)03x ≤≤ ;(3)(,)x ∈-∞+∞.
2. 如图,把截面半径为10 cm 的圆形木头锯成矩形木料,如果矩形一边长为x ,面积为y ,试将y 表示成x 的函数,并画出函数的大致图象,并判断怎样锯才能使得截面面积最大?
学生对于本次课评价:
○ 特别满意 ○ 满意 ○ 一般 ○ 差 学生签字: 教师评定:
1、上次作业评价: ○非常好 ○好 ○ 一般 ○ 需要优化
2、上课情况评价: ○非常好 ○好 ○ 一般 ○ 需要优化
教师签字:
教务主任签字: ___________
龙文教育教务处。
单调性与最大(小)值教学设计
3. 2. 1单调性与最大(小)值《函数的单调性与最大(小)值》是高中数学新教材第一册第三章第2节的内容。
在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。
学生在初中已经学习了一次函数、二次函数、反比例函数的图象,在此基础上学生对增减性有一个初步的感性认识,所以本节课是学生数学思想的一次重要提高。
函数单调性是函数概念的延续和拓展,又是后续研究指数函数、对数函数等内容的基础,对进一步研究闭区间上的连续函数最大值和最小值的求法和实际应用,对解决各种数学问题有着广泛作用。
课程目标1、理解增函数、减函数的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.数学学科素养1.数学抽象:用数学语言表示函数单调性和最值;2.逻辑推理:证明函数单调性;3.数学运算:运用单调性解决不等式;4.数据分析:利用图像求单调区间和最值;5.数学建模:在具体问题情境中运用单调性和最值解决实际问题。
重点:1、函数单调性的定义及单调性判断和证明;2、利用函数单调性或图像求最值.难点:根据定义证明函数单调性.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入观察下列各个函数的图象,并探讨下列变化规律:①随X的增大,y的值有什么变化?②能否看出函数的最大、最小值?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本76-80页,思考并完成以下问题1.增函数、减函数的概念是什么?2.如何表示函数的单调区间?3.函数的单调性和单调区间有什么关系?4.函数最大(小)值的定义是什么?5.从函数的图象可以看出函数最值的几何意义是什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.增函数、减函数定义增函数减函数定义一般地,设函数7U)的定义域为/:如果对于定义域/内某个区间D上的任意两个自变量的值X],必,当R<应时,都有/1)勺>2)那么就说函数"X)在区间。
2单调性与最大(小)值-说课稿
《1.3.1单调性与最大(小)值》尊敬的各位各位老师、评委:大家好!今天我说课的课题是人教版高中数学必修一第一章第三节单调性与最大(小)值的第一课时。
接下来,我将从教材分析、教学目标、教学重难点、教学与学法、教学过程设计、教学反思等六个方面来进行我的说课。
一、教材分析1.学习任务分析本课时主要学习函数的单调性的概念,依据函数图象判断函数的单调性和依据定义证明函数的单调性。
本节课是在学生学习了函数概念的基础上所研究的函数的一个重要性质。
函数单调性的概念是研究具体函数函数单调性的依据,在研究函数的值域、定义域、最值等性质中有重要应用。
函数单调性的研究方法也具有典型意义,对加强“数”与“形”的结合,由直观到抽象;由特殊到一般的研究方法有很大帮助。
掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。
2.学情分析从学生知识层面看:学生在以前探讨了函数的相关知识,有一定的基础;通过“函数的概念”的学习,对函数的思想的认识也日渐提高,为重新定义函数的基本性质,从根本上揭示函数的基本性质提供了知识保证。
从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习单调性与最大(小)值的基本能力。
根据教材分析我制定了本节课的教学目标。
二、教学目标根据新课程的标准要求结合学生已有的认知能力结构我将从知识与技能、过程与方法、情感、态度与价值观三个方面来设计本节课的三维目标。
1、知识与技能目标(1)使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性。
(2)启发学生发现问题和提出问题,培养学生分析问题、认识问题和解决问题的能力。
(3)通过观察-猜想-推理-证明这一个重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。
2、过程与方法目标(1)通过渗透数形结合的数学思想,对学生进行辨证唯物主义的思想教育。
(2)探究与活动,明白考虑问题要细致,说理要明确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单调性与最大(小)值
各位老师,大家好,今天我说课的内容是:《单调性与最大(小)值》的第一课时,选自人教版普通高中课程标准实验教科书数学必修一的1.3.1节。
下面,我将从教材分析、教法学法分析、教学过程,以及板书设计这四个方面进行此次的说课。
首先,我先对教材作简要的分析:本节课是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。
掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。
通过本节的学习,学生将会实现以下三个目标:
在知识与技能目标方面,学生将掌握增(减)函数的概念并理解此概念的形成过程;理解并掌握函数单调性的证明步骤。
在过程与方法目标方面,学生通过观察图像探究增减函数的概念;通过讨论归纳出增减函数的概念;通过独立练习归纳掌握证明函数单调性的步骤
在情感态度与价值观方面,学生通过一系列丰富的数学活动,培养观察能力,归纳总结能力,加深对数形结合思想的理解。
根据课标的要求和学生的实际情况,我将本节的重点设计如下:形成增减函数的形式化定义。
而难点则是:增减函数定义的形成及理解函数单调性的证明方法。
在教法学法方面,我将采用启发式、探讨式的教学方法,引导学生自主探究,合作交流。
通过学生身边熟悉的事物,教师创造疑问,学生想办法解决疑问,通过教师的启发点拨,学生以自己的努力找到了解决问题的方法。
学生作为教学主体随时自主参与知识的发生、发现、发展的过程,努力思索解决疑问的方式,这才使得自己的能力通过教师的点拨得到发挥,体现了素质教育中学习能力的培养,达到了教学的目的。
接下来,是本次说课最重要的一个环节:教学过程。
为了讲授重点,突破难点,我将我的教学过程设计为下面四个环节:
首先,在创设情景,导入新课中,我将会先提出这样一个问题:语文中,我们学过“芝麻开花,节节高”、“此起彼伏”,“蒸蒸日上”等词来形容升降现象,那么数学上是如何来描述这种升降规律的呢?
这样结合其他知识,激发学习兴趣。
学生从老师的言语及动作感知平时的升降现象。
接着,我会让学生画出一次函数和二次函数的图像,同时提出下面几个问题:
问题1:如图观察一次函数和二次函数的图像,说说随着自变量的增大,图像的升降情况。
引导学生利用图像描述变化规律,如上升、下降,从几何直观角度认识函数的单调性。
? 设计意图:通过几何直观,引导学生关注图像所反映出的特征,体验自变量从小到大变化时,函数值大小变化在图像上的表现。
? 问题2:观察下面的表格,描述二次函数随自变量增大函数值的变化特征。
引导学生从数值变化角度描述变化规律,图像上升(下降),也就是随着x的增大y也增大(或减小)。
设计意图:从一个特殊例子,结合前面的图像特征,从数值变化角度认识函数的单调性。
问题3:对于一般函数,如果在区间(0,+∞)上有“图像上升”“随着x的增大,相应的f(x)值也增大”的特点,那么应该如何刻画呢?在这个过程中,二次函数的特征是一个具体的载体,可以起到验证、支持的作用。
如果学生主动提出函数单调性的一般定义,则可以讨论“为什么”,让学生以二次函数为例解释定义的合理性。
这个问题具有较高的思维要求,需要“跳一跳才能摘到果子”。
教学生,可以让学生开展讨
论、交流。
通过学生的活动民主地认识函数单调性的刻画方法。
设计意图:从形象到抽象,从具体到一般。
先然学生尝试描述一般函数在(0,+∞)上“图像上升”“随着x的增大,相应的f(x)值也增大”的特征。