不等式解法归纳

合集下载

不等式的解法

不等式的解法

x
4
0
3x 5 x 4
x
x
x
5 3 4 1 2
x4,
4. x23x10 x4
解:
x2 3x10 0 x4 0
x 5或 x 2
x
4
x2 3x 10 (x 4)2
x
26 5
x
5,
26 5
不等式解法的两个极其重要的思想:
⒈转化:即将绝对值不等式即其他不等式向代数 不等式或代数不等式组转化,再对其求解.
一.一次不等式和不等式组的解法 二.二次不等式的解法 三.高次不等式的解法 四.分式不等式的解法 五.绝对值不等式的解法 六.无理不等式的解法
一元一次不等式和不等式组的解法
一元一次不等式即为形如ax>b的不等式。
当a>0 则x> b a
当a<0 则x< b a
当a=0 且b 0 则为
当a=0 且b<0 则为R
解:1.当a=0时,不等式为:-x>0,解集为:{x|x<0}
2. 当a≠0时,不等式为:(ax-1)(x-a)>0, (1)当a>0时,不等式为:(x-1/a)(x-a)>0,
①a>1,a>1/a,解集为:{x|x<1/a或x>a}, ② 0<a<1,a<1/a,解集为:{x|x<a或x>}, ③ a=1,a=1/a=1,解集为:{x|x∈R且x≠1}; (2)当a<0时,(x-1/a)(x-a)<0, ①-1<a<0,a>1/a,解集为:{x|1/a<x<a} ②a<-1,a<1/a,解集为:{x|a<x<1/a}, ③a=-1,a=1/a=-1,解集为:x∈Φ。
列表法: f(x)的根把实数集分成若干个区间,

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的一种关系式,用于表示两个数或者两个代数式之间的大小关系。

解不等式是指找出满足不等式条件的未知数的取值范围。

在解不等式的过程中,可以运用一些特定的方法和技巧,以求得精确的解。

一、一元一次在解一元一次不等式时,可以运用以下几种常见的方法和技巧:1.1 加减法法则:对于不等式中的两边都加上或者减去同一个数,不等式的符号不改变。

1.2 乘除法法则:对于不等式中的两边都乘以或者除以同一个正数,不等式的符号不改变;若乘以或者除以同一个负数,不等式的符号则反向。

1.3 移项法:将不等式中的项移动到同一边,形成一个相等的等式,然后根据等式求解的方法得到解的范围。

1.4 区间判定法:通过观察不等式中的系数和常数项的正负关系,判断不等式的解的范围。

二、一元二次在解一元二次不等式时,除了可以运用一元一次不等式的解法外,还可以运用以下方法和技巧:2.1 因式分解法:将一元二次不等式进行因式分解,然后根据因式的正负情况判断不等式的解的范围。

2.2 二次函数图像法:将一元二次不等式所对应的二次函数的图像进行分析,根据图像的凹凸性和与 x 轴的交点来求解不等式。

2.3 完全平方差和平方根法:将一元二次不等式形式化为完全平方差或平方根的形式,然后根据完全平方差和平方根的性质来求解不等式。

三、绝对值绝对值不等式是指含有绝对值符号的不等式,其解的范围一般分成两个部分。

解绝对值不等式时,可以采用以下方法和技巧:3.1 分情况讨论法:根据绝对值的定义,将不等式分成正数和负数的情况讨论,并解出相应的不等式。

3.2 辅助变量法:引入一个辅助变量,使得绝对值不等式可以转化为一元一次或一元二次不等式,然后使用已知的解法来求解。

3.3 图像法:将绝对值不等式所对应的函数图像进行分析,根据图像的凹凸性和与 x 轴的交点来求解不等式。

四、多元多元不等式是指含有多个未知数的不等式,解多元不等式时可以运用以下方法和技巧:4.1 图像法:将多元不等式所对应的多元函数的图像进行分析,根据图像的几何特征来求解不等式。

解不等式的方法归纳

解不等式的方法归纳
原不等式的解集为{x| x -3或x }
错因:忽视了“ ”的含义;机械的将等式的运算性质套用到不等式运算中.
正解:原不等式可化为:x+22x+3x-2 ①或x+22x+3x-2 ②;
解①得:x=-3或x=-2或x=2
解②得:x<-3或x>2
原不等式的解集为{x| x -3或x 或x }
例5解关于x的不等式
当k 0时;由题意:
解得:-1<k<0
;故选C.
例2命题 <3;命题 <0;若A是B的充分不必要条件;则 的取值范围是_______
A. B. C. D.
错解:由|x-1|<3得:-2<x<4;
又由x+2x+a=0得x=-2或x=-a;
A是B的充分不必要条件;
x|-2<x<4 x|-2<x<-a
-a>4故选D.
三、经典例题导讲
例1如果kx2+2kx-k+2<0恒成立;则实数k的取值范围是___.
A.-1≤k≤0 B.-1≤k<0C.-1<k≤0 D.-1<k<0
错解:由题意:
解得:-1<k<0
错因:将kx2+2kx-k+2<0看成了一定是一元二次不等式;忽略了k=0的情况.
正解:当k=0时;原不等式等价于-2<0;显然恒成立; k=0符合题意.
2.不等式组的解集是本组各不等式解集的交集;所以在解不等式组时;先要解出本组内各不等式的解集;然后取其交集;在取交集时;一定要利用数轴;将本组内各不等式的解集在同一数轴上表示出来;注意同一不等式解的示意线要一样高;不要将一个不等式解集的两个或几个区间误看成是两个或几个不等式的解集.3.集合的思想和方法在解不等式问题中有广泛的应用;其难点是区分何时取交集;何时取并集.解不等式的另一个难点是含字母系数的不等式求解—注意分类.

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法1.加减法不等式公式:若a>b,则a+/-c>b+/-c,其中c为任意实数。

2.乘法不等式公式:若a>b且c>0,则a*c>b*c;若a>b且c<0,则a*c<b*c。

3.幂次不等式公式:对任意非零实数a和b若a>b且n>0且n为正整数,则a^n>b^n;若a>b且0<n<1,则a^n<b^n。

4.倒数不等式公式:若a>b>0,则1/a<1/b。

5.奇偶性不等式公式:若a>0且n为正整数,则a^n>0。

若a<0且n为奇数整数,则a^n<0。

常用的解基本不等式的方法有:1.用数轴法解:将不等式绘制在数轴上,根据不等式的性质找出符合条件的x的取值范围。

2.用代数方法解:针对不等式上的加减法、乘法、幂次或倒数等,利用基本不等式公式进行运算,化简不等式,最终得到x的取值范围。

3.用平方差、立方差或更高次差法解:对于特定形式的不等式,如二次函数不等式(即含有二次项的不等式),可使用平方差公式将其转化为不等式的标准形式;同样,对于三次函数不等式(即含有三次项的不等式),可使用立方差公式将其转化为不等式的标准形式。

通常,对高次不等式的解法需要更高级的数学知识,此处不再详细介绍。

4.用函数图像解:对于一些特定函数,如一次函数、二次函数等,可通过绘制函数图像来判断不等式的解集。

5.用不等式链解:若能将一个不等式化为多个简单的不等式,即不等式的解集满足一系列条件,可通过每个条件对应的不等式求解解集。

以上是基本不等式的一些公式和常用解法。

对于不同的不等式,我们需要根据具体情况选择合适的解法。

希望以上内容对您有所帮助。

不等式求解方法归纳

不等式求解方法归纳

一、不等式基本知识1、基本性质性质一:a b b a <⇔>(对称性)性质二:c a c b b a >⇒>>,,(传递性)性质三:c b c a b a +>+⇔>性质四:bc ac c b a bc ac c b a <⇔<>>⇔>>0,;0,2、运算性质d b c a d c b a +>+⇒>>,(加法法则);bd ac d c b a >⇒>>>>0,0(乘法法则)n n b a N n b a >⇒∈>>+,0(乘方法则);n n b a N n b a >⇒∈>>+,0(开方法则) 3、常用不等式(1)ab b a b a ≥+≥+222)2(2 (2)||222ab b a ≥+ 取等号条件:一正、二定、三相等(3)2|1|≥+x x (4)若ma mb a b m b a ++<>>>,0,0 (5)n n n x x x n x x x x ⋅⋅⋅⋅⋅⋅⋅≥+⋅⋅⋅+++21321(0≥i x )二、不等式的证明方法常用的方法有:比较法、分析法、综合法、归纳法、反证法、类比法、放缩法、换元法、判别式法、导数法、几何法、构造函数、数轴穿针法等。

1、比较法例1、若,0,0>>b a 求证:b a ba ab +≥+22。

证明:abb a b a b a ab b ab a b a b a b a a b 22222))(()())(()(-+=+-+-+=+-+0≥,∴b a a b b a +≥+22。

2、分析法例2已知y x b a ,,,都是正实数,且.,11y x b a >>求证:yb y x a x +>+。

解: y x b a ,,,都是正实数,∴要证yb y x a x +>+,只要证)()(x a y y b x +>+,即证ay bx >,也就是ab ay ab bx >,即,b y a x >而由.,11y x b a >>,知by a x >成立,原式得证。

不等式的解法

不等式的解法

不等式的解法不等式,即数学中用来表示大小关系的符号,它与等式不同的地方在于,不等式可以有无数个解,而不像等式只有一个解。

解不等式的方法有很多种,接下来将介绍几种常见的解不等式的方法。

一、一元一次不等式一元一次不等式是最基本的不等式,它的形式通常为ax+b>0或ax+b<0,其中a和b为已知数,x为未知数。

解一元一次不等式的方法有两种:图解法和代数法。

1. 图解法图解法是通过在数轴上画出所给不等式的解集来解不等式。

首先,我们将不等式中的x系数作为直线的斜率,常数项作为直线的截距,画出不等式对应的直线。

然后,根据不等式符号的方向,涂色标记出不等式的解集。

例如,对于不等式3x+2>0,我们可以画出直线y=3x+2,并根据大于号的方向,将直线上大于0的部分涂色。

2. 代数法代数法是通过代数运算解不等式。

首先,根据不等式符号的方向,确定不等式的类型是大于、小于还是等于。

然后,根据不等式中的系数和常数项,进行加法、减法、乘法和除法运算,将未知数x的系数和常数项移到不等式的一侧,使得不等式变为0的形式。

最后,通过考察几个关键点的取值情况,确定不等式的解集。

二、一元二次不等式一元二次不等式是一元二次方程的不等式形式,它的形式通常为ax^2+bx+c>0或ax^2+bx+c<0,其中a、b、c为已知数,x为未知数。

解一元二次不等式的方法有两种:图解法和代数法。

1. 图解法图解法是通过在坐标平面上画出所给不等式的解集来解不等式。

首先,我们将不等式转化为对应的一元二次方程,找到方程的判别式,判断方程的根的情况。

根据根的位置,将坐标平面分为几个区域,并确定每个区域对应的不等式的正负。

然后,将不等式对应的曲线画在坐标平面上,并根据不等式符号的方向,将曲线上符合条件的部分涂色。

2. 代数法代数法是通过代数运算解一元二次不等式。

首先,根据不等式符号的方向,确定不等式的类型是大于、小于还是等于。

然后,根据不等式中的系数和常数项,进行移项、配方、因式分解等运算,将不等式变为一元二次方程的零点形式。

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的问题,解不等式可以帮助我们找到满足特定条件的数值范围。

本文将介绍几种常用的不等式的解法。

一、一元一次一元一次不等式是形如ax+b>c或ax+b<c的不等式,其中a、b、c都是已知的实数,x是未知数。

1. 等价变形法通过对不等式进行等价变形,使得未知数x单独在一边,从而得到不等式的解。

例如,对于不等式3x+4>10,我们可以通过减4,并除以3来消去4和3,得到x>2。

所以x的取值范围为大于2的所有实数。

2. 符号法考虑不等式中的符号,根据不等式关系的性质确定解的范围。

例如,对于不等式5x-7≥8,我们观察到不等式中的符号是≥,根据≥的意义,我们知道等号成立时也是一个解。

所以我们可以解得5x-7=8,得到x=3。

因此,x的取值范围为大于等于3的所有实数。

二、一元二次一元二次不等式是形如ax^2+bx+c>d或ax^2+bx+c<d的不等式,其中a、b、c、d都是已知的实数,x是未知数。

1. 图像法将一元二次不等式转化为二次函数的图像,通过观察函数图像来确定不等式的解。

例如,对于不等式x^2-4x<3,我们可以将不等式转化为方程x^2-4x=3,并求得其根为x=1和x=3。

然后绘制出函数图像y=x^2-4x的图像,在图像上观察x轴上落在1和3之间的部分,即得到不等式的解为1<x<3。

2. 化简法将一元二次不等式进行化简,将不等式转化为一个或多个一元一次不等式,然后求解这些一元一次不等式的解。

例如,对于不等式x^2+2x-3>0,我们可以将不等式因式分解为(x-1)(x+3)>0。

然后我们考虑两个因式的正负情况,得到两个一元一次不等式x-1>0和x+3>0。

解这两个一元一次不等式,得到x>1和x>-3。

因此,x的取值范围为大于1和大于-3的所有实数。

三、多元多元不等式是包含两个或多个未知数的不等式,解多元不等式可以使用代入法、图像法或数学方法。

常见不等式通用解法

常见不等式通用解法

常见不等式通用解法总结一、基础的一元二次不等式,可化为类似一元二次不等式的不等式① 基础一元二次不等式 如2x 2 x 60,x 2 2x 1 0 ,对于这样能够直接配方或者因式分解的基础一元次不等式,重点关注 解区间的“形状”。

当二次项系数大于 0,不等号为小于(或小于等于号)时,解区间为两根的中间。

3又如x 2 ax 4-,令t x 2,再对a 进行分类讨论来确定不等式的解集2③含参数的一元二次不等式 解法步骤总结:序号步骤1首先判定二次项系数是否为0,为0则化为一元一次不等式,再分类讨论 2二次项系数非0,将其化为正的,讨论 判别式的正负性,从而确定不等式的解 集3若可以直接看出两根,或二次式可以因 式分解,则无需讨论判别式,直接根据 不同的参数值比较两根大小4综上,写出解集如不等式x 2 ax 1 0,首先发现二次项系数大于 0,而且此不等式无法直接看出两根,所以,讨论a 2 4的正负性即可。

0,R以只需要判定a 2和a 的大小即可。

a 0or a 1,{x R| x a} 此不等式的解集为0 a 1,( ,a 2) (a,) 2a 0or a 1,(, a) (a ,)又如不等式ax 2 2(a 1)x 4 0 ,注意:有些同学发现其可以因式分解,就直接写成2x x 60的解为(当二次项系数大于|,2)0,不等号为大于(或大于等于号)时,解区间为两根的两边。

2x 10的解为(,1 . 2) (1 .2,)当二次项系数小于②可化为类似一元二次不等式的不等式(换元) 如3x 1 x 的范围 0时,化成二次项系数大于0的情况考虑。

9x 2,令t 3x ,原不等式就变为t 23t 2 0,再算出t 的范围,进而算出此不等式的解集为0,{x 0,(R|x 自又如不等式x 2 (a 2 a )x a 30,发现其可以通过因式分解化为(x a)(x a 2)0,所)(x 1)2(x 2)(x 3)(x 4) 0 的示意图见下。

常见不等式的解法

常见不等式的解法

常见不等式的解法【知识要点】一、一元一次不等式的解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为(0)ax b a >≠的形式.当0a >时,不等式的解集为b x x a ⎧⎫>⎨⎬⎩⎭;当0a <时,不等式的解集为b x x a ⎧⎫<⎨⎬⎩⎭.二、一元二次不等式20(0)ax bx c a ++≥≠的解法1、二次不等式2()0f x ax bx c =++≥(0a >)的解法:最好的方法是图像法,充分体现了数形结合的思想.也可以利用口诀(大于取两边,小于取中间)解答.2、当二次不等式()f x =20(0)ax bx c a ++≥<时,可以画图,解不等式,也可以把二次项的系数a 变成正数,再利用上面的方法解答. 3、温馨提示(1)不要把不等式20ax bx c ++>看成了一元二次不等式,一定邀注意观察分析2x 的系数.(2)对于含有参数的不等式注意考虑是否要分类讨论.(3)如果运用口诀解一元二次不等式,一定要注意使用口诀必须满足的前提条件. (4)不等式的解集必须用集合或区间,不能用不等式,注意结果的规范性. 三、指数不等式和对数不等式的解法解指数不等式和对数不等式一般有以下两种方法(1)同底法:如果两边能化为同底的指数或对数,先化为同底,再根据指数、对数的单调性转化为代数不等式,底数是参数时要注意观察分析是否要对其进行讨论,并注意到对数真数大于零的限制条件.①当1a >时,()()()()f x g x a a f x g x >⇔>; ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩②当01a <<时,()()()()f x g x a a f x g x >⇔<; ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩(2)对指互化法:如果两边不能化成同底的指数或对数时,一般用对指互化法.对数不等式两边取指数,转化成整式不等式来解;指数不等式两边取对数,转化成整式不等式来解.(1)x a b a >>log ()log log x a a a a b x b ⇒>⇒> (01)x a b a ><<log ()log log x a a a a b x b ⇒<⇒<log 00log (1)aa xb x x x b a x b aa >>⎧⎧>⇒⇒>⎨⎨>>⎩⎩其中log 00log (1)aa xb x x x b a x b a a >>⎧⎧>⇒⇒<<⎨⎨<<⎩⎩其中0四、分式不等式的解法把分式不等式通过移项、通分、因式分解等化成()0()f x g x ≥的形式→化成不等式组()0()()0g x f x g x ≠⎧⎨≥⎩→解不等式组得解集.温馨提示:解分式不等式一定要考虑定义域. 五、高次不等式的解法先把高次不等式分解因式化成123()()()()0n x a x a x a x a ---->的形式(x 的系数必须为正)→标记方程的实根(注意空心和实心之分)→穿针引线,从右往左,从上往下穿(奇穿偶不穿)→写出不等式的解集.实际上,序轴标根法适用于所有的整式不等式,根据它可以很快地写出整式不等式的解集. 六、绝对值不等式的解法方法一:公式法 解只含有一个绝对值形如()ax b c +><的不等式,一般直接用公式x a x a x a >⇔><-或 x a a x a <⇔-<<,注意集合的关系和集合的运算,集合的运算主要利用数轴.方法二:零点讨论法 解含有两个绝对值形如()x a x b c +++><的不等式,常用零点讨论法和数形结合法.注意小分类求交大综合求并.方法三:平方法 如果绝对值的不等式的两边都是非负数,如:3x >,可以使用平方法. 七、无理不等式的解法无理不等式一般利用平方法和分类讨论解答.无理不等式转化为有理不等式,要注意平方的条件和根式有意义的条件,一般情况下,)()(x g x f ≥可转化为)()(x g x f >或)()(x g x f =,而)()(x g x f >等价于:⎩⎨⎧<≥0)(0)(x g x f 或⎪⎩⎪⎨⎧>≥≥2)]([)(0)(0)(x g x f x g x f .八、抽象的函数不等式的解法一般利用函数的单调性解答,先研究函数的单调性,再利用函数的单调性把抽象的函数不等式转化成具体的函数不等式解答. 学科#网 【方法讲评】【例1】 解关于x 的不等式01)1(2<++-x a ax .②当0>a 时,①式变为0)1)(1(<--x ax . ② ∵a a a -=-111,∴当10<<a 时,11>a ,此时②的解为ax 11<<.当1=a 时,11=a ,此时②的解为11<<x a. 【点评】解本题要注意分类讨论思想的运用,关键是要找到分类的标准,就本题来说有三级分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧>=<<><≠=∈11100000a a a a a a a R a 分类应做到使所给参数a 的集合的并集为全集,交集为空集,要做到不重不漏.另外,解本题还要注意在讨论0<a 时,解一元二次不等式01)1(2<++-x a ax 应首选做到将二次项系数变为正数再求解.【反馈检测1】 解关于x 的不等式0)(322>++-a x a a x .【例2】解不等式211126()82x x ---⨯<【点评】解这类指数不等式,常常需要通过变量代换把它变为整式不等式来解.【反馈检测2】解关于x 的不等式:)22(223x x x xa --<-(其中0a >)【例3】已知0>a 且1a ≠,关于x 的不等式1xa >的解集是{}0x x >,解关于x 的不等式1log ()0a x x-<的解集.【点评】本题选同底法解答,把0写成log 1a ,再利用对数函数的图像和性质将不等式变成分式不等式 组解答.【反馈检测3】解不等式21log (2)1x x x +-->.【例4】解关于x 的不等式12>-x【点评】分析:若将原不等式移项、通分整理可得:02)2()1(>----x a x a ⇔0)2)](2()1[(>----x a x a显然,现在有两个问题:(1)1a -的符号怎样?(2)12--a a 与2的大小关系怎样?这也就是本题的分类标准所在.【反馈检测4】 解不等式x xx x x <-+-+222322.)(n x a -数必须为正)→标记方程的实根(注意空心和实心之分)→穿针引线,从右往左,从上【例5】解不等式: 015223>--x x x【点评】如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.学科#网【反馈检测5】0)2()5)(4(32<-++x x x【例6】|5||23|1x x --+<【点评】该题由于有两个不等式,所以一般利用零点讨论法.对于含有两个和两个以上的不等式,一般利用零点讨论法.【反馈检测6】解不等式242+<-x x【例7】 解关于x 的不等式)0(122>->-a x a ax .【解析】原不等式⎪⎩⎪⎨⎧->-≥->-⇔;)1(2,01,02)1(222x a ax x a ax 或⎩⎨⎧<-≥-.01,02)2(2x a x由0>a ,得:⎪⎪⎩⎪⎪⎨⎧<+++-≤>⇔;01)1(2,1,2)1(22a x a x x a x ⎪⎩⎪⎨⎧>≥⇔.1,2)2(x a x由判别式08)1(4)1(422>=+-+=∆a a a ,故不等式01)1(222<+++-a x a x 的解是a a x a a 2121++<<-+.当20≤<a 时,1212≤-+≤a a a,121>++a a ,不等式组(1)的解是121≤<-+x a a ,不等式组(2)的解是1>x .当2>a 时,不等式组(1)无解,(2)的解是2a x ≥. 综上可知,当20≤<a时,原不等式的解集是[)+∞-+,21a a ;当2>a 时,原不等式的解集是⎪⎭⎫⎢⎣⎡+∞,2a .【点评】本题分类讨论标准“20≤<a ,2>a ”是依据“已知0>a 及(1)中‘2ax >,1≤x ’,(2)中‘2ax ≥,1>x ’”确定的.解含有参数的不等式是不等式问题中的难点,也是近几年高考的热点.一般地,分类讨论标准(解不等式)大多数情况下依“不等式组中的各不等式的解所对应的区间的端点”去确定.本题易误把原不等式等价于不等式)1(22x a ax ->-.纠正错误的办法是熟练掌握无理不等式基本类型的解法.【反馈检测7】解不等式x x x ->--81032.【例8】若非零函数对任意实数均有,且当时,. (1)求证:;(2)求证:为减函数;(3)当时,解不等式.(3)由 原不等式转化为,结合(2)得:故不等式的解集为【点评】(1)第(3)问的关键是找到1(?)4f =,再利用函数的单调性把抽象的函数不等式转化成具()f x ,a b ()()()f a b f a f b +=0x <()1f x >()0f x >()f x 1(4)16f =21(3)(5)4f x f x --≤211(4)(2)1(2)164f f f ==⇒=,由())2()53(2f x x f ≤-+-10222≤≤⇒≥-+x x x {}10|≤≤x x体函数不等式.【反馈检测8】函数对任意(0)x y ∈+∞,,满足()()()f xy f x f y =+且当1x >时,()0f x <. (l )判断函数的单调性并证明相关结论;(2) 若(2)1f =-,试求解关于x 的不等式()(3)2f x f x +-≥-.【反馈检测9】【2017江苏,11】已知函数31()2e e x xf x x x =-+-, 其中e 是自然对数的底数. 若 2(1)(2)0f a f a -+≤,则实数a 的取值范围是 .不等式的解法参考答案【反馈检测1答案】见解析【反馈检测2答案】见解析【反馈检测2详细解析】解原不等式得:即),12()12(2222-<-x xxa0)14)(4(),14()14(4<--∴-<-x x x x x a a)0,(log ,14,104a a a x 此时不等式的解集为时当<<<<此时不等式无解时当,0)14(,12<-=x a )log ,0(,41,14a a a x 此时不等式的解集为时当<<>【反馈检测3答案】3x >()f x ()fx【反馈检测3详细解析】[法一]原不等式同解于所以原不等式的解为3x >.[法二]原不等式同解于211log (2)log (1)x x x x x ++-->+所以原不等式的解为3x >.【反馈检测4答案】}321{><<-x x x 或【反馈检测5答案】{}2455>-<<--<x x x x 或或【反馈检测5详细解析】原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或【反馈检测6答案】{}31<<x x【反馈检测6详细解析】解法一:原不等式⎪⎩⎪⎨⎧+<-<-⎪⎩⎪⎨⎧+<-≥-⇔240424042222x x x x x x 或 即⎩⎨⎧>-<<<-⎩⎨⎧<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<<x 故原不等式的解集为{}31<<x x .解法二:原不等式等价于 24)2(2+<-<+-x x x即⎪⎩⎪⎨⎧+->-+<-)2(42422x x x x ∴312132<<⎩⎨⎧-<><<-x x x x 故或. 【反馈检测7答案】⎭⎬⎫⎩⎨⎧>1374x x【反馈检测8答案】(1)()f x 在(0,)+∞上单调递减;(2){34}x x <≤.学科#网【反馈检测8详细解析】(1)()f x 在(0,)+∞上单调递减1212,,(0,)x x x x <∈+∞任取且 2221111()()()()x x f x f x f x f x x =⋅=+则 2211()()()x f x f x f x ∴-= 120x x << 21()0x f x ∴< 2112()()0()()f x f x f x f x ∴-<>即 ()(0,)f x ∴+∞在单调递减 (2)2)2()2()4(-=+=f f f ((3))(4f x x f ∴-≥原不等式可化为 ()0f x +∞又在(,)上单调递增030(3)4x x x x >⎧⎪∴->⎨⎪-≤⎩34x <≤解得 {34}x x ∴<≤原不等式解集为. 【反馈检测9答案】1[1,]2-。

不等式的解法

不等式的解法

不等式的解法 一.不等式解法总结: 1.一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边. 2.高次不等式的解法:穿根法. 分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.3.分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解. 4.无理不等式的解法:转化为有理不等式求解 ⑴2()0()(0)()f x f x a a f x a ≥⎧>>⇔⎨>⎩ ⑵2()0()(0)()f x f x a a f x a≥⎧<>⇔⎨<⎩ ⑶2()0()0()()()0()0()[()]f x f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或 ⑷2()0()()()0()[()]f x f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩ ⑸()0()()()0()()f x f x g x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 5.指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>;⑵当01a <<时,()()()()f x g x a a f x g x >⇔<规律:根据指数函数的性质转化. 6.对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化. 7.含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f x g x f x g x ≤⇔≤ ⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.8.含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 9.含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论a 与0的大小; ⑵讨论∆与0的大小; ⑶讨论两根的大小. 10.恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=> ②当0a ≠时00.a >⎧⇒⎨∆<⎩⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=< ②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔< ()f x a ≤恒成立max ();f x a ⇔≤ ⑷()f x a >恒成立min ();f x a ⇔> ()f x a ≥恒成立min ().f x a ⇔≥ 二.练习: 1.解不等式:(1)23440x x -++> (2)213022x x ++> (3)()()21322x x x x +->-- (4)2232142-<---<-x x2. 函数)1(log 221-=x y 的定义域为 ______.3..二次函数y=ax 2+bx+c (x ∈R )的部分对应值如下表:则不等式ax 2+bx+c>0的解集是______.4.若不等式02>++c bx x 的解集是}13{-<>x x x 或,则b =______ c =______. 5.解关于x的不等式)1(12)1(≠>--a x x a6.若关于x 的不等式210,ax ax a ++-<的解集为R ,则a 的取值范围是______. 7.不等式220ax bx ++>解集为1123x -<<,则ab 值分别为______. x -3 -2 -1 0 1 2 3 4 y6-4-6-6-46。

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的一种关系式,描述了数值之间的大小关系。

它是由不等号(例如>, <, ≥, ≤, ≠)连接的两个数或表达式组成的。

解不等式就是找出满足该不等式的所有数值。

在解不等式的过程中,需要考虑不等式中的未知数、常数以及可能存在的绝对值、平方根等特殊情况。

以下是几种常见的不等式解法方法:一、加减法解不等式若不等式中的未知数带有符号,并且仅涉及到加减法运算,则可以通过移项的方式解不等式。

具体步骤如下:1. 将所有含有未知数的项放在一边,将常数放在另一边,确保未知数的系数为正数;2. 合并同类项;3. 如果未知数系数为负数,将不等号反转;4. 如果不等式两侧都含有未知数,则根据大小关系进行筛选;5. 最后化简,得到不等式的解。

举例说明:解不等式2x + 5 < 7 - x。

1. 将所有含有未知数的项放在一边,将常数放在另一边,得到2x + x < 7 - 5;2. 合并同类项,得到3x < 2;3. 未知数系数为正数,不需要改变不等号;4. 进行筛选,得到x < 2/3;5. 最后化简,得到解集{x | x < 2/3}。

二、乘除法解不等式若不等式中的未知数带有符号,并且仅涉及到乘除法运算,则可以通过乘除法的逆运算解不等式。

具体步骤如下:1. 将不等式中的未知数项移动一侧,将常数项移动到另一侧;2. 如果是乘法,则将未知数系数为正数;3. 如果是除法,则需考虑被除数符号与除数符号的关系;4. 根据大小关系进行筛选;5. 最后化简,得到不等式的解。

举例说明:解不等式3x - 4 > 2x + 1。

1. 将未知数项移动到一侧,将常数项移动到另一侧,得到3x - 2x > 1 + 4;2. 未知数系数为正数,不需要改变不等号;3. 进行筛选,得到x > 5;4. 最后化简,得到解集{x | x > 5}。

三、绝对值不等式的解法对于含有绝对值的不等式,需要分情况进行讨论。

不等式的解法

不等式的解法

不等式的解法一、简单的一元高次不等式的解法: 1.一元二次不等式的一般解法:1)形如:(x -a ) · (x -b )>0 等价于⎩⎨⎧〉-〉-00b x a x 或⎩⎨⎧〈-〈-00b x a x 。

2)形如:(x -a ) · (x -b )<0 等价于⎩⎨⎧〈-〉-0b x a x 或 ⎩⎨⎧〉-〈-0b x a x 。

2.简单的一元高次不等式的穿针引线法:一元高次不等式f(x)>0(或<0)用穿针引线法(或数轴标根法、根轴法、区间法)求解。

用此法解一元高次不等式,先将不等式化为一端为零,一端为一次因式(或二次因式不可分解因式)之积,然后求出零点,并在数轴上依次标出,再用光滑曲线从右至左,自上而下依次通过这些零点。

则大于零(小于零)的不等式的解集对应着曲线在数轴上方(下方)部分的实数x 的取值集合。

【注意事项】分解因式后,各因式中x 的系数一定要化为正数;画线时,遇奇数次重根一次穿过,遇偶数次重根穿而不过;考查各重根是否在解集内,再决定其去留。

【典型例题】解不等式:1) x 2-2x-3>0; 2) (x+2)·(x+1)2·(x-1)3·(x-2)≤0. 【解析】1)不等式x 2-2x-3>0 可化为(x-3)(x+1)>0 它等价于⎩⎨⎧〉+〉-0103x x 或 ⎩⎨⎧〈+〈-0103x x 即 x >3 或x <-1。

还可以用穿针引线法解答:令x 2-2x-3=0 ,即 (x-3)(x+1)=0. 则零点分别为 -1,3.将零点依次标在数轴上,并画出光滑的曲线,如图所示: + + -1 3因为不等式大于零,所以取X 轴上方的阴影部分。

则不等式的解集为: x >3 或x <-1。

2)用穿针引线法解答:令 (x+2)·(x+1)2·(x-1)3·(x-2)=0 ,则零点分别为:-2,-1,1,2,将零点依次标在数轴上,并画出光滑的曲线,如图所示:X-2 -1 1 2故原不等式的解集为{x|x ≤-2或1≤x ≤2或x=-1} 。

不等式的解法全集

不等式的解法全集

不等式的解法1. 一元一次不等式的解法解不等式 a x > b当a>0时的解集为 当a<0时的解集为当a=0时且0≥b 时,解集为 当a=0时且b<0时,解集为注意:若不等式0)(2<>++c bx ax 中a<0。

那么在解不等式时, 先把二次项系数化为正数情况,在利用上边的解法去解例题一: ○1 63192≥-x x ○2 0422≤--<x x○30652>+-x x ○40962>+-x x ○5012>++x x2. 简单的一元高次不等式的解法一元高次不等式f(x)>0用数轴穿根法解决,其步骤如下(1) 把f(x)分解为若干个因式的积或二次不可分因式之积(x 的系数为正)(2) 讲每个因式的根标在数轴上,从上到下,从右到左一次通过每个点化曲线(奇过偶不过)(3) 根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集例题:○1 (x+3)(x+1)(x-2)>0 ○20)2()5)(4(32<-++x x x○3(-x+2)(x-1)2(x+4)03≤ ○4015223>--x x x3. 绝对值不等式的解法 (1)利用绝对值的性质)0(><a a x ⇔ ⇔><)0(a a x ⇔>)()(x g x f ⇔<)()(x g x f ______________)()(⇔≥x g x f ⇔≤)()(x g x f(2)利用绝对值定义: ⎩⎨⎧=______________x ⎩⎨⎧≥⇔>_________)()()(x f x g x f 或者⎩⎨⎧<_________0)(x f例题:○1 321>-x ○2 512≤-x ○3392+≤-x x○4132+<-+x x ○5 0432≥--x x(4) 含有两个和两个以上绝对值的不等式的解法(零点区间分段)例题:○1 2311≥--+x x ○2 x x x +>-+-321 ○3112-<-x x4.注意:a x g x f >)()(如何求解?例题:○1 01312>+-x x ○2 232532≤-+-x x x ○3 xx 21≥+5.指数不等式的解法)()(x g x f aa> (a>0,a 1≠)当a>1时,)()(x g x f a a >_____________⇔ 当a<1时,)()(x g x f aa>_____________⇔02>++C BaAaxx用换元法 令t ax=例题:○1 212422≤-+x x ○2 2222--->x x x aa6.对数不等式的解法)()(log logx g ax f a> (a>0,a 1≠) 当a>1时,)()(loglogx g ax f a>⎪⎩⎪⎨⎧>>>⇔)()(0)(0)(x g x f x g x f当0<a<1时,)()(loglogx g ax f a>⎩⎪⎨⎧<>>⇔)()(0)(0)(x g x f x g x f若0loglog2>++C x B x A aa令t x a=log例题: ○1 log )(5321-x <log x 2+1 ○2 log )(2221--x x >log )(2221-x7.无理不等式的解法____________)()(⇔>x g x f ____________)()(⇔≥x g x f ____________)()(⇔<x g x f ____________)()(⇔≤x g x f ___________)()(⇔>x g x f __________)()(⇔≥x g x f ___________)()(⇔<x g x f__________)()(⇔≤x g x f ○1x x <-2 ○2 1132-≥+-x x x8.。

不等式的解法及知识点

不等式的解法及知识点

不等式的解法及知识点
不等式解法有哪些?对此想了解不等式的朋友可以来看看,下⾯由店铺⼩编为你准备了“不等式的解法及知识点”,仅供参考,持续关注本站将可以持续获取更多的内容资讯!
不等式的解法及知识点
不等式的解法
不等式的解法:1、找出未知数的项、常数项,该化简的化简。

2、未知数的项放不等号左边,常数项移到右边。

3、不等号两边进⾏加减乘除运算。

4、不等号两边同除未知数的系数,注意符号的改变。

不等式知识点
拓展阅读:不等式的基本性质
1.如果x>y,那么y<X;如果Yy;(对称性)
2.如果x>y,y>z;那么x>z;(传递性)
3.如果x>y,⽽z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同⼀个整式,不等号⽅向不变;
4.如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同⼀个⼤于0的整式,不等号⽅向不变;
5.如果x>y,z<0,那么xz<YZ, p 即不等式两边同时乘以(或除以)同⼀个⼩于0的整式,不等号⽅向改变;
6.如果x>y,m>n,那么x+m>y+n;
7.如果x>y>0,m>n>0,那么xm>yn;
8.如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<Y的N次幂(N为负数)。

不等式的解法

不等式的解法

不等式的解法●知识梳理1.一元一次不等式的解法.任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式. 当a >0时,解集为{x |x >ab };当a <0时,解集为{x |x <ab }.2.一元二次不等式的解法.任何一个一元二次不等式经过不等式的同解变形后,都可以化为ax 2+bx +c >0(或<0)(其中a >0)的形式,再根据“大于取两边,小于夹中间”求解集.3.简单的高次不等式、分式不等式的求解问题可采用“数轴标根法”.思考讨论用“数轴标根法”解高次、分式不等式时,对于偶次重根应怎样处理? ●点击双基1.(2004年全国Ⅳ,5)不等式32-+x x x )(<0的解集为A.{x |x <-2或0<x <3}B.{x |-2<x <0或x >3}C.{x |x <-2或x >0}D.{x |x <0或x >3} 解析:在数轴上标出各根.-2 0 3答案:A2.(2003年北京)若不等式|ax +2|<6的解集为(-1,2),则实数a 等于 A.8 B.2 C.-4 D.-8 解析:由|ax +2|<6得-6<ax +2<6,即-8<ax <4.∵不等式|ax +2|<6的解集为(-1,2),易检验a =-4. 答案:C3.(2003年重庆市诊断性考试题)已知函数f (x )是R 上的增函数,A (0,-1)、B (3,1)是其图象上的两点,那么| f (x +1)|<1的解集是A.(1,4)B.(-1,2)C.(-∞,1]∪[4,+∞)D.(-∞,-1]∪[2,+∞)解析:由题意知f (0)=-1,f (3)=1.又| f (x +1)|<1⇔-1<f (x +1)<1, 即f (0)<f (x +1)<f (3).又f (x )为R 上的增函数, ∴0<x +1<3.∴-1<x <2.答案:B 4.(理)(2003年山东潍坊市第二次模拟考试题)不等式x 2-|x -1|-1≤0的解集为____________.解析:当x -1≥0时,原不等式化为x 2-x ≤0,解得0≤x ≤1.∴x =1;当x -1<0时,原不等式化为x 2+x -2≤0,解得-2≤x ≤1.∴-2≤x <1. (文)不等式ax 2+(ab +1)x +b >0的解集为{x |1<x <2},则a +b =_______. 解析:∵ax 2+(ab +1)x +b >0的解集为{x |1<x <2},∴⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-<.2310aba ab a ,,解得⎪⎩⎪⎨⎧-=-=121b a ,或⎩⎨⎧-=-=.21b a ,∴a +b =-23或-3. 5.不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式ax 2-bx +c >0的解集为_______. 解析:令f (x )=ax 2+bx +c ,其图象如下图所示,xyy y O = = f x ( )f x ()-3 -2 2 3-再画出f (-x )的图象即可.答案:{x |-3<x <-2} ●典例剖析 【例1】 解不等式3252---x x x<-1.剖析:这是一个分式不等式,其左边是两个关于x 的多项式的商,而右边是非零常数,故需移项通分,右边变为零,再利用商的符号法则,等价转化成整式不等式组.解:原不等式变为3252---x xx+1<0,即322322--+-x xx x <0⇔⎪⎩⎪⎨⎧<-->+-⎪⎩⎪⎨⎧>--<+-⇔0320230320232222x x x x x x x x 或,-1<x <1或2<x <3.∴原不等式的解集是{x |-1<x <1或2<x <3}.【例2】 求实数m 的范围,使y =lg [mx 2+2(m +1)x +9m +4]对任意x ∈R 恒有意义. 剖析:mx 2+2(m +1)x +9m +4>0恒成立的含义是该不等式的解集为R . 故应⎩⎨⎧>.00<,Δm解:由题意知mx 2+2(m +1)x +9m +4>0的解集为R ,则⎩⎨⎧<+-+=>.04941402)()(,m m m Δm 解得m >41. 评述:二次不等式ax 2+bx +c >0恒成立的条件:⎩⎨⎧<>.00Δa ,若未说明是二次不等式还应讨论a =0的情况.思考讨论本题若要使值域为全体实数,m 的范围是什么? 提示:对m 分类讨论,m =0适合. 当m ≠0时,⎩⎨⎧≥>.00Δm ,解m 即可.【例3】 若不等式2x -1>m (x 2-1)对满足|m |≤2的所有m 都成立,求x 的取值范围. 剖析:对于m ∈[-2,2],不等式2x -1>m (x 2-1)恒成立,把m 视为主元,利用函数的观点来解决.解:原不等式化为(x 2-1)m -(2x -1)<0. 令f (m )=(x 2-1)m -(2x -1)(-2≤m ≤2).则⎪⎩⎪⎨⎧<---=<----=-.01212201212222)()()(,)()()(x x f x x f 解得271+-<x <231+.深化拓展1.本题若变式:不等式2x -1>m (x 2-1)对一切-2≤x ≤2都成立,求m 的取值范围.2.本题若把m 分离出来再求m 的范围能行吗? ●闯关训练 夯实基础1.(2004年重庆,4)不等式x +12+x >2的解集是 A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1) C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)解法一:x +12+x >2⇔x -2+12+x >0⇔11+-x x x )(>0⇔x (x -1)(x +1)>0⇔-1<x <0或x >1.解法二:验证,x =-2、21不满足不等式,排除B 、C 、D.2.设f (x )和g (x )都是定义域为R 的奇函数,不等式f (x )>0的解集为(m ,n ),不等式g (x )>0的解集为(2m ,2n ),其中0<m <2n ,则不等式f (x )·g (x )>0的解集是A.(m ,2n )B.(m ,2n )∪(-2n ,-m )C.(2m ,2n )∪(-n ,-m )D.(2m ,2n )∪(-2n ,-2m )解析:f (x )、g (x )都是定义域为R 的奇函数,f (x )>0的解集为(m ,n ),g (x )>0的解集为(2m ,2n ).∴f (-x )>0的解集为(-n ,-m ),g (-x )>0的解集为(-2n,-2m ),即f (x )<0的解集为(-n ,-m ),g (x )<0的解集为(-2n ,-2m ).由f (x )·g (x )>0得⎩⎨⎧>>00)(,)(x g x f 或⎩⎨⎧<<.00)(,)(x g x f .又0<m <2n,∴m <x <2n 或-2n <x <-m .3.若关于x 的不等式-21x 2+2x >mx 的解集为{x |0<x <2},则实数m 的值为_______.解析:由题意,知0、2是方程-21x 2+(2-m )x =0的两个根,∴-212--m =0+2.∴m =1.4.(2004年浙江,13)已知f (x )=⎩⎨⎧<-≥.0101x x ,则不等式x +(x +2)·f (x +2)≤5的解集是____________.解析:当x +2≥0,即x ≥-2时.x +(x +2)f (x +2)≤5⇔2x +2≤5⇔x ≤23.∴-2≤x ≤23.当x +2<0即x <-2时,x +(x +2)f (x +2)≤5 ⇔x +(x +2)·(-1)≤5⇔-2≤5,∴x <-2.综上x ≤23.5.(2004年宣武二模题)定义符号函数sgn x =⎪⎩⎪⎨⎧<-=>.010001)(),(),(x x x 当x ∈R 时,解不等式(x +2)>(2x -1)sgn x .解:当x >0时,原不等式为x +2>2x -1.∴0<x <3.当x =0时,成立.当x <0时,x +2>121-x .x -121-x +2>0.1224122--+--x x x x>0.123322--+x x x>0.∴-4333+<x <0.综上,原不等式的解集为{x |-4333+<x <3}.6.(2003年北京西城区一模题)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解:原不等式变形为ax 2+(a -2)x -2≥0. ①a =0时,x ≤-1;②a ≠0时,不等式即为(ax -2)(x +1)≥0, 当a >0时,x ≥a2或x ≤-1;由于a2-(-1)=aa 2+,于是当-2<a <0时,a2≤x ≤-1;当a =-2时,x =-1;当a <-2时,-1≤x ≤a2.综上,当a =0时,x ≤-1;当a >0时,x ≥a2或x ≤-1;当-2<a <0时,a2≤x ≤-1;当a =-2时,x =-1;当a <-2时,-1≤x ≤a2.培养能力7.(2004年春季安徽)解关于x 的不等式log a 3x <3log a x (a >0,且a ≠1). 解:令y =log a x ,则原不等式化为y 3-3y <0,解得y <-3或0<y <3,即log a x <-3或0<log a x <3. 当0<a <1时,不等式的解集为{x |x >a 3-}∪{x |a3<x <1};当a >1时,不等式的解集为{x |0<x <a 3-}∪{x |1<x <a3}.8.有点难度哟!(2003年天津质量检测题)已知适合不等式|x 2-4x +a |+|x -3|≤5的x 的最大值为3,求实数a 的值,并解该不等式.解:∵x ≤3,∴|x -3|=3-x .若x 2-4x +a <0,则原不等式化为x 2-3x +a +2≥0.此不等式的解集不可能是集合{x |x ≤3}的子集,∴x 2-4x +a <0不成立.于是,x 2-4x +a ≥0,则原不等式化为x 2-5x +a -2≤0.∵x ≤3,令x 2-5x +a -2=(x -3)(x -m )=x 2-(m +3)x +3m ,比较系数,得m =2,∴a =8. 此时,原不等式的解集为{x |2≤x ≤3}. 探究创新9.关于x 的不等式⎪⎩⎪⎨⎧<+++>--055220222k x k x x x )(,的整数解的集合为{-2},求实数k 的取值范围.解:由x 2-x -2>0可得x <-1或x >2.∵⎪⎩⎪⎨⎧<+++>--055220222k x k x x x )(,的整数解为x =-2,又∵方程2x 2+(2k +5)x +5k =0的两根为-k 和-25.①若-k <-25,则不等式组的整数解集合就不可能为{-2};②若-25<-k ,则应有-2<-k ≤3.∴-3≤k <2.综上,所求k 的取值范围为-3≤k <2.●思悟小结1.一元二次不等式的解集与二次项系数及判别式的符号有关.2.解分式不等式要使一边为零,转化为不等式组.如果能分解,可用数轴标根法或列表法.3.解高次不等式的思路是降低次数,利用数轴标根法求解较为容易.4.解含参数的不等式的基本途径是分类讨论,能避免讨论的应设法避免讨论. ●教师下载中心 教学点睛1.解不等式的过程,实质上是不等式等价转化过程.因此在教学中向学生强调保持同解变形是解不等式应遵循的基本原则.2.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解, 这体现了转化与化归的数学思想.3.解不等式几乎是每年高考的必考题,重点仍是含参数的有关不等式,对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确. 拓展题例【例1】 (2003年南京市第二次质量检测题)解关于x 的不等式12-ax ax>x (a ∈R ).解法一:由12-ax ax>x ,得12-ax ax-x >0,即1-ax x >0.此不等式与x (ax -1)>0同解.若a <0,则a1<x <0; 若a =0,则x <0;若a >0,则x <0或x >a1.综上,a <0时,原不等式的解集是(a1,0);a =0时,原不等式的解集是(-∞,0); a >0时,原不等式的解集是(-∞,0)∪(a 1,+∞). 解法二:由12-ax ax>x ,得12-ax ax-x >0,即1-ax x>0.此不等式与x (ax -1)>0同解. 显然,x ≠0.(1)当x >0时,得ax -1>0.若a <0,则x <a1,与x >0矛盾,∴此时不等式无解;若a =0,则-1>0,此时不等式无解; 若a >0,则x >a1.(2)当x <0时,得ax -1<0.若a <0,则x >a1,得a1<x <0;若a =0,则-1<0,得x <0;若a >0,则x <a1,得x <0.综上,a <0时,原不等式的解集是(a1,0);a =0时,原不等式的解集是(-∞,0);a >0时,原不等式的解集是(-∞,0)∪(a1,+∞).【例2】 f (x )是定义在(-∞,3]上的减函数,不等式f (a 2-sin x )≤f (a +1+cos 2x )对一切x ∈R 均成立,求实数a 的取值范围.解:由题意可得⎪⎪⎩⎪⎪⎨⎧++≥-≤++≤-x a x a x a x a 2222cos 1sin 3cos 13sin ,,即⎪⎪⎩⎪⎪⎨⎧--≥---≤+≤222221sin 49cos 2sin 3)(,,x a a x a x a 对x ∈R 恒成立.故⎪⎪⎩⎪⎪⎨⎧--≥--≤≤max22221sin 4912)(,,x a a a a ∴-2≤a ≤2101-.●知识梳理1.|x |>a ⇔x >a 或x <-a (a >0); |x |<a ⇔-a <x <a (a >0).2.形如|x -a |+|x -b |≥c 的不等式的求解通常采用“零点分段讨论法”.3.含参不等式的求解,通常对参数分类讨论.4.绝对值不等式的性质: ||a |-|b ||≤|a ±b |≤|a |+|b |. 思考讨论1.在|x |>a ⇔x >a 或x <-a (a >0)、|x |<a ⇔-a <x <a (a >0)中的a >0改为a ∈R 还成立吗?2.绝对值不等式的性质中等号成立的条件是什么?●点击双基1.(2003年成都第三次诊断题)设a 、b 是满足ab <0的实数,那么 A.|a +b |>|a -b | B.|a +b |<|a -b | C.|a -b |<||a |-|b || D.|a -b |<|a |+|b | 解析:用赋值法.令a =1,b =-1,代入检验.2.(2004年春季安徽)不等式|2x 2-1|≤1的解集为 A.{x |-1≤x ≤1}B.{x |-2≤x ≤2}C.{x |0≤x ≤2}D.{x |-2≤x ≤0}解析:由|2x 2-1|≤1得-1≤2x 2-1≤1. ∴0≤x 2≤1,即-1≤x ≤1.3.不等式|x +log 3x |<|x |+|log 3x |的解集为 A.(0,1) B.(1,+∞) C.(0,+∞)D.(-∞,+∞)解析:∵x >0,x 与log 3x 异号, ∴log 3x <0.∴0<x <1. 4.已知不等式a ≤||22x x+对x 取一切负数恒成立,则a 的取值范围是____________.解析:要使a ≤||22x x +对x 取一切负数恒成立,令t =|x |>0,则a ≤tt22+.而tt22+≥tt 22=22,∴a ≤22.答案:a ≤225.已知不等式|2x -t |+t -1<0的解集为(-21,21),则t =____________.解析:|2x -t |<1-t ,t -1<2x -t <1-t ,2t -1<2x <1,t -21<x <21.∴t =0.●典例剖析【例1】 解不等式|2x +1|+|x -2|>4.剖析:解带绝对值的不等式,需先去绝对值,多个绝对值的不等式必须利用零点分段法去绝对值求解.令2x +1=0,x -2=0,得两个零点x 1=-21,x 2=2.解:当x ≤-21时,原不等式可化为-2x -1+2-x >4,∴x <-1.当-21<x ≤2时,原不等式可化为2x +1+2-x >4,∴x >1.又-21<x ≤2,∴1<x ≤2.当x >2时,原不等式可化为2x +1+x -2>4,∴x >35.又x >2,∴x >2.综上,得原不等式的解集为{x |x <-1或1<x }. 深化拓展若此题再多一个含绝对值式子.如:|2x +1|+|x -2|+|x -1|>4,你又如何去解? 分析:令2x +1=0,x -2=0,x -1=0,得x 1=-21,x 2=1,x 3=2.解:当x ≤-21时,原不等式化为-2x -1+2-x +1-x >4,∴x <-21.当-21<x ≤1时,原不等式可化为2x +1+2-x +1-x >4,4>4(矛盾).当1<x ≤2时,原不等式可化为2x +1+2-x +x -1>4,∴x >1. 又1<x ≤2,∴1<x ≤2.当x >2时,原不等式可化为2x +1+x -2+x -1>4,∴x >23.又x >2,∴x >2.综上所述,原不等式的解集为{x |x <-21或x >1}.【例2】 解不等式|x 2-9|≤x +3.剖析:需先去绝对值,可按定义去绝对值,也可利用|x |≤a ⇔-a ≤x ≤a 去绝对值.解法一:原不等式⇔(1)⎪⎩⎪⎨⎧+≤-≥-390922x x x ,或(2)⎪⎩⎪⎨⎧+≤-<-.390922x x x ,不等式(1)⇔⎩⎨⎧≤≤-≥≤4333x x x 或⇔x =-3或3≤x ≤4;不等式(2)⇔⎩⎨⎧≥-≤<<-2333x x x 或⇔2≤x <3.∴原不等式的解集是{x |2≤x ≤4或x =-3}.解法二:原不等式等价于⎩⎨⎧+≤-≤+-≥+393032x x x x )(⇔⎪⎩⎪⎨⎧≤≤--≤-≥4333x x x ,或x ≥2⇔x=-3或2≤x ≤4. ∴原不等式的解集是{x |2≤x ≤4或x =-3}. 【例3】 (理)已知函数f (x )=x |x -a |(a ∈R ). (1)判断f (x )的奇偶性;(2)解关于x 的不等式:f (x )≥2a 2. 解:(1)当a =0时, f (-x )=-x |-x |=-x |x |=-f (x ), ∴f (x )是奇函数.当a ≠0时,f (a )=0且f (-a )=-2a |a |.故f (-a )≠f (a )且f (-a )≠-f (a ). ∴f (x )是非奇非偶函数. (2)由题设知x |x -a |≥2a 2, ∴原不等式等价于⎩⎨⎧≥+-<222aax xa x , ①或⎩⎨⎧≥-≥.222a ax xa x , ②由①得⎩⎨⎧≤+-<.0222a ax x a x ,x ∈∅.由②得⎩⎨⎧≥+-≥.02))((,a x a x a x 当a =0时,x ≥0.当a >0时,⎩⎨⎧-≥≤≥,或,a x a x a x 2∴x ≥2a .当a <0时,⎩⎨⎧-≤≥≥,或,a x a x a x 2x≥-a . 综上a ≥0时,f (x )≥2a 2的解集为{x |x ≥2a };a <0时,f (x )≥2a 2的解集为{x |x ≥-a }.(文)设函数f (x )=ax +2,不等式| f (x )|<6的解集为(-1,2),试求不等式)(x f x ≤1的解集.解:|ax +2|<6,∴(ax +2)2<36,即a 2x 2+4ax -32<0.由题设可得⎪⎪⎩⎪⎪⎨⎧-=-=-.2321422aa a ,解得a =-4.∴f (x )=-4x +2.由)(x f x≤1,即24+-x x ≤1可得2425--x x ≥0.解得x >21或x ≤52.∴原不等式的解集为{x |x >21或x ≤52}.●闯关训练夯实基础1.(2003年北京海淀区一模题)已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是A.{a |3<a ≤4}B.{a |3≤a ≤4}C.{a |3<a <4}D.∅解析:由题意知⎩⎨⎧≥+≤-,,5231a a 得3≤a ≤4.2.不等式|x 2+2x |<3的解集为____________. 解析:-3<x2+2x <3,即⎪⎩⎪⎨⎧>++<-+.03203222x x x x ,∴-3<x <1.3.(2004年全国Ⅰ,13)不等式|x +2|≥|x |的解集是____________.解法一:|x +2|≥|x |⇔(x +2)2≥x 2⇔4x +4≥0⇔x ≥-1.解法二: 在同一直角坐标系下作出f (x )=|x +2|与g (x )=|x |的图象,根据图象可得x ≥-1.|解法三:根据绝对值的几何意义,不等式|x +2|≥|x |表示数轴上x 到-2的距离不小于到0的距离,∴x ≥-1.答案:{x |x ≥-1}评述:本题的三种解法均为解绝对值不等式的基本方法,必须掌握. 4.(2004年春季北京)当0<a <1时,解关于x 的不等式a 12-x <a x -2.解:由0<a <1,原不等式可化为12-x >x -2.这个不等式的解集是下面不等式组①及②的解集的并集.⎩⎨⎧<-≥-02012x x , ⎪⎩⎪⎨⎧->-≥-≥-.212020122)(,,x x x x解不等式组①得解集为{x |21≤x <2},解不等式组②得解集为{x |2≤x <5}, 所以原不等式的解集为{x |21≤x <5}.5.关于x 的方程3x 2-6(m -1)x +m 2+1=0的两实根为x 1、x 2,若|x 1|+|x 2|=2,求m 的值.解:x 1、x 2为方程两实根,∴Δ=36(m -1)2-12(m 2+1)≥0.∴m ≥253+或m ≤253-.又∵x 1·x 2=212+m>0,∴x 1、x 2同号.∴|x 1|+|x 2|=|x 1+x 2|=2|m -1|.于是有2|m -1|=2,∴m =0或2.∴m =0. 培养能力 6.解不等式212-x≤||1x .解:(1)当x 2-2<0且x ≠0,即当-2<x <2且x ≠0时,原不等式显然成立. (2)当x 2-2>0时,原不等式与不等式组⎪⎩⎪⎨⎧≥->||22||2x xx ,等价.x 2-2≥|x |,即|x |2-|x |-2≥0.∴|x |≥2.∴不等式组的解为|x |≥2,即x ≤-2或x ≥2.∴原不等式的解集为(-∞,-2]∪(-2,0)∪(0,2)∪[2,+∞). 7.(2003年湖北黄冈模拟题)已知函数f (x )=xx ax122-+的定义域恰为不等式log 2(x +3)+log 21x ≤3的解集,且f (x )在定义域内单调递减,求实数a 的取值范围.解:由log 2(x +3)+log 21x ≤3得⎪⎩⎪⎨⎧>≤+033log 2x x x ⇔⎪⎩⎪⎨⎧>≤+⇔083x x x x ≥73,即f (x )的定义域为[73,+∞).∵f (x )在定义域[73,+∞)内单调递减,∴当x 2>x 1≥73时,f (x 1)-f (x 2)>0恒成立,即有(ax 1-11x +2)-(ax 2-21x +2>0⇔a (x 1-x 2)-(11x -21x )>0⇔(x 1-x 2)(a +211x x )>0恒成立.∵x 1<x 2,∴(x 1-x 2)(a +211x x )>0⇔a +211x x <0. ∵x 1x 2>499⇒-211x x >-949,要使a <-211x x 恒成立,则a 的取值范围是a ≤-949.8.有点难度哟!已知f (x )=x 2-x +c 定义在区间[0,1]上,x 1、x 2∈[0,1],且x 1≠x 2,求证: (1)f (0)=f (1);(2)| f (x 2)-f (x 1)|<|x 1-x 2|; (3)| f (x 1)-f (x 2)|<21;(4)| f (x 1)-f (x 2)|≤41.证明:(1)f (0)=c ,f (1)=c ,∴f (0)=f (1). (2)| f (x 2)-f (x 1)|=|x 2-x 1||x 2+x 1-1|.∵0≤x 1≤1,∴0≤x 2≤1,0<x 1+x 2<2(x 1≠x 2).∴-1<x 1+x 2-1<1. ∴| f (x 2)-f (x 1)|<|x 2-x 1|. (3)不妨设x 2>x 1,由(2)知| f (x 2)-f (x 1)|<x 2-x 1而由f (0)=f (1),从而| f (x 2)-f (x 1)|=| f (x 2)-f (1)+f (0)-f (x 1)|≤| f (x 2)-f (1)|+| f (0)- f (x 1)|<|1-x 2|+|x 1|<1-x 2+x 1. ②①+②得2| f (x 2)-f (x 1)|<1,即| f (x 2)-f (x 1)|<21.(4)|f (x 2)-f (x 1)|≤f max -f min =f (0)-f (21)=41.探究创新9.(1)已知|a |<1,|b |<1,求证:|ba ab --1|>1;(2)求实数λ的取值范围,使不等式|ba ab --λλ1|>1对满足|a |<1,|b |<1的一切实数a 、b 恒成立;(3)已知|a |<1,若|abb a ++1|<1,求b 的取值范围.(1)证明:|1-ab |2-|a -b |2=1+a 2b 2-a 2-b 2=(a 2-1)(b 2-1).∵|a |<1,|b |<1,∴a 2-1<0,b 2-1<0.∴|1-ab |2-|a -b |2>0.∴|1-ab |>|a -b |,|||1|b a ab --=|||1|b a b a -⋅->1.(2)解:∵|ba ab --λλ1|>1⇔|1-ab λ|2-|a λ-b |2=(a 2λ2-1)(b 2-1)>0.∵b 2<1,∴a 2λ2-1<0对于任意满足|a |<1的a 恒成立.。

基本不等式的解法

基本不等式的解法

基本不等式的解法如下:
方法一:代数方法。

通过变形和化简等操作,将不等式转化为更简单的形式,从而得到不等式的解集。

例如,对于不等式2x + 5 > 3x - 1,可以移项得到2x - 3x > -1 - 5,然后化简为-x > -6,最后根据-x的系数为负数,将不等式两边的符号取相反,得到x < 6。

方法二:图像法。

将不等式转化为图像的形式,通过观察图像来确定不等式的解集。

例如,对于不等式x + 2 > 0,可以将其转化为x > -2。

然后在数轴上标出-2和1、2、3等点,根据不等号的符号确定解集。

方法三:比较法。

通过比较两个不等式的解集来确定它们是否相同。

例如,对于不等式x + 2 > 0和x + 1 > 0,可以通过比较它们的解集来确定它们是否相同。

方法四:同解变形法。

将不等式进行同解变形,使其转化为另一个不等式,然后求解新的不等式。

例如,对于不等式x + 2 > 0,可以将其转化为x + 1 > -1的形式,然后根据同解变形法则得到x + 1 > 0,从而得到原不等式的解集。

需要注意的是,基本不等式的解法有很多种,不同的方法适用于不同的不等式类型和问题背景。

在实际应用中,需要根据具体情况选择合适的方法进行求解。

不等式的类型及解法技巧

不等式的类型及解法技巧

不等式的类型及解法技巧
基本性质
①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
②如果x>y,y>z;那么x>z;(传递性)
③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)
④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)
⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)
⑥如果x>y>0,m>n>0,那么xm>yn;
⑦如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)。

解法
把所有的式子都移到左边,右是0;
然后左边通分;
然后由相除大于或小于0则得到相乘大于或小于0;
然后左边因式分解;
最后用穿针发得到解;
注意如果是大于等于或小于等于0;
要考虑分母不等于0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型一:简单一元二次不等式分析:利用二次函数的图像解题题型二:一元高次不等式分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”。

例2 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x . 解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或∴原不等式解集为{}2455>-<<--<x x x x 或或题型三:分式不等式分析:一条原则----移项,通分,合并同类项,化分式为整式,要注意分母不为0的情况。

当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形0)()(0)()(<⋅⇔<x g x f x g x f ,0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或 例3 解下列分式不等式:(1)22123+-≤-x x ; (2)04125622<-++-x x x x .(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

(2)原不等式化为0)6)(2()5)(1(>-+--x x x x .画数轴,找因式根,分区间,定符号.)6)(2()5)(1(-+--x x x x 符号∴原不等式解集是}6512{><<-<x x x x ,或,或.题型四 绝对值不等式分析:(1)零点分段讨论法(最后结果应取各段的并集):如解不等式312242x x -++≥(答:x R ∈);(2)利用绝对值的定义:去绝对值符号有两种方法:一是根据绝对值的意义⎩⎨⎧<-≥=)0()0(a a a a a ,二是根据绝对值的性质:a x a x a x a a x >⇔<<-⇔<.,或a x -<。

; (3)数形结合:如解不等式13x x +->(答:()(),12,-∞-+∞ )(4)两边平方:如若不等式322x x a +≥+对x R ∈恒成立,则实数a 的取值范围 为______。

(答:4{}3)例4 解不等式(1)242+<-x x (2)331042<--x x(1)解法一:原不等式⎪⎩⎪⎨⎧+<-<-⎪⎩⎪⎨⎧+<-≥-⇔240424042222x x x x x x 或 即⎩⎨⎧>-<<<-⎩⎨⎧<<--≤≥1222222x x x x x x x 或或或∴32<≤x 或21<<x故原不等式的解集为{}31<<x x .解法二:原不等式等价于 24)2(2+<-<+-x x x即⎪⎩⎪⎨⎧+->-+<-)2(42422x x x x ∴312132<<⎩⎨⎧-<><<-x x x x 故或. (2)解答:去掉绝对值号得3310432<--<-x x , ∴原不等式等价于不等式组⇒⎪⎩⎪⎨⎧<-->-⇒⎪⎩⎪⎨⎧<----<-06104010433104310432222x x x x x x x x ⎪⎪⎩⎪⎪⎨⎧<<-><⇒⎩⎨⎧<+->-.321,2500)12)(3(20)52(2x x x x x x x 或 ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<<<-325021x x x 或.题型五 无理不等式分析:无理不等式转化为有理不等式,要注意平方的条件和根式有意义的条件,一般情况下,)()(x g x f ≥可转化等价于: ⎩⎨⎧<≥0)(0)(x g x f 或⎪⎩⎪⎨⎧>≥≥2)]([)(0)(0)(x g x f x g x f , ⎪⎩⎪⎨⎧≤≥≥⇔≤2)]([)(0)(0)()()(x g x f x g x f x g x f例5 解不等式(1)x x x ->--81032 (2)x x x ->--81032 (1)解:原不等式等价于下面两个不等式组:①⎩⎨⎧≥--<-0103082x x x ②⎪⎩⎪⎨⎧->--≥--≥-222)8(103010308x x x x x x由①得⎩⎨⎧-≤≥>258x x x 或,∴8>x由②得∴⎪⎪⎩⎪⎪⎨⎧>-≤≥≤.1374258x x x x 或 81374≤<x ,所以原不等式的解集为⎭⎬⎫⎩⎨⎧>≤<881374x x x 或,即为⎭⎬⎫⎩⎨⎧>1374x x .(2)由2)8(10301030881032222-≤⇒⎪⎩⎪⎨⎧-≤--≥--≥-⇔-≤--x x x x x x x x x x 或13745≤≤x . 即⎭⎬⎫⎩⎨⎧≤≤≤=137452x x x A 或题型六 参数不等式分析:进行分类讨论求解.例6 设R m ∈,解关于x 的不等式03222<-+mx x m解:当0=m 时,因03<-一定成立,故原不等式的解集为R .当0≠m 时,原不等式化为0)1)(3(<-+mx mx ;当0>m 时,解得m x m 13<<-; 当0<m 时,解得mx m 31-<<.∴当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-m x m x 13;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<m x mx31. 例7 解关于x 的不等式)0(122>->-a x a ax .分析:先按无理不等式的解法化为两个不等式组,然后分类讨论求解.解:原不等式⎪⎩⎪⎨⎧->-≥->-⇔;)1(2,01,02)1(222x a ax x a ax 或⎩⎨⎧<-≥-.01,02)2(2x a x由0>a ,得:⎪⎪⎩⎪⎪⎨⎧<+++-≤>⇔;01)1(2,1,2)1(22a x a x x a x ⎪⎩⎪⎨⎧>≥⇔.1,2)2(x a x由判别式08)1(4)1(422>=+-+=∆a a a ,故不等式01)1(222<+++-a x a x 的解是a a x a a 2121++<<-+.当20≤<a 时,1212≤-+≤a a a,121>++a a ,不等式组(1)的解是121≤<-+x a a ,不等式组(2)的解是1>x .当2>a 时,不等式组(1)无解,(2)的解是2a x ≥. 综上可知,当20≤<a 时,原不等式的解集是[)+∞-+,21a a ;当2>a 时,原不等式的解集是⎪⎭⎫⎢⎣⎡+∞,2a . 例8 解关于x 的不等式0)(322>++-a x a a x . 解:原不等式可化为0))((2>--a x a x .(1)当2a a <(即1>a 或0<a )时,不等式的解集为:{}2a x a x x ><或;(2)当2a a >(即10<<a )时,不等式的解集为:{}a x a x x><或2;(3)当2a a =(即0=a 或1)时,不等式的解集为:{}a x R x x≠∈且.题型七 利用不等式的解确定参数值和参数范围例9 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.分析:按照一元二次不等式的一般解法,先确定系数c 的正负,然后求出方程02=++a bx cx 的两根即可解之.解:(解法1)由题可判断出α,β是方程02=++c bx ax 的两根, ∴ab -=β+α,a c=β⋅α.又02>++c bx ax 的解集是{}β<<αx x ,说明0<a .而0>α,0>β000<⇒>⇒>αβ⇒c a c, ∴0022<++⇔>++cax c b x a bx cx .⎪⎪⎩⎪⎪⎨⎧--==--=+-=⇒⎪⎪⎩⎪⎪⎨⎧=⋅-=+),1)(1(1,11βααββααββαβαβαa c c b a c ab ∴02<++cax c b x ,即0)1)(1()11(2<β-α-+β-α-+x x ,即0)1)(1(<β-α-x x .又β<α<0,∴β>α11,∴0)1)(1(<β-α-x x 的解集为⎭⎬⎫⎩⎨⎧α<<β11x x . (解法2)由题意可判断出α,β是方程02=++c bx ax 的两根,∴ac=β⋅α. 又02>++c bx ax 的解集是{}β<<αx x ,说明0<a . 而0>α,0>β000<⇒>⇒>αβ⇒c ac. 对方程02=++a bx cx 两边同除以2x 得0)1()1(2=+⋅+⋅c x b x a .令xt 1=,该方程即为02=++c t b t a ,它的两根为α=1t ,β=2t ,∴α=11x ,β=21x .∴α=11x ,β=12x , ∴方程02=++a bx cx 的两根为α1,β1. ∵β<α<0,∴β>α11. ∴不等式02>++a bx cx 的解集是⎭⎬⎫⎩⎨⎧α<<β11x x . 说明:(1)万变不离其宗,解不等式的核心即是确定首项系数的正负,求出相应的方程的根;(2)结合使用韦达定理,本题中只有α,β是已知量,故所求不等式解集也用α,β表示,不等式系数a ,b ,c 的关系也用α,β表示出来;(3)注意解法2中用“变换”的方法求方程的根. 例10 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值.分析:不等式本身比较复杂,要先对不等式进行同解变形,再根据解集列出关于a 、b 式子. 解:∵043)21(122>++=++x x x ,043)21(122>+-=+-x x x ,∴原不等式化为0)()2(2>-++--+b a x b a x b a .依题意⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++=-+->-+34231202b a b a b a b a b a , ∴⎪⎪⎩⎪⎪⎨⎧==2325b a (11)设实数,x y 满足()2211x y +-=,当0x y c ++≥时,c 的取值范围是______(答:1,)+∞);(12)不等式43x x a -+->对一切实数x 恒成立,求实数a 的取值范围_____。

相关文档
最新文档