【精品】2016-2017年山西省大同一中八年级(上)期中数学试卷带答案
大同市八年级上学期期中数学试卷
大同市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2016·石家庄模拟) 如图,在4×4正方形网格中,任选一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是()A .B .C .D .2. (2分) (2016八上·海盐期中) 等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A . 16B . 18C . 20D . 16或203. (2分)(2020·下城模拟) 若点A(1﹣m,2)与点B(﹣1,n)关于y轴对称,则m+n=()A . 2B . 0C . ﹣2D . ﹣44. (2分)已知△ABC,下列命题中的假命题是()A . 如果∠C-∠B=∠A,则△ABC是直角三角形,B . 如果c2=b2-a2 ,则△ABC是直角三角形,且∠C=90°C . 如果(c+a)(c-a)=b2 ,则△ABC是直角三角形,D . 如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形,5. (2分) (2019八上·龙山期末) ⊿ABC中,AB=AC,D是BC中点,下列结论中不一定正确的是()A . ∠B=∠CB . AD⊥BCC . AD平分∠BACD . AB=2BD6. (2分)如图,在等腰直角三角形ABC中,∠BAC=90°,在BC上截取BD=BA ,作∠ABC的平分线与AD 相交于点P ,连结PC ,若△ABC的面积为,则△BPC的面积为().A .B .C .D .7. (2分) (2019八上·温州期中) 如图,在△ABC中,∠C=90°,AC=BC,AD是∠CAB的角平分线,DE⊥AB 于点E,若AB=6cm,则△DEB的周长是()A . 5cmB . 6cmC . 7cmD . 8cm8. (2分)将一张菱形纸片,按图(1)、(2)的方式沿虚线依次对折后.再沿图(3)中的虚线裁剪得到图(4),最后将图(4)中的纸片打开铺平,所得图案应该是()A .B .C .D .9. (2分) (2018八上·西华期末) 如图,△ABC是等边三角形,AD是角平分线,△ADE也是等边三角形,下列结论:①AD BC.②EF FD.③BE BD.④AC AE.其中正确的个数是()A . 1B . 2C . 3D . 410. (2分)等腰三角形一腰上的高与底边所成的角等于()A . 顶角B . 顶角的一半C . 顶角的2倍D . 底角的一半11. (2分) (2019八上·韶关期中) 如题图,△ABC与△ADC关于AC所在的直线对称,∠BCA=35°,∠B=80°,则∠DAC的度数为()A . 55°B . 65°C . 75°D . 85°12. (2分) (2018八上·河南期中) 以下列长度的线段为边,能构成直角三角形的是()A . 1,2,3B . 3,4,5C . 5,6,7D . 7,8,9二、填空题 (共6题;共6分)13. (1分) (2018九上·渝中期末) 如图,在4×4正方形网格中,有4个涂成黑色的小方格,现在任意选取一个白色的小方格涂成黑色,则使得黑色部分的图形构成轴对称图形的概率为________.14. (1分)(2020·锦州) 如图,过直线上的点作,交x轴于点,过点作轴.交直线l于点;过点作,交x轴于点,过点作轴,交直线l 于点;……按照此方法继续作下去,若,则线段的长度为________.(结果用含正整数n的代数式表示)15. (1分) (2020七下·滨湖期中) 如图,、是的两条高,它们相交于点,已知的度数为,的度数为,则的度数是________.16. (1分) (2019八上·镇原期中) 如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是________.17. (1分) (2019八上·双台子月考) 如图,∠AOB=30°,P是∠AOB内的一点,且OP=4cm,C、D分别是P关于OA、OB的对称点,连结CD、PM、PN,则△PMN的周长为________.18. (1分)如图,已知∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到边AB的距离为________ .三、作图题 (共3题;共31分)19. (10分) (2018八上·东台月考) 某国际帆船中心外形形状是一个三角形,要在它的内部修建一处公共服务设施(用点P表示),使它到三条路AB、BC、AC的距离相等.(1)在图中确定公共服务设施P的位置.(不写作法,保留作图痕迹)(2)若∠BAC=78°,试求∠BPC的度数.20. (10分)(2020·兴化模拟) 已知:如图, ABCD中,AB=5,BC=3。
2016-2017学年第一学期八年级期中联考数学试题参考答案
2016-2017学年八年级第一学期期中联考数学试卷参考答案一、选择题(每题3分,共30分)1C;2C;3D;4A;5A;6C;7B;8B;9A;10B二.填空题(每题4分,共24分)11 148°.12 -8a3b613 -4 14 20 15 8 16 60°17.解:(x+1)(x﹣1)﹣x(1﹣x)-2x2,=x2-1-x+x2-2x2……………4 分=-1-x ………5分当x=2时,原式=-1-2=-3.………6 分18.如图,AC=BD且∠A=∠B,求证:AO=BO.证明:∵在△AOC和△BOD中∴△AOC≌△BOD(AAS),…………4 分∴AO=BO.………6 分19.评分说明:1.全对6分;2.只画对一种得2分3.P点坐标2分、四、解答题(本大题共21分.解答应写出文字说明、证明过程或演算步骤.)20解:∵∠BAC=100°,∠B=40°,∴∠ACB=180°﹣∠B﹣∠BAC=40°,………1分∴∠ACB=∠B,………2…分∴AC=AB=3,………3分…∵∠D=30°,∴∠DAC=∠ACB﹣∠D=30°………4分∴∠DAC=∠D,………5分∴CD=AC=3.…………7分21如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,EF⊥AB于点F,且AB=DE.(1)求证:△ACB≌△EBD;(2)若DB=8,求AC的长.(1)证明:∵∠DEB+∠ABC=90°,∠A+∠ABC=90°,∴∠DEB=∠A,………2分在△ACB和△EBD中,,∴△ACB≌△EBD,(AAS);………4分(2)解:∵△ACB≌△EBD,∴BC=DB,AC=EB,………5分∵E是BC的中点,∴EB=,………6分∵DB=8,BC=DB,∴BC=8,∴AC=EB==4.………7分解:连接AF………1分∵AB=AC, ∠BAC=120°∴∠B=∠C=30°………2分∵AC的垂直平分线EF∴AF=CF=3………4分∴∠C=∠EAF=30°∴∠BAF=120°-30°=90°………5分又∵∠B=30°∴BF=2AF=6cm………7分五、解答题(本大题共27分.解答应写出文字说明、证明过程或演算步骤.)23.证明:(1)如图1,在等边△ABC中,AB=BC=AC,∴∠ABC=∠ACB=∠A=60°,………1分∵AE=EB,AE=BD∴BD=BE∴∠EDB=∠DEB=∠A BC=30°………2分∵BC=AC,AE=EB∴∠ECB=∠ACB=30°………3分∴∠EDB=∠ECB,∴EC=ED;………4分(2)如图2,∵EF∥BC,∴∠AEF=∠ABC=60°,∠AFE=∠C=60°,………5分∴△AEF为等边三角形;………6分(3)答EC=ED ;理由:∵∠AEF=∠ABC=60°,∴∠EFC=∠DBE=120°,∵AB=AC,AE=AF ,∴AB﹣AE=AC ﹣AF ,即BE=FC ,………7分在△DBE 和△EFC 中,,∴△DBE≌△EFC(SAS ),………8分∴ED=EC.………9分24:评分说明:(1)过程省略 2分(2)共5分 画对辅助线延长AD,BE 交于P ……1分证到△ABE ≌△APE,得BE=EP …3分证到△DEP ≌△CEB,得DE=CE ……5分(3)面积 48 ……2分E CB A D P25在△ABC中,∠ACB=90°,AC=BC,AB=8,CD⊥AB,垂足为D,M为边AB上任意一点,点N在射线CB上(点N与点C不重合),且MC=MN,NE⊥AB,垂足为E.评分说明解:(1)CD=4.………1分(2)ME=4.………1分(3)共7分答:ME的长度不会改变理由:①如图2所示,若点N在BC上(与B不重合),∵AC=BC,∴∠ACB=90°,∴∠A=∠B=45°.∵AC=BC,CD⊥AB,AB=8,∴CD=BD=4,即∠BCD=45°.∵MN=MN,∴∠MCN=∠MNC.∵∠MCN=∠MCD+∠BCD,∠MNC=∠B+∠BMN,∴∠MCD=∠NME.在△MCD与△NME中,,∴△MCD≌△NME(AAS),∴ME=CD=4.……3分②当点N与点B重合时,点M与点D重合,此时,ME=MN=4.……4分③如图3所示,若点N在边CB上,可知点M在线段BD上,且点E在边AB的延长线上.∵∠ABC=∠MNC+∠BMN=45°,∠BCD=∠MCD+∠MNC=45°,MC=MN,∴∠MCN=∠MNC,∴∠MCD=∠BMN.在△MCD与△NME中,,∴△MCD≌△NME(AAS),∴ME=CD=4.……6分综上所述:由①②③可知,当点M在边AB上移动时,线段ME的长不变,ME=4.…7分.。
山西省大同市八年级上学期期中数学试卷
B . 2个
C . 3个
D . 4个
11. (2分) 某县正在开展“拆临拆违”工作,某街道产生了m立方米的“拆临拆违”垃圾需要清理,一个工程队承包了清理工作,计划每天清理80立方米,考虑到还有其它地方的垃圾需要清理,该工程队决定增加人手以提高50%的清理效率,则完成整个任务的实际时间比原计划时间少用了( )
A . 60°
B . 65°
C . 70°
D . 75°
18. (2分) (2019·新会模拟) 如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于点D,DE恰好是AB的垂直平分线,垂足为E.若BC=6,则AB的长为( )
A . 3
B . 4
C . 8
D . 10
19. (2分) 已知 ﹣ =2,则 的值为( )
D .
8. (2分) (2017八下·禅城期末) 已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是30cm和19cm,则△ABC的腰和底边长分别为( )
A . 11cm和8cm
B . 8cm和11cm
C . 10cm和8cm
D . 12cm和6cm
9. (2分) 已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为( )
试根据上面的对话和小红的发现,分别求出苹果和梨的单价。
33. (5分) 已知:如图,在圆O中,弦AB,CD交于点E,AE=CE.求证:AB=CD.
参考答案
一、 填空题 (共26题;共46分)
1-1、
2-1、
3-1、
4-1、
最新-第一学期期中八年级数学测试试题含详尽答案.doc
绝密★启用前 2016-2017学年度第一学期八年级数学期中检测试卷试卷满分150分 考试时间120分钟1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I卷的文字说明一、选择题(每小题3分,共45分)1.9的算术平方根是( ) A .﹣3 B .±3 C.3 D .2.27的立方根是( )A .3B .﹣3C .9D .﹣93.下列二次根式中,属于最简二次根式的是( ) A B CD4 )A .4和﹣4B .2和﹣2C .4D .2 5.二次根式23-)(的值是( )A. -3B. 3或-3C. 9D. 36.要使式子x -2有意义,则x 的取值范围是( ) A .x >0 B .x ≥-2 C .x ≥2 D .x ≤2 7( )A .0.4与0.5之间B .0.5与0.6之间C . 0.6与0.7之间D .0.7与0.8之间8.在直角坐标中,点P (2,﹣3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.在实数2,722,0.101001,π,0,4中,无理数的个数是( ) A .0个 B .1个 C .2个 D .3个10.以下各组数为边长的三角形中,能组成直角三角形的是( ) A .1,2,3 B .2,3,4 C .3,4,5 D .4,5,611.点P(m-1,m+3)在直角坐标系的y 轴上,则P 点坐标为( )A.(-4,0)B.(0,-4)C.(4,0)D.(0,4)12.点P 在四象限,且点P 到x 轴的距离为3,点P 到y 轴的距离为2,则点P 的坐标为( ) A .(3,2)-- B .(3,2)- C .(2,3) D .(2,3)-13.已知a 、b 、c 是三角形的三边长,如果满足(a ﹣6)2+=0,则三角形的形状是( )A .底与腰不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形14.在平面直角坐标系中,点P(2,-3)关于x 轴对称的点的坐标是( ) A.(-2,-3) B.(2,3) C.(-2,3) D.(2,-3)15.如图,直角三角形两直角边分别为5厘米、12厘米,那么斜边上的高是 ( ) A 、6厘米 B 、 8厘米 C 、1380厘米 D 、1360厘米 第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(每题5分,共25分)16.直角三角形的两直角边的比是3︰4,而斜边的长是20cm ,那么这个三角形的面积是 17.若2<m<8,化简:=___________18.已知点P (2﹣a ,2a ﹣7)(其中a 为整数)位于第三象限,则点P 坐标为 . 19= .20.点(﹣3,7)到x 轴上的距离是 ,到y 轴上的距离是 .三、计算题(每题8分, 共16分)21.计算:011(3)2|()3--+-.22四、解答题(23、24、25每题12分,26、27每题14分 共64分)23.数学课上,对于313--a a ,小红根据被开方数是非负数,得出a 的取值范围是a ≥31.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出a 的取值范围.24.(1)在平面直角坐标系中,描出下列3个点:A (-1,0),B (3,-1),C (4,3); (2) 顺次连接A ,B ,C ,组成△ABC ,求△ABC 的面积.25.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状。
【真卷】2016-2017年山西省大同一中八年级(上)数学期中试卷带答案
2016-2017学年山西省大同一中八年级(上)期中数学试卷一、选择题(每题3分,共30分)1.(3.00分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3.00分)工人师傅砌门时,常用一根木条固定长方形门框,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角3.(3.00分)已知三角形三边长分别为2,2x,13,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.134.(3.00分)下列说法中,正确的是()A.两个全等三角形一定关于某直线对称B.等边三角形的高、中线、角平分线都是它的对称轴C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.关于某直线对称的两个图形是全等形5.(3.00分)在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定6.(3.00分)如图,已知AC=DB,要使△ABC≌△DCB,只需增加的一个条件是()A.∠A=∠D B.∠ABD=∠DCA C.∠ACB=∠DBC D.∠ABC=∠DCBA.5 B.6 C.9 D.128.(3.00分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.(3.00分)如果A(1﹣a,b+1)关于y轴的对称点在第三象限,那么点B(1﹣a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限10.(3.00分)如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P 点是BD的中点,若AD=6,则CP的长为()A.3 B.3.5 C.4 D.4.5二、填空题(每题3分,共24分)11.(3.00分)已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.12.(3.00分)已知在△ABC中,∠A=40°,∠B﹣∠C=40°,则∠B=,∠C=.13.(3.00分)如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有条对角线.14.(3.00分)如图,△ABC中,∠ACB=90°,沿CD边折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=22°,则∠BDC等于°.AD=25,DE=17,则BE=.16.(3.00分)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.17.(3.00分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为.(点C不与点A重合)18.(3.00分)如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC 于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是.三、作图题(19题6分,20题8分)19.(6.00分)尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).20.(8.00分)如图,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),(1)作出△ABC关于y轴对称的△A′B′C′,并写出A′,B′,C′的坐标.(2)求△ABC的面积.四、简答题(共32分)21.(8.00分)等腰三角形的周长是18,若一边长为4,求其它两边长?22.(8.00分)已知:如图,在四边形ABCD中,AD∥BC,∠BDC=∠BCD,点E 是线段BD上一点,且BE=AD.证明:△ADB≌△EBC.23.(8.00分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.24.(8.00分)如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.2016-2017学年山西省大同一中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3.00分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.(3.00分)工人师傅砌门时,常用一根木条固定长方形门框,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角【解答】解:盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样就构成了三角形,故这样做的数学道理是三角形的稳定性.故选:B.3.(3.00分)已知三角形三边长分别为2,2x,13,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.13【解答】解:由题意,得13﹣2<2x<13+2,解得11<2x<15,故选:A.4.(3.00分)下列说法中,正确的是()A.两个全等三角形一定关于某直线对称B.等边三角形的高、中线、角平分线都是它的对称轴C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.关于某直线对称的两个图形是全等形【解答】解:A、两个全等三角形一定关于某直线对称错误,故本选项错误;B、应为等边三角形的高、中线、角平分线所在的直线都是它的对称轴,故本选项错误;C、应为两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧或直线与两图形相交,故本选项错误;D、关于某直线对称的两个图形是全等形正确,故本选项正确.故选:D.5.(3.00分)在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定【解答】解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<14,1<AD<7.故选:C.6.(3.00分)如图,已知AC=DB,要使△ABC≌△DCB,只需增加的一个条件是()A.∠A=∠D B.∠ABD=∠DCA C.∠ACB=∠DBC D.∠ABC=∠DCB【解答】解:由已知AC=DB,且AC=CA,故可增加一组边相等,即AB=DC,也可增加一组角相等,但这组角必须是AC和BC、DB和CB的夹角,即∠ACB=∠DBC,故选:C.7.(3.00分)如图,△ABC≌△EFD,AB=EF,AE=15,CD=3,则AC=()A.5 B.6 C.9 D.12【解答】解:∵△ABC≌△EFD,∴AC=DE,∴AC﹣CD=DE﹣CD,∴AD=CE,∵AD+CD+CE=AE,AE=15,CD=3,∴AD=CE=6,∴AC=6+3=9,8.(3.00分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定【解答】解:A、锐角三角形,三条高线交点在三角形内,故错误;B、钝角三角形,三条高线不会交于一个顶点,故错误;C、直角三角形的直角所在的顶点正好是三条高线的交点,可以得出这个三角形是直角三角形,故正确;D、能确定C正确,故错误.故选:C.9.(3.00分)如果A(1﹣a,b+1)关于y轴的对称点在第三象限,那么点B(1﹣a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:A(1﹣a,b+1)关于y轴的对称点在第三象限,得(1﹣a,b+1)在第四象限,1﹣a>0,b+1<0,1﹣a>0,b<﹣1,(1﹣a,b)在第四象限,故选:D.10.(3.00分)如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P 点是BD的中点,若AD=6,则CP的长为()A.3 B.3.5 C.4 D.4.5【解答】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠DBA=30°,∵AD=6,∴BD=6,∵P点是BD的中点,∴CP=BD=3.故选:A.二、填空题(每题3分,共24分)11.(3.00分)已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)12.(3.00分)已知在△ABC中,∠A=40°,∠B﹣∠C=40°,则∠B=90°,∠C=50°.【解答】解:∵∠A=40°,∴∠B+∠C=180°﹣∠A=140°①,∵∠B﹣∠C=40°②,①+②得:2∠B=180°,∴∠B=90°,①﹣②得:2∠C=100°,∴∠C=50°,故答案为:90°;50°.13.(3.00分)如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有6条对角线.【解答】解:设此多边形的边数为x,由题意得:(x﹣2)×180=1260,解得;x=9,故答案为:6.14.(3.00分)如图,△ABC中,∠ACB=90°,沿CD边折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=22°,则∠BDC等于67°.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故答案为:67°15.(3.00分)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分别为E,D,AD=25,DE=17,则BE=8.【解答】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,又∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠BCE+∠CBE=90°,∴∠CBE=∠ACD,在△CBE和△ACD中,,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD=25,∵DE=17,∴CD=CE﹣DE=AD﹣DE=25﹣17=8,∴BE=CD=8;故答案为:8.16.(3.00分)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是110°或70°.【解答】解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为:110°或70°.17.(3.00分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为(2,4)或(﹣2,0)或(﹣2,4).(点C不与点A重合)【解答】解:如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(﹣2,0),C2(﹣2,4),C3(2,4).故答案为:(2,4)或(﹣2,0)或(﹣2,4).18.(3.00分)如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC 于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是5.【解答】解:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,=25,∵AC=10,S△ABC∴×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故答案为:5.三、作图题(19题6分,20题8分)19.(6.00分)尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).【解答】解:如图所示:点P即为所求.20.(8.00分)如图,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),(1)作出△ABC关于y轴对称的△A′B′C′,并写出A′,B′,C′的坐标.(2)求△ABC的面积.【解答】解:(1)所作图形如图所示:A′(﹣4,6),B′(﹣5,2),C′(﹣2,1);(2)S=3×5﹣×1×3﹣×1×4﹣×2×5△ABC=6.5.四、简答题(共32分)21.(8.00分)等腰三角形的周长是18,若一边长为4,求其它两边长?【解答】解:若底边长为4,设腰长为x,则x+x+4=18,解得:x=7若腰长为4,设底边为y,则y+4+4=18,解得:y=10而4+4<10,不能构成三角形,舍去,所以这个等腰三角形的另外两边长为7,7.22.(8.00分)已知:如图,在四边形ABCD中,AD∥BC,∠BDC=∠BCD,点E 是线段BD上一点,且BE=AD.证明:△ADB≌△EBC.【解答】证明:∵AD∥BC,∴∠ADB=∠CBE,∵∠BDC=∠BCD,∴BD=BC,在△ABD和△ECB中,,∴△ABD≌△ECB(SAS).23.(8.00分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.【解答】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在Rt△ADC与Rt△ADE中,,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.24.(8.00分)如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.【解答】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,延长AB交NE于点F,∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°﹣180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.。
山西省大同一中中学八年级(上)期中数学试卷
八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下列大学的校徽图案是轴对称图形的是( )A. B. C. D.2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )A. 5B. 6C. 11D. 163.计算(a-2)(a-3)的结果是( )A. a2−6B. a2+6C. a2−6a+6D. a2−5a+64.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是( )A. 三角形具有稳定性B. 直角三角形的两个锐角互余C. 三角形三个内角的和等于180∘D. 两点之间,线段最短5.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )A. ∠B=∠CB. AD=AEC. BD=CED. BE=CD6.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是( )A. 45∘B. 60∘C. 50∘D. 55∘7.在等腰三角形中,有一个角是50°,它的一条腰上的高与底边的夹角是( )A. 25∘B. 40∘或30∘C. 25∘或40∘D. 50∘8.下列说法中错误的是( )A. 成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B. 关于某条直线对称的两个图形全等C. 两个全等三角形的对应高相等D. 两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧9.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠CDB′等于( )A. 40∘B. 60∘C. 70∘D. 80∘10.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形=12S△ABC;④BE+CF=EF.上述结论中始终正确的有( )AEPFA. 4个B. 3个C. 2个D. 1个二、填空题(本大题共8小题,共24.0分)11.已知点P(-2,1),则点P关于x轴对称的点的坐标是______.12.若a x=2,a y=3,则a2x+y=______.13.如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3的度数是______.14.如图,△ACE≌△DBF,点A、B、C、D共线,若AC=5,BC=2,则CD的长度等于______.15.如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,若∠A=70°,则∠BOC=______.16.如图,正五边形ABCDE的对角线为BE,则∠ABE的度数为______.17.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则S△OFE=______.18.已知,如图△ABC为等边三角形,高AH=10cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为______cm.三、解答题(本大题共6小题,共46.0分)19.已知:如图,已知△ABC中,其中A(0,-2),B(2,-4),C(4,-1).(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.20.用直尺和圆规作∠C的平分线CD和边BC的垂直平分线EF(要求:不写作法,保留画图痕迹)21.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.22.如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别为E,F.求证:EB=FC.23.如图,△ABC是等边三角形,点D、E分别是BC、CA延长线上的点,且CD=AE,DA的延长线交BE于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.24.如图,△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,以锐角顶点B在y轴上.(1)如图(1)若点C的坐标是(2,0),点A的坐标是(-2,-2),求B点的坐标.(2)如图(2),若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,问BD与AE之间有怎样的数量关系,并说明理由.答案和解析1.【答案】B【解析】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.此题主要考查了轴对称图形,关键是找出图形中的对称轴.2.【答案】C【解析】解:设此三角形第三边的长为x,则10-4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.3.【答案】D【解析】解:原式=a2-5a+6,故选:D.根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.【答案】A【解析】解:加上EF后,原图形中具有△AEF了,故这种做法根据的是三角形的稳定性.故选:A.根据三角形的稳定性,可直接选择.本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.5.【答案】D【解析】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.6.【答案】C【解析】解:连接AC∵CM⊥AE∴∠E=∠EAC AC=CE(线段垂直平分线的性质)∵AB+BC=BE(已知)BC+CE=BE∴AB=CE=AC(等量代换)∴∠B=∠ACB=2∠E(外角性质)∵∠B+∠E+105°=180°(三角形内角和)∴∠B+∠B+105°=180°解得∠B=50°.故选:C.利用线段垂直平分线的性质知∠E=∠EAC AC=CE,等量代换得AB=CE=AC,利用三角形的外角性质得∠B=∠ACB=2∠E,从而根据三角形的内角和计算.本题主要考查了线段垂直平分线的性质及等腰三角形的性质.7.【答案】C【解析】解:当50°为底角时,∵∠B=∠ACB=50°,∴∠BCD=40°;当50°为顶角时,∵∠A=50°,∠B=∠ACB=65°,∴∠BCD=25°.故选:C.根据题意先画出图形,再分两种情况:50°为底角和50°为顶角求出答案.本题考查了等腰三角形的性质以及三角形的内角和定理,是基础知识要熟练掌握.注意分类讨论思想的应用.8.【答案】D【解析】解:A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴,此选项正确;B.关于某条直线对称的两个图形全等,此选项正确;C.两个全等三角形的对应高相等,此选项正确;D.两个图形关于某直线对称,则这两个图形不一定分别位于这条直线的两侧,此选项错误;故选:D.根据轴对称图形的定义和性质及直角三角形的性质逐一判断即可得.本题主要考查轴对称图形,解题的关键是掌握轴对称图形的定义及其性质.9.【答案】C【解析】【分析】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.先根据三角形内角和定理求出∠ABC的度数,再由翻折变换的性质得出△BCD≌△B′CD,据此可得出结论.【解答】解:∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠ABC=90°-25°=65°.∵△B′CD由△BCD翻折而成,∴∠BCD=∠B′CD=×90°=45°,∠CB′D=∠CBD=65°,∴∠CDB′=180°-45°-65°=70°.故选C.10.【答案】B【解析】解:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∠EAP=∠FCP=45°,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴PE=PF,AE=CF,∴△EPF是等腰直角三角形,S△APE=S△FCP,∴S四边形AEPF=S△ABC,①②③正确;故AE=FC,BE=AF,∴AF+AE>EF,∴BE+CF>EF,故④不成立.故选:B.利用“角边角”证明△AEP和△CPF全等,根据全等三角形对应边相等可得AE=CF,PE=PF,根据全等三角形的面积相等推出S四边形AEPF=S△APC,利用三角形的三边关系,可以证明BE+CF=EF不成立.此题主要考查了等腰三角形和直角三角形的性质,综合利用了全等三角形的判定,解决本题的关键是证明△APE≌△CPF(ASA),△APF≌△BPE.11.【答案】(-2,-1)【解析】解:点P(-2,1),则点P关于x轴对称的点的坐标是(-2,-1),故答案为:(-2,-1).根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.本题考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.12.【答案】12【解析】解:∵a x=2,a y=3,∴a2x+y=a2x•a y,=(a x)2•a y,=4×3,=12.根据幂的乘方和同底数幂的乘法法则计算即可.本题主要考查了幂的有关运算.幂的乘方法则:底数不变指数相乘.同底数幂的乘法法则:底数不变指数相加.13.【答案】20°【解析】解:由题意得:∠4=∠2=40°;由三角形外角的性质得:∠4=∠1+∠3,∴∠3=∠4-∠1=40°-20°=20°,故答案为:20°.先运用平行线的性质求出∠4,然后借助三角形的外角性质求出∠3,即可解决问题.该题主要考查了三角形外角的性质、平行线的性质等几何知识点及其应用问题;解题的关键是掌握三角形外角的性质、平行线的性质等几何知识点.14.【答案】3【解析】解:∵△ACE≌△DBF,∴AC=BD=5,∴CD=BD-BC=5-2=3.故答案为:3.根据全等三角形对应边相等可得AC=BD,然后根据CD=BD-BC计算即可得解.本题考查了全等三角形的性质,是基础题,熟记性质是解题的关键.15.【答案】125°【解析】解:∵在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,∴O为△ABC的三内角平分线的交点,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠A=70°,∴∠ABC+∠ACB=180°-∠A=110°,∴∠OBC+∠OCB=55°,∴∠BOC=180°-(∠OBC+∠OCB)=125°,故答案为:125°.求出O为△ABC的三内角平分线的交点,求出∠OBC=∠ABC,∠OCB=∠ACB,根据三角形内角和定理求出∠ABC+∠ACB,求出∠OBC+∠OCB,根据三角形内角和定理求出即可.本题考查了角平分线性质,三角形内角和定理的应用,能得出O为△ABC的三内角平分线的交点是解此题的关键,注意:角平分线上的点到角两边的距离相等.16.【答案】36°【解析】解:∵360°÷5=72°,180°-72°=108°,∴正五边形每个内角的度数为108°,即∠A=108°,又∵△ABE是等腰三角形,∴∠ABE=(180°-108°)=36°.故答案为36°.先根据正多边形的每一个外角等于外角和除以边数,求出一个内角的度数,根据△ABE是等腰三角形,一个三角形内角和180°,即可求出∠ABE的大小.本题考查的是正多边形和圆,熟知正五边形的性质是解答此题的关键.17.【答案】4【解析】解:作ED⊥OA于D,∵EF∥OB,∠AOE=∠BOE=15°,∴∠OEF=∠COE=15°,ED=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴EF=2EG=4,∵OE平分∠AOB,ED⊥OA,EC⊥OB,∴DE=CE=2,∴S△OFE=×OF×DE=4,故答案为:4.作ED⊥OA于F,根据角平分线的性质得到ED的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFD=30°,利用30°角所对的直角边是斜边的一半.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.18.【答案】10【解析】【分析】此题主要考查有关轴对称--最短路线的问题,注意灵活应用等边三角形的性质.连接PC,根据等边三角形三线合一的性质,可得PC=BP,PD+PB要取最小值,应使D、P、C三点一线.【解答】解:连接PC,∵△ABC为等边三角形,D为AB的中点,∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10cm.故答案为10.19.【答案】解:(1)所作图形如图所示;(2)A1(0,-2),B1(-2,-4),C1(-4,-1);(3)S△ABC=3×4-12×2×3-12×4×1-12×2×2=12-3-2-2=5.【解析】(1)根据轴对称变换的性质作图;(2)根据关于y轴对称的点的坐标特点解答;(3)根据矩形的面积公式和三角形的面积公式计算.本题考查的是轴对称变换的性质,掌握轴对称变换中坐标的变化特点是解题的关键,注意坐标系中不规则图形的面积的求法.20.【答案】解:如图所示,射线CD和直线EF即为所求.【解析】根据角平分线和线段中垂线的尺规作图即可得.本题主要考查作图-尺规作图,解题的关键是掌握角平分线和线段中垂线的尺规作图.21.【答案】解:设这个多边形的边数为n,根据题意,得(n-2)×180°=3×360°-180°,解得n=7.所以这个多边形的内角和为:(7-2)•180°=900°.【解析】设这个多边形的边数为n,根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,求解即可.本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.22.【答案】证明:∵AD是△ABC的角平分线,DE⊥AB、DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△DFC中,BD=CDDE=DF,∴Rt△BED≌Rt△CFD(HL),∴EB=FC.【解析】首先由角平分线的性质可得DE=DF,又有BD=CD,可证Rt△BED≌Rt△DFC (HL),即可得出EB=FC.此题主要考查角平分线的性质和全等三角形的判定和性质,难度不大.23.【答案】(1)证明:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,AC=AB,∴∠EAB=∠ACD=120°,在△CAD和△ABE中,CA=AB∠ACD=∠BAECD=AE,∴△ABE≌△CAD;(2)解:∵△ABE≌△CAD,∴∠E=∠D,∵∠D+∠CAD=∠ACB=60°,∴∠AFB=∠E+∠EAF=∠D+∠CAD=60°.【解析】(1)由△ABC是等边三角形,得到∠BAC=∠ACB=60°,AC=AB,于是得到∠EAB=∠ACD=120°,即可得到结论;(2)由全等三角形的性质得到∠E=∠D,由于∠D+∠CAD=∠ACB=60°,即可得到结论.本题考查了全等三角形的判定和性质,等边三角形的性质,三角形外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.24.【答案】解:(1)如图(1)过点A作AD⊥x轴于D,∵∠DAC+∠ACD=90°,∠ACD+∠BCD=90°,∴∠BCD=∠DAC,在△ADC和△COB中,∠ADC=∠BOC=90°∠DAC=∠BCDAC=BC,∴△ADC≌△COB(AAS),∴AD=OC,CD=OB,∴点B坐标为(0,4);(2)如图(2)延长BC,AE交于点F,∵AC=BC,AC⊥BC,∴∠BAC=∠ABC=45°,∵BD平分∠ABC,∴∠COD=22.5°,∠DAE=90°-∠ABD-∠BAD=22.5°,在△ACF和△BCD中,∠DAE=∠CODBC=AC∠BCD=∠ACF=90°,∴△ACF≌△BCD(ASA),∴AF=BD,在△ABE和△FBE中,∠ABE=∠FBEBE=BE∠AEB=∠FEB,∴△ABE≌△FBE(ASA),∴AE=EF,∴BD=2AE.【解析】(1)过点A作AD⊥OC,可证△ADC≌△COB,根据全等三角形对应边相等即可解题;(2)延长BC,AE交于点F,可证△ACF≌△BCD,可证△ABE≌△FBE,即可求得BD=2AE.本题考查了全等三角形的判定和性质,等腰直角三角形的性质,坐标与图形的性质,思路掌握全等三角形的判定和性质是解题的关键.。
2017【第一中学】初二(上)数学期中@试卷+答案
25.(8 分)如图(1)AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点 P 在线段 AB 上以 1cm/s 的速度由点 A 向点 B 运动,用时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t(s).
(1)若点 Q 的运动速度与点 P 的运动速度相等,当 t=1 时,△ACP 与△BPQ 是否全等,请 说明理由. 并判断此时线段 PC 和线段 PQ 的位置关系; (2)如图(2),将图(1)中的“AC⊥AB、BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条 件不变 .设点 Q 的运动速度为 xcm/s,是否存在实数 x,使得△ACP 与△BPQ 全等?若存在, 求出相应的 x、t 的值;若不存在,请说明理由.
⑵分两种情况讨论 ①△ACP≌△BPQ AC=BP=3cm,AP=BQ=1cm x 1,t 1 ②△ACP≌△BQP P 为 AB 中点, AP=BP=2cm,BQ=AC=3cm x 1.5,t 2
南京学而思教研中心出品
南京学而思教研中心出品
| 用科技推动教育进步
咨询电话:10108899
21.(8 分)如图,在四边形 ABCD 中,∠ABC=∠ADC=90°,M、N 分别是 AC、BD 的中点, 试说明: (1)MD=MB (2)MN⊥BD
22.(8 分)我国海监船长期在钓鱼岛海域巡航维权,如图,OA⊥OB,OA=36 海里,OB=12 海里,钓鱼岛位于 O 点,在一次巡航中我国海监船在点 B 处发现有一不明国籍的渔船,自 A 点出发沿着 AO 方向匀速驶向钓鱼岛所在地点 O,我国海监船立即从 B 处出发以相同的速 度沿某直线去拦截这艘渔船,结果在点 C 处截住了渔船. (1)请用直尺和圆规作出 C 处的位置;(不写做法,保留作图痕迹) (2)求我国海监船行驶的航程 BC 的长.
山西省大同市八年级上学期数学期中试卷
山西省大同市八年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018七上·青浦期末) 下列图形中,是轴对称图形但不是旋转对称图形的是()A .B .C .D .2. (2分) (2017九下·萧山月考) 下列运算正确的是()A . 2a3•a4=2a7B . a3+a4=a7C . (2a4)3=8a7D . a3÷a4=a3. (2分)如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A . 36°B . 60°C . 72°D . 108°4. (2分) (2019八上·松桃期中) 下列代数式,是分式的是()A .B .C .D . x+5. (2分) (2018八上·达孜期中) 已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()A . 70°B . 70°或55°C . 40°或55°D . 70°或40°6. (2分) (2019七下·通州期末) 下列等式中,从左到右的变形是因式分解的是()A .B .C .D .7. (2分) (2019八上·湖里期中) 如图,在△ABC中,∠B、∠C的平分线相交于F ,过F作DE∥BC ,交AB于D ,交AC于E ,那么下列结论正确的有()①△BDF ,△CEF 都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF .A . 1个B . 2个C . 3个D . 4个8. (2分) (2017七下·金牛期中) 将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是()A . (a+b)(a﹣b)=a2﹣b2B . (a+b)2=a2+2ab+b2C . (a﹣b)2=a2﹣2ab+b2D . a2﹣ab=a(a﹣b)9. (2分) (2017八下·盐都期中) 下列等式成立的是()A . + =B . =C . =D . =﹣10. (2分) (2019八下·蜀山期末) 如图,在四边形ABCD中,AB=BC=2,且∠B=∠D=90°,连接AC,那么四边形ABCD的最大面积是()A . 2B . 4C . 4D . 8二、填空题 (共9题;共9分)11. (1分)(2018·宁波) 要使分式有意义,x的取值应满足________。
山西省大同市八年级上学期期中数学试卷
山西省大同市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)三角形的两边长为3和4,第三边长是方程(x-2)(x-4)=0的解,则这个三角形的周长是()A . 9B . 11C . 9或11D . 不能确定2. (2分) (2016八上·宜兴期中) 下列交通标志图案是轴对称图形的是()A .B .C .D .3. (2分)已知∠AOB,用尺规作一个角等于已知角∠AOB的作图痕迹如图所示,则判断∠AOB=所用到的三角形全等的判断方法是()A . SASB . ASAC . AASD . SSS4. (2分)如图,在△ABC中,D是BC延长线上一点,∠B= 40°,∠ACD= 120°,则∠A等于()A . 90°B . 80°C . 70°D . 60°5. (2分)小明沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙0点,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息如下:如图,AB∥OE,OE∥CD,AC与BD相交于点O,OD⊥CD,垂足为点D,下列结论中不正确的是()A . ∠BOA=∠DOCB . AB∥CDC . ∠ABD=90°D . 与∠AOE相等的角共有2个6. (2分)如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE 不一定全等的条件是()A . DF=BEB . AF=CEC . CF=AED . CF∥AE二、填空题 (共8题;共9分)7. (1分)已知点A(2a+3,﹣2)和点B(7,1+b)关于x轴对称,则a+b=________.8. (1分) (2016八上·萧山期中) 如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1 ,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2 ,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3 ,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=________9. (1分) (2018八上·江汉期末) 正五边形的内角和等于________度.10. (2分)三角形具有________ 性,四边形具有________ 性.11. (1分)如图,在Rt△ABC中,AC⊥BC,CD⊥AB,∠1=∠2,有下列结论:(1)AC∥DE;(2)∠A=∠3;(3)∠B=∠1;(4)∠B与∠2互余;(5)∠A=∠2.其中正确的有________ (填写所有正确的序号).12. (1分) (2017八上·泸西期中) 一个等腰三角形的一个内角是,则等腰三角形的底角为________。
山西省大同市八年级上学期数学期中考试试卷
山西省大同市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分)(2020·深圳模拟) 如图的五个甲骨文中,既不是轴对称图形,也不是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个2. (1分) (2019九上·海曙期末) 如图,为直径的延长线上一点,切⊙ 于点,若,则()A .B .C .D .3. (1分)如图,已知:∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A . AB=AD,AC=AEB . AB=AD,BC=DEC . AC=AE,BC=DED . 以上都不对4. (1分) (2020七下·廊坊期中) 下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③如果一个数的立方根是这个数本身,那么这个数是1或0;④无限小数都是无理数;⑤如果点A与点B关于x轴对称,则它们的横坐标相同.其中正确的个数为().A . 4B . 3C . 2D . 15. (1分)长为9,6,5,3的四根木条,选其中三根,共可以组成三角形()A . 4个B . 3个C . 2个D . 1个6. (1分) (2019八上·官渡期末) 如图,△DAC和△EBC均是等边三角形,AE,BD分别与CD、CE交于点M,N,且A,C,B在同一直线上,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN;④PC平分∠APB;⑤∠APD=60°,其中正确结论有()A . 5个B . 4个C . 3个D . 2个7. (1分)已知等腰三角形的一个底角为40°,则这个等腰三角形的顶角为()A . 40°B . 100°C . 40°或100°D . 50°或70°8. (1分)木工师傅在做完门框后,为防止变形常常像图中所示那样钉上两条斜拉的木板条(即图中的AB 和CD),这样做的根据是()A . 矩形的对称性B . 矩形的四个角都是直角C . 三角形的稳定性D . 两点之间线段最短9. (1分) (2017八上·江津期中) 在等腰△ABC中,AB=AC,一腰上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为()A . 7B . 7或11C . 11D . 7或1010. (1分)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A . 7.5B . 8C . 15D . 无法确定二、填空题 (共10题;共10分)11. (1分)如图,图形是由棋子围成的正方形图案,图案的每条边有4个棋子,这个图案有________条对称轴.12. (1分) (2019七下·北京期末) 下列各组数:①2,3,4;②2,3,5;③2,3,7;④3,3,3,其中能作为三角形的三边长的是________(填写所有正确的序号).13. (1分) (2019七下·迁西期末) 如图,将△ABC沿着平行于BC的直线DE折叠,点A落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为________.14. (1分)(2019七下·卫辉期末) 如图,把一副三角板如图甲放置,其中,斜边,把三角板绕点顺时针旋转得到(如图乙).这时与相交于点,与相交于点,则的度数为________.15. (1分) (2019八上·南开期中) 如图,在△ABC中,AB=AC=10,△BEC的周长是17,DE垂直平分AB,交AB于点D,交AC于点E,则BC=________.16. (1分)(2020·西乡塘模拟) 我国魏晋时期著名的数学家刘徽在《九章算术》中提出了“割圆术——割之弥细,所失弥少,隔之又割,以至不可割,则与圆周合体,而无所失也.”也就是利用圆的内接多边形逐步逼近圆的方法来近似计算圆的面积和周长.如图1,若用圆的内接正六边形的面积来近似估计半径为1的⊙O的面积,再用如图2的圆的内接正十二边形的面积来近似估计半径为1的⊙O的面积,则 ________.(结果保留根号)17. (1分) (2016八上·孝南期中) 如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是________.18. (1分)如图,AB∥CD,CP交AB于点O,AO=PO,若∠A=35°,则∠C=________°.19. (1分) (2019八上·呼兰期中) 如图,在△ABC中,BC=BA,∠ABC=120°,BD⊥BC交AC于点D,BD=1,则AC的长为________.20. (1分) (2018八下·句容月考) 如图,正方形ABCD的对角线相交于点O,正三角形OEF绕点O旋转,在旋转过程中,当AE=BF时,∠AOE的大小是________。
山西省大同市第一中学2016-2017学年八年级数学阶段学业水平(期中)试题答案
2016-2017学年度八年级数学第一学期期中测试题参考答案一、选择题1、A2、B3、A4、D5、C6、C7、C8、B9、D 10、A二、填空题11、12、90°50°13、614、67 °.15、8__.16、110°或70°.17、(﹣2,0)或(2,4)或(﹣2,4).故答案为:(﹣2,0)或(2,4)或(﹣2,4).18、5.三、作图题19、作出AD的垂直平分线作出∠ABC的平分线20、解:(1)所作图形如图所示:A′(﹣4,6),B′(﹣5,2),C′(﹣2,1);(2)S△ABC=3×5﹣×1×3﹣×1×4﹣×2×5=6.5.四、简答题21、解:若底边长为4,设腰长为X,则X+ X+4=18,解得:X=7若腰长为4,设底边为Y,则Y+ 4+4=18,解得:Y=10而4+4<10,不能构成三角形,舍去,所以这个等腰三角形的另外两边长为7,7 22、证明:∵AD∥BC,∴∠ADB=∠CBE,∵∠BDC=∠BCD,∴BD=BC,在△ABD和△ECB中,,∴△ABD≌△ECB(SAS).23、证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC.又∵BD=DF,∴ Rt△CDF≌Rt△EDB(HL),∴CF=EB.(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴△ADC≌△ADE,∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.24证明:、(1)∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.。
山西省大同市八年级上学期数学期中考试试卷
山西省大同市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)(2016·南岗模拟) 下列图形中不是轴对称图形的是()A .B .C .D .2. (1分)△ABC的两边长分别为2和3,第三边的长是方程x2﹣8x+15=0的根,则△ABC的周长是()A . 8B . 10C . 8或10D . 73. (1分)(2017·襄州模拟) 如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A . 50°B . 51°C . 51.5°D . 52.5°4. (1分) (2017八上·扶余月考) 如图摆放的三个正方形,S表示面积,求S=()A . 10B . 50C . 30D . 405. (1分) (2017七上·武清期末) 时钟显示为8:20时,时针与分针所夹的角是()A . 130°B . 120°C . 110°D . 100°6. (1分) (2020八上·嘉陵期末) 等腰三角形的两边a,b满足|a-7|+ =0,则它的周长是()A . 13B . 15C . 17D . 197. (1分)(2017·无棣模拟) 如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE= DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A . y=﹣B . y=﹣C . y=﹣D . y=﹣8. (1分)若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A . 2:1B . 1:1C . 5:2D . 5:49. (1分)如图,在△ABD和△ACE都是等边三角形, 则ΔADC≌ΔABE的根据是()A . SSSB . SASC . ASAD . AAS10. (1分)如图,已知Rt△ABC中,∠C=90°,D , E分别AC , AB的中点.连接DE ,并延长到点F ,使EF=EB ,过点F作FG⊥AB于点G ,连接DG并延长,交CB的延长线于点H ,连接FH .给出以下四个结论:①∠FGH=∠CDG;②DE=GE;③ ;④四边形CDFH是矩形.其中正确结论的个数是A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)11. (1分) (2016九上·上城期中) 已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A 在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为________12. (1分)(2019·海州模拟) 如图,△ABC中,AB=AC,∠A=40º,点P是△ABC内一点,连结PB、PC,∠1=∠2,则∠BPC的度数是________.13. (1分) (2017七下·泗阳期末) 如图:以五边形的五个顶点为圆心,1cm为半径画圆,则阴影部分的面积和为________cm2.14. (1分) (2016八上·宁江期中) 等腰三角形的一边长是4cm,另一边长为8cm,其周长为________ cm.15. (1分) (2016八上·潮南期中) 如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=8,BC=5,则BD的长为________16. (1分) (2018八上·番禺月考) 如图所示,是将长方形纸牌ABCD沿着BD折叠得到的,图中包括实线、虚线在内共有全等三角形________ 对三、解答题 (共8题;共15分)17. (1分)如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?18. (3分) (2017八上·大石桥期中) 如图,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使△QAB的周长最小.19. (1分) (2020八上·江汉期末) 如图,D为∠ACB平分线上一点,DE⊥CA于E,DF⊥CB于F.试探究CD 与EF的位置关系,并证明你的结论.20. (2分)(2019·宝鸡模拟) 如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AB=8,∠A=60°,求BD的长.21. (1分) (2017七下·博兴期末) 如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=54°,∠C=66°,求∠DAC、∠BOA的度数.22. (2分) (2017八上·上城期中) 如图,在中,于,且.(1)求证:.(2)若,于,为中点,与,分别交于点,.①判断线段与相等吗?请说明理由.②求证:.23. (2分) (2020八上·黄石期末) 如图1,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上.请解答下列问题:(1)图中与∠DBE相等的角有:________;(2)直接写出BE和CD的数量关系;(3)若△ABC的形状、大小不变,直角三角形BEC变为图2中直角三角形BED,∠E=90°,且∠EDB=∠C,DE与AB相交于点F.试探究线段BE与FD的数量关系,并证明你的结论.24. (3分) (2018九上·滨州期中) 已知正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,当∠MAN绕点A旋转到BM=DN时(如图1),则(1)线段BM、DN和MN之间的数量关系是________;(2)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(3)当∠MAN绕点A旋转到(如图3)的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共15分)17-1、18-1、18-2、19-1、20-1、20-2、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。
【解析版】大同市初中数学八年级上期中习题(含解析)
一、选择题1.题目文件丢失!2.题目文件丢失!3.题目文件丢失!4.题目文件丢失!5.题目文件丢失!6.题目文件丢失!7.题目文件丢失!8.题目文件丢失!9.题目文件丢失!10.题目文件丢失!11.题目文件丢失!12.题目文件丢失!13.题目文件丢失!14.题目文件丢失!15.题目文件丢失!二、填空题16.题目文件丢失!17.题目文件丢失!18.题目文件丢失!19.题目文件丢失!20.题目文件丢失!21.题目文件丢失!22.题目文件丢失!23.题目文件丢失!24.题目文件丢失!25.题目文件丢失!三、解答题26.题目文件丢失!27.题目文件丢失!28.题目文件丢失!29.题目文件丢失!30.题目文件丢失!【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.D3.C4.C5.B6.C7.A8.C9.B10.A11.A12.C13.D14.D15.B二、填空题16.【解析】【分析】一个多边形的一个顶点出发一共可作4条对角线则这个多边形的边数7边形的内角和可以表示成代入公式就可以求出内角和【详解】由题意得:所以这个n 边形的内角和为度故填:【点睛】本题主要考查多边17.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM18.±20【解析】∵4a4-ka2b+25b2是一个完全平方式∴4a4-ka2b+25b2=(2a2±5b)2=4a4±20a2b+25b2∴k=±20故答案为:±2019.9【解析】∵m−n=2mn=−1∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9故答案为9点睛:本题考查了多项式乘多项式法则合并同类项时要注意项中的指数及20.80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB的度数再根据角平分线的定义求出∠ABC+∠ACB最后利用三角形内角和定理解答即可【详解】解:在△PBC 中∠BPC=130°∴∠PBC+21.3【解析】【分析】根据分式性质分式方程增根的条件进行求解【详解】∵∴2(x-3)-x=m求得x=-m∵x-3=0即x=3时原方程有增根∴-m=3m=-3故答案为-3【点睛】主要考察的是分式性质分式方22.±7【解析】∵∴∴故答案为:±7点睛:本题解题的关键是清楚:与的关系是:23.12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答解:∵AB∥CD∴∠BFC=∠ABE=66°在△EFD中利用三角形外角等于不相邻的两个内角的和得到∠E=∠BFC﹣∠D=124.5【解析】【分析】根据非负数的性质列式求出mn的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m-1+n0=12+1=32;故答案为:32【25.mn(m+3)(m﹣3)【解析】分析:原式提取mn后利用平方差公式分解即可详解:原式=mn(m2-9)=mn(m+3)(m-3)故答案为mn(m+3)(m-3)点睛:此题考查了提公因式法与公式法的综三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:解析丢失2.D解析:解析丢失3.C解析:解析丢失4.C解析:解析丢失5.B解析:解析丢失6.C解析:解析丢失7.A解析:解析丢失8.C解析:解析丢失9.B解析:解析丢失10.A解析:解析丢失11.A解析:解析丢失12.C解析:解析丢失13.D解析:解析丢失14.D解析:解析丢失15.B解析:解析丢失二、填空题16.【解析】【分析】一个多边形的一个顶点出发一共可作4条对角线则这个多边形的边数7边形的内角和可以表示成代入公式就可以求出内角和【详解】由题意得:所以这个n 边形的内角和为度故填:【点睛】本题主要考查多边解析:解析丢失17.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:解析丢失18.±20【解析】∵4a4-ka2b+25b2是一个完全平方式∴4a4-ka2b+25b2=(2a2±5b)2=4a4±20a2b+25b2∴k=±20故答案为:±20解析:解析丢失19.9【解析】∵m−n=2mn=−1∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9故答案为9点睛:本题考查了多项式乘多项式法则合并同类项时要注意项中的指数及解析:解析丢失20.80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB的度数再根据角平分线的定义求出∠ABC+∠ACB最后利用三角形内角和定理解答即可【详解】解:在△PBC中∠BPC=130°∴∠PBC+解析:解析丢失21.3【解析】【分析】根据分式性质分式方程增根的条件进行求解【详解】∵∴2(x-3)-x=m求得x=-m∵x-3=0即x=3时原方程有增根∴-m=3m=-3故答案为-3【点睛】主要考察的是分式性质分式方解析:解析丢失22.±7【解析】∵∴∴故答案为:±7点睛:本题解题的关键是清楚:与的关系是:解析:解析丢失23.12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答解:∵AB∥CD∴∠BFC=∠ABE=66°在△EFD中利用三角形外角等于不相邻的两个内角的和得到∠E=∠BFC﹣∠D=1解析:解析丢失24.5【解析】【分析】根据非负数的性质列式求出mn的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m-1+n0=12+1=32;故答案为:32【解析:解析丢失25.mn(m+3)(m﹣3)【解析】分析:原式提取mn后利用平方差公式分解即可详解:原式=mn(m2-9)=mn(m+3)(m-3)故答案为mn(m+3)(m-3)点睛:此题考查了提公因式法与公式法的综解析:解析丢失三、解答题26.解析丢失27.解析丢失28.解析丢失29.解析丢失30.解析丢失。
大同市八年级上学期数学期中考试试卷
大同市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·正定模拟) 下列图形中是轴对称图形的是()A .B .C .D .2. (2分)如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a的取值范围是()A . a>-1B . a>2C . a>5D . 无法确定3. (2分)(2018·黄石) 如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A . 75°B . 80°C . 85°D . 90°4. (2分)如图,,平分,若,则的度数为()A .B .C .D .5. (2分) (2016八上·蓬江期末) 一个正多边形每个外角都是30°,则这个多边形边数为()A . 10B . 11C . 12D . 136. (2分) (2019七下·滦县期末) 用四个螺丝将四条不可弯曲的本条围成一个木框(形状不限),不记螺丝大小,其中相邻两螺丝之间的距离依次为3,4,5,7.且相邻两本条的夹角均可调整,若调整木条的夹角时不破坏此木框,则任意两个螺丝之间的最大距离是()A . 6B . 7C . 8D . 97. (2分)到三角形三条边的距离都相等的点是这个三角形的()A . 三条中线的交点;B . 三条高线的交点;C . 三条角平分线的交点;D . 三条边的中垂线的交点。
8. (2分) (2016八上·蓬江期末) 点M(1,3)关于y轴对称点的坐标为()A . (﹣1,﹣3)B . (﹣1,3)C . (1,﹣3)D . (3,﹣1)9. (2分) (2017八上·上杭期末) 和三角形三个顶点的距离相等的点是()A . 三条角平分线的交点B . 三边中线的交点C . 三边上高所在直线的交点D . 三边的垂直平分线的交点10. (2分)(2014·宁波) 用矩形纸片折出直角的平分线,下列折法正确的是()A .B .C .D .11. (2分) (2018八上·海安月考) 如图所示,图中x的值是()A . 50B . 60C . 70D . 8012. (2分) (2018八下·北海期末) 如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于()A . 10B . 9C . 8D . 6二、填空题 (共6题;共6分)13. (1分) (2016八上·潮南期中) 如图,自行车的三角形支架,这是利用三角形具有________性.14. (1分) (2018八上·天台期中) 如图,AC是正五边形ABCDE的一条对角线,则∠ACB=________.15. (1分) (2019八上·北流期中) 如图所示,F、C在线段BE上,且∠1=∠2,BC=EF.若要根据“SAS”使△ABC≌△DE F,还需要补充的条件是________.16. (1分) (2019八上·桂林期末) 已知三角形的三边长分别为,,,求其面积的问题,古希腊数学家海伦在其著作《度量论》一书中给出了著名的海伦公式:,其中.若一个三角形的三边长分别为,,,则其面积是________.17. (1分)(2019·汕头模拟) 如图,直线l1∥l2 ,∠1=40°,∠2=75°,则∠3=________°.18. (1分) (2015八下·潮州期中) 如图:在△ABC中,AD是∠BAC的平分线,DE⊥AC于E,DF⊥AB于F,且FB=CE,则下列结论::①DE=DF,②AE=AF,③BD=CD,④AD⊥BC.其中正确的结论是________.(填序号)三、解答题 (共8题;共54分)19. (5分)(2020·平阳模拟) 如图,在方格纸中,点A,B都在格点上,请按要求画图。
山西省大同市八年级数学期中考试试卷
山西省大同市八年级数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八下·昭通期末) 的算术平方根是()A .B . ﹣C .D . ±2. (2分)下列式子中,是最简二次根式的是()A .B .C .D .3. (2分) (2020八下·海安月考) 下列各式计算正确的是()A .B .C .D .4. (2分) (2016八下·余干期中) 能判定四边形ABCD为平行四边形的题设是()A . AB∥CD,AD=BCB . AB=CD,AD=BCC . ∠A=∠B,∠C=∠DD . AB=AD,CB=CD5. (2分)若点A(m-3,1-3m)在第三象限,则m的取值范围是().A .B . m<3C . m>3D .6. (2分) (2018八上·鄞州月考) 如图,一个正方形被分成三十六个面积均为1的小正方形,点A与点B在两个格点上,问在格点上是否存在一个点,使△ABC的面积为2,这样的点有()个.A . 7个B . 6个C . 5个D . 4个7. (2分)如图,AD是△ABC边BC的中线,E、F分别是AD、BE的中点,若△BFD的面积为6,则△ABC的面积等于()A . 18B . 24C . 48D . 368. (2分)已知一个直角三角形的两边长分别为3和4,则第三边长是()A . 5B . 25C .D . 5或9. (2分)给出下列命题:①反比例函数的图象经过一、三象限,且y随x的增大而减小;②对角线相等且有一个内角是直角的四边形是矩形;③我国古代三国时期的数学家赵爽,创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(右图);④相等的弧所对的圆周角相等.其中正确的是()A . ③④B . ①②③C . ②④D . ①②③④10. (2分)(2016·曲靖) 如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于 AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A . CD⊥lB . 点A,B关于直线CD对称C . 点C,D关于直线l对称D . CD平分∠ACB二、填空题 (共4题;共4分)11. (1分)(2012·锦州) 函数y= 中,自变量x的取值范围是________.12. (1分) (2017八上·上城期中) 在直角三角形中,两条直角边的长分别是和,则斜边上的中线长是________.13. (1分)在四边形ABCD中,∠A=∠B=∠C=∠D,则四边形ABCD是________.14. (1分) (2019八上·鄞州期末) 如图,中,,,,点是上一动点,以为边在的右侧作等边,是的中点,连结,则的最小值是________.三、解答题 (共9题;共71分)15. (5分)计算:(2 ﹣)(2 + )16. (5分) (2017八下·庆云期末) 已知x=2﹣,求代数式(7+4 )x2+(2+ )x+ 的值.17. (5分) (2019八下·宁都期中) 长方形的长是3 +2 ,宽是3 ﹣2 ,求长方形的周长与面积.18. (5分) (2017八下·卢龙期末) 如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。
大同市八年级上学期数学期中考试试卷
大同市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019八下·遂宁期中) 函数y=中,自变量x的取值范围是()A . x≠-1B . x<-1C . x>-1D . x=02. (2分)在,,,-y,,各式中,分式的个数为()A . 2个B . 3个C . 4个D . 5个3. (2分) (2018八上·阜宁期末) 下列条件中,不能判定两个三角形全等的是()A . 两边一角对应相等B . 两角一边对应相等C . 直角边和一个锐角对应相等D . 三边对应相等4. (2分)下列五个算式,①a4·a3=a12 ②a3+a5=a8 ③ a5÷a5=a ④(a3)3=a6 ⑤a5+a5=2a5 ,其中正确的个数有()A . 0个B . 1个C . 2个D . 3个5. (2分)下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.A . ①②B . ①③④C . ③④D . ①②④6. (2分) (2019八上·道里期末) 下列说法:①有一个角是的等腰三角形是等边三角形;②如果三角形的一个外角平分线平行三角形的一边,那么这个三角形是等腰三角形;③三角形三边的垂直平分线的交点与三角形三个顶点的距离相等;④有两个角相等的等腰三角形是等边三角形.其中正确的个数有()A . 个B . 个C . 个D . 个7. (2分) (2019八上·长安期中) 若把分式的x、y同时扩大10倍,则分式的值()A . 扩大为原来的10倍B . 缩小为原来的C . 不变D . 缩小为原来的8. (2分)如图,△ABC中,D为BC上一点,△ABD的周长为12cm,DE是线段AC的垂直平分线,AE=5cm,则△ABC的周长是()A . 17cmB . 22cmC . 29cmD . 32cm二、填空题 (共6题;共7分)9. (1分)(2017·邵阳模拟) 现在网购越来越多地成为人们的一种消费方式,在2016年的“双11”网上促销活动中天猫和淘宝的支付交易额突破120700000000元,将120700000000用科学记数法表示为________.10. (1分)计算:x2·x4=________.11. (1分)如果x是负整数,并且分式的值也是负整数,写出符合条件的x的值________.12. (1分) (2016九上·长春期中) 如图,等边三角形ABC内接于⊙O,D为上一点,连接BD交AC于点E,若∠ABD=45°,则∠AED=________度.13. (1分) (2017七下·姜堰期末) 命题“如果 a=b ,那么| a | = | b | ”的逆命题是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年山西省大同一中八年级(上)期中数学试卷一、选择题(每题3分,共30分)1.(3.00分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3.00分)工人师傅砌门时,常用一根木条固定长方形门框,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角3.(3.00分)已知三角形三边长分别为2,2x,13,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.134.(3.00分)下列说法中,正确的是()A.两个全等三角形一定关于某直线对称B.等边三角形的高、中线、角平分线都是它的对称轴C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.关于某直线对称的两个图形是全等形5.(3.00分)在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定6.(3.00分)如图,已知AC=DB,要使△ABC≌△DCB,只需增加的一个条件是()A.∠A=∠D B.∠ABD=∠DCA C.∠ACB=∠DBC D.∠ABC=∠DCB 7.(3.00分)如图,△ABC≌△EFD,AB=EF,AE=15,CD=3,则AC=()A.5 B.6 C.9 D.128.(3.00分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.(3.00分)如果A(1﹣a,b+1)关于y轴的对称点在第三象限,那么点B(1﹣a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限10.(3.00分)如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P 点是BD的中点,若AD=6,则CP的长为()A.3 B.3.5 C.4 D.4.5二、填空题(每题3分,共24分)11.(3.00分)已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.12.(3.00分)已知在△ABC中,∠A=40°,∠B﹣∠C=40°,则∠B=,∠C=.13.(3.00分)如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有条对角线.14.(3.00分)如图,△ABC中,∠ACB=90°,沿CD边折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=22°,则∠BDC等于°.15.(3.00分)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分别为E,D,AD=25,DE=17,则BE=.16.(3.00分)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.17.(3.00分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为.(点C不与点A重合)18.(3.00分)如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC 于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是.三、作图题(19题6分,20题8分)19.(6.00分)尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).20.(8.00分)如图,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),(1)作出△ABC关于y轴对称的△A′B′C′,并写出A′,B′,C′的坐标.(2)求△ABC的面积.四、简答题(共32分)21.(8.00分)等腰三角形的周长是18,若一边长为4,求其它两边长?22.(8.00分)已知:如图,在四边形ABCD中,AD∥BC,∠BDC=∠BCD,点E 是线段BD上一点,且BE=AD.证明:△ADB≌△EBC.23.(8.00分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.24.(8.00分)如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.2016-2017学年山西省大同一中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3.00分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.(3.00分)工人师傅砌门时,常用一根木条固定长方形门框,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角【解答】解:盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样就构成了三角形,故这样做的数学道理是三角形的稳定性.故选:B.3.(3.00分)已知三角形三边长分别为2,2x,13,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.13【解答】解:由题意,得13﹣2<2x<13+2,解得11<2x<15,解得x=6,x=7,故选:A.4.(3.00分)下列说法中,正确的是()A.两个全等三角形一定关于某直线对称B.等边三角形的高、中线、角平分线都是它的对称轴C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.关于某直线对称的两个图形是全等形【解答】解:A、两个全等三角形一定关于某直线对称错误,故本选项错误;B、应为等边三角形的高、中线、角平分线所在的直线都是它的对称轴,故本选项错误;C、应为两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧或直线与两图形相交,故本选项错误;D、关于某直线对称的两个图形是全等形正确,故本选项正确.故选:D.5.(3.00分)在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定【解答】解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<14,1<AD<7.故选:C.6.(3.00分)如图,已知AC=DB,要使△ABC≌△DCB,只需增加的一个条件是()A.∠A=∠D B.∠ABD=∠DCA C.∠ACB=∠DBC D.∠ABC=∠DCB【解答】解:由已知AC=DB,且AC=CA,故可增加一组边相等,即AB=DC,也可增加一组角相等,但这组角必须是AC和BC、DB和CB的夹角,即∠ACB=∠DBC,故选:C.7.(3.00分)如图,△ABC≌△EFD,AB=EF,AE=15,CD=3,则AC=()A.5 B.6 C.9 D.12【解答】解:∵△ABC≌△EFD,∴AC=DE,∴AC﹣CD=DE﹣CD,∴AD=CE,∵AD+CD+CE=AE,AE=15,CD=3,∴AD=CE=6,∴AC=6+3=9,故选:C.8.(3.00分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定【解答】解:A、锐角三角形,三条高线交点在三角形内,故错误;B、钝角三角形,三条高线不会交于一个顶点,故错误;C、直角三角形的直角所在的顶点正好是三条高线的交点,可以得出这个三角形是直角三角形,故正确;D、能确定C正确,故错误.故选:C.9.(3.00分)如果A(1﹣a,b+1)关于y轴的对称点在第三象限,那么点B(1﹣a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:A(1﹣a,b+1)关于y轴的对称点在第三象限,得(1﹣a,b+1)在第四象限,1﹣a>0,b+1<0,1﹣a>0,b<﹣1,(1﹣a,b)在第四象限,故选:D.10.(3.00分)如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P 点是BD的中点,若AD=6,则CP的长为()A.3 B.3.5 C.4 D.4.5【解答】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠DBA=30°,∴BD=AD,∵AD=6,∴BD=6,∵P点是BD的中点,∴CP=BD=3.故选:A.二、填空题(每题3分,共24分)11.(3.00分)已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)12.(3.00分)已知在△ABC中,∠A=40°,∠B﹣∠C=40°,则∠B=90°,∠C=50°.【解答】解:∵∠A=40°,∴∠B+∠C=180°﹣∠A=140°①,∵∠B﹣∠C=40°②,①+②得:2∠B=180°,∴∠B=90°,①﹣②得:2∠C=100°,∴∠C=50°,故答案为:90°;50°.13.(3.00分)如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有6条对角线.【解答】解:设此多边形的边数为x,由题意得:(x﹣2)×180=1260,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9﹣3=6,故答案为:6.14.(3.00分)如图,△ABC中,∠ACB=90°,沿CD边折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=22°,则∠BDC等于67°.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故答案为:67°15.(3.00分)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分别为E,D,AD=25,DE=17,则BE=8.【解答】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,又∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠BCE+∠CBE=90°,∴∠CBE=∠ACD,在△CBE和△ACD中,,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD=25,∵DE=17,∴CD=CE﹣DE=AD﹣DE=25﹣17=8,∴BE=CD=8;故答案为:8.16.(3.00分)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是110°或70°.【解答】解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为:110°或70°.17.(3.00分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为(2,4)或(﹣2,0)或(﹣2,4).(点C不与点A重合)【解答】解:如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(﹣2,0),C2(﹣2,4),C3(2,4).故答案为:(2,4)或(﹣2,0)或(﹣2,4).18.(3.00分)如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC 于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是5.【解答】解:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,=25,∵AC=10,S△ABC∴×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故答案为:5.三、作图题(19题6分,20题8分)19.(6.00分)尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).【解答】解:如图所示:点P即为所求.20.(8.00分)如图,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),(1)作出△ABC关于y轴对称的△A′B′C′,并写出A′,B′,C′的坐标.(2)求△ABC的面积.【解答】解:(1)所作图形如图所示:A′(﹣4,6),B′(﹣5,2),C′(﹣2,1);=3×5﹣×1×3﹣×1×4﹣×2×5(2)S△ABC=6.5.四、简答题(共32分)21.(8.00分)等腰三角形的周长是18,若一边长为4,求其它两边长?【解答】解:若底边长为4,设腰长为x,则x+x+4=18,解得:x=7若腰长为4,设底边为y,则y+4+4=18,解得:y=10而4+4<10,不能构成三角形,舍去,所以这个等腰三角形的另外两边长为7,7.22.(8.00分)已知:如图,在四边形ABCD中,AD∥BC,∠BDC=∠BCD,点E 是线段BD上一点,且BE=AD.证明:△ADB≌△EBC.【解答】证明:∵AD∥BC,∴∠ADB=∠CBE,∵∠BDC=∠BCD,∴BD=BC,在△ABD和△ECB中,,∴△ABD≌△ECB(SAS).23.(8.00分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.【解答】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在Rt△ADC与Rt△ADE中,,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.24.(8.00分)如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.【解答】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,延长AB交NE于点F,∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°﹣180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.。