人教版高中物理选修3-4第11-12章振动和波单摆1

合集下载

高中物理 第11章 第4节 单摆课件 新人教版选修3-4

高中物理 第11章 第4节 单摆课件 新人教版选修3-4

单摆的周期
1.探究单摆的振幅、质量、摆长对周期的影响 (1)探究方法:_控__制__变__量___法。 (2)实验结论: ①单摆振动的周期与摆球质量___无__关_____。 ②振幅较小时周期与振幅__无__关______。 ③摆长越长,周期__越__大___;摆长越短,周期__越__小___。
2.定量探究单摆的周期与摆长的关系
l g
1.等效摆长
Байду номын сангаас
(1)实际的单摆摆球不可能是质点,所以摆长应是从悬点
到摆球球心的长度,即l=L+d2,L为摆线长,d为摆球直径。
(2)等效摆长。 图(a)中甲、乙在垂直纸面方向摆动起来效果是相同的, 所以甲摆的摆长为l·sina,这就是等效摆长,其周期T=
2π lsignα。 图(b)中,乙在垂直纸面方向摆动时,与甲摆等效;乙在
周期,作出T-l,T-l2或T- l图象,得出结论。
3.周期公式 (1)公式的提出:周期公式是荷兰物理学家__惠__更__斯____首先 提出的。
l (2) 公 式 : T = 2_π____g_____ , 即 T 与 摆 长 l 的 二 次 方 根 成 ___正__比_____,与重力加速度g的二次方根成___反__比_____。
纸面内小角度摆动时,与丙等效。
2.等效重力加速度g
(1)g由单摆所在的空间位置决定。由g=G
M r2
知,g随所在
地球表面的位置和高度的变化而变化,高度越高,g的值就越
小,另外,在不同星球上g也不同。
(2)g还由单摆系统的运动状态决定,如单摆处在向上加速
的升降机中,设加速度为a,则重力加速度的等效值g′=g+
单摆的回复力
1.回复力的来源 摆球的重力沿__圆__弧__切__线__方向的分力。 2.回复力的特点 在偏角很小时,摆球所受的回复力与它偏离平衡位置的 位移成__正__比___,方向总指向__平__衡__位__置__,即F=___-__m_lg_x___ 3.运动规律 单摆在偏角很小时做___简__谐_____运动,其振动图象遵循 ___正__弦_____函数规律。

2020人教版高三物理选修3-4(理科生)电子课本课件【全册】

2020人教版高三物理选修3-4(理科生)电子课本课件【全册】

3 波长、频率和波速
2020人教版高三物理选修3-4(理科 生)电子课本课件【全册】
4 波的衍射和干涉
2020人教版高三物理选修3-4(理科 生)电子课本课件【全册】
5 多普勒效应
2020人教版高三物理选修3-4(理科 生)电子课本课件【全册】
6 惠更斯原理
2020人教版高三物理选修3-4(理科 生)电子课本课件【全册】
第十三章 光
2020人教版高三物理选修3-4(理科 生)电子课本课件【全册】
1 波的形成和传播
2020人教版高三物理选修3-4(理科 生)电子课本课件【全册】
2 波的图象
2020人教版高三物理选修3-4(理科 生)电子课本课件【全册】
2020人教版高三物理选修3-4(理科 生)电子课本课件【全册】
5 外力作用下的振动
2020人教版高三物理选修3-4(理科 生)电子课本课件【全册】
第十二章 机械波
2020人教版高三物理选修3-4(理科 生)电子课本课件【全册】
3 光的干涉
2020人教版高三物理选修3-4(理科 生)电子课本课件【全册】Leabharlann 4 实验:用双缝干涉测量光的 波长
2 简谐运动的描述
2020人教版高三物理选修3-4(理科 生)电子课本课件【全册】
3 简谐运动的回复力和能量
2020人教版高三物理选修3-4(理科 生)电子课本课件【全册】
4 单摆
2020人教版高三物理选修3-4(理 科生)电子课本课件【全册】目录
0002页 0133页 0175页 0267页 0310页 0399页 0470页 0554页 0657页 0733页 0778页 0809页 0881页 0910页 1053页 1069页 1129页

人教版高中物理选修3-4第十一章第4节单摆

人教版高中物理选修3-4第十一章第4节单摆

结论:1 单摆中, 重力沿切线方向的分力提供回复力 ,
2, 当 角 < 5o时 单 的 动 看 简 振 摆 θ , 摆 振 可 作 谐 动
新的问题: 新的问题: 单摆振动的周期由什么决定的? 单摆振动的周期 猜想-----------摆球质量m?振幅A?摆长l? 猜想-----------摆球质量 ?振幅 ?摆长 ? -----------摆球质量 实验验证!!! 实验验证!!!
关于单摆的说法,正确的是( 例:关于单摆的说法,正确的是( C
【解析】
简谐运动中的位移是以平衡位置作为起点, 简谐运动中的位移是以平衡位置作为起点,摆球在正 向最大位移处时位移为A, 向最大位移处时位移为 ,在平衡位置时位移应为零 摆球的回复力由合外力沿圆弧切线方向的分力( 摆球的回复力由合外力沿圆弧切线方向的分力(等于 重力沿圆弧切线方向的分力) 重力沿圆弧切线方向的分力)提供 合外力在摆线方向的分力提供向心力, 合外力在摆线方向的分力提供向心力,摆球经最低点 振动的平衡位置)时回复力为零,但向心力不为零, (振动的平衡位置)时回复力为零,但向心力不为零,所以 合力不为零,(摆球到最高点时,向心力为零,回复力最大, ,(摆球到最高点时 合力不为零,(摆球到最高点时,向心力为零,回复力最大, 合力也不为零). 合力也不为零).
第十一章. 1.机械振动. 机械振动
物体在平衡位置附近所做的往复运动叫做机械振动,简称振动. 物体在平衡位置附近所做的往复运动叫做机械振动,简称振动.
2.简谐运动. 简谐运动.
物体在跟位移大小成正比, 物体在跟位移大小成正比,并且总是指向平衡位置的回复力 作用下的振动,叫做简谐运动. 作用下的振动,叫做简谐运动.
3,单摆中的能量
O⁄ 摆球运动过程中,只有重力做功, 摆球运动过程中,只有重力做功,动 能和重力势能相互转化, 能和重力势能相互转化,但机械能的总量 不会发生变化,即机械能守恒。 不会发生变化,即机械能守恒。

物理人教版选修3-4教材梳理 第十一章 4.单摆含解析

物理人教版选修3-4教材梳理 第十一章 4.单摆含解析

疱丁巧解牛知识·巧学一、单摆的回复力1.单摆用一根不可伸长且不计质量的细线,悬挂一直径可忽略的小球所组成的装置,叫做单摆.要点提示 单摆是实际摆的理想化模型.2.实际摆看作单摆的条件(1)摆线的形变量与摆线长度相比小得多,悬线的质量与摆球质量相比小得多,这时可把摆线看成是不可伸长,且没有质量的细线.(2)摆球的直径与摆线长度相比小得多,这时可把摆球看成是没有大小只有质量的质点.学法一得 某一物理量是否可以略去不计,是相对而言的,为了满足上述条件应尽量减小空气阻力对它的影响,我们组成单摆的摆球应选择质量大而体积小的球,线应选择尽量细而轻且弹性小的线.3.单摆的回复力(1)单摆的回复力是重力沿圆弧切向的分力F=mgsin θ提供的.(2)单摆在摆角很小时做简谐运动.如图11-4-1所示,摆球受重力mg 和绳子拉力F ′两个力作用,将重力按切线方向、径向正交分解,则绳子的拉力F ′与重力的径向分量的合力提供了摆球做圆周运动所需的向心力,而重力的切向分力F 提供了摆球振动所需的回复力F=mgsin θ.图11-4-1设单摆的摆长为l ,在最大偏角θ很小的条件下,摆球对O 点的位移x 的大小,与θ角所对的弧长,θ角所对的弦长都近似相等,即x==OP.若摆角θ用弧度表示,则由数学关系知:sin θ=l OP ≈l x所以重力沿切向分力F=mgsin θ≈mglx 令k=l mg ,则F=kx 因为F 的方向可认为与x 方向相反,则F 回=-kx由此可见单摆在摆角很小条件下的振动为简谐运动.误区警示 单摆振动的回复力是重力在切线方向的分力,或者说是摆球所受合外力在切线方向的分力.摆球所受的合外力在摆线方向的分力作为摆球做圆周运动的向心力.所以并不是合外力完全用来提供回复力的.因此摆球经平衡位置时,只是回复力为零,而不是合外力为零.(此时合外力提供摆球做圆周运动的向心力)4.单摆的运动特点(1)摆球以悬挂点为圆心在竖直平面内沿圆弧做变速圆周运动,做圆周运动需要向心力,向心力由绳子的拉力与重力的径向分量的合力提供.(2)摆球同时以最低点为平衡位置做振动,做振动需要回复力,由摆球重力的切向分力提供(或摆球所受合外力沿圆弧切向分力提供).二、单摆的周期1.伽利略发现了单摆运动的等时性,惠更斯得出了单摆的周期公式,并发明了摆钟.2.单摆的周期公式:T=2πgl . (1)单摆的周期T=2πgl 为单摆的固有周期,相应地f= 21l g 为单摆的固有频率,即周期与振幅与摆球质量无关,只与摆长l 及单摆所在地的重力加速度有关.(2)单摆的周期公式最大偏角很小时成立(达5°时,与实际测量值的相对误差为0.01%).(3)单摆周期公式中的g 应为单摆所在处的重力加速度,l 应为单摆的摆长.因为实际的单摆摆球不可能是质点,所以摆长是指从悬点到摆球重心的长度.对于不规则的摆动物体或复合物体,摆长均为从悬点到摆动物体重心的长度.而从悬点到摆线与摆球连接点的长度通常叫摆线长.3.秒摆:周期为2 s 的单摆,叫做秒摆.三、用单摆测定重力加速度1.原理由单摆周期公式T=2πgl 可得重力加速度g=224T l 据此只要测出单摆摆长l 和周期T ,即可计算出当地的重力加速度值.2.器材铁架台及铁夹、金属小球(最好上面有一个通过球心的小孔)、秒表、细线(1 m 左右)、刻度尺(最小刻度为 mm )、游标卡尺.学法一得 选择材料时应选择细而不易伸长的线,比如用单根尼龙丝、丝线等,长度一般不应短于1 m ,小球应选用密度较大的金属球直径应较小,最好不超过2 cm.3.实验步骤(1)让细线穿过球上的小孔,在细线的一端打一个稍大一些的线结,制成一个单摆.(2)将小铁夹固定在铁架台上端,铁架台放在实验桌边,使铁夹伸出桌面之外,然后把单摆上端固定在铁夹上,使摆球自由下垂.误区提示 单摆悬线的上端不可随意卷在铁夹杆上,应夹紧在铁夹中,以免摆动时发生摆线下滑、摆长改变的现象.(3)用刻度尺和游标卡灭测量单摆的摆长(摆线静挂时从悬点到球心间的距离).(4)把此单摆从平衡位置拉开一个角度,并使这个角不大于10°,再释放小球,当摆球摆动稳定以后,过最低位置时,用秒表开始计时,测量单摆全振动30次(或50次)的时间,求出一次全振动的时间,即单摆的振动周期.学法一得 ①注意摆动时控制摆线偏离竖直方向不超过10°,可通过估算振幅的办法掌握;②计算单摆的振动次数时,应以摆球通过最低位置时开始计时,以后摆球应从同一方向通过最低点时计数,要多测几次(如30次或50次)全振动的时间,用取平均值的办法求周期.误区警示 摆球摆动时,要使之保持在同一个竖直平面内,不要形成圆锥摆.。

高中物理人教选修3-4第十一章第一节简谐运动

高中物理人教选修3-4第十一章第一节简谐运动

重点
四、振动图像的应用
心电图
地震波
简谐运动的特点:
1、简谐振动是最简单、最基本的运动,简谐振动是理想化的振动。 2、回复力与位移成正比而方向相反,总是指向平衡位置。 3、简谐运动是一种理想化的运动,振动过程中无阻力,所以振动系
统机械能守恒。 4、简谐运动是一种非匀变速运动。 5、位移随时间变化关系图是正弦或余弦曲线.
习题 BCD
习题 A
习题
A
习题 ACE
小结
机 1、定义
械 振
2、产生条件
(1)有回复力作用

(2)阻力足够小
弹簧振子---------理想化物理模型
简 谐
回复力的特点:F= -kx

动 各物理量分析
A’
O
A
感谢观赏!
二、弹簧振子
1、我们把这样弹簧和振子组成的振动系统叫弹簧振子。 2、条件:振子可看作质点,轻质弹簧,可忽略阻力。
弹簧振子的理想化条件
(1)弹簧的质量比小球的质量小得多, 可以认为质量集中于振子(小球)。
(2)小球需体积很小,可当做质点处理。
(3)忽略一切摩擦及阻力作用。
(4)小球从平衡位置拉开的位移在弹 性限度内。
常见的简谐运动
常见的简谐运动
实例
实验室中的机械振动:
探究实验
*实验目的 *实验器材 *实验过程 *实验中遇到的困难
如何证明得到的位移时间图像的函数关系?
同学们猜想振子位移随时间遵循什么规律?
同学们猜想振子位移随时间遵循什么规律? 由这张图我们有什么启发?
动画演示振动图像:
X
三、简谐运动
选修3-4 第十一章 金文洋
回顾

人教版高中物理选修3-4课件《11.2单摆》

人教版高中物理选修3-4课件《11.2单摆》
累积法测单摆周期:测量n次全振动所用时间t 振动稳定后,小球某次通过平衡位置时开始计时并数 “0”,摆球每次从相同方向通过平衡位置数一次数, 数到“n”停止计时,测出总时间t,求出周期的平均 值T. t
T=n•源自③数据记录与处理摆长(cm)
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨
周期(s) 0.90 1.10 1.27 1.42 1.55 1.70
1.76 1.90 2.01

周期二次方(s2) 0.81 1.21 1.61 2.02 2.40 2.89 3.10
20.00 30.00 40.00 50.00 60.00 70.00
80.00 90.00 100.00
3.61
4.04

T = kl
4π T = l g
2 2
2
l T = 2π g
观察思考

§1.2单摆
一、单摆 1、定义:忽略悬挂小球的细线长度的微小变化 和质量,且线长比球的直径大得多,这样的装置 就叫单摆. 2、单摆的结构: θ ①固定悬点O’ l ②摆长l:悬点到重心的距离
d l = l绳 + 2
C
B
③θ:最大摆角

受力分析?
运动分析?
提供向心力 重力的切线分力G1使摆球回 到平衡位置
思考:哪些因素可能影响单摆做简谐运动的
周期T?
振幅(最大偏角θ) 无关 质量m 无关 摆长l 有关
方法:控制变量法 现象:摆长l越小,周期T越短。

实验:探究周期T与摆长L的关系
单摆、铁架台、秒表、毫米刻度尺 器材:
操作: d 已知小球直径d=2cm ①测摆长 l = l 绳 + 2 ②测周期 如何减小测量周期的误差?

最新人教版高中物理选修3-4第十一章单摆1

最新人教版高中物理选修3-4第十一章单摆1

-4-
1.1 DNA重组技术的基本工具
一 二 三 四
自主预习 首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
二、单摆的回复力
(1)回复力的提供:摆球的重力沿圆弧方向的分力。 (2)回复力的特点:在偏角很小时,单摆所受的回复力和它偏离平衡位置 的位移大小成正比,方向总是指向平衡位置,即 F=规律。
-2-
1.1 DNA重组技术的基本工具
一 二 三 四
自主预习 首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
一、单摆
由细线和小球组成,细线的质量与小球相比可以忽略,球的直径与线的 长度相比也可以忽略。 忽略摆动过程中所受阻力的作用,单摆是实际摆的理 想化模型。 为了满足上述条件,我们尽量选择质量大、 半径小的球和尽量细的无弹 性的线。
-9-
1.1 DNA重组技术的基本工具
一 二
首 页
基础知识 J课堂互动 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
一、在探究实验中的几个问题
1.测量单摆的振动周期时为什么要从平衡位置开始计时 单摆摆到平衡位置时的速度最大,从这里作为计时起点误差最小。 因为 计时的 平衡位置,摆球的运动用时也很短。相反,若在最大位移处开始计时,正因为 是速度很小,计时的瞬间若摆球没有到达或超过最大位移,运动时间较长,引 起的误差就会大一些。 2.如何探究单摆振动的周期跟摆球质量的关系 使用摆长相同而质量不同摆球的单摆,测量其摆动的周期即可。 3.如何探究单摆振动的周期跟振幅的关系 同样摆长的单摆,让它们的振动幅度不同,测量其摆动的周期即可。 4.在周期的测量中,采取什么方法可使误差更小些 测量 30 次或 40 次、50 次的总时间,然后求出平均周期即可。

人教版高中物理选修3-4课件 11 单摆课件人教版

人教版高中物理选修3-4课件 11 单摆课件人教版
化的关系,下列关于图象的说法正确的是( CD )
A.a图线表示势能随位置的变化关系 B.b图线表示动能随位置的变化关系 C.c图线表示机械能随位置的变化关系 D.图象表明摆球在势能和动能的相互转 化过程中机械能不变
1.单摆作简谐运动的回复力由下列哪些力提供( B )
A.摆球的重力 B.摆球重力沿圆弧切线的分力 C.摆线的拉力 D.摆球重力与摆线拉力的合力
∴ 秒摆的摆长是1m.
(g 2)
跟踪训练
一个作简谐运动的单摆,周期是1s(ACD)
A.摆长缩短为原来的1/4时,频率是2Hz B.摆球的质量减小为原来的1/4时,周期是4秒 C.振幅减为原来的1/4时周期是1秒 D.如果重力加速度减为原来的1/4时,频率是0.5Hz.
等效摆长:
思维拓展
摆球重心到摆动圆弧圆心的距离。 等效摆长:
1.单摆的振动图像:
正弦图像
O'
法向:
Fy=T-mgcosθ
切向:
Fx=mgsinθ
回复力: Fx=mgsinθ
(向心力) (回复力)
θ
T
O
mgsinθ
mgcosθ
mg
2.单摆的回复力
当θ 很小时, (1)弧长≈x
若考虑回复力和位移的方向,
结论:当最大摆角很小时,单摆在竖直面内的摆动可看作是简谐运动。
惠更斯(荷兰)
周期公式: T 2 l
g
国际单位:秒(s)
单摆周期公式的理解:
T 2 l
g
1、单摆周期与摆长和重力加速度有关,与振幅和质量无关。 2、摆长、重力加速度都一定时,周期和频率也一定, 通常称为单摆的固有周期和固有频率。
例题
周期T=2s的单摆叫做秒摆,试计算秒摆的摆长。(g=9.8m/s2) 解:根据单摆周期公式:

最新人教版高中物理选修3-4第十一章《单摆》

最新人教版高中物理选修3-4第十一章《单摆》

4 单 摆1.单摆(1)定义:一根细线悬挂一小球,如果细线的质量与小球相比可以忽略;球的直径与线的长度相比可以忽略,这样的装置叫做单摆。

(2)实际摆可视为单摆的条件:①摆线的形变量比摆线的长度小得多,可把摆线看成不可伸长的线。

②摆线的质量比摆球的质量小得多,这时可以认为摆线是没有质量的。

③摆球的大小比摆线的长度小得多,这时可把摆球看成质点。

【例1】 下列关于单摆的说法,正确的是( )A .单摆摆球从平衡位置运动到正向最大位移处时的位移为A (A 为振幅),从正向最大位移处运动到平衡位置时的位移为-AB .单摆摆球的回复力等于摆球所受的合外力C .单摆摆球的回复力是摆球重力沿圆弧切线方向的分力D .单摆摆球经过平衡位置时加速度为零2.单摆的回复力(1)回复力的来源:摆球的重力沿圆弧切线方向的分力。

(2)回复力的特点:在偏角很小时,摆球所受的回复力与它偏离平衡位置的位移成正比,方向总指向平衡位置,即F =-mg lx 。

(3)运动规律:单摆在偏角很小时做简谐运动,其振动图象遵循正弦函数规律。

谈重点:回复力的推证如图所示,G 1=mgsin θ是沿摆球运动方向的力,正是这个力提供了使摆球振动的回复力,也可以说成是摆球沿运动方向的合力提供了摆球摆动的回复力:F =G 1=mg sin θ,当偏角很小时,sin θ≈x l ,所以单摆的回复力为F =-mg lx 。

【例2】 下列有关单摆运动过程中的受力,说法正确的是( )A .单摆运动的回复力是重力和摆线拉力的合力B .单摆运动的回复力是重力沿圆弧切线方向的一个分力C .单摆经过平衡位置时合力为零D .单摆运动的回复力是摆线拉力的一个分力解析:单摆运动是在一段圆弧上运动,因此单摆运动过程不仅有回复力,而且有向心力,即单摆的合外力不仅要提供回复力,而且要提供向心力,故选项A 错误;单摆的回复力是重力沿圆弧切线方向的一个分力,而不是摆线拉力的分力,故选项B 正确,D 错误;单摆经过平衡位置时,回复力为零,向心力最大,故其合外力不为零,所以选项C 错误。

人教版 高中物理选修3-4 11.4 单摆课件

人教版 高中物理选修3-4 11.4 单摆课件

(1)小球的重力在沿圆弧切线方 向上的分力提供回复力,而不是小球的 合力. (2)单摆做简谐运动的条件是偏角很小, 通常应在5°以内,误差不超过0.5%.
1. 什么样的装置叫单摆? 2. 在关?
4.单摆的应用
练习:
1.由单摆作简谐运动的周期公式,可知 ( C )
(1)单摆振动的频率是多大? (2)若当地的重力加速度为10 m/s2,试求这个摆的摆长是多少? (3)如果摆球在B处绳上拉力F1=1.01N,在O处绳上拉力 F2=0.995N,则摆球质量是多少?
作业:
1、课后练习1、2、3。 2、完成同步练习。
摆角小于10°的情况下,把两个摆球从不同 高度释放。 现象:摆球同步振动,说明单摆振动的周 期和振幅无关。
四.单摆做简谐运动振动的周期
(实验) (<50)
1.与振幅的关系:
无关
(等时性 伽利略)
2.与摆球质量的关系:
无关
x
3.与摆长的关系: 摆长越长,周期越大.
4.与重力加速度的关系: g越大,周期越小
A.摆长无限减小,可以使振动周期接近于零 B.在月球表面的单摆周期一定比地球表面的 单摆的周期长 C.单摆的振动周期与摆球的质量无关 D.单摆的振动周期与摆角无关,所以摆角可以 是300
2、如图甲所示是一个单摆振动的情形,O是它的平衡位置,B、 C是摆球所能到达的最远位置.设摆球向右方向运动为正方 向.图乙所示是这个单摆的振动图象.根据图象回答:
二.单摆的振动:
1.平衡位置.O
2.受力分析.
重力 弹力
3.运动分析.
以O点为平衡位置的振动.
以悬点O/为圆心的圆周运动.
4.力与运动的关系.
x
回复力大小: F回 mg sin

人教版高中物理选修3-4第11-12章振动和波单摆2.docx

人教版高中物理选修3-4第11-12章振动和波单摆2.docx

高中物理学习材料【知识概要】1.如图:小球在光滑圆弧上的往复滚动(光滑圆弧的半径为R ,小球半径为r),和单摆完全等同。

只要摆角足够小,这个振动就是简谐运动。

周期为:__________________。

公式中的摆长l 是:_______________和______________的差。

2.单摆的等效问题①等效摆长:如图所示,当小球垂直纸面方向运动时,摆长为CO .②等效重力加速度:当单摆在某装置内向上运动加速度为a 时, T =2π()a g l +;当向上减速时T=2π()a g l -,影响回复力的等效加速度可以这样求:摆球在平衡位置静止时,摆线的张力T 与摆球质量的比值.3.用单摆测定重力加速度:摆长等于_______________________________________________, 测定周期的方法:_______________________________________________________________。

【课堂例题】【例1】( )一只单摆摆长为L ,摆球质量为m ,做简谐运动的振幅为A .以平衡位置为重力势能的参考平面,其振动能量为E .在保证摆球做简谐运动的前提下,下列那些情况会使E 减小A.保持L 、m 不变,增大AB.保持L 、A 不变,增大mC.保持m 、A 不变,增大LD.保持m 、A 不变,减小L【例2】如图所示,三根细线OA, OB,OC 结于O 点,A,B 端固定在同一水平面上且相距为L ,使AOB成一直角三角形,∠BAO = 300,已知OC 绳长也为L ,下端C 点系一个可视为质点的小球,求:(1)小球在纸面内做小角度振动时,周期为多少?(2)小球在垂直纸面方向做小角度振动时,周期为多少? 【例3】在用单摆测重力加速度的实验中,也可以用图线法来 测量重力加速度g ,其方法是多次改变单摆的摆长, 量得L 1、L 2、L 3……L 6,并测定相应的周期T 1、T 2、T 3… T 6,将周期的平方看作是摆长的函数,依据实验记录 描得如图所示的图线,在该图上点出离原点O 较远的 一点P ,量得P 的横坐标x 和纵坐标y ,则得重力加速度为___________。

[精品]新人教选修3-4高中物理第十一章 11.4单摆

[精品]新人教选修3-4高中物理第十一章 11.4单摆

高二选修3-411、4单摆一、教材分析《单摆》是人教版高中物选修3-4机械运动第四节的教内容,是简谐运动的实例应用,既是本章重点又是高考热点。

本节重点是单摆周期及其应用。

二、教目标1.知识与技能:(1)知道什么是单摆;(2)解单摆振动的回复力及做简谐运动的条件;(3)知道单摆的周期和什么有关,掌握单摆振动的周期公式,并能用公式解题。

(4)知道利用单摆可以测定重力加速度2.过程与方法:(1)通过单摆做简谐运动条件的习,体会用近似方法研究物问题(2)通过研究单摆周期,掌握用控制变量法研究问题3情感、态度和价值观:通过介绍家的情况,激发生发现知识热爱的热情;鼓励生象家那样不怕困难,勇于发现勇于创造!三、教重难点:重点:单摆的周期公式及其成立条件。

难点:单摆回复力的分析。

四、情分析本节课主要习单摆振动的规律,只有在θ<10°时单摆振动才是简谐运动;单摆振动周期。

生对条件的应用陌生应加以强调。

五、教方法实验、分析、探究六、课前准备小钢球、细线、铁架台七、课时安排1课时八、教过程(一)预习检查、总结疑惑(二)情景引入、展示目标教师:在前面我们习了弹簧振子,知道弹簧振子做简谐运动。

那么:物体做简谐运动的条件是什么?生:物体做机械振动,受到的回复力大小与位移大小成正比,方向与位移方向相反。

今天我们习另一种机械振动——单摆的运动。

(展示实验器材)(三)合作探究、精讲点播1、阅读课本第13页到14页,思考:什么是单摆?什么情况下单摆可视为简谐运动?答:一根细线上端固定,下端系着一个小球,如果悬挂小球的细线的伸长和质量可以忽略,细线的长度又比小球的直径大得多,这样的装置就叫单摆。

在偏角很小的情况下,单摆的运动可视为简谐运动。

2物体做机械振动,必然受到回复力的作用,弹簧振子的回复力由弹簧弹力提供,单摆同样做机械振动,思考:单摆的回复力由谁提供,如何表示?(教师引导)(2)回复力指向?(生回答)(3)单摆受哪些力?(生黑板展示)(4)回复力由谁提供?(生回答)注意:上的近似必须让生了解,同时通过此处也能让生单摆做简谐运动是有条件3.单摆的周期(有条件的话最好让生动手实验)我们知道做机械振动的物体都有振动周期,请思考:单摆的周期受那些因素的影响呢?生:可能和摆球质量、振幅、摆长有关。

人教版高中物理选修3-4:11.1简谐振动

人教版高中物理选修3-4:11.1简谐振动

第十一章 机械振动
第一节 简谐振动
一、弹簧振子——理想化模型
1、概念: 小球和弹簧所组成的系统称作弹簧振子,
有时也把这样的小球称做弹簧振子或简称振子。 2、理想化模型: (1)不计阻力
(2)弹簧的质量与小球相比可以忽略。
二、弹簧振子的位移—时间图象
1、振子的位移x:都是相对于平衡位置的位移。
第一个1/2周期:
小结
1、机械振动:物体在平衡位置(中心位置)两侧附 近所做往复运动。通常简称为振动。 平衡位置:振子原来静止时的位置
2、弹簧振子理性化模型:不计阻力、弹簧的质量与 小球相比可以忽略。
3、简谐运动:质点的位移与时间的关系遵从正弦函 数的规律,即它的振动图象(x—t图象)是一条 正弦曲线 。
1、某一弹簧振子的振动图象如图所示,则由图象
列说法正确的是( D )
A、第1s内振子相对于平衡位置的位移与速度方向相反 B、第2s末振子相对于平衡位置的位移为-20cm C、第2s末和第3s学末科网,振zxxk.f子enghua相ngxue对yi 于平衡位置的位移均相同, 但瞬时速度方向相反 D、第1s内和第2s内振子相对于平衡位置的位移方 5 6 7 t/s
-20
3. (2011年吉林模拟)劲度系数为20 N/cm的弹簧振 子,它的振动图象如图11-1-10所示,在图中A 点对应的时刻( )
A.振子所受的弹力大小为0.5 N, 方向指向x轴的负方向 B.振子的速度方向指向x轴的正方向 图11-1-10 C.在0~4 s内振子作了1.75 次全振动 D.在0~4 s内振子通过的路程为0.35 cm,位移为0 答案:B
判断下列说法正确的是( A B )
A、振子偏离平衡位置的最大距离为10cm。 B、1s到2s的时间内振振子向平衡位置运动。 C、2s时和3s时振子的位移相等,运动方向也相同。 D、振子在2s内完成一次往复性运动。

(人教版选修3-4课件)高中物理选修:11.1简谐运动课件

(人教版选修3-4课件)高中物理选修:11.1简谐运动课件

一级达标重点名校中学课件
• (多选)如图甲所示,一弹簧振子 在A、B间振动,取向右为正方向,振子经过 O点时为计时时刻,其振动的 x-t图象如图乙 AC 所示,则下列说法中正确的是( ) • A.t2时刻振子在A点 • B.t2时刻振子在B点 • C.在t1~t2时间内,振子的位移在增大 • D.在t3~t4时间内,振子的位移在减小 • 解题指导:根据振动图像分析问题时,
一级达标重点名校中学课件
• 1.图象形状:正(余)弦曲线。 • 2.物理意义:表示振动质点在不同时刻偏 离平衡位置的位移,是位移随时间的变化 规律。 • 3.从图象可获取的信息 • (1)任意时刻质点的位移的大小和方向。如 图1所示,质点在t1、t2时刻的位移分别为x1 和-x2。
图1 图2
一级达标重点名校中学课件
一级达标重点名校中学课件
• 解析:若位移为负值,加速度一定为正值, 而速度有两种可能的方向,所以速度不一 定为正值,故A错误;质点通过平衡位置 时,速度最大,加速度为零,故B错误。 质点每次通过平衡位置时,位移相同,加 速度一定相同,而速度不一定相同,故C 错误,D正确。
一级达标重点名校中学课件
一级达标重点名校中学课件
•探究二 对简谐运动图象的理解
• 研究一个物体的振动是否为简谐运动,可 以通过作出的振动图象来判断。如图所示, 在弹簧振子的小球上安置一记录用的毛笔P, 在下面放一白纸带,请思考: • (1)振子振动时白纸不动,画出的轨迹是怎 样的? • (2)振子振动时,匀速拖动白纸,画出的轨 迹又是怎样的?
一级达标重点名校中学课件
• 3.本章知识比较琐碎、概念较多,且振动 的规律与直线运动规律存在很大差异,应 在理解概念和本章规律上多下工夫。要通 过实例理解振动的周期性和对称性,充分 利用这些特点解决振动问题。 • 4.在阅读教材时,对教材中出现的“做一 做”“思考与讨论”“实验”“科学漫步” 等材料,要认真研读,加强与同学的交流 与合作。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

推荐下载
高中物理学习材料
(灿若寒星**整理制作)
【知识概要】
1. 单摆:在细线的一端挂上一个小球,另一端固定在悬点上,如果线的________和________可以忽略,球的直径比_______________短得多,可以忽略,这样的装置叫做单摆.这是一种理想化的模型,一般情况下细线(杆)下接一个小球的装置都可作为单摆.
2.单摆振动可看做简谐运动的条件是:在同一竖直面内摆动,摆角很小(05<θ)。

3.单摆振动的回复力是_______________________________,不能说成是重力和拉力的合力。

在平衡位置振子所受回复力是零,但合力是向心力,指向悬点,不为零。

4.单摆的周期: T=________________,与小球是否运动无关.与摆球质量m 、振幅A 都无关。

其中摆长l 指_________________________的距离,重力加速度为单摆所在处的测量值。

要区分摆长和摆线长。

秒摆:周期为2s 的单摆.其摆长约为lm.
【课堂例题】
【例1】( )单摆摆球多次通过同一位置时,下述物理量不变化是:
A .位移;
B .速度;
C .加速度;
D .动能;
E .摆线张力
【例2】( )对单摆的振动,以下说法中正确的是:
A.单摆摆动时,摆球受到的向心力大小处处相等
B.单运动的回复力是摆球所受合外力
C.摆球经过平衡位置时所受回复力为零
D.摆球经过平衡位置时所受合外力为零
【例3】( )摆长为L 的单摆做简谐振动,若从某时刻开始计时,(取作t =0),当振动至 g
L t 23π
=时,摆球具有负向最大速度,则单摆的振动图象是图中的:
【例4】(1)在用单摆测重力加速度的实验中,测得悬线长为l ,摆球直径为d ,完成n 次全振动所用时间为t ,则重力加速度为大小g= 。

(2)把一个秒摆由地面移至距地面高度为地球半径1倍的高处,则它的周期将变为 s 。

(3

推荐下载 一个单摆在山脚处(可以认为是海平面高度),测得其周期为T ,将其移至山顶处,测得其周期变化了ΔT ,不考虑摆长随温度变化,设地球半径为R ,则山高为 。

【例5】 如图所示,摆长为L 的单摆,原来的周期为T 。

现在在悬点O 的正下方A 点固定一颗钉子,使OA=L/3,,则这个摆完成一次全振动所需的时间是 。

(写出计算过程)
【巩固训练】
( )1.如图所示,某单摆摆长为l ,摆球质量为m .现将摆球拉至右侧M 点由静止释放,使其在竖直面内做简谐运动,振幅为A ,最大偏角为.θ若从释放时开始计时:
①单摆振动过程中,系统机械能为mg A
②单摆振动过程中,摆线的拉力始终大于重力 ③经过g
l n t π)21(+
=,摆球回到最低点(3,2,1,0=n ……) ④在最低点,摆球加速度为θcos 1(2-g ) 以上说法正确的是: A .②④ B .①③ C .②③ D .③④
( )2.同一地点的甲、乙两单摆的振动图象如图所示,下列说法中正确的是:
A .甲、乙两单摆的摆长相等
B .甲单摆的机械能比乙摆小
C .两摆球先后经过平衡位置的时间间隔为T/2
D .两摆球先后经过平衡位置的时间间隔为T/4
3. 如图所示为一单摆和它的振动图象,O 为平衡位置B 、C 为最大位移处,规定向右为正方向,试回答:(1)振幅和周期各为多大?单摆在振动过程中哪个位置时作为起始时刻(即t =0)?
(2)当t = 0.75秒时,单摆通过哪个位置?运动的方向向哪里?
(3)在t = 0.5─0.75秒的时间内,单摆的位移、速度、加速度、
动能、势能、机械能的大小分别怎样变化?
(4)若单摆的摆长为l ,摆球质量为m ,当摆角为θ时,单摆的总机械能为多大?
4.如图所示,一个半径为R 的大球面镜固定在水平面,其最低点是O 点。

将一只小球a 从镜面上离O 点不远处无初速释放,同时将另一只小球b 从O 点正上方某一位置由静止释放。

为使在b 球落到镜面上时两球发生碰撞,求:b 球开始下落时在O 点正上方多高处?(两小球都可视为质点,不计摩擦和空气阻力。


a
b
O
推荐下载。

相关文档
最新文档