集合的含义与表示作业
集合知识点总结及习题
集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA A ABC A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩一、集合有关概念 1. 集合的含义2. 集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.元素与集合的关系——(不)属于关系 (1)集合用大写的拉丁字母A 、B 、C …表示元素用小写的拉丁字母a 、b 、c …表示(2)若a 是集合A 的元素,就说a 属于集合A,记作a ∈A;若不是集合A 的元素,就说a 不属于集合A,记作a ∉A;4.集合的表示方法:列举法与描述法。
集合的含义与表示
(2)在集合的书写形式上,要注意规范性. 如关于x的方程x-a=0的解集应写成{a},而不是a. (3)在没有指定集合的表示方法时,能明确表示集 合的要明确表示出来. 如所有小于20的既是奇数 又是素数的数组成的集合表示{3,5,7,11,13,17,19} 更为明确; 又如非负奇数组成的集合表示为 {x|x=2n+1,n∈N}更为恰当,这一点需要注意.
(2)小于2003的数; (3)和2003非常接近的数。 (4)我国的小河流 (5)大于3小于11的偶数
3、元素与集合之间的关系:
集合常用大写字母A,B,C,D,……标记, 元素常用小写字母a,b,c,d,……标记。
若a是集合A的元素, 就说a属于集合A , 记作 a∈A ; 若a不是集合A的元素, 则a不属于集合A , 记作 aA。 例如:A={1,2,3,4,5}
问题探究:
“集合”是日常生活中的一个常用词,现代汉语解释 为:许多的人或物聚在一起. 在现代数学中,集合是一种简洁、高雅的数学语言, 我们怎样理解数学中的“集合”?
知识探究 考察下列问题: (1)1~20以内的所有质数;
(2)绝对值小于3的整数;
(3)大兴八中高一、3班的所有男同学; (4)平面上到定点O的距离等于定长的所有的点. 上述每个问题都由若干个对象组成,每组对象的全体分别 形成一个集合,集合中的每个对象都称为元素.上述4个集 合中的元素分别是什么?
1 2
、 | - |、 0.5 组成的集合有3个元素。 (3)1
(4)集合{1,3,5,7}与集合{3,1,7,5}表示 同一个集合。
(A) 0 (B) 1 (C) 2 (D) 3
2.给出下列关系 (1) 0.5 R (2) 2 R
(3) | -3 | N
集合的含义与表示
【学习导引】集合是数学中最基本的概念,就如几何中的点、线、面一样是无法“被定义”的,我们只能用描述性的语言来说明,而无法去定义集合。
一般地,我们把一些元素组成的总体叫作集合。
集合中的元素有三个特征:确定性、互异性、无序性。
互异性是一个常考的考点。
简单来说,集合肯定是一些元素组成的全体,但反过来,“全体”未必是集合。
集合常用的三种表示方法:列举法、描述法、图示法(Venn 图法),各有优点,用什么方法要具体情况具体分析。
【知识点1】元素与集合的概念及符号表示【例题1】下列对象中可以构成集合的是( ).大苹果.小橘子.中学生.著名的数学家分析:判断一个全体能否构成一个集合,其关键是对标准的“确定性”的把握,即根据这个“标准”,可以明确判定一个对象是或者不是给定集合的元素。
详解:.大苹果到底以多大算大,标准不明确.小橘子到底以多小算小,标准不明确.中学生标准明确,可以构成集合.“著名”的标准不明确答案:.【例题2】下列对象中不能构成集合的是( ).拥有电脑的人.2023年高考数学难题.所有有理数.小于的正整数分析:判断一个全体能否构成一个集合,其关键是对标准的“确定性”的把握,即根据这个“标准”,可以明确判定一个对象是或者不是给定集合的元素。
详解:.一个人是否拥有电脑是明确的.数学难题因人而异,标准不明确.有理数标准明确.小于的正整数有,标准明确答案:.【知识点2】元素的三个特性与集合的相等【例题1】数集中的元素所满足的条件是___.分析:集合中元素的三个特性:①确定性:是指集合中的元素是确定的,即任何一个对象都能明确它是否是某个集合的元素;②互异性:是指对于一个给定的集合,它的任意两个元素都是不同的,即一个集合中不能出现相同的元素;③无序性:集合中的元素是没有先后顺序ππ的。
详解:根据集合中元素的互异性可知:解得:且所以,满足的条件是的一切实数.【例题2】已知集合,,若,求的值.分析:根据集合相等即元素相同,求出的可能取值;再根据集合元素互异性求出值。
集合的含义及其表示
集合的含义及其表示一、集合的相关概念元素集合一般用大括号”{}”表示集合,也常用大写的拉丁字母A、B、C…表示集合.用小写的拉丁字母a,b,c…表示元素二、集合三大特性:思考:判断以下元素的全体是否组成集合,并说明理由;(1) 大于3小于11的偶数;(2) 我国的小河流。
三、重要数集:四、元素对于集合的关系五、集合的分类有限集:无限集:空集:六、集合的表示方法1、列举法:例1 用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合。
思考题 (1)你能用自然语言描述集合{2,4,6,8}吗? (2)你能用列举法表示不等式x-7<3吗?2、描述法:3、Venn图:例2 试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合。
课堂小结集合间的基本关系观察以下几组集合,并指出它们元素间的关系:① A={1,2,3}, B={1,2,3,4,5};② A={x| x>1}, B={x | x2>1};③ A={四边形}, B={多边形};④ A={x | x是两边相等的三角形},B={x| x是等腰三角形} .一、子集的定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B 的子集。
记作:读作:Venn图表示:判断集合A是否为集合B的子集,若是则在()打√,若不是则在()打×:①A={1,3,5}, B={1,2,3,4,5,6} ( )②A={1,3,5}, B={1,3,6,9} ( )③A={0}, B={x x2+2=0} ( )④A={a,b,c,d}, B={d,b,c,a} ( )二、集合相等的定义:一般地,对于两个集合A与B, 如果集合A中的都是集合B的元素,同时集合B中的都是集合A的元素,则称集合A等于集合B,记作三、真子集对于两个集合A与B,如果A B,但存素 ,则称集合A 是集合B的真子集.记作A B四、几个结论①空集是任何集合的子集Φ A②空集是任何非空集合的真子集Φ A (A ≠ Φ)③任何一个集合是它本身的子集,即 A A④对于集合A ,B ,C ,如果 A B,且B C ,则A C例3 设A={x,x 2,xy}, B={1,x,y},且A=B ,求实数x,y 的值.例4 已知集合 与集合 满足Q P , 求a 的取值组成的集合A 作业布置1.教材P.12 A 组 5 B 组2.2. 若A={x |-3≤x≤4}, B={x | 2m -1≤x≤m+1},当B A 时,求实数m 的取值范围.3.已知}06|{2=-+=x x x P },01|{=+=ax x Q {}{}AC B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆1.1.3 集合的基本运算(1)观察集合A,B,C元素间的关系:(1) A={4,5,6,8}B={3,5,7,8} C={3,4,5,6,7,8}(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}一、并集一般地,由属于集合A或属于集合B的所有元素组成的集合叫做A与B的并集,记作读作即A∪B=例1. A={4,5,6,8},B={3,5,7,8},求A∪B.例2.设A={x|-1<x<2},B={x|1<x<3},求A∪B性质1A∪A = A∪φ = A∪B B∪A二、交集观察集合A,B,C元素间的关系:A={4,5,6,8}, B={3,5,7,8},C={5,8}一般地,由既属于集合A又属于集合B的元素组成的集合叫做A与B的交集。
集合的含义与表示
例3若方程x2-5x+6=0
和方程x2-x-2=0的解为元素的集为
M,则M中元素的个数为
(C)
A.1 B.2 C.3 D.4
例3若方程x2-5x+6=0
和方程x2-x-2=0的解为元素的集为
M,则M中元素.3 D.4
例4已知集合 A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
例4已知集合 A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
解:当a=0时,x=-1. 当a≠0时,=16-4×4a=0. a=1. 此时x=-2. ∴a=1时这个元素为-2. ∴a=0时这个元素为-1.
课堂练习
1.教科书5面练习第1、2题 2.教科书11面习题1.1第1、2题
课堂小结
1.集合的定义 2.集合元素的性质 3.集合与元素的关系 4.集合的表示 5.集合的分类
课后作业
教科书12面习题1.1第3、4题
⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}.
⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
写字母表示.
2.集合的表示: 集合常用大写字母表示,元素常用小
写字母表示.
3.集合与元素的关系:
2.集合的表示: 集合常用大写字母表示,元素常用小
写字母表示.
3.集合与元素的关系:
如果a是集合A的元素,就说a属于集 合A,记作a∈A.
高中数学:1.1.1集合的含义与表示 (23)
题型四 方程的解集 例5 如果方程ax+b=0的解集为A,cx+d=0的解集为B, 利用A,B表示: (1)(ax+b)(cx+d)=0的解集; (2)(ax+b)(cx+d)≠0的解集.
第13页
【解析】 (1){x|(ax+b)(cx+d)=0}={x|ax+b=0}∪{x|cx +d=0}=A∪B.
第25页
3.已知A={x|x<-5或x≥4},B={x|a+1≤x≤a+3},若B ⊆A,则实数a的取值范围是________.
答案 a<-8或a≥3 解析 ∵B⊆A,∴a+3<-5或a+1≥4,解得a<-8或a≥3.
第26页
4.设A,B为两个集合,下列四个命题: ①A B⇔对任意x∈A,有x∉B; ②A B⇔A与B没有公共元素; ③A B⇔A⊉B; ④A B⇔存在x∈A,使得x∉B. 其中真命题序号是________.(把符合要求的真命题序号都 写上)
第35页
自助餐走向高考
第36页
1.(2019·课标全国Ⅲ,理)已知集合A={-1,0,1,2},B
={x|x2≤1},则A∩B=( )
A.{-1,0,1}
B.{0,1}
C.{-1,1}
D.{0,1,2}
答案 A 解析 集合B={x|-1≤x≤1},则A∩B={-1,0,1}.
第37页
2.(2019·浙江)已知全集U={-1,0,1,2,3},集合A=
第27页
答案 ④
第28页
5.已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1= 0},若A∪B=A,求a的值.
解析 A={1,2},∵A∪B=A,∴B⊆A. ∴B=∅或{1}或{2}或{1,2}. 当B=∅时,无解. 当B={1}时,11+ ×11= =aa, -1,得a=2. 当B={2}时,22+ ×22= =aa, -1,无解.
1.1集合的含义与表示
1.1 集合的含义与表示【学习目标】1. 认识并理解集合的含义,知道常用数集及其记法;了解从属关系;2. 掌握集合的表示方法,并能正确地表示一些简单的集合. 重点:集合的表示方法 难点:描述法 【引入新课】在初中,我们已经接触过一些集合,你能举出一些集合的例子吗? 【探究新知】 探究1:集合的概念(1) 1~10以内所有的素数(质数); (2)我国古代的四大发明; (3)所有的正方形; (4)翔宇班2019级全体学生.思考:上述4个集合中的元素分别是什么? 这4个实例的共同特征是什么?归纳定义:一般地,我们把 统称为元素,把 叫做集合(简称为集).注:集合通常用大写的拉丁字母C B A ,,…表示,集合中的元素用小写的拉丁字母a ,b ,c …表示.探究2:集合元素的三个特征思考1:咱班的所有美女能不能构成一个集合?由此说明集合中的元素具有什么性质? 思考2:由实数2、3、2组成的集合有几个元素?由此说明集合中的元素具有什么性质? 思考3:由实数1、2组成的集合记为M ,由实数2、1组成的集合记为N ,这两个集合中的元素相同吗?这说明集合中的元素具有什么特征?归纳元素的特征: 。
思考:如果用A 表示2019级翔宇班全体学生组成的集合,用a 表示2019级翔宇班的一位同学,b 是一名枣庄三中的一位同学,那么,a b 与集合A 分别有什么关系? 由此看见元素与集合之间有什么关系?归纳:如果a 是集合A 的元素,就说 ,记作 ;如果a 不是集合A 的元素,就说 ,记作 .探究4:常用数集及其记法N ;N *或N + ;Z ; Q ;R探究5:集合的表示方法思考1:地球上的四大洋组成的集合怎么表示呢?归纳定义列举法: .注意:大括号不能缺失,不必考虑顺序,元素之间用“,”隔开;思考2: 你能用列举法表示不等式37-<x 的解集吗? 归纳定义描述法: 。
. 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.注意:描述法表示集合应注意集合的代表元素如2{(,)|1}x y y x =-;2{|1}y y x =-;2{|1}x y x =-不同.例1.用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程x x =2的所有实数根组成的集合; (3)由1~20以内的所有质数组成的集合.例2.用描述法表示下列集合:(1)不等式23>-x 的所有解组成的集合; (2)直线1+=x y 上所有点组成的集合; (3)所有奇数组成的集合.例3.试分别用列举法和描述法表示下列集合:(1)方程02-2=x 的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.例4.已知集合A 是由三个元素,25a a +,12组成的,且,求.【当堂检测】1.下列给出的对象中,能组成集合的是( )A.一切很大的数B.好心人C.漂亮的小女孩D.方程x 2-1=0的实数根 2.下面说法正确的是( )A.所有在N 中的元素都在N *中B.所有不在N *中的数都在Z 中C.所有不在Q 中的实数都在R 中D.方程4x =-8的解既在N 中又在Z 中 3.由“book 中的字母”构成的集合中元素个数为( ) A.1 B.2 C.3 D.44. .设A ={x ∈N |1≤x <6},则下列正确的是( ) A.6∈A B.0∈A C.3∉A D.3.5∉A5.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( ) A.2 B.3 C.0或3 D.0,2,3均可6.下列集合不等于由所有奇数构成的集合的是( )A.{x |x =4k -1,k ∈Z }B.{x |x =2k -1,k ∈Z }C.{x |x =2k +1,k ∈Z }D.{x |x =2k +3,k ∈Z } 7.用列举法表示集合{x |x 2-2x +1=0}为8.一次函数y =x -3与y =-2x 的图象的交点组成的集合是【课堂小结】1.1 集合的含义与表示--课时作业A一、选择题1.已知集合A 由x <1的数构成,则有( )A .3∈AB .1∈AC .0∈AD .-1∉A2.由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含( ) A .2个元素 B .3个元素 C .4个元素 D .5个元素 3.下列结论中,不正确的是( )A .若a ∈N ,则-a ∉NB .若a ∈Z ,则a 2∈ZC .若a ∈Q ,则|a |∈QD .若a ∈R ,则3a ∈R4.已知x ,y 为非零实数,代数式x |x |+y|y |的值所组成的集合是M ,则下列判断正确的是( )A .0∉MB .1∈MC .-2∉MD .2∈M5.已知集合S 中三个元素a ,b ,c 是△ABC 的三边长,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形6.已知集合A ={a ,b ,c }中任意2个不同元素的和的集合为{1,2,3},则集合A 的任意2个不同元素的差的绝对值的集合是( )A .{1,2,3}B .{1,2}C .{0,1}D .{0,1,2} 7.已知A 中元素满足x =3k -1,k ∈Z ,则下列表示正确的是( ) A .-1∉A B .-11∈A C .3k 2-1∈A D .-34∉A 二、填空题8.在方程x 2-4x +4=0的解集中,有________个元素. 9.下列所给关系正确的个数是________. ①π∈R ;②3D ∈/Q ;③0∈N *;④|-4|D ∈/N *.10.如果有一集合含有三个元素:1,x ,x 2-x ,则实数x 的取值范围是___________________.. 11.已知a ,b ∈R ,集合A 中含有a ,ba ,1三个元素,集合B 中含有a 2,a +b,0三个元素,若A =B ,则a +b =____.13.已知集合M 中的元素是正整数,且满足命题“如果x ∈M ,则(4-x )∈M ”,则满足条件的集合M 的个数为________. 三、解答题14.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求实数a 的值.15.已知集合A 含有两个元素a -3和2a -1,a ∈R . (1)若-3∈A ,试求实数a 的值; (2)若a ∈A ,试求实数a 的值.16.数集A 满足条件:若a ∈A ,则11-a ∈A (a ≠1).(1)若2∈A ,试求出A 中其他所有元素;(2)自己设计一个数属于A ,然后求出A 中其他所有元素;(3)从上面的解答过程中,你能悟出什么道理?并大胆证明你发现的“道理”.1.1 集合的含义与表示--课时作业B一、选择题1.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解集不可以表示为( )A .{(x ,y )|⎩⎪⎨⎪⎧x +y =3x -y =-1} B .{(x ,y )|⎩⎪⎨⎪⎧x =1y =2} C .{1,2} D .{(1,2)}2.集合A ={x ∈Z |-2<x <3}的元素个数为( ) A .1 B .2 C .3 D .4 3.集合{(x ,y )|y =2x -1}表示( )A .方程y =2x -1B .平面直角坐标系中的所有点组成的集合C .点(x ,y )D .函数y =2x -1图象上的所有点组成的集合 4.已知x ,y 为非零实数,则集合M ={m |m =x |x |+y |y |+xy|xy |}为( )A .{0,3}B .{1,3}C .{-1,3}D .{1,-3}5.下列选项中,集合M ,N 相等的是( ) A .M ={3,2},N ={2,3} B .M ={(3,2)},N ={(2,3)} C .M ={3,2},N ={(3,2)}D .M ={(x ,y )|x =3且y =2},N ={(x ,y )|x =3或y =2} 6.集合{3,52,73,94,…}用描述法可表示为( )A .{x |x =2n +12n ,n ∈N *}B .{x |x =2n +3n ,n ∈N *}C .{x |x =2n -1n ,n ∈N *} D .{x |x =2n +1n,n ∈N *} 7.下列命题中正确的是( )①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};④集合{x |4<x <5}可以用列举法表示.A .只有①和④B .只有②和③C .只有②D .以上命题都不对***m ∈N *},若a ∈A ,b ∈B ,c ∈C ,则下列结论中可能成立的是( )A .2 006=a +b +cB .2 006=abcC .2 006=a +bcD .2 006=a (b +c )二、填空题9.方程x 2-5x +6=0的解集可表示为_______________. 10.集合{x ∈N |x 2+x -2=0}用列举法可表示为_____________.11.已知集合A ={1,2,3},B ={(x ,y )|x ∈A ,y ∈A ,x +y ∈A },则B 中所含元素的个数为________. 12.定义集合A -B ={x |x ∈A ,且x ∉B },若集合A ={x |2x +1>0},集合B ={x |x -23<0},则集合A -B =____________. 13.给出下列集合:①{(x ,y )|x ≠1,y ≠1,x ≠2,y ≠-3};②{(x ,y )|⎩⎪⎨⎪⎧ x ≠1,y ≠1且⎩⎪⎨⎪⎧ x ≠2,y ≠-3};③{(x ,y )|⎩⎪⎨⎪⎧ x ≠1,y ≠1或⎩⎪⎨⎪⎧x ≠2,y ≠-3};④{(x ,y )|[(x -1)2+(y -1)2]·[(x -2)2+(y +3)2≠0]}.其中不能表示“在直角坐标系xOy 平面内,除去点(1,1)、(2,-3)之外所有点的集合”的序号有________. 三、解答题14.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.15.用适当的方法表示下列集合: (1)大于2且小于5的有理数组成的集合; (2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴的距离相等的点组成的集合.16.若P ={0,2,5},Q ={1,2,6},定义集合P +Q ={a +b |a ∈P ,b ∈Q },用列举法表示集合P +。
集合的含义与表示1
[点评] 在实际解答过程中,很多同学只是把答案算出来 后就不算了,根本不考虑求解出来的答案是不是合乎题目要求, 有没有出现遗漏或增根.在实际解答中要根据元素的特征,结 合题目要求和隐含条件,加以重视.
(2)互异性 一个给定的集合中的元素必须 是互不相同的.即同一元素在同一集合中,不 能重复出现.例如集合是由a,a,b这三个元素构 成的,是错误的说法.
(3)无序性 在一个集合中,元素之间是平 等的,它们都充当集合中的一员,无先后次序 之说,无高低贵贱之分.例如由1,2,3构成的 集合与由3,2,1构成的集合是相同的集合.
[解析] (1)∵1 是 A 的元素∴1 是方程 ax2+2x+1=0 的 一个根,∴a×12+2×1+1=0,即 a=-3,
∴方程即为-3x2+2x+1=0, ∴x1=1,x2=-13,∴集合 A 中的其他元素为-13.
(2)若 a=0,方程化为 2x+1=0,此时有且仅有一个根 x =-12;
{x|x是 book中的字母}
A⊆B的图形语言
A B
用平面上封闭 的曲线的内部 表示集合这图
叫Venn图
2:数轴
表示实数取值范围的集合,往往用数 轴直观表示。
如:{x| x>3}表示为
02345 下一页
x 返回
集合的分类
根据集合中元素个数的多少,我们将集合分为以 下两大类:
1.有限集
含有有限个元素的集合称为有限集.
●探索延拓
分类讨论的思想
ห้องสมุดไป่ตู้
已知集合A是由方程ax2+2x+1=0(a∈R)的实 数解作为元素构成的集合.
(1)1是A中的一个元素,求集合A中的其他元素; (2)若A中有且仅有一个元素,求a的值组成的集合B; (3)若A中至多有一个元素,试求a的取值范围. 探究1.集合的元素即为方程的解? 探究2.方程是一次还是二次?方程无解、有一解、二解分 别满足什么条件?
集合的含义-高中数学知识点讲解
集合的含义1.集合的含义【知识点的认识】1、集合的含义:集合是一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元,是具有某种特定性质的事物的总体.2、集合的表示方法:列举法、描述法、图示法.(1)列举法就是把集合中的每一个元素全部写出来;描述法指的就是用词汇或者用数学语言描述出集合中的元素;区间表示法就是用区间的形式来表示集合中的元素;图示法(数轴表示法,韦恩图法)用图的形式来描述表示出集合的每一个元素.(2)有限集常用列举法表示,而无限集常用描述法或区间表示法表示,抽象集常用图示法表示.(有限集就是集合中的元素个数是能够确定的.无限集是集合的元素个数无法精确.抽象集合就是只给出集合元素满足的性质,探讨集合中的元素属性,要求有较高的抽象思维和逻辑推理能力.)用描述法表示集合时,集合中元素的意义取决于它的“代表”元素的特征.【典型例题分析】题型一:判断能否构成集合典例 1:下列研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于 5 的自然数;(2)某班所有个子高的同学;(3)不等式 2x+1>7 的整数解.分析:根据集合元素的确定性,互异性进行判断即可.解答:(1)小于 5 的自然数为 0,1,2,3,4,元素确定,所以能构成集合.为{0,1,2,3,4}.(2)个子高的标准不确定,所以集合元素无法确定,所以不能构成集合.(3)由 2x+1>7 得x>3,因为x 为整数,集合元素确定,但集合元素个数为无限个,所以用描述法表示为{x|x>3,且x∈Z}.点评:本题主要考查集合的含义和表示,利用元素的确定性,互异性是判断元素能否构成集合的条件,比较基础.1/ 3典例 2:下列集合中表示同一集合的是()A.M={(3,2)}N={3,2}B.M={(x,y)|x+y=1}N={y|x+y=1}C.M={(4,5)}N={(5,4)}D.M={2,1}N={1,2}分析:利用集合的三个性质及其定义,对A、B、C、D 四个选项进行一一判断.解答:A、M={(3,2)},M 集合的元素表示点的集合,N={3,2},N 表示数集,故不是同一集合,故A 错误;B、M={(x,y)|x+y=1},M 集合的元素表示点的集合,N={y|x+y=1},N 表示直线x+y=1 的纵坐标,是数集,故不是同一集合,故B 错误;C、M={(4,5)} 集合M 的元素是点(4,5),N={(5,4)},集合N 的元素是点(5,4),故C 错误;D、M={2,1},N={1,2}根据集合的无序性,集合M,N 表示同一集合,故D 正确;故选D.点评:此题主要考查集合的定义及其判断,注意集合的三个性质:确定性,互异性,无序性,此题是一道基础题.题型二:集合表示的含义典例 3:下面三个集合:A={x|y=x2+1},B={y|y=x2+1},C={(x,y)|y=x2+1},请说说它们各自代表的含义.分析:根据集合的代表元素,确定集合元素的性质,A 为数集,B 为数集,C 为点集.解答:A 是数集,是以函数的定义域构成集合,且A=R;B 是数集,是由函数的值域构成,且B={y|y≥1};C 为点集,是由抛物线y=x2+1 上的点构成.点评:本题的考点用描正确理解用描述法表示集合的含义,要通过代表元素的特点正确理解集合元素的构成.【解题方法点拨】研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清楚其元素表示的意义是什么.2/ 32.函数的值【知识点的认识】函数不等同于方程,严格来说函数的值应该说成是函数的值域.函数的值域和定义域一样,都是常考点,也是易得分的点.其概念为在某一个定义域内因变量的取值范围.【解题方法点拨】求函数值域的方法比较多,常用的方法有一下几种:①基本不等式法:如当x>0 时,求 2x +8的最小值,有 2x +푥8푥≥ 2 2푥⋅8푥= 8;②转化法:如求|x﹣5|+|x﹣3|的最小值,那么可以看成是数轴上的点到x=5 和x=3 的距离之和,易知最小值为 2;③求导法:通过求导判断函数的单调性进而求出极值,再结合端点的值最后进行比较例题:求f(x)=lnx﹣x 在(0,+∞)的值域解:f′(x)=1푥― 1=1―푥푥∴易知函数在(0,1]单调递增,(1,+∞)单调递减∴最大值为:ln1﹣1=﹣1,无最小值;故值域为(﹣∞,﹣1)【命题方向】函数的值域如果是单独考的话,主要是在选择题填空题里面出现,这类题难度小,方法集中,希望同学们引起高度重视,而大题目前的趋势主要还是以恒成立的问题为主3/ 3。
高中数学知识点:集合的含义及表示
高中数学知识点:集合的含义及表示
集合的概念:
1、集合:一般地我们把一些能够确定的不同对象的全体称为集合(简称集);集合通常用大写的拉丁字母表示,如A、B、C、……。
元素:集合中每个对象叫做这个集合的元素,元素通常用小写的拉丁字母表示,如a、b、c、……
2、元素与集合的关系:
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A,记作3、集合分类根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
常用数集及其表示方法:
(1)非负整数集(自然数集):全体非负整数的集合.记作N
(2)正整数集:非负整数集内排除0的集.记作N*或N+
(3)整数集:全体整数的集合.记作Z
(4)有理数集:全体有理数的集合.记作Q
(5)实数集:全体实数的集合.记作R
集合中元素的特性:
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了. 任何一个元素要么属于该集合,要么不属于该集合,二者必具其一。
(2)互异性:集合中的元素一定是不同的.
(3)无序性:集合中的元素没有固定的顺序.
易错点:
(1)自然数集包括数0.
(2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示
成Z。
集合的含义和表示乐乐课堂
集合的含义和表示乐乐课堂
一、集合的概念
集合是数学中的一个基本概念,它由一些确定的、互异的元素组成。
我们可以用大括号{} 或者集合符号如表示一个集合。
集合中的元素具有无序性和确定性。
二、集合的表示方法
1.列举法:直接将集合中的元素一一列举出来,如{1, 2, 3, 4}。
2.描述法:用文字描述集合的元素特征,如{x | x 是自然数,且x > 0}。
3.符号法:用集合符号表示,如:表示一个包含无限个元素的集合。
三、集合的运算与关系
1.并集:表示两个集合中所有元素的集合,符号为∪。
2.交集:表示两个集合中共有的元素组成的集合,符号为∩。
3.补集:表示全集中不属于某个集合的元素组成的集合,符号为。
4.关系:如子集、超集、平等关系等。
四、实际应用:集合在生活中的例子
1.购物时的优惠活动,如满减、折扣等。
2.学生选课,需要考虑课程时间、地点等因素。
3.数据分析中的数据分类和统计。
五、总结与拓展
集合论是数学的基础,掌握集合的相关知识和运算对学习其他数学分支有很大帮助。
在实际生活中,集合理论也发挥着重要作用。
了解和熟练运用集合
概念,可以提高我们在生活和学术中的问题解决能力。
高一数学集合的含义与表示
⑴上课前要预习
⑵上课时要认真 ⑶关于作业 ⑷自己整理问题集
集合的有关概念
元素(element)---我们把研究的对象 统称为元素
集合(set)---把一些元素组成的总体叫 做集合, 简称集.
一般用大括号”{ }”表示集合,也常用 大写的拉丁字母A、B、C…表示集合. 用小写的拉丁字母a,b,c…表示元素
注:组成集合的元素可以是物,数,图,点等
集合三大特性:
(1)确定性:集合中的元素必须是确定 的.
(2)互异性:集合中的元素必须是互不相同 的。
(3)无序性:集合中的元素是无先后顺序的. 集合中的任何两个元素都可以交换位置.
只要构成两个集合的元素是一样 的,我们就称这两个集合是相等 的
;钣金加工 钣金激光切割 / 钣金加工 钣金激光切割
思考:
判断以下元素的全体是否组成集合,并 说明理由; (1) 大于3小于11的偶数; (2) 我国的小河流。
判断下列例子能否构成集合
中国的直辖市
√
身材较高的人
×
著名的数学家
×
高一(5)班眼睛很近视的同学 ×
注:像”很”,”非常”,”比较”这些不确定的词 都不能构成集合
重要数集:
(1) N: 自然数集(含0) 即非负整数集
练一练:用符号“∈”或“ ”
填空:
(1) 3.14__∈_____Q
(2) π_______Q
(3) 0__∈_____N
(4) 0_______N+
(5) (-0.5)0__∈_____Z (6) 2__∈_____R
集合的分类
有限集:含有限个元素的集合 无限集:含无限个元素的集合 空集:不含任何元素的集合
高一数学集合的含义与表示
作业
教材P.11
T1~4.
;高佣联盟 ;
晚一去到目の地就感觉不对劲,一味听见旁边有介绍有机蔬菜,明摆着希望他们成为第一批客人.不管蔬菜の味道如何,朋友关系掺了杂质总是让人心里不痛快.幸亏这些不是他朋友.余岚の小农场早就搞好了,就等今年开春正式播种有机种子.“这也难怪,做生意本来就是先从熟 人做起.我们是外来户,在她们眼里人脉广,能帮忙打开缺口总比她们摸石子过河の靠谱.”陆易站在商人角度来分析.“外人怎样跟我们无关,我们按计划行事.”柏少华一脸の无所谓.柏少君双腿搁在茶几上打嬉戏,身边发生の事他一概不理.德力踢他一脚,“喂,你怎么看?那 些可是你朋友.”这小子最单纯容易上钩.柏少君两耳不闻窗外事,“我不管,谁家の好吃吃谁家の.”他最好命,一向随遇而安.第二天,陆羽又提起那截大羊腿对准四只汪の饭盆开始削肉条拌饭.这时,门外一声呼喊,“陆陆!”“哎.”陆羽应了声,吩咐小福,“开门.”几只护院 神犬是她の得力好帮手.“你在干嘛?”柏少君进入院子一看,惊讶道.“给小福它们加菜.”用刀顺着肉の纹理削下去会轻松很多.女人の力度弱得惨不忍睹.柏少君夺过大羊腿,一把水果刀挥得银芒闪闪眼花缭乱,看不清哪儿跟哪儿,只见肉片一丝一块地往下掉.陆羽帮忙换盆 子,直到四只汪都有才罢手.至于小吉,它有猫粮和小鱼干,各得其所.“对了,你找我干嘛?”重新收起羊腿,陆羽问他.削了四份肉丝,柏少君像是不费吹灰之力,脸不红气不喘.“植树,去不去?我们订了好多果树苗到了,趁现在天气好赶紧种.”咦?种树造林可是惠国惠民の好 事,日后上山随手摘果子.“好,等我换身衣服.”陆羽忙回房换一身简便又保暖の休闲服,她好多年没过植树节了,没想到今年有机会.这群邻居真会玩,如果接下来他们肯种田就更好了,她以后买米买菜不用跑外边了,哈哈哈...“对了,种完树我们开始种菜,你门口の地是你の 吧?要不要开荒?一起种.”陆羽闻言缩一下肩,耶?她也要种?第86部分在云岭村,植树节提前了.松溪边种了几棵柳树,距离老远才有一棵,因为河边本来就种有梅树和一些别の.这些人不动原生态,尽可能不改变村里の格局添加几棵,完善田园风光罢了.他们说,烟笼翠濛,裹 雨拖风,河边种柳意境深重.听得陆羽无比惊诧,“你们好厉害,都是从小学の华语?”“少华说の,他说多种几棵明年这里の景致会更加美丽.”德力脚踩铁铲稍一用力,挑起一铲泥土填进树坑里.少华?陆羽脑子里映出那晚认真研究菜谱の男人来,他当时专注の模样很好看.都 说认真の男人帅气,而帅气の男人会厨艺不仅帅气,还快绝迹了吧?极品啊!没想到这山窝窝里藏着三个,难怪外边の女生常常跑进来围观.“陆陆.”陆易那边の坑挖好了,情深の呼唤她带着树苗过去.“哦,来了.”陆羽忙给他拿了两棵,柏少君那儿也要一棵.没错,这几天她根 本做不了什么,除了给大家分分棵苗之外.等她挖坑?半天挖不了一个,一天种一棵她能种到夏天.美化居住环境,人人参与多出一分力.树是少华掏の钱,所以他很悠闲,偶尔出来逛逛充当一下监工,然后回去给大家煮一顿美餐犒赏一下.几个男人做事肯定比她一个女人有效率,两 三天功夫,他们买回来の几车树苗就种完了.除了松溪边,他们租の田边各种几棵,村路两旁也种了榉树,并且得到老村长の认可.这种树高大,盛夏荫凉,秋叶红艳,很有观赏价值.种在村里の有花,也有果树,譬如海棠、玉兰之类,零散不规则地种.山里の树本来就多,他们只种了几 棵红叶枫在山边,并且在那里插下一块温馨提示牌,说明林里不属于村庄范围,有猛禽出没等字样.他们基本上都在自己の地盘种,不侵犯别人の田地.休闲居和少华家周围种了银杏,庭园种下五棵黑樱桃.“你家要不要来几棵?”柏少君问陆羽.陆羽忙摇头,“不用不用.”她院里 の树还不够多吗?宅子旁边の树也有些年头长得十分茂盛,夏天坐在门外の平地乘凉,看看田野,望望山,特别の舒心养眼,足够了.“话说,那些银杏种得活吗?”她反而有些担心这个.“种不活再说.”少君满不在乎地耸耸肩,这一点他从来没想过.种完树,勉强挖了几个坑の陆 羽全身酸痛,邻居却没事人似の第二天一大早又开始忙活.他们用除草机除草,用松土机翻泥松土,顺便给她の也翻了一遍,不像以前の农民那么费劲.她院里の菜圃也挖过了,去他们店取了些菜种回来自己搞,剩下门口那块地不知种什么好.瘦田无人耕,耕开有人争,借了两亩地给 别人,剩下一亩她自己要了.虽然她不会耕田,可看见别人种,自己也总想种些什么.邻居们不种水稻、小麦之类,平常吃の米和面仍要从外边进货.至于地里,他们种の是蔬菜、瓜果之类,方便餐厅取用.云岭村在大动土,老村长喜闻乐见,经常和老伴过来逛逛.二老喜欢年轻人兴致 高昂地开荒耕田,眼里仿佛看到未来几年の光景.年前の时候,休闲居の人曾找过他租耕地,可惜儿媳不同意,嫌弃他们给の租金太低.这年头,手里有地,心不慌.何玲在等他们提价回头,等他们开始开荒播种才知道,原来他们不声不响地找到那些离乡多年の原居民租下一大片丢荒 の田地和好几栋土坯房,前不久正推倒重建.这消息险些把她气出病来.现在她逢人便说这些城里人吃饱撑の乱找乐子,说是种地,不定哪天就扔了.像陆羽那样,院里の菜园子长期营养不良,浪费种子啥の.当然,这一切只在外界流传,云岭村の新居民对此一无所知.得 知云岭村忙得热火朝天,余家妹子和小伙伴们也经常来玩.商业上の事跟生活是分开の,做不成生意大家还是朋友嘛.开春要做の事很多,余岚の小农场也很忙,平时无事很少来,倒是余薇空闲得很.“干嘛不统一种?我正想跟我妈说与你们云岭村共同开发,将村里の树全部改成梅 树或者桃树呢.何玲也有这个意向,可你们今天这么搞不太好吧?何玲一家能同意?”她眉宇之间微微蹙起,像是不满,更像充满忧虑.“干嘛要她同意?我们在自己の地方种,又不在她家门口.”柏少君趁中午休息の功夫,和陆羽蹲在她门口平地の边缘,审视下边那亩地琢磨着种 什么好.本来有三亩の,两亩借给他们了.“村子是大家の,当然要统一意见.”余薇不悦地盯着两个靠得太近の人,眼珠一转,硬往两人中间蹲下把柏少君挤开老远,“陆陆,村子开发对大家都好,应该齐心协力の对吧?”陆羽仍在苦苦思索,心不在焉道:“就这样我挺喜欢の,够 安静.”嘿,就等她这句话,小心思得逞の余薇心花怒放.一天傍晚,陆羽喂完猫狗,然后在院子里逗那几只出来散步の小奶猫玩.它们会走路了,尾巴像竖起の一根小天线喵喵地在院里走来走去,对这个世界充满了好奇.主宠玩得正开心时,何玲来了.她以往来の时候笑容满面,今天 却气势汹汹不太友善.“我说杏子,听说你把定康家の地借给别人了?哎哟,你怎能做这种事呢?虽然你租了房子,可地你没租啊!我前些日子正和定康商量着租给那些游客种些什么.现在好了,地没了,你看怎么办吧.”摊摊手,似是一脸の无奈.陆羽无语了会儿,“玲姐,我租房 の合同上清楚写明这些地也包括在内,”关键是,“而且借给少君他们时,我特地约了定康叔过来说这事,他亲口同意并且另签了合同,不信咱们打电筒问他.”就前几天の事,邻居们得知她不想种地,便半开玩笑地说让她给他们种算了.租也可以,总之丢空太可惜.事关田地房产, 别说陆羽多了一段经历,时下の小青年们哪个敢不慎重对待?分分钟掉坑里烦死你.况且,她就是利用这一招对付亲哥の,敢草率吗?第87部分所以,她回去打了电筒问卓文鼎.卓大律师说屋归屋,田归田,建议她直接约房东周定康出来与邻居们洽谈,重新拟定一份田地租赁合同. 钱给了,新合同也签了.如今何玲这么说,不知是房东见利起心觉得钱少要反悔,还是何玲睁着眼睛说瞎话,以为她一个城里小姑娘考虑不周容易出漏子.“怎么可能?!”何玲脸色不好看了,“就算你跟他谈过,也不能擅作主张同意他们在村里乱搞.你要清楚自己の身份只是一名 租客,没资格对我们村指手划脚の.”这段话口气冲得很,像要跟她吵架.“我没指手划脚啊!”陆羽哭笑不得,仍耐着性子说,“玲姐你先消消气,有话慢慢说.”“我没气,你说到底有没这事吧!”谎话被拆穿,何玲显得气急败坏口不择言.“你让我说什么事?你得讲个明白.” 这指责没头没脑の,陆羽有点生气了.“你给我装什么蒜?姓陆の,你扪心自问刚来の时候我帮了你多少.没有我介绍你能租到这么好の房子?没有我公爹他们帮忙,你在村里能住得这么舒服?现在好了,安定下来就看我们不顺眼想赶尽叩绝了是不是?你这叫什么,叫忘恩负义! 没脸没皮...”何玲索性撕了脸皮,坐在院里指着陆羽开骂,将以往积攒下来の浊气,加上在休闲居碰壁受到の难堪一并发泄出来.一只小奶猫对这个物种很是好奇,不断歪着小脑袋望她,小腿噌噌噌地跑过来想凑近看清楚一些.对于骂架,陆羽是吵不赢の,当初冲嫂子叫嚷是趁对 方不觉意.如今何玲声如洪钟般响亮,她开口说话声音绝对被盖过.听她老提以前对自己の帮助,陆羽有些明白了,这人今晚不是来讲道理,而是存心过来找碴发泄の.何玲の不断地捶腿数落,偶尔跺跺脚,眼看那小奶猫就走到她脚边.生怕它被迁怒,陆羽赶紧过去把它抱开.谁知她 一过去,何玲以为她要打自己整个跳将起来.“好啊!你还想打我?!我呸,老娘打架那会儿你还不知道在哪个窝里躺着呢!”本来就想打可惜没机会,如今她一个箭步过来举手冲着陆羽一巴掌,“我打死你个不要脸の小娘皮,道理说不过就想打我?打就打,老娘怕过谁?”陆羽 怎么可能挨打?抱着小奶猫缓步闪过.院里の四只汪见主人挨打,顿时冲着何玲扑来并凶狠地吠起来.小吉本来趴在屋檐下看着孩子们跟主人玩耍,这会儿也跳出来着急地喵喵叫.“不许咬!你们退后.”生怕闹出人命,最终倒霉の是自己和四只汪,陆羽利用轻盈の步伐将另外几 只乱跑の小奶猫全部捡起来放在一旁,命令四只凶性大发の狼狗们,“坐下,看好它们不许乱跑.”主子の命令不可违逆,四只汪无奈地排排坐挡在小奶猫们跟前,冲着原地转圈找人の何玲凶狠地吼,身子不敢动.陆羽の练习一直没落下,她の速度掌控自如,可快可慢,步履轻盈,一 般人完全看不出来.“玲姐,你冷静点.”家里の宠物安全了,陆羽才有功夫应付抓狂发疯の何玲.“我很冷静,你就是个有爹生没娘教の丧门星小娼妇...”“啪!”の一巴掌,将何玲打倒在地.几乎与此同时,有客人在家便一直敞开の院门口冲来一群人,有男
新教材高中数学第一章预备知识1集合 集合的概念与表示第2课时集合的表示素养作业北师大版必修第一册
第一章 §1 1.1 第2课时A 组·素养自测一、选择题1.用列举法表示集合{x |x 2-3x +2=0}为( C ) A .{(1,2)} B .{(2,1)} C .{1,2}D .{x 2-3x +2=0}[解析] 解方程x 2-3x +2=0得x =1或x =2.用列举法表示为{1,2}. 2.直线y =2x +1与y 轴的交点所组成的集合为( B ) A .{0,1}B .{(0,1)}C .⎩⎨⎧⎭⎬⎫-12,0 D .⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫-12,0[解析] 解方程组⎩⎪⎨⎪⎧y =2x +1,x =0,得⎩⎪⎨⎪⎧x =0,y =1.故该集合为{(0,1)}.3.已知x ∈N ,则方程x 2+x -2=0的解集为( C ) A .{x |x =2} B .{x |x =1或x =-2} C .{x |x =1}D .{1,-2}[解析] 方程x 2+x -2=0的解为x =1或x =-2.由于x ∈N ,所以x =-2舍去.故选C .4.若A ={-1,3},则可用列举法将集合{(x ,y )|x ∈A ,y ∈A }表示为( D ) A .{(-1,3)} B .{-1,3}C .{(-1,3),(3,-1)}D .{(-1,3),(3,3),(-1,-1),(3,-1)}[解析] 因为集合{(x ,y )|x ∈A ,y ∈A }是点集或数对构成的集合,其中x ,y 均属于集合A ,所以用列举法可表示为{(-1,3),(3,3),(-1,-1),(3,-1)}.5.下列集合中,不同于另外三个集合的是( B ) A .{x |x =1} B .{x |x 2=1} C .{1}D .{y |(y -1)2=0}[解析] 因为{x |x =1}={1},{x |x 2=1}={-1,1},{y |(y -1)2=0}={1},所以B 选项的集合不同于另外三个集合.6.下列说法:①集合{x ∈N |x 3=x }用列举法可表示为{-1,0,1};②实数集可以表示为{x |x 为所有实数}或{R };③一次函数y =x +2和y =-2x +8的图象交点组成的集合为{x =2,y =4},正确的个数为( D )A .3B .2C .1D .0[解析] 由x 3=x ,得x (x -1)(x +1)=0,解得x =0或x =1或x =-1.因为-1∉N ,故集合{x ∈N |x 3=x }用列举法可表示为{0,1},故①不正确.集合表示中的“{}”已包含“所有”“全体”等含义,而“R ”表示所有的实数组成的集合,故实数集正确表示应为{x |x 为实数}或R ,故②不正确.联立方程组可得⎩⎪⎨⎪⎧y =x +2,y =-2x +8,解得⎩⎪⎨⎪⎧x =2,y =4,∴一次函数与y =-2x +8的图象交点为(2,4),∴所求集合为{(x ;y )|x =2且y =4},故③不正确.二、填空题7.已知A ={(x ,y )|x +y =4,x ∈N ,y ∈N },用列举法表示A 为__{(0,4),(1,3),(2,2),(3,1),(4,0)}__.[解析] ∵x +y =4,x ∈N ,y ∈N , ∴x =4-y ∈N ,∴⎩⎪⎨⎪⎧x =0,y =4,⎩⎪⎨⎪⎧x =1,y =3,⎩⎪⎨⎪⎧x =2,y =2,⎩⎪⎨⎪⎧x =3,y =1,⎩⎪⎨⎪⎧x =4,y =0.∴A ={(0,4),(1,3),(2,2),(3,1),(4,0)}.8.集合{1,2,3,2,5,…}用描述法表示为.[解析] 注意到集合中的元素的特征为n ,且n ∈N *,所以用描述法可表示为{x |x =n ,n ∈N *}.9.已知集合A ={x |2x +a >0},且1∉A ,则实数a 的取值范围是__(-∞,-2]__. [解析] 因为1∉A ,则应有2×1+a ≤0, 所以(-∞,-2]. 三、解答题10.用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =143x +2y =8,的解集;(2)方程x 2-2x +1=0的实数根组成的集合; (3)平面直角坐标系内所有第二象限的点组成的集合; (4)二次函数y =x 2+2x -10的图象上所有的点组成的集合; (5)二次函数y =x 2+2x -10的图象上所有点的纵坐标组成的集合.[解析] (1)解方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故解集可用描述法表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x =4y =-2,,也可用列举法表示为{(4,-2)}. (2)方程x 2-2x +1=0的实数根为1,因此可用列举法表示为{1},也可用描述法表示为{x |x 2-2x +1=0}.(3)集合的代表元素是点,可用描述法表示为{(x ,y )|x <0且y >0}.(4)二次函数y =x 2+2x -10的图象上所有的点组成的集合中,代表元素为点,可用描述法表示为{(x ,y )|y =x 2+2x -10}.(5)二次函数y =x 2+2x -10的图象上所有点的纵坐标组成的集合中,代表元素为y ,是实数,可用描述法表示为{y |y =x 2+2x -10}.B 组·素养提升一、选择题 1.方程组⎩⎪⎨⎪⎧x -y =2,x +2y =-1的解集是( C )A .{x =1,y =-1}B .{1}C .{(1,-1)}D .{(x ,y )|(1,-1)}[解析] 方程组的解集中元素应是有序数对形式,排除A,B,而D 的集合表示方法有误,排除D .2.用列举法可将集合{(x ,y )|x ∈{1,2},y ∈{1,2}}表示为( D ) A .{1,2} B .{(1,2)} C .{(1,1),(2,2)}D .{(1,1),(1,2),(2,1),(2,2)}[解析] x =1,y =1;x =1,y =2;x =2,y =1;x =2,y =2.∴集合{(x ,y )|x ∈{1,2},y ∈{1,2}}表示为{(1,1),(1,2),(2,1),(2,2)},故选D . 3.(多选题)大于4的所有奇数构成的集合可用描述法表示为( BD ) A .{x |x =2k -1,k ∈N } B .{x |x =2k +1,k ∈N ,k ≥2} C .{x |x =2k +3,k ∈N }D .{x |x =2k +5,k ∈N }[解析] 选项A,C 中,集合内的最小奇数不大于4. 4.(多选题)下列各组中M ,P 表示不同集合的是( ABD ) A .M ={3,-1},P ={(3,-1)} B .M ={(3,1)},P ={(1,3)}C .M ={y |y =x 2+1,x ∈R },P ={x |x =t 2+1,t ∈R } D .M ={y |y =x 2-1,x ∈R },P ={(x ,y )|y =x 2-1,x ∈R }[解析] 选项A 中,M 是由3,-1两个元素构成的集合,而集合P 是由点(3,-1)构成的集合;选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ;选项D 中,M 是二次函数y =x 2-1,x ∈R 的所有因变量组成的集合,而集合P 是二次函数y =x 2-1,x ∈R 图象上所有点组成的集合.故选ABD .二、填空题5.若集合A ={x |ax 2+2x +1=0,a ∈R }中只有一个元素,则实数a 的值是__0或1__. [解析] 集合A 中只有一个元素,有两种情况:当a ≠0时,由Δ=0,解得a =1,此时A ={-1},满足题意;当a =0时,x =-12,此时A =⎩⎨⎧⎭⎬⎫-12,满足题意.故集合A 中只有一个元素时,a 的值是0或1.6.设A ,B 为两个实数集,定义集合A +B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },若A ={1,2,3},B ={2,3},则集合A +B 中元素的个数为__4__.[解析] 当x 1=1时,x 1+x 2=1+2=3或x 1+x 2=1+3=4;当x 1=2时,x 1+x 2=2+2=4或x 1+x 2=2+3=5;当x 1=3时,x 1+x 2=3+2=5或x 1+x 2=3+3=6.∴A +B ={3,4,5,6},共4个元素. 三、解答题7.已知集合A =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪86-x ∈N ,试用列举法表示集合A .[解析] 由题意可知6-x 是8的正约数,当6-x =1时,x =5;当6-x =2时,x =4;当6-x =4时,x =2;当6-x =8时,x =-2,而x ≥0,∴x =2,4,5,即A ={2,4,5}.8.已知集合A ={x |ax 2-3x +2=0}. (1)若A 中只有一个元素,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.[解析] (1)因为集合A 是方程ax 2-3x +2=0的解集,则当a =0时,A =⎩⎨⎧⎭⎬⎫23,符合题意;当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根,则Δ=9-8a =0,解得a =98,此时A =⎩⎨⎧⎭⎬⎫43,符合题意.综上所述,当a =0时,A =⎩⎨⎧⎭⎬⎫23,当a =98时,A =⎩⎨⎧⎭⎬⎫43.(2)由(1)可知,当a =0时,A =⎩⎨⎧⎭⎬⎫23符合题意;当a ≠0时,要使方程ax 2-3x +2=0有实数根, 则Δ=9-8a ≥0,解得a ≤98且a ≠0.9 8.综上所述,若集合A中至少有一个元素,则a≤。
集合的含义及表示1.1.1
1.“地球上的四大洋”能组成一个集合
吗?它有几个元素?你能把这个集合表示 出来吗?
结论:{太平洋,大西洋,印度洋,北冰洋} 注意:把集合的元素一一列举出来,并用 花括号“{ }”括起来表示集合的方法叫 做列举法.例如{a,b,c}
例3.集合的表示(列举法)
1.用列举法表示下列集合:
(1)小于5的所有自然数组成的集合; (2)由1~9内的所有质数组成的集合
知识探究(一)
考察下列集合: (1)小于5的所有自然数组成的集合; (2)方程 的所有实数根组成的集合. 思考1:这两个集合分别有哪些元素? ( 1 ) 0 , 1 , 2, 3 , 4 ; (2)-1,0,1 思考2:由上述两组数组成的集合可分别怎样表 示? (1){0,1,2,3,4}; (2){-1,0,1} 思考3:这种表示集合的方法叫什么名称? 列举法 思考4:列举法表示集合的基本模式是什么? 把集合的元素一一列举出来,并用花括号 } “{ }”括起来,即 {a, b, c,
; .
例3 设集合 已知 ,求实数 1或-4
,
的值.
例4 已知集合A={1,2,3},B={1,2},设集 合C= ,试用列 举法表示集合C.
C={-1,0,1,2}
知识探究(二)
考察下列集合: (1)不等式 的解组成的集合; (2)绝对值小于2的实数组成的集合. 思考1:这两个集合能否用列举法表示? 思考2:如何用数学式子描述上述两个集合的元素 特征? (1)x R,且 x 5 ; (2)x R,且 | x | 2 思考3:上述两个集合可分别怎样表示?
思考3:集合 义如何? 的几何意
y
y x2
x
o
理论迁移
例1 用适当的方法表示下列集合: (1)绝对值小于3的所有整数组成的集合;
集合的含义及表示用.2021优秀PPT文档
思考?
你能用列举法表示不等式x73的解集吗?
描述法
用集合所含元素的共同特征表示集合的方法,称为 描述法.如:
xR| x10
在大括号内先写上表示这个集合元素的一般符号及 取值(或变化)范围,再画一条竖线,在竖线后写 出这个集合中元素所具有的共同特征.
一 般 符 号 范 围 |共 同 特 征
⑵互异性: 集合的元素必须是互异不相同的. 如:方程 x2-x+=0的解集为{1}而非{1,1}.
⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2}, {2,1}为同一集合.
例1
对于以下说法: ①接近于 0 的数的全体构成一个集合; ②棱柱的全体构成一个集合; ③未来世界的高科技产品构成一个集合; ④不大于 3 的所有自然数构成一个集合. 正确的是( D )
⑵ { 0 } ≠ (填=或≠)
集合的表示方法
列举法 描述法 区间表示
列举法
将集合中的元素一一列举出来,元素与元素之 间用逗号隔开。
用花括号{ }括起来
例2
用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程 x2 x的所有实数根组成的集合; (3)方程 x 12 0 的所有实数根组成的集合; (4)由1~20以内的所有质数组成的集合.
③ 满足不等式a≤x<b 或a<x≤b的实数x的集合, 叫作半开半闭区间,分别记作[a,b), (a,b],
定义
名称
{x|a≤x≤b} 闭区间
{x| a<x<b } 开区间
{x| a≤x<b} 半开半闭区间
{x| a<x≤b} 半开半闭区间
符号 [a, b] (a, b) [a, b) (a, b]
集合的名词解释
集合的名词解释集合,在我们日常生活中随处可见,无论是在数学领域、社会活动中还是自然界中,都存在着各种各样的集合。
那么,什么是集合?集合是指由一些个体或对象组成的整体或类别。
在这篇文章中,我们将探讨集合的概念、性质和应用。
一、集合的概念集合是一种基本的数学概念,它是由一些元素组成的整体。
这些元素可以是任何事物、对象或观念,例如自然数、人类、动物等等。
集合以大括号{}表示,其中可以列举出集合的元素,也可以使用条件来描述集合的元素。
例如,在自然数集合N={1, 2, 3, ...}中,可以找到无穷多个元素,每个元素都是一个自然数。
在这个例子中,集合N包含了所有自然数。
二、集合的性质1. 互异性:集合中的元素是独一无二的,没有重复的元素。
如果有两个或多个元素是相同的,就只算作一个元素。
2. 无序性:集合中的元素之间没有先后顺序的排列,也就是说,集合中元素的位置不影响集合本身的性质。
3. 包含关系:一个集合可以包含另一个集合,我们将包含一个集合的集合称为父集合,而被包含的集合称为子集合。
两个集合相等的条件是它们有相同的元素。
4. 空集:不包含任何元素的集合称为空集,用符号∅表示。
空集是每一个集合的子集。
5. 万有集:包含所有可能元素的集合被称为万有集,通常用U表示。
万有集是每一个集合的父集。
三、集合的应用集合的概念和性质在数学和其他领域中有着广泛的应用。
1. 数学中的集合论:集合论是数学的一个重要分支,它研究集合的性质、关系和操作。
集合论不仅仅是纯粹的数学理论,还在数学的各个分支和其他科学领域中起着重要的作用。
2. 数据分析与统计学:在数据分析和统计学中,集合被用来描述和分类数据。
通过将数据分组为不同的集合,我们可以更好地理解和分析数据的特征和规律。
3. 社会科学中的分类与归类:在社会科学研究中,集合概念可以用来对社会现象进行分类和归类,帮助我们理解和研究社会的各个方面,例如人口统计学、社会学和经济学等。
集合的含义与表示
集合的含义与表示一、导入:二、例题精讲●考点一 集合的三要素1.集合及元素的含义(1)元素:我们把研究对象统称为元素,一般用小写字母 b a 、来表示.(2)集合:把一些元素组成的总体叫做集合,一般用大写字母 B A 、来表示.2.集合与元素的关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作A a ∈.(2)不属于:如果a 不是是集合A 的元素,就说a 不属于A ,记作A a ∉.(3)空集:不含任何元素的集合叫做空集,用记号Φ表示.比如:不等式的解集:31<<x ;所有正方形构成的集合;201-之间的所有素数。
3.集合三要素①确定性:集合的元素必须是确定的,比如说“中国的直辖市”构成集合,“身材较高的人”不能构成集合。
②互异性:一个给定的集合中的元素是互不相同的,即集合中的元素不能重复出现。
③无序性:集合中的元素与顺序无关。
比如说{1,2,3}和{1,3,2}表示同一个集合。
例1.1.下列所给出的对象能构成集合的有( )A.所有的正三角形;B.高一数学必修I 课本上的所有难题;C.比较接近1的正整数全体;D.某校高一年级的16岁以下的学生;E.c a b a ,,,;F.参加北京奥运会的年轻运动员;G.平面直角坐标系内到原点距离等于1的点的集合.2.设集合},4,1{2t t A =,若A ∈4,求t 的值.【变式训练】已知}33,)1(,2{22++++=a a a a A 且A ∈1,求实数a 的值.●考点二 集合相等两个集合相等的含义:①两个集合元素的个数相等;②对于其中一个集合的任意一个元素,在另一个集合里也能找到这个元素.例2.已知},2,2{},,,2{2b a N b a M ==且N M =,求b a ,的值.【变式训练】设R b a ∈,,集合},,0{},,1{b ab a b a =+,则求a b -的值.●考点三 集合的表示1.常用数集的表示N 表示:非负整数集(自然数集); +N 或*N 表示:正整数集;Z 表示:整数集; Q 表示:有理数集; R 表示:实数集.2.集合的表示方法(1)列举法:把集合的元素一一列举,写在大括号内.比如:}3,2,1{注意:①元素与元素之间用逗号“,”隔开; ②集合的元素必须是明确的【确定性】;③元素书写的顺序是任意的【无序性】; ④集合的元素可以表示任何事物;⑤对含有较多元素的集合,如果元素之间有明显的规律,可以先写出部分元素,但是必须能体现元素间的规律,再用省略号表示,如},3,2,1{* =N .(2)描述法:把集合所具有的属性写在大括号内,分为文字描述法和符号描述法。
集合概念的名词解释
集合概念的名词解释集合是数学中最基本的概念之一,它不仅在数学中具有重要的地位,还广泛应用于其他学科和日常生活中。
本文将介绍集合的概念、表示方法、运算和性质,以及集合在实际问题中的应用。
一、集合的概念集合是由一些特定对象组成的整体。
这些对象可以是任何事物,如数字、字母、人、动物等等。
集合中的每个对象被称为集合的元素,元素可以重复,但在一个集合中每个元素只能出现一次。
集合可以用大括号{}表示,括号内列举集合的元素。
例如,集合A可以表示为A={1, 2, 3, 4, 5},其中的元素分别为1、2、3、4和5。
二、集合的表示方法除了用列举元素的方式表示集合外,还可以用描述性的方式表示集合。
描述性表示法通常使用变量和条件来定义一个集合。
例如,可以用集合B表示"所有小于10的正整数",可以写成B={x | x是小于10的正整数}。
三、集合的运算集合之间可以进行各种运算,常用的集合运算有并集、交集、差集和补集。
并集是指将两个集合的所有元素合并成一个新集合。
如果集合A={1, 2, 3},集合B={3, 4, 5},则它们的并集为A∪B={1, 2, 3, 4, 5}。
交集是指两个集合中共有的元素构成的新集合。
若集合C={2, 3, 4},则集合A和C的交集为A∩C={2, 3}。
差集是指从一个集合中减去另一个集合中的元素得到的新集合。
若集合B和C的差集为B-C,则B-C={4, 5}。
补集是指相对于某个全集,除去一个集合中的元素后剩下的元素。
若全集为D={0, 1, 2, 3, 4, 5},集合A的补集为D-A={0}。
四、集合的性质集合具有一些基本性质,这些性质有助于我们理解和处理集合相关的问题。
(1)子集关系:若集合A的所有元素都属于集合B,则称集合A是集合B的子集。
用符号表示为A⊆B。
若集合A是集合B的子集但两个集合不相等时,则称A为B的真子集,用符号表示为A⊂B。
(2)并、交运算的交换律和结合律:并集和交集运算满足交换律和结合律,即A∪B=B∪A,A∩B=B∩A,(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业 集合的含义与表示
1、下列各项中,不能构成集合的是( )
A .所有的正数
B .等于2的数
C .接近于0的数
D .不等于0的偶数
2、下面有四个命题中正确命题的个数为( ):
(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ;
(3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1;
A .0个
B .1个
C .2个
D .3个
3、若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰三角形
4、已知集合A ={x∈N +|-5≤x≤5},则必有 ( )
A.-1∈A
B.0∈A
C.3∈A
D.1∈A
5、(2012江西)集合{1,1},{0,2}A B =-=,则集合{|,,}z z x y x A y B =+∈∈的元素个数是(
) A 、5 B 、4 C 、3 D 、2
6、(2013山东)集合{0,1,2},{|,}A B x y x A y A ==-∈∈,则B 的元素个数是( )
A 、1
B 、3
C 、5
D 、9
7、已知正数a,b,c,d 是某集合的四个元素,则以它们为四边长的四边形可能是( )
A 、长方形
B 、平行四边形
C 、菱形
D 、梯形
8、由实数x,-x,|x|,2x ,-33x 所组成的集合,最多含有元素的个数为( )
A. 2
B. 3
C. 4
D. 5
9、设集合A=⎭⎬⎫⎩⎨⎧∈=N n x x n ,31
|,若A x A x ∈∈21,,则必有( )
A. A x x ∈+21
B.A x x ∈21
C. A x x ∈-21
D. A x x ∈2
1
10、下列各选项中的M 与P 表示同一个集合的是( )
A .M ={x ∈R |x 2+1=0},P ={x |x 2=0}
B .M ={(x ,y )|y =x 2+1,x ∈R},P ={(x ,y )|x =y 2+1,x ∈R}
C .M ={y |y =t 2+1,t ∈R},P ={t |t =(y -1)2+1,y ∈R}
D .M ={x |x =2k ,k ∈Z},P ={x |x =4k +2,k ∈Z}
11、用,∈∉填空:01()___3N ; 22013___{|1,}x x n n N =+∈; 2
(1,1)___{|}y y x -=;
Q ;{}|,,x x a a Q b Q =∈∈
12、用列举法表示集合:M m m Z m Z =+∈∈{|,}10
1= 。
13、(2013江西)若集合2{|10}x ax ax ++=只有一个元素,则a =__________。
14、若集合2{|20}x x x a -+=有两个元素,则a 的范围是_____________。
15、若{}1,3,132+-∈-m m m ,则m=_________。
16、已知集合P={}1,0,1,2--,集合Q={},,|p x x y y ∈=则Q=______________。
17、已知集合M={}4,433,222-+-+-x x x x ,若2∈M,则x =_________。
18、设集合A={x, x 2,y 2-1},B={0,|x|,y }且A=B,则x= , y= 。
19、集合2{2,3,23}A a a =--,}2|,12{|-=a B ,已知B A ∉∈55且,则实数a 的值为__________。
20、集合A 中的元素y 满足y∈N 且y =-x 2+1,若t∈A,则t 的值为__________。
21、已知P ={x|2<x <a ,x∈N},已知集合P 中恰有3个元素,则实数a 的范围是________________。
22、已知集合2{|430}A x ax x =--=。
(1)若A 只有一个元素,求a 的值;(2)若A 至少有一个元素,
求a 的范围;(3)若A 至多有一个元素,求a 的范围。
23、含有三个实数的集合M 可表示为⎭⎬⎫⎩⎨⎧1,,
a b a ,也可表示为{}0,,2b a a +,求20112012a b +的值。
24、已知集合{}{}
22,1,3,3,21,1A a a B a a a =+-=--+只有一个公共元素-3,求实数a 的值。
25
、集合{|,}A x x a a b Q ==+∈,且12,x x A ∈。
(1)判断12x x 和12x x 是否属于A ;(2
)若{|,}B x x a a b Z ==+∈,判断12x x 和12
x x 是否属于B 。