Udec计算算例

合集下载

《udec版本版》课件

《udec版本版》课件
确保服务器和客户端的操作系统、内存、存储等满足udec版本的 要求。
软件下载与安装
从udec官网下载最新版本,按照安装向导逐步完成安装过程。
配置参数
根据实际需求,配置udec版本的相关参数,如端口号、数据库连 接等。
udec版本的团队协同工作流程
团队协作平台搭建
01
建立团队协作平台,包括项目管理、任务分配、进度跟踪等功
面对激烈的市场竞争,udec版本需要不断提升产品品质和服务 水平,以赢得用户信任和支持。
新兴市场拓展
拓展新兴市场,发掘潜在用户需求,为udec版本的发展提供更 多机遇。
udec版本的未来发展方向
拓展应用领域
将udec版本的应用领域不断拓展,满足更多行业和用户的需求。
提升用户体验
持续优化udec版本的用户界面和功能,提高用户满意度和忠诚度 。
开发效率。
持续集成
udec支持持续集成功能,能够将 项目的构建、测试和部署等环节 集成在一起,实现自动化和持续
化的软件开发流程。
自动化测试
udec支持自动化测试功能,能够 自动执行测试用例并生成测试报 告,帮助开发者及时发现和修复
问题。
03
udec版本的实施 与部署
udec版本的安装与配置
安装环境要求
代码导航
代码重构
udec支持代码重构功能,能够帮助开 发者优化和改进代码结构,提高代码 的可维护性和可读性。
udec提供了代码导航功能,方便用户 快速找到和跳转到代码的特定部分, 提高代码阅读和编辑的便捷性。
自动化构建功能
自动化构建
udec支持自动化构建功能,能够 根据项目的需求自动完成项目的 编译、打包和部署等任务,提高

udec模拟实例

udec模拟实例

6.4喷射混凝土UDEC模拟6.4.1 UDEC简介刚体离散单元法一般认为Cundall于1971年提出来的。

该法适用于研究在准静力或动力条件下的节理系统或块体集合的力学问题,最初用来分析岩石边坡的运动。

该法是在牛顿第二定律的基础上建立起来的, 假设块体为准刚度体,块体运动主要受节理或弱面控制。

刚性块体的假设对于应力水平较低的问题,如边坡稳定是合理的。

将节理岩体视为由裂隙切割的非连续介质,相互切割的裂隙将岩体分成相互独立的块体单元,单元之间可以看成是角-角接触、角-边接触或边-边接触。

块体间的边-边接触可分解为由两个角-边接触而成,并且随着单元的平移和转动,允许调整各个单元之间的接触关系,最终块体单元可能达到平衡状态,也可能一直运动下去。

这些块体在平衡条件发生变化时,块体之间就产生相互作用力,从而导致块体产生一定的加速度和位移,使块体的空间位置和状态发生变化。

运动的块体之间,由于差异位移矢量的存在,从而使块体之间又发生新的作用力,根据新的力系,又可以计算出来各个块体在新的力系下的加速度、位移及新的运动位置。

如此反复迭代直到整个体系在新的力系作用下达到平衡状态为止,这样整个岩体的破坏运动过程就被真实的模拟出来。

离散单元法可以对由不同块体构成的整体进行应力、应变的分析计算,各不同块体之间通过接触点的耦合而互相连接在一起。

就大多数岩体来说,其构造弱面的刚度和强度均比岩石本身要小得多,从这点出发,为了减少研究对象的不确定性(自由度)的数量,通常假定各不同岩石块体为刚性,结构产生的总位移仅仅是由各接触点(面)的变形所引起。

这里的研究对象被认为是各种离散块体的堆砌,块体之间的相互作用力可根据位移和力的关系式来求解,单个块体的运动遵循牛顿运动定律,即力和力矩的平衡。

数值分析模型的建立必须满足平衡方程、变形协调方程和本构方程,此外,还需要满足一定的边界条件。

但离散元块体之间不存在变形协调的约束,因为块体之间是彼此互不约束的,因而仅需满足物理方程和运动方程。

UDEC学习整理资料

UDEC学习整理资料

1、角点必须按顺时针方向排列;2、Crack 命令用于产生块体中单一直线特征的裂缝。

裂缝由端点坐标(x1,y1)和(x2,y2)所确定。

3、Jset 命令则是自动节理组生成器。

根据所给定的特征参数(即倾角、迹长、岩桥长度、间距和空间位置)产生一组裂缝。

4、round d---d是圆角距离,建议在block命令前指定圆角长度。

5、DELETE 命令,能从模型中删除一个块体。

例如,为了删除槽口块体,delete range 4.5,5.5 8,10。

6、GEN命令激活三角形网格有限单元自动生成器。

命令GEN edge v 将作用于任意形状的块体。

其v值定义三角形单元的最大边长,即v值越小,块体中的单元越小。

应当注意的是:具有高的边长比值的块体并不能产生单元,其极限的比重近似为1:10。

7、采用命令GEN quad v,指定模型为塑性材料模型的单元。

该类型的单元提供了对于塑性问题的精确解。

然而,GEN quad 命令可能对某些形状的块体不起作用。

在此情况下,应当采用GEN edge8、Change 命令改变块体为指定的变形块体。

Cons=0意味着模型块体材料被移出或开挖。

Cons=1 改变块体为各向同性弹性特性;而Cons=3则改变块体为摩尔-库仑模型,考虑塑性特性。

缺省值为所有变形体则自动改变为Cons=1。

P219、cha nge jcons=2,所以不连续结构面的缺省模型是Jcons=2。

10、可用以下命令检查材料号Plot block mat12、INSITU命令用来初始化应力。

采用该命令,可以赋值初始应力。

13、hist xvel 5, 5 hist ydisp 0, 11 第一个是记录位移坐标(x=5,y=5)附近结点x方向的速度,而第二个是记录接近坐标(x=0,y=11)位置处y方向的位移。

14、set grav 0.0 , -9.81第一个是x方向的加速度,第二个值为y方向的加速度为9.81m/sec2(向下作用)。

udec数值方法

udec数值方法
2. 不连续面被看作是块体之间的边界条件。 3. 沿着不连续面的运动是由切向和法向的线性及非线性力-位 移关系控制的。 4. 地质体或类似材料可以由很多内置的块体和节理本构模型来 描述;还有可供开发的自定义模型。
5. 有平面-应变、平面-应力及轴对称三种问题模型。
6. 具有用来描述岩石-结构相互作用的结构单元模型,如锚

剪切力:由于块体所受的剪切力与块体运动和加载的历史或
路径有关,所以对于剪切力要用增量△Ft来表示。设两块体
之间的相对位移为δt,则:Ft=Ktδt, Kt为切向刚度系数, δt为两块体之间的相对位移。

破坏条件:法向力和切向力所表示的力与位移关系 为弹性,但在某些情况下弹性关系是不成立的,需
要考虑破坏条件。如当岩块受到张力分离时,作用
t t
时刻
Fn (t t ) Fn (t ) Fn (t ) Ft (t t ) Ft (t ) Ft (t )
对于块体间不允许出现拉力,故
Fn 0
对于剪切力,其稳定状态有库仑-莫尔定量:
Ft Ft
式中
max
Fn tan j c j
Ft Fn tan Ft max
该模型的力与位移关系分别如下图所示:
(a)法向力与法向位移
(b)切向力与切向位移

刚度系数的确定:对于如图所示的两个接触块体,其 长度和宽度分别为a、b,弹性常数为E、μ。可得其法 向刚度系数为:
E K n n
2
S b 设块体厚度为 1个单位,则 Sa
二维和三维的离散元程序UDEC和3DEC。我国有2D-BLOCK和
3D-BLOCK。

应用领域:边坡、巷道与采场、地下开采、地震、爆炸、核废 料储存、散体介质运动、断裂、地下水渗流、热传导等。

(完整word版)UDEC模拟实例与解析

(完整word版)UDEC模拟实例与解析

UDEC 实例翻译与命令解析中铁隧道集团科研所——珠穆浪玛UDEC 实例翻译与命令解析翻译:珠穆朗玛1 地震诱发地层坍塌 Seismic-Induced Groundfall1.1 问题描述本例展示使用 UDEC 模拟分析地震诱发地层坍塌的一类的问题,模型见图 1.1,该模型基 于加拿大安大略省萨德伯里市鹰桥公司弗雷则矿 34-1-554 切割断面的一个剖面图的结构和 尺寸. 用二维平面应变模型代表垂直于超采轴向方向的平面效应,超采面高 5m,宽 10m.假定两个连续节理交叉平面分析:一个角度为 45 度,另一个为-9 度,两者节理间距均为 5m,为了演示的目的,一个近似垂直的“虚拟节理”也被添加到块体内开挖面顶部以增强不稳 定性。

围岩参数来自试验室平均测试数值,假定岩石块体参数如下:假定块体仅具有弹性行为,节理假定符合库伦滑动准则,选择典型的教课书数值作为节 理参数,如下:初始应力状态按各向同性估计为24Mpa(假定垂直荷载由覆盖深度大约800m 的岩层产生)。

1.2 UDEC 分析UDEC 模拟顺序分三个阶段,首先,模型在初始应力状态下进行无超采固结.其次,进行开挖并且模型循环至平衡状态.本阶段超采面周围的应力分布见图1.2.超采正上方和下方的块体滑动后稳定.在第三阶段.估计了两个不同的峰值速度的地震事件.对所有地震模拟,在问题域的外周边界引入粘滞边界用以消除波的反射.从而模拟有限的岩体,地震事件用施加到模型顶部y 方向的正弦应力波表现.应力波被叠加到已存在的初始地应力上.在第一个模拟中,施加1.25Mpa 的峰值应力,应当注意的是,由于粘滞边界条件实际是在模型顶部, 施加的有效影响应力应该是1.25 MPa/2, or 0.625 MPa.0.02 秒后的开挖面拱顶的应力分布见图1.3,两点的位移被监测,1 点位于开挖面的左角,点2 位于拱顶块体的右角, 图1.4 的位移时间曲线显示两点本质上是弹性反应.本例关心的问题是在模型顶部施加的速度和计算速度的对比,下面的公式可以用以估计施加的波速.使用这个方程,施加的最大波速大概是0.04m/sec,图1.5 显示的峰值波速小于0.06m/sec. 估计的波速和监测波速的不同在于使用的围岩模量.而是没有考虑节理变形的相等变形模量.在第二个案例中,施加应力波峰值12.5 Mpa(有效应力6.25Mpa).0.02 秒后的开挖拱顶应力分布见图1.6.该图显示出拱顶岩体不受力,表面该块体已经松散并正在下落.对于关心的问题,后来三个时间的几何体和应力分布见图1.8 至图1.10.在问题的顶部预测的波速(从上面的方程)是0.4m/sec.从模型中计算的波速见图1.11,再次,由于使用的是原岩弹性模量而不是岩体的变形模量导致预测和监测的波速之间的差异.1.3 节包含了该模型的数据列表,该列表包含了一个FISH 函数(show)被用来创建坍塌的动画文件,每隔0.02 秒俘获一个显示的图片.通过改变FISH 参数time_int 可以改变动画帧的间隔.视图的总数也可以通过改变snap_shot 的数值进行改变.为了显示80 帧的显示图片而创建的该电影文件需要大概13MB 的硬盘空间.1.3 数据文件列表Example 1.1 SEISMIC.DATtitleSEISMIC INDUCED ROOF COLLAPSE 地震诱发拱顶坍塌;round 0.01; define original boundary of modeled region 定义模型区域的原始边界block -25,-20 -25,20 25,20 25,-20; generate joint pattern over entire original region 在整个原始区域生成节理形态jregion id 1 -25,-25 -25,25 25,25 25,-25jset 45,0 200,0 0,0 5.0,0 (0,0) range jreg 1jset -9,0 200,0 0,0 5.0,0 (0,0) range jreg 1; put in joints needed for the later excavation 为了后面开挖而设置的节理crack -5.01,-2.51 5.01,-2.51crack -5.01, 2.51 5.01, 2.51crack -5,-2.5 -5,2.5crack 5,-2.5 5,2.5crack 2.25,2.5 1.93,5.0; generate fdef zones and assign joint properties (mat=1 & jmat=1;default) 生成单元和设置节理参数generate edge 9.0 range -30,30 -30,30prop mat=1 d=0.00300 k=39060 g=31780prop jmat=1 jkn=20000 jks=20000prop jmat=1 jf=30.0; apply boundary conditions and initial conditions to 在地应力下施加边界条件和初始条件; consolidate model under field stressesbound stress=-24.0, 0.0, -24.0 ygrad=-0.3 0 -0.3insitu stress=-24.0, 0.0, -24.0 ygrad=-0.3 0 -0.3bound yvel 0.0 range -26,26 -21,-19grav 0.0 -10.0; track the x-displacement, and y-displacement over time 追踪位移hist solvehist xdis=0,7 ydis=0,7 type 1solve rat 1e-5; save consolidated statesave seismic1.sav; make excavationdelete range -5,5 -2.5,2.5solve rat 1e-5; save excavated statesave seismic2.sav;rest seismic2.sav; apply seismic load from top (peak velocity=0.04 m/sec);; set up nonreflecting boundarybound mat=1bound xvisc range -26 -23 -21 21bound xvisc range 23 26 -21 21bound xvisc yvisc range -26 26 -21 -19bound xvisc yvisc range -26 26 19 21; apply sinusoidal stress wavebound stress 0 0 -1.25 yhist=cos(100.0,0.0195) range -26 26 19 21;reset time hist disp rothist ydis (-4.48,2.57)hist ydis (0,2.57) yvel (0,2.57) yvel (4,2.57) yvel(-4.48,2.57)hist yvel (0,20) yvel (25,10) yvel (25,-10) yvel (0,-20)hist yvel (-25,-10) yvel (-25,10)hist sxx (25,10) sxx (25,-10) sxx (-25,-10) sxx (-25,10)hist syy (0,20);damp 0.1 1.0 mass; 0.02 sec.cyc time 0.02save seismic3.sav;rest seismic2.sav; apply seismic load from top (peak velocity=0.4 m/sec); set up nonreflecting boundarybound mat=1bound xvisc range -26 -23 -21 21bound xvisc range 23 26 -21 21bound xvisc yvisc range -26 26 -21 -19bound xvisc yvisc range -26 26 19 21; apply sinusoidal stress wavebound stress 0 0 -12.5 yhist=cos(100.0,0.0195) range -26 26 19 21reset time hist disphist ydis (-4.48,2.57)hist ydis (0,2.57) yvel (0,2.57) yvel (4,2.57) yvel(-4.48,2.57)hist yvel (0,20) yvel (25,10) yvel (25,-10) yvel (0,-20)hist yvel (-25,-10) yvel (-25,10)hist sxx (25,10) sxx (25,-10) sxx (-25,-10) sxx (-25,10)hist syy (0,20);damp 0.1 1.0 masssave seismov.sav;; 0.02 sec. —————————————————————————————————————UDEC 实例翻译与命令解析中铁隧道集团科研所——珠穆浪玛cyc time 0.02save seismic4.sav; 0.25 sec.cyc time 0.23save seismic5.sav; 0.50 sec.cyc time 0.25save seismic6.sav; 0.75 seccyc time 0.25save seismic7.sav;rest seismov.sav; make a movie of the groundfall;wind -12 12 -12 12set ovtol 0.05plot block vel max 2.0 blue stress max 50movie onmovie file = seismic.dcxmovie step 1000step 400003 隧道支护荷载Tunnel Support Loading3.1 问题陈述本例模拟展示了UDEC 在检查衬砌隧道方面的应用,着重强调了荷载在混凝土衬砌中的发展,本例也解释了模拟连续建造操作中独立阶段的模拟程序.隧道系统的理想几何体见图3.1.系统包含在海床下大约70m(中线)深度,中线间距12m 的两个隧道, 初始水位在隧道中线上方110m 处.服务隧道直径5.24m,衬砌厚度37cm.主隧道直径8.22m,衬砌厚度46cm.服务隧道先于主隧道开挖和衬砌.随后设置主隧道衬砌,水位上升增加到100m.—————————————————————————————————————UDEC 实例翻译与命令解析中铁隧道集团科研所——珠穆浪玛施工顺序是:(1)开挖服务隧道excavation of the service tunnel;(2)衬砌服务隧道lining of the service tunnel; (3)开挖主隧道excavation of the main tunnel; (4)衬砌主隧道lining of the main tunnel; and (5)升高水位raising of the water level.分析的目的是评价每个施工阶段服务隧道和主隧道支护状况.本例的材料参数见下:岩体——开挖隧道的围岩参数为:弹性模量elastic modulus 0.89 GPa泊松比Poisson’s ratio 0.35单轴抗压强度uniaxial compressive strength 3.5 MPa粘聚力cohesion 1 MPa密度density 1340 kg/m3混凝土衬砌——弹性模量为24 GPa ,泊松比为0.19. 假定衬砌为线弹性材料。

UDEC模拟实例与解析

UDEC模拟实例与解析

UDEC 实例翻译与命令解析翻译:珠穆朗玛1 地震诱发地层坍塌Seismic-Induced Groundfall1.1 问题描述本例展示使用UDEC 模拟分析地震诱发地层坍塌的一类的问题,模型见图1.1,该模型基于加拿大安大略省萨德伯里市鹰桥公司弗雷则矿34-1-554 切割断面的一个剖面图的结构和尺寸. 用二维平面应变模型代表垂直于超采轴向方向的平面效应,超采面高5m,宽10m.假定两个连续节理交叉平面分析:一个角度为45 度,另一个为-9 度,两者节理间距均为5m,为了演示的目的,一个近似垂直的“虚拟节理”也被添加到块体内开挖面顶部以增强不稳定性。

围岩参数来自试验室平均测试数值,假定岩石块体参数如下:假定块体仅具有弹性行为,节理假定符合库伦滑动准则,选择典型的教课书数值作为节理参数,如下:初始应力状态按各向同性估计为24Mpa(假定垂直荷载由覆盖深度大约800m 的岩层产生)。

1.2 UDEC 分析UDEC 模拟顺序分三个阶段,首先,模型在初始应力状态下进行无超采固结.其次,进行开挖并且模型循环至平衡状态.本阶段超采面周围的应力分布见图 1.2.超采正上方和下方的块体滑动后稳定.在第三阶段.估计了两个不同的峰值速度的地震事件.对所有地震模拟,在问题域的外周边界引入粘滞边界用以消除波的反射.从而模拟有限的岩体,地震事件用施加到模型顶部y 方向的正弦应力波表现.应力波被叠加到已存在的初始地应力上.在第一个模拟中,施加1.25Mpa 的峰值应力,应当注意的是,由于粘滞边界条件实际是在模型顶部, 施加的有效影响应力应该是1.25 MPa/2, or 0.625 MPa.0.02 秒后的开挖面拱顶的应力分布见图1.3,两点的位移被监测,1 点位于开挖面的左角,点2 位于拱顶块体的右角, 图1.4 的位移时间曲线显示两点本质上是弹性反应.本例关心的问题是在模型顶部施加的速度和计算速度的对比,下面的公式可以用以估计施加的波速..估计的波速和监测波速的不同在于使用的围岩模量.而是没有考虑节理变形的相等变形模量在问题的顶部预测的波速(从上面的方程)是0.4m/sec.从模型中计算的波速见图1.11,再次,由于使用的是原岩弹性模量而不是岩体的变形模量导致预测和监测的波速之间的差异.1.3 节包含了该模型的数据列表,该列表包含了一个FISH 函数(show)被用来创建坍塌的动画文件,每隔0.02 秒俘获一个显示的图片.通过改变FISH 参数time_int 可以改变动画帧的间隔.视图的总数也可以通过改变snap_shot 的数值进行改变.为了显示80 帧的显示图片而创建的该电影文件需要大概13MB 的硬盘空间.1.3 数据文件列表Example 1.1 SEISMIC.DATtitleSEISMIC INDUCED ROOF COLLAPSE 地震诱发拱顶坍塌;round 0.01; define original boundary of modeled region 定义模型区域的原始边界block -25,-20 -25,20 25,20 25,-20; generate joint pattern over entire original region 在整个原始区域生成节理形态jregion id 1 -25,-25 -25,25 25,25 25,-25jset 45,0 200,0 0,0 5.0,0 (0,0) range jreg 1jset -9,0 200,0 0,0 5.0,0 (0,0) range jreg 1; put in joints needed for the later excavation为了后面开挖而设置的节理crack -5.01,-2.51 5.01,-2.51crack -5.01, 2.51 5.01, 2.51crack -5,-2.5 -5,2.5crack 5,-2.5 5,2.5crack 2.25,2.5 1.93,5.0; generate fdef zones and assign joint properties (mat=1 & jmat=1;default) 生成单元和设置节理参数generate edge 9.0 range -30,30 -30,30prop mat=1 d=0.00300 k=39060 g=31780prop jmat=1 jkn=20000 jks=20000prop jmat=1 jf=30.0; apply boundary conditions and initial conditions to 在地应力下施加边界条件和初始条件; consolidate model under field stressesbound stress=-24.0, 0.0, -24.0 ygrad=-0.3 0 -0.3insitu stress=-24.0, 0.0, -24.0 ygrad=-0.3 0 -0.3bound yvel 0.0 range -26,26 -21,-19grav 0.0 -10.0; track the x-displacement, and y-displacement over time追踪位移hist solvehist xdis=0,7 ydis=0,7 type 1solve rat 1e-5; save consolidated statesave seismic1.sav; make excavationdelete range -5,5 -2.5,2.5solve rat 1e-5; save excavated statesave seismic2.sav;rest seismic2.sav; apply seismic load from top (peak velocity=0.04 m/sec);; set up nonreflecting boundarybound mat=1bound xvisc range -26 -23 -21 21bound xvisc range 23 26 -21 21bound xvisc yvisc range -26 26 -21 -19bound xvisc yvisc range -26 26 19 21; apply sinusoidal stress wavebound stress 0 0 -1.25 yhist=cos(100.0,0.0195) range -26 26 19 21;reset time hist disp rothist ydis (-4.48,2.57)hist ydis (0,2.57) yvel (0,2.57) yvel (4,2.57) yvel(-4.48,2.57)hist yvel (0,20) yvel (25,10) yvel (25,-10) yvel (0,-20)hist yvel (-25,-10) yvel (-25,10)hist sxx (25,10) sxx (25,-10) sxx (-25,-10) sxx (-25,10)hist syy (0,20);damp 0.1 1.0 mass; 0.02 sec.cyc time 0.02save seismic3.sav;rest seismic2.sav; apply seismic load from top (peak velocity=0.4 m/sec); set up nonreflecting boundarybound mat=1bound xvisc range -26 -23 -21 21bound xvisc range 23 26 -21 21bound xvisc yvisc range -26 26 -21 -19bound xvisc yvisc range -26 26 19 21; apply sinusoidal stress wavebound stress 0 0 -12.5 yhist=cos(100.0,0.0195) range -26 26 19 21reset time hist disphist ydis (-4.48,2.57)hist ydis (0,2.57) yvel (0,2.57) yvel (4,2.57) yvel(-4.48,2.57)hist yvel (0,20) yvel (25,10) yvel (25,-10) yvel (0,-20)hist yvel (-25,-10) yvel (-25,10)hist sxx (25,10) sxx (25,-10) sxx (-25,-10) sxx (-25,10)hist syy (0,20);damp 0.1 1.0 masssave seismov.sav;; 0.02 sec.—————————————————————————————————————cyc time 0.02save seismic4.sav; 0.25 sec.cyc time 0.23save seismic5.sav; 0.50 sec.cyc time 0.25save seismic6.sav; 0.75 seccyc time 0.25save seismic7.sav;rest seismov.sav; make a movie of the groundfall;wind -12 12 -12 12set ovtol 0.05plot block vel max 2.0 blue stress max 50movie onmovie file = seismic.dcxmovie step 1000step 400003 隧道支护荷载Tunnel Support Loading3.1 问题陈述本例模拟展示了UDEC 在检查衬砌隧道方面的应用,着重强调了荷载在混凝土衬砌中的发展,本例也解释了模拟连续建造操作中独立阶段的模拟程序.隧道系统的理想几何体见图3.1.系统包含在海床下大约70m(中线)深度,中线间距12m 的两个隧道, 初始水位在隧道中线上方110m 处.服务隧道直径5.24m,衬砌厚度37cm.主隧道直径8.22m,衬砌厚度46cm.服务隧道先于主隧道开挖和衬砌.随后设置主隧道衬砌,水位上升增加到100m.—————————————————————————————————————施工顺序是:(1)开挖服务隧道excavation of the service tunnel;(2)衬砌服务隧道lining of the service tunnel; (3)开挖主隧道excavation of the main tunnel; (4)衬砌主隧道lining of the main tunnel; and (5)升高水位raising of the water level.分析的目的是评价每个施工阶段服务隧道和主隧道支护状况.本例的材料参数见下:岩体——开挖隧道的围岩参数为:弹性模量elastic modulus 0.89 GPa泊松比Poisson’s ratio 0.35单轴抗压强度uniaxial compressive strength 3.5 MPa粘聚力cohesion 1 MPa密度density 1340 kg/m3混凝土衬砌——弹性模量为24 GPa ,泊松比为0.19. 假定衬砌为线弹性材料。

UDEC模拟[技巧]

UDEC模拟[技巧]

1 模型的建立建立数学模型是数值模拟工作的首要任务, 模型建立正确与否, 是能否获得符合实际计算结果的前提, 模型的设计, 必须遵循下列原则:采动覆岩移动的影响因素很多, 模型的设计,必须突出影响采动覆岩移动的主要因素, 并尽可能多地考虑其它重要因素。

模型是由实体简化的, 但应不失一般性。

模型的设计, 必须能很好地反映材料的物理力学特性,如材料的均匀性, 弱面影响及非线性等。

地下工程实际上是半无限域问题, 但数值模拟只能是在有限的范围内进行。

因此, 模型的设计,必须考虑其边界效应, 选择适当的边界条件。

任何地下工程, 也都是一个时空问题, 采动围岩移动也是如此。

因此, 模型的设计,必须能体现工作面的推进与接续, 能体现出覆岩冒落、底板膨胀鼓起及变形移动的时间过程。

模型的设计, 应尽可能便于数值模拟计算, 在模型范围及受力分析方面, 既要满足弹塑性理论对应力分析的基本要求, 又要顾及现有计算机的容量。

2 模型的基本参数各岩层物理力学参数按表2.1选取,表中抗拉强度、泊松比参考附近矿区岩层实际参数,由于该矿并没有各岩层粘聚力和摩擦角等参数,粘聚力、摩擦角和弹性模量按该岩性岩体平均参数选取,体积模量和剪切模量由泊松比和弹性模量按公式计算得出。

νE K=3(1-2) νEG=2(1+)式中:K 为岩体体积模量;G 为岩体剪切模量;E 为岩体的弹性模量;ν为岩体的泊松比。

表2.1 模型中采用的岩体物理力学参数岩层名称岩层厚度/m体积模量/GPa 剪切模量 /GPa 抗拉强度 /MPa 粘聚力 /MPa 内摩擦 角/° 砂质泥岩或粉砂岩15.63 3.125 2.542 0.8 2.5 35 11煤10.94 2.381 1.163 0.65 1.3 32.9 砂质泥岩或粉砂岩2 43.67 3.571 2.459 0.74 2.5 35 砂质泥岩或粉砂岩37.92 6.667 2.222 0.76 2.5 35 9煤6.4 2.381 1.163 0.65 1.3 32.9 砂质泥岩或粉砂岩421.83 2.857 2.609 1 2.5 35 8煤3.52 2.381 1.163 0.65 1.3 32.9 砂质泥岩或粉砂岩527.77 10 2.143 0.72 2.5 35 6煤6.35 2.381 1.163 0.65 2.3 32.9 砂质泥岩或粉砂岩611.42 10 2.1430.88 2.5 35 砾岩502.1351.6680.82.234依据工作面的地质条件, 建立图1所示的数值计算模型。

3DEC用户手册(4.0)中文版

3DEC用户手册(4.0)中文版
2.1 安装和启动程序 ................................................................................................................. 4 2.1.1 安装 3DEC ................................................................................................................ 4 2.1.4 实用软件和图形处理 .............................................................................................. 4 2.1.5 版本识别 .................................................................................................................. 5 2.1.6 启动 ...................................................................................................ห้องสมุดไป่ตู้...................... 5 2.1.7 初始化程序 .............................................................................................................. 5 2.1.8 运行 3DEC ................................................................................................................ 5 2.1.9 安装测试 .................................................................................................................. 6

UDEC4.0使用说明

UDEC4.0使用说明

菜单驱动模式运行离散元1、菜单驱动模式运行离散元对于Itasca加码图形界面是一个菜单驱动的图形界面开发,以协助助用户掌握Itasca代码。

在UDEC中,UDEC—GIIC很容易与点和点击式操作,以访问所有的命令和设施。

该GIIC结构是专门用来模拟预期的Windows功能,并允许显示的项目相对应的离散元操作的一般性鼠标性操作。

你可以能够立即使用UDEC解决问题,无须通过命令来选择你需要的分析。

本节提供了一个GIIC的介绍,并包括一个简单的教程,以帮助您开始。

你会注意到在GIIC主菜单栏中一个帮助菜单。

帮助按钮还包括在GIIC中的每一个工具,并且帮助窗格可以通过在模型工具标签上右击打开。

咨询帮助意见可以得到具体的GIIC功能的详细信息。

图1-1 UDEC—GIIC主窗口在利用UDEC进行全面的项目分析之前,我们强烈建议你阅读离散元用户指南和核查问题和示例应用程序,从而对离散元模型、分配材料特性、模型的初始条件和计算程序获得一个一般性的认识和理解。

1.1进入GIIC并选择分析选项在开始/程序/Itasca/udec菜单中,当UDEC加载时,你可以选择“UDEC 4.01 with GIIC”,自动启动GIIC。

或者,您可以在打开UDEC时,如果你在文本模式下,你可以在“udec>”提示下键入“giic”命令。

GIIC主窗口如图1.1所示。

该代码名称和当前版本号印在标题栏中的窗口顶部,主菜单栏位于标题栏下方的位置。

在主菜单栏下方有两个窗口:一个资源窗口和一个模型视图窗口。

资源窗口包括四个以文本为基本信息的标签。

“console”(控制台)标签显示文本输出和允许命令行输入(在窗口的底部)。

“record”窗口显示生成当前模型项目状态的命令的记录。

该记录以“项目树”的形式,显示保存文件之间的变化。

保存状态显示在树状结构。

数据可以作为离散元组命令形式导出到数据文件,命令组代表所分析的问题。

“FISH”窗口可以打开FISH编辑器,能方便执行FISH的功能。

UDEC指令 基本命令

UDEC指令 基本命令

;newtitle moni ;定义名称moni块体都有“圆角”,其目的在于避免块体悬挂在有棱角的节点上。

由于块体悬挂引起应力集中。

然而,圆角值存在与模型有关的上限值。

对于变形块体,最大圆角长度应当不超过块体平均棱长的1%。

圆角长度可以如下命令加以改变:round dround=0.025;d 是圆角距离(缺省值是d=0.5)。

模型中的所有圆角长度都是相同的。

For example, if the commands SET edge 0.4and ROUND 0.1 are specified, then block edge lengths smaller than 0.4 will not be created, and the rounding length for blocks will be 0.1. These commands must be given before the BLOCK command.set ovtol=1;块体与块体之间相互嵌入量最大值为1米bl 0,0 0,100 300,100 300,0 ;定义范围,四点坐标,顺时针方向cr 0,15 300,15;Crack 命令用于产生块体中单一直线特征的裂缝,裂缝由端点坐标(x1,y1)和(x2,y2)所确定。

jreg id 1 0,0 0,15 300,15 300,0 delete ;定义节理,命名1,定义范围,四点坐标,delete为常规语言jset 90,0 5,0 5,0 5,0 0,0 rang jreg 1;Jset 命令则是自动节理组生成器。

根据所给定的特征参数(即倾角、迹长、岩桥长度、间距和空间位置)产生一组裂缝。

定义节理角度90°;节理的长度;节理的距离,即纵向间隔;横向距离,即横向隔5一个;起始点坐标为0,0jset 90,0 5,0 5,0 5,0 2.5,5 rang jreg 1 ;定义节理的另外一项gen quad 10 6 range 0 300 0 100 ;定义块体最大变形,若没有此语句,刚所有块体均为刚性块体;automatic generation of diagonally opposed triangular zones to improve plastic flow calculation.(对角三角形区域的自动生成改善塑性流动计算) Parameters xw and yw are zone widths in the x-and y-directions zone model mo range 0 300 0 100 ;定义摩尔库伦模型的范围,X的范围,Y的范围change jcons=5 range 0 300 0 100 ;定义节理的某个属性change mat=1 range reg 0,0 0,15 300,15 300,0 ;定义物质1的范围,即赋予这个范围为物质1,只赋名,没有定义属性change mat=2 range reg 0,15 0,20 300,20 300,15change jmat=1 range reg 0,0 0,15 300,15 300,0 ;定义节理1的范围set jmatdf 2 ;定义节理属性,使符合摩尔库伦准则save ch.sav ;保存文件cal prop-25.txt ;调出文件res ch.sav ;调出前面保存的文件接着计算;参数设置prop mat=1 dens=2720 ;物质的密度zone k=12.12e9 g=10.26e9 fric=33 coh=5.77e6 ten=3.6e6 range mat=1;定义物质1的体积模量、剪切模量、内摩擦角、粘聚力、抗拉强度prop jmat=1 jkn=11e8 jks=12e7 jfric=12 jcoh=0 jten=0;定义节理的属性法向刚度、切向刚度、内摩擦角、粘聚力、抗拉强度;边界条件boun stress 0 0 0 range 0,300 99.9 100.1 ;定义边界条件,三向应力为0,上边界,范围,纵向波动范围boun stress 0 0 -8.6095397e6 range ;定义边界应力条件,竖直方向的应力为,负号表示方向向下insitu str -7.5e6 0 -15e6 szz -7.5e6 ygrad 1.1018e4 0 2.203607e4 ;定义应力属性,sxx方向即水平应力,sxy方向即剪切应力,syy方向即竖直应力,szz方向的应力,ygrad应力梯度set gravity 0,-10 ;重力加速度bound xvel=0 range -0.1 0.1 0 100 ;X位移边界,位移波动范围,范围bound xvel=0 range 299.9 300.1 0 100 ;X位移边界,同上bound yvel=0 range -0.1 300.1 -0.1,0.1 ;Y位移边界hist solve_ratio type 1 ;设置不平衡力的精度,普适solve ;计算save 25-1.sav ;保存cal 25-2.txt ;调出文件res 25-1.sav ;调出前面保存的文件del 80,110 15,20;永久删除这个范围,即开挖,不可再充填,X的范围,Y的范围model null range ;变性删除这个范围,即之后可以充填物质,X的范围,Y的范围model m range ;充填这个范围,solve ;计算save 25-301.sav ;再保存,周而复始set pline 25,20 300,20 10 ;定义测线,起始点坐标,测线分段, 前两组数字表示坐标最后一个数表示布置了多少测点reset histset log on ;定义hist,保存在一个位置,在程序中输入hist1即可调出hist xdisp 10,20 ;测该点的X方向位移hist sxx 10,20 ;测该点X方向的应力hist syy 10,20 ;测该点Y方向的应力reset dispreset hist ;位移清零,历史记录清零his unbalsolve ratio 1e-5 ;记录不平衡力,计算直到精度达到1e-5ch cons=3 range 77.5,80 0,3ch mat=7 range 77.5,80 0,3 ;应变软化模型,这个是做充填用的cable (73.4,2.91) (71.15,4.99) 10 12 380e-6 11 ;锚杆,起始点坐标,后面四个数值可固定prop mat 12 cb_dens 7800 cb_ycomp 430e6 cb_yield 160e3 cb_ymod1.3e11prop mat 11 cb_kbond 6.3e9 cb_sbond 6e5;定义锚杆的属性,密度、抗拉强度、屈服强度density for block materical 1 is zero cannot cycle----块体密度未设range 范围;density 密度;volume 体积;regedit 调出注册表;pl bound pl 显示塑性区;pl bound dis 显示位移矢量图continue pa以后继续算number 可以不关udec,继续使用udecres xx.save (先调用文件)set pline x1,y1 x2,y2 n (n--观测线分的段数)set log on ;固定的set log 文件名print+pline+n+ syy sxx or xdis (观测线名称任意数字)set log off1) pl bl hist 1,2,... 观测点位移2) pl bl nu(mber) 显示块体标号3) pl bl cab red stru red cab--锚杆stru--梁4) pl bl sxx/syy/szz 显示应力图5) pl bl dis 位移矢量图6) set pl dxf 256 把UDEC 图引入CAD 换行copy 文件名自定.dxf块体力学参数k--体积模量;g--剪切模量;fric--摩擦角;coh--粘结力(内聚力);ten--抗拉强度;d--体积力接触面力学参数jkn--法向刚度;jks--切向强度;jc--粘结力;jf--摩擦角;jt--抗拉强度1) D--质量密度F--摩擦角B--体积模量; C--内聚力(粘结力) S--剪切模量2) 应力--正号代表张力,负号代表压力应变--正的应变代表伸长,负的应变代表压缩重力--正号的重力物质往下拉,负号的重力将物质往上提;内存赋值udec mudec 14print memhist yvel (20,20) type 1; type 是在屏幕上以指定的间隔显示其值step 一般典型问题要2000~4000次循环。

udec命令

udec命令

1.把图形保存下来,能在AUTOCAD中打开、编辑plot block cable red supp ye stru bl;显示块体、锚杆(红色)、支架(黄色)、梁(蓝色)的图形set plot 256 dxf;设置图形为256色set out c:\ss.dxfcopy c:\ss.dxf;把这图形以ss.dxf文件保存在C磁盘下2.把数据导出set log onprint pline 1 ydis;把pline 1的y方向位移的数据导出到UDEC目录下udec.txt文件中set log off3.plot block stress ;显示块体的应力plot block dis ;显示块体的位移(有x和y方向)plot block pl ;显示块体的塑性区(plastic)save xx.save ;保存计算结果res xx.save ;调用4.液压支架的命令supp xc yc wid l seg n mat j;(xc,yc)是指中心点坐标,l指支架的宽度,n指分段数,mat j指支柱材料性质为j prop mat j sup_kn -1 ;sup_kn指支架的刚度,-1与表1相对应del range x1 x2 y1 y2 ;挖掘范围(x1, y1)(x1 ,y2)(x2, y2)(x2, y1)的块体,由支架支撑table 1 0 42.e6 0.05 5.0e6 0.1 6.0e6;表1表示的是液压支架的(P-DS)特性曲线5 巷道施工中断面加梯子梁的命令(见图1)stru gen xc yc np 100 fa a thetra b mat=16 thick=0.2 ;100 指分100段,a b 指角度prop mat=16 st_ymod=13.5e9 st_prat=0.14 st_den=7800prop mat=16 st_yield=6e7 st_yresid=6e7 st_ycomp=2.5e7prop mat=16 if_kn=1.35e9 if_ks=1.35e9 if_tens=0 if_fric=18 if_coh=0;interface-界面例子讲解:建模(以米为单位,;后为解释部分)round=0.1 ;方块的圆角块半径为0.1米set ovtol=1.0 ;块体与块体之间相互嵌入量最大值为1米bl 0,0 0,26 50,26 50,0 ;在(x1, y1)(x1 ,y2)(x2, y2)(x2, y1)生成块体范围crack 0,25 50,25 ;在(x1, y1)(x2 ,y2)两点间画直线jregion id 1 0,0 0,10 50,10 50,0 delete ;删除此区域的块体jset 90,0 2.5,0 2.5,0 3,0 0,0 range jregion 1 ;jset A,0 a,0 b,0 c,0 x0,y0 range jregion 1jset 90,0 2.5,0 2.5,0 3,0 1.5,2.5 range jregion 1 可画成列的线段(见图2)jset 0,0 26,0 0,0 2.5,0 0,0 range jregion 1pa ;当程度运行至此时暂停,可以看看你所建的部分模型,用continue继续运行下面部分save t.save ;建模保存在t.save中岩层赋属性及原岩力平衡计算res t.save ;调用已建好的模型gen quad 12 ;定义块体最大变形,若没有此语句,刚所有块体均为刚性块体zone model mo range 0,180 0,45.2 ;第一个x,第二个y在范围(x1, y1)(x1 ,y2)(x2, y2)(x2, y1)的块体符合库仑准则change jcons=2 range 0,180 0,45.2 ;节理面间接触-coulmb滑移;下面主要是讲岩层赋属性change mat=1 range reg 0,0 0,3 180,3 180,0 ;岩层1的范围 change mat=2 range reg 0,3 0,4.5 180,4.5 180,3change mat=3 range reg 0,4.5 0,10.2 180,10.2 180,4.5 change mat=4 range reg 0,10.2 0,11.2 180,11.2 180 10.2 prop mat=1 dens=2500 ;岩层1的密度 prop mat=2 dens=2500 prop mat=3 dens=1300zone k=2e10, g=1.1e10, fric=30,coh=2e6,ten=4e6 range mat=1 ;岩层1的块体力学参数(见表1) zone k=8.7e9, g=4.2e9, fric=25,coh=1.5e6,ten=1.5e6 range mat=2 zone k=13.05e9, g=6.3e9, fric=31,coh=4e6,ten=2e6 range mat=3change jmat=1 range reg 0,0 0,3 180,3 180,0 ;在这范围1内的块体间相互接触的接触面力学参数 change jmat=2 range reg 0,3 0,4.5 180,4.5 180,3change jmat=3 range reg 0,4.5 0,10.2 180,10.2 180,4.5prop jmat=1 jkn=7e9, jks=2e9, jcoh=0.1e6 , jfric=0,jten=0.1e6 ;在这范围1内的块体间相互接触的接触面力学参数prop jmat=2 jkn=6e9, jks=2e9, jcoh=1e6 , jfric=20,jten=1e6 prop jmat=3 jkn=6e9, jks=2e9, jcoh=1e6 , jfric=20,jten=1e6;工作面埋深550米set gravity 0,-10 ;地下岩层主要受重力,还有构造应力(水平应力=垂直应力*侧压系数) insitu str -1.5144e7 0 -1.262e7 szz=-1.5144e7 ygrad 3e4 0 2.5e4 zgrad 0 3e4;initiasituate stress 初始设置应力 ,侧压系数为1.2;(550-48.2)*2500*(-10)= -1.262e7 -1.262e7*1.2=-1.5144e7 ,1*2500*10=2.5e4,2.5e4*1.2=3.0e4bound stress 0,0,-1.375e7 range 0 180 45.1 45.3 ; boundary stress sxx0 ,sxy0, syy0 range x1 x2 y1 y2;550*2500*(-10)= -1.375e7bound xvel=0 range -0.1 0.1 0 45.2 ;固定左边界(xvel-也就是x 方向的速度),见图3 bound xvel=0 range 179.9 180.1 0 45.2 ;固定右边界 bound yvel=0 range 0 180 -0.1 0.1 ;固定下边界 solve ;计算save fyuanyan1.save注: insitu str sxx sxy syy szz=-1.6638e8 ygrad sxxy sxyy syyy zgrad szzx szzy (xgrad sxxx sxyx syyy,上面没有写,表示在x 方向没有变化 )(σx=sxx ,σy=syy, σz=szz,τxy=sxy,τxz=sxz, τyz=syz 弹性力学;grad 表示梯度,即在此方向的变化量) (xgrad sxxx sxyx syyy ygrad sxxy sxyy syyy zgrad szzx szzy(sxx=sxx0+sxxx.x+sxxy.y,syy=syy0+syyx.x+syyy.y,szz=szz0+szzx.x+szzy.y) (μ—侧压系数,sxx=syy. μ,szz=syy. μ,sxxy=syyy. μ,szzy=syyy. μ)(τ=c+σ.tgυ,c 值,反映岩石剪切时的粘结阻力,故称岩石的内聚力(或粘结力) ,υ,值反映岩石剪切时摩擦阻力,的大小,故称岩石的内摩擦角,tgυ,相当于摩擦系数f 。

UDEC 数值模拟(入门学习)

UDEC 数值模拟(入门学习)

UDEC 入门;new 是刷新udec窗口,从新调用一个程序;title 与heading代表标题,后面紧跟标题的名称。

如:titlehang dao mo ni;round 指块体与块体之间的圆角半径,默认值是0.5,其值要求小于模型中最小块体的最短那条边长的二分之一。

如:round 0.05set ovtol=0.5;此命令是指层与层之间的嵌入厚度block x1,y1 x2,y2 x3,y3 x4,y4;建立模型框架,crack x1,y1 x2,y2;两点划一线jregion id n x1,y1 x2,y2 x3,y3 x4,y4 deletejset 90,0 4,0 4,0 6,0 0,-50 range jreg 3;jset 倾角,0 线段长,0 线段与线段轴向间隔长,0 垂向间距,0 xm,ym range jregion n;其中xm,ym为起始点坐标,n为设置的区域标号gen quad 10 range xl xu yl yu;在指定的区域生成一定宽度的单元(xu为x方向的取值)zone model mo range xl xu yl yu;使指定的区域材料采用摩尔--库仑本构关系计算(即弹塑性)change jcons=2 range xl xu yl yu;使指定的区域节理遵循摩尔--库仑准则计算(即弹塑性)change mat=1 range xl xu yl yuchange mat=2 range xl xu yl yuchange mat=3 range xl xu yl yu;指定各岩层的材料标号change jmat=1 range xl xu yl yuchange jmat=2 range xl xu yl yuchange jmat=3 range xl xu yl yu;指定各岩层的节理标号prop mat=1 dens=2000prop mat=2 dens=2650prop mat=3 dens=2700;指定各材料的密度,比如1号材料dens=2000,即1立方米重2吨zone k=0.15e9,g=0.1e9,fric=10.00,coh=0.19e6,ten=0.09e6 range mat=1zone k=2.8e9,g=2.2e9,fric=30.00,coh=1.5e6,ten=0.4e6 range mat=2zone k=6.9e9,g=6.6e9,fric=38.62,coh=5.63e6,ten=3.20e6 range mat=3;k为材料的法向刚度,g为材料的切向刚度,friction为材料的内摩擦角,;cohesion为材料的内聚力,tension为材料的抗拉强度prop jmat=1 jkn=0.2e8,jks=0.1e7,jcoh=0,jfric=4,jten=0prop jmat=2 jkn=8e8,jks=5e7,jcoh=0.1e6,jfric=8,jten=0prop jmat=3 jkn=20e8,jks=16e7,jcoh=0.4e6,jfric=15,jten=0;jkn为节理的法向刚度,jks为节理的切向刚度,jfriction为节理的内摩擦角,;jcohesion为节理的内聚力,jtension为节理的抗拉强度set gravity 0,-9.81;设置重力加速度,x方向为0,y方向为-9.8bound xvel=0 range -0.1 3.00 -60.1 20.1bound xvel=0 range 97 100.1 -60.1 20.1bound yvel=0 range 0.1 100.1 -60.1 -58;采用位移法固定边界solve\step 5000\cycle 5000;执行计算save pingheng.sav;保存文件,文件的后缀为.sav,文件名可以自己命名。

数字化电气测量系统计算举例

数字化电气测量系统计算举例

时钟抖动对转换精度的影响
I1
例2.2 假设T/H抖动取0.1us,问12位的ADC是
CT
R1
否还满足要求?
RG
R2
解: 时钟抖动 tj =0.1s.
������������������������������������������������������ = −20������������ 2������ × 50 × 10−7 = 90.1dB
ADC
Vin 3.0V Vref
VIN=0V 3V N= ?位
Page .
+3.3V
解答:
(1)对测量系统的信号做全面的分析
集成仪表运放A的输入电压为工频正弦,而ADC
MCU
的输入为单极性电压,故需要将工频正弦电流调
理成适合单极性ADC的输入电压。
(2)仪表放大器A的特性:
Vout=K*Vin+VREF
VDD=+3.3V
+3.3V
+3.3V
I1
CT
R1
例2.1 在上题中,假设T/H抖动取1us,该抖动
RG
A
ADC
Vin
MCU
R2
导致ADC实际的有效转换位数降低多少位?
3.0V Vref
VREF
VSS=-3.3V
T/H
解: 时钟抖动 tj = 1s.
������������������������������������������������������������������������������������������ = 6.02 × 12 + 1.76 = 74.0dB
Page .
+3.3V

udec命令总结精华-正宗

udec命令总结精华-正宗

《Udec 命令总结》精华版1. 安装、打开、保存(1) 安装:①执行Udec 3.1→将Crack文件中的内容替换;②复制Udec.exe,粘贴为快捷方式→属性,目标,加入空格256【开始内存8M,将内存改为256】,可以复制快捷方式至桌面或硬盘。

(2) 打开:①直接在udec> 命令行输入;②写好程序,udec>命令输入call,然后将*.txt文件拖入命令行,执行(3) 保存:输入save d:\kaicai.sav, 调用命令rest,将kaicai.sav 拖入命令行【!!!文件名最好不用汉字,有时候不识别】注释:如果保存为save d:\111\kaicai.sav, 注意其中111文件必须提前建好,否则无法保存或者保存错误(4) 操作:Ctrl+Z选中图像可以放大,Ctrl+Z 双击复原,屏幕中会出现十字叉,按住鼠标左键不放,移动光标直到你满意的窗口为止;pause暂停,此时可以察看任何信息;continue继续调用下面程序段。

ESC可以随时进行停止,但不能继续;英文分号; 表示注释不运行命令。

2. 基本命令2.1 基本设置Udec>n【new刷新窗口,从新调用一个程序,修改后的*.txt文件必须输入n,重新运行文本文件】Udec>title 【或heading代表标题,后面紧跟标题的名称。

如:hang dao mo ni 或济宁三号井围岩变形破坏规律研究】Udec> round d 【“圆角”命令,Udec中所有的块体都有圆角,目的是为防止块体悬挂在有棱角的节点上,由于块体悬挂将产生应力集中。

d指块体与块体之间的圆角半径,默认值是0.5,其值要求小于模型中最小块体的最短那条边长的二分之一,最大圆角长度不能超过块体平均棱长的1%。

在block 命令前指定圆角长度。

如:round 0.05】圆角图1 10×10块体圆角Udec>set ovtol 0.5 【此命令是指层与层之间的嵌入厚度,当提示为“overlap too large”时就需要修改此值更大一些,可以显示设计的块体,plot overlap!嵌入太大的原因可能为块体强度太小】Udec>set log onprintset log off 【命令用于导出数据,可以将数据导出至硬盘f:\】命令:set log f:\yuanyan.logprint pline 1 syy 【记录测线1应力】print pline 2 ydisset log off;设置观测线set pline 1 x1,y1 x2,y2 n (n--观测线分的段数)set pline 25,20 300,20 10 ;定义测线,起始点坐标,测线分段2.2 图形划分;块体命令Udec> block x1,y1 x2,y2 x3,y3 x4,y4【建立模型框架,四个坐标角点必须按“顺时针”排列,也可以为五个坐标点。

FLAC与有限元的差别

FLAC与有限元的差别

在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA在工程设计和分析中将得到越来越广泛的重视。

其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。

该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。

目前,在土木方面常用的较大型有限元软件有:Ansys、Abqus、ADINA和Marc,另外,影响相对较小的还有Sap2000、ETABS、Flac、Plaxis等等。

1、ANSYS和NASTRAN因为和NASA的特殊关系,msc nastran在航空航天领域有着崇高的地位。

而ANSYS 则在铁道,建筑和压力容器方面应用较多。

尽管目前, ANSYS已发展了很多版本, 其实它们核心的计算部分变化不大,只是模块越来越多。

比如5.1没有lsdyna,和cad软件的接口,到了5.6还有疲劳模块等等。

其实这些模块并不是ANSYS公司自己搞的,就是把别人的东西买来集成到自己的环境里。

NASTRAN最早是用的for windows 2.0。

是nsatran v68集成在femap5里。

nastran的求解器效率比ansys高一些。

有一个算例可以说明,20000多个节点,D版的ansys56建模,用femap7.0转成nastran的dat文件,静力计算及前5阶的线性频率,结果ansys56在PIII450上所用的时间和D版的nastran707在赛杨400上用的时间相当,内存都是128M,全部选项都是缺省的,nastran用子空间迭代法求频率,ansys没仔细看,计算的结果倒是没什么大的差别。

2、ABAQUS1978年Hibbtt和另外的Karlsson和Sorensen两个博士创建了HKS公司,并推出ABAQUS,这是一套先进的通用有限元系统,也是功能最强的有限元软件之一,可以分析复杂的固体力学和结构力学系统。

UDEC指令基本命令

UDEC指令基本命令

UDEC指令基本命令;newtitlemoni;定义名称moni块体都有“圆角”,其目的在于避免块体悬挂在有棱角的节点上。

由于块体悬挂引起应力集中。

然而,圆角值存在与模型有关的上限值。

对于变形块体,最大圆角长度应当不超过块体平均棱长的1%。

圆角长度可以如下命令加以改变:rounddround=0.025;d是圆角距离(缺省值是d=0.5)。

模型中的所有圆角长度都是相同的。

Forexample,ifthecommandsSETedge0.4andROUND0.1arespecified,thenblockedgelengthss mallerthan0.4willnotbecreated,andtheroundinglengthforblocks willbe0.1.Thesecommandsmustbegi venbeforetheBLOCKcommand.setovtol=1;块体与块体之间相互嵌入量最大值为1米bl0,00,100300,100300,0;定义范围,四点坐标,顺时针方向cr0,15300,15;Crack命令用于产生块体中单一直线特征的裂缝,裂缝由端点坐标(x1,y1)和(x2,y2)所确定。

jregid10,00,15300,15300,0delete;定义节理,命名1,定义范围,四点坐标,delete为常规语言jset90,05,05,05,00,0rangjreg1;Jset命令则是自动节理组生成器。

根据所给定的特征参数(即倾角、迹长、岩桥长度、间距和空间位置)产生一组裂缝。

定义节理角度90°;节理的长度;节理的距离,即纵向间隔;横向距离,即横向隔5一个;起始点坐标为0,0 jset90,05,05,05,02.5,5rangjreg1;定义节理的另外一项genquad106range03000100;定义块体最大变形,若没有此语句,刚所有块体均为刚性块体;automaticgenerationofdiagonallyopposedtriangularzonestoimp roveplasticflowcalculation.(对角三角形区域的自动生成改善塑性流动计算)Parametersxwandywarezonewidthsinthex-andy-directionszonemodelmorange03000100;定义摩尔库伦模型的范围,X的范围,Y的范围changejcons=5range03000100;定义节理的某个属性changemat=1rangereg0,00,15300,15300,0;定义物质1的范围,即赋予这个范围为物质1,只赋名,没有定义属性changemat=2rangereg0,150,20300,20300,15changejmat=1rangereg0,00,15300,15300,0;定义节理1的范围setjmatdf2;定义节理属性,使符合摩尔库伦准则savech.sav;保存文件calprop-25.txt;调出文件resch.sav;调出前面保存的文件接着计算;参数设置propmat=1dens=2720;物质的密度zonek=12.12e9g=10.26e9fric=33coh=5.77e6ten=3.6e6rang emat=1;定义物质1的体积模量、剪切模量、内摩擦角、粘聚力、抗拉强度propjmat=1jkn=11e8jks=12e7jfric=12jcoh=0jten=0;定义节理的属性法向刚度、切向刚度、内摩擦角、粘聚力、抗拉强度;边界条件bounstress000range0,30099.9100.1;定义边界条件,三向应力为0,上边界,范围,纵向波动范围bounstress00-8.6095397e6range;定义边界应力条件,竖直方向的应力为,负号表示方向向下insitustr-7.5e60-15e6szz-7.5e6ygrad1.1018e402.203607e4;定义应力属性,sxx方向即水平应力,sxy方向即剪切应力,syy方向即竖直应力,szz方向的应力,ygrad应力梯度setgravity0,-10;重力加速度boundxvel=0range-0.10.10100;X位移边界,位移波动范围,范围boundxvel=0range299.9300.10100;X位移边界,同上boundyvel=0range-0.1300.1-0.1,0.1;Y位移边界histsolve_ratiotype1;设置不平衡力的精度,普适solve;计算save25-1.sav;保存cal25-2.txt;调出文件res25-1.sav;调出前面保存的文件del80,11015,20;永久删除这个范围,即开挖,不可再充填,X的范围,Y的范围modelnullrange;变性删除这个范围,即之后可以充填物质,X的范围,Y的范围modelmrange;充填这个范围,solve;计算save25-301.sav;再保存,周而复始setpline25,20300,2010;定义测线,起始点坐标,测线分段,前两组数字表示坐标最后一个数表示布置了多少测点resethistsetlogon;定义hist,保存在一个位置,在程序中输入hist1即可调出histxdisp10,20;测该点的X方向位移histsxx10,20;测该点X方向的应力histsyy10,20;测该点Y方向的应力resetdispresethist;位移清零,历史记录清零hisunbalsolveratio1e-5;记录不平衡力,计算直到精度达到1e-5chcons=3range77.5,800,3chmat=7range77.5,800,3;应变软化模型,这个是做充填用的cable(73.4,2.91)(71.15,4.99)1012380e-611;锚杆,起始点坐标,后面四个数值可固定propmat12cb_dens7800cb_ycomp430e6cb_yield160e3cb_ymod 1.3e11propmat11cb_kbond6.3e9cb_sbond6e5;定义锚杆的属性,密度、抗拉强度、屈服强度densityforblockmaterical1iszerocannotcycle----块体密度未设range范围;density密度;volume体积;regedit调出注册表;plboundpl显示塑性区;plbounddis显示位移矢量图continuepa以后继续算number可以不关udec,继续使用udecresxx.save(先调用文件)setplinex1,y1x2,y2n(n--观测线分的段数)setlogon;固定的setlog文件名print+pline+n+syysxxorxdis(观测线名称任意数字)setlogoff1)plblhist1,2,...观测点位移2)plblnu(mber)显示块体标号3)plblcabredstruredcab--锚杆stru--梁4)plblsxx/syy/szz显示应力图5)plbldis位移矢量图6)setpldxf256把UDEC图引入CAD换行copy文件名自定.dxf块体力学参数k--体积模量;g--剪切模量;fric--摩擦角;coh--粘结力(内聚力);ten--抗拉强度;d--体积力接触面力学参数jkn--法向刚度;jks--切向强度;jc--粘结力;jf--摩擦角;jt--抗拉强度1)D--质量密度F--摩擦角B--体积模量;C--内聚力(粘结力)S--剪切模量2)应力--正号代表张力,负号代表压力应变--正的应变代表伸长,负的应变代表压缩重力--正号的重力物质往下拉,负号的重力将物质往上提;内存赋值udecmudec14printmemhistyvel(20,20)type1;type是在屏幕上以指定的间隔显示其值step一般典型问题要2000~4000次循环。

udec中文说明

udec中文说明

通用离散元用户指导(U D E C 3.1)山东科技大学2004.9目 录1 引 言 (1)1.1 总 论 (1)1.2 与其他方法的比较 (2)1.3 一般特性 (2)1.4 应用领域 (3)2 开始启动 (4)2.1 安装和启动程序 (4)2.1.7 内存赋值 (4)2.1.9 运行UDEC (5)2.1.10 安装测试程序 (5)2.2 简单演示-通用命令的应用 (5)2.3 概念与术语 (6)2.4 UDEC模型:初始块体的划分 (8)2.5 命令语法 (9)2.6 UDEC应用基础 (10)2.6.1 块体划分 (10)2.6.2 指定材料模型 (16)2.6.2.1 块体模型 (16)2.6.2.2 节理模型 (17)2.6.3 施加边界条件和初始条件 (19)2.6.4 迭代为初始平衡 (21)2.6.5 进行改变和分析 (24)2.6.6 保存或恢复计算状态 (25)2.6.7 简单分析的总结 (25)2.8 系统单位 (26)3 用UDEC求解问题 (27)3.1 一般性研究 (27)3.1.1 第1步:定义分析模型的对象 (28)3.1.2 第2步:产生物理系统的概念图形 (28)3.1.3 第3步:建造和运行简单的理想模型 (28)3.1.4 第4步:综合特定问题的数据 (29)3.1.5 第5步:准备一系列详细的运行模型 (29)3.1.6 第6步:进行模型计算 (29)3.1.7 第7步:提供结果和解释 (30)3.2 产生模型 (30)3.2.1 确定UDEC模型合适的计算范围 (30)3.2.2 产生节理 (32)3.2.2.1 统计节理组生成器 (32)3.2.2.2 VORONOI多边形生成器 (34)3.2.2.3 例子 (34)3.2.3 产生内部边界形状 (35)3.3 变形块体和刚体的选择 (38)3.4 边界条件 (42)3.4.1 应力边界 (42)3.4.1.1 施加应力梯度 (43)3.4.1.2 改变边界应力 (44)3.4.1.3 打印和绘图 (44)3.4.1.4 提示和建议 (45)3.4.2 位移边界 (46)3.4.3 真实边界-选择合理类型 (46)3.4.4 人工边界 (46)3.4.4.1 对称轴 (46)3.4.4.2 截取边界 (46)3.4.4.3 边界元边界 (49)3.5 初始条件 (50)3.5.1 在均匀介质中的均匀应力:无重力 (50)3.5.2 无节理介质中具有梯度变化的应力:均匀材料 (51)3.5.3 无节理介质中具有梯度变化的应力:非均匀材料 (51)3.5.4 具有非均匀单元的密实模型 (52)3.5.5 随模型变化的初始应力 (53)3.5.6 节理化介质的应力 (54)3.5.7 绘制应力等值线图 (55)3.6 加载与施工模拟 (57)3.7 选择本构模型 (62)3.7.1 变形块体材料模型 (63)3.7.2 节理材料模型 (64)3.7.3 合理模型的选择 (65)3.8 材料性质 (71)3.8.1 岩块性质 (71)3.8.1.1 质量密度 (71)3.8.1.2 基本变形性质 (71)3.8.1.3 基本强度性质 (72)3.8.1.4 峰后效应 (73)3.8.1.5 现场性质参数的外延 (77)3.8.2 节理性质 (80)3.9 提示和建议 (81)3.9.1 节理几何形状的选择 (81)3.9.2 设计模型 (81)3.9.3 检查模型运行时间 (82)3.9.4 对允许时间的影响 (82)3.9.5 单元密度的考虑 (83)3.9.6 检查模型响应 (83)3.9.7 检查块体接触 (83)3.9.8 应用体积模量和剪切模量 (83)3.9.9 选择阻尼 (84)3.9.10 给块体和节理模型指定模型和赋值 (84)3.9.11 避免圆角误差 (85)3.9.12 接触嵌入 (85)3.9.13 非联结块体 (86)3.9.14 初始化变量 (86)3.9.15 确定坍塌荷载 (86)3.9.16 确定安全系数 (86)3.10 解 释 (88)3.10.1 不平衡力 (88)3.10.2 块体/网格结点的速度 (88)3.10.3 块体破坏的塑性指标 (89)3.11 模拟方法 (89)3.11.1 有限数据系统模拟 (89)3.11.2 混沌系统的模拟 (90)3.11.3 局部化、物理的不稳定性和应力路径 (91)1 引言1.1 总论通用离散元程序(UDEC,Universal Distinct Element Code)是一个处理不连续介质的二维离散元程序。

岩土专业软件udec和flac的区别

岩土专业软件udec和flac的区别

1Flac:大变形、破坏,灵活性,开放性,软件来源于实际工程,所以可靠度很高,但并是能解决所有的问题;Ansys & Abauqs:通用性软件,在结构方面很强,特别是Abaqus 在非线性方面。

在岩土方面,我没有实际用过,只别人说还可以。

Plaix:操作比较简单,开发人员都有工程背景,软件计算的结果比较可靠;Midas/Gts:韩国的软件,以前是搞桥梁的,最近才转岩土,没有很强的理论背景,不知道计算出来的东西可不可靠。

或者在某一方面得到实际工程的验证,但可靠度还有呆进一步;Geo:边坡、非饱和渗流方面比较牛,特别是非饱和渗流方面,理论创建者是非饱和渗流的奠基人;Rc:岩石力学方面很牛,原因也是因为理论支持是这方面的大牛人;总结:建议从难的基础的学起,搞基础理论搞清楚了,做出来的东西才是东西。

不然随便拿个软件算算,只在乎软件的易学以及图形的漂亮,而不管到底最后结果如何,肯定会出问题的。

所以从Flac 软件学起,搞清楚理论背景。

把理论搞清楚后,再选择一些相对简单的软件比较好。

这样对计算出来的结果心里有底。

2通用软件的功能的确比较强大,但是针对性不强,比如我们都是学岩土的,土的本构关系、土和结构的接触啊等都是比较复杂,如果是通用软件,那么你都要一一的去设置,非常麻烦,当然如果你学的非常好,土力学的概念非常清晰,有限元的知识功底也很强大,那当然是没问题的。

如果我们是个新手,我想在一开始的单元选择和网格划分上就有点难住了,我认识很多人都是用通用软件,但只是照着例子做一遍,并不知道为什么要那样设置,等到变个情况时候,就是不知道怎么做了!我们学习软件当然并不是只学个操作,重要的原理,知道所以然。

所以,我的建议是先学比较容易上手的专业软件,这样你可以通过学习这个软件带动自己学习这个专业的知识,比如看软件的效验手册和科学手册你都会学到很多,让你回顾一下,岩土的一些理论比如本构、固结、渗流等,并且让你知道软件大概是怎么去模拟及它们的误差会在哪里。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3 UDEC算例1.3.1工程概况某隧道位于一包含高角度连续节理岩体内,节理倾角为50度,平均间距为7m,隧道为一半径为9m的圆形隧道。

贯穿于开挖面内的一垂直断层,在隧道拱顶形成了一个三角楔形体。

本算例使用UDEC的结构单元逻辑来模拟喷射混凝土和锚杆联合支护的圆形隧道开挖问题。

1.3.2构建模型隧道埋深451m,为半径9m圆形隧道,本次计算模型左右边界取41m,隧道至上下边界也取41m。

总的来说,模型长100m,宽100m。

计算模型如图1-1所示。

图1-1 UDEC计算模型1.3.3计算参数在包含高倾角节理和垂直断层的岩体内进行圆形开挖的UDEC模型岩体、节理和断层参数如下所示:表1-1 完整岩石物理力学参数密度Dens (kg/m3)体积模量K(Gpa)剪切模量G(Gpa)2500 1.5 0.6表1-2 节理、断层物理力学参数表1-3 喷射混凝土物理力学参数表1-4 岩体和喷射混凝土接触面物理力学参数表1-5 锚杆物理力学参数作为演示的目的,隧道开挖和支护是瞬时发生的。

本算例共两种支护分析被计算:第一,只施加喷射混凝土衬砌;第二,喷射混凝土和锚杆联合提供支护。

为了在第二种支护情况分析中可以更清晰的看到锚杆提供的支护,算例采用喷射混凝土的抗压强度被设置成一个很低的值,且厚度仅取为10cm。

1.3.4模拟步骤1.建立模型在UDEC中输入以下命令可建立隧道结构模型及边界。

如图1-2所示。

newround 0.1block -50,-50 -50,50 50,50 50,-50 jset -50,0 100,0 0,0 7,0 ;刷新UDEC窗口,重新调用一个新程序;块与块之间的圆角半径,必须小于块体最小边的1/2 ;建立模型框架;设置节理crack -6 -50 -6 50 tunnel (0,0) 9,16 del range area 0.08 gen edge 10 ;设置断层;模拟开挖隧道边界;删除面积小于0.08的块体;自动划分单元,单元最大边长不超过10 图1-2 初步模型图2.设置单元属性和材料特征在UDEC中输入如下命令设置单元属性和材料特征。

prop mat 1 de 2500 k 1.5e9 g 0.6e9prop jmat=1 jkn 2e9 jks 1e9 &jfric 10 jcoh 100 jtens 100 ;定义围岩密度、体积模量、剪切模量(软件默认的是线弹性模型,可以通过change命令改变本构关系);定义节理与断层的法向刚度、切向刚度、摩擦角、黏聚力以及抗拉强度(默认节理面遵循摩尔库伦准则计算,可以通过change命令设置)3.施加约束及荷载(1)施加约束条件输入如下命令对模型施加约束条件,对围岩左侧和右侧节点,设置约束条件为UX被约束,围岩底部节点,设置约束为UY被约束。

如图1-3、4所示。

bound stress 0 0 -10e6 range yran 49 51 bound yvel=0 range yran -51 -49 bound xvel=0 range xran -51 -49 ;上侧边界施加400m埋深等效荷载;约束下边界;约束左侧边界bound xvel=0 range xran 49 51 ;约束右侧边界图1-3 左右侧边界施加约束图1-4 下侧边界施加约束(2)施加自重设置Y方向的加速度10m/s2,生成Y轴反方向的惯性力。

set grav 0 -10 ;设置重力加速度1.3.5计算结果分析1.求解初始应力场岩体在自重应力下会产生初始应力场,这时还未开挖,未施加支护结构,求解得到初始应力场。

相应的命令如下:solve rat 1e-5 save supp1.sav ;求解;保存(默认为安装目录,可以设置保存路径)得到的初始应力场(图1-5)和初始位移场(图1-6)如下所示,输入命令如下:pl bl stress pl ydisp fill ;显示围岩应力;显示Y方向位移图1-5 初始围岩应力图1-6 初始位移等值线2.求解开挖并施加喷射混凝土衬砌支护(1)杀死开挖内部围岩,施加支护单元。

输入命令如下:rest supp1.sav ;读取文件supp1.savreset time disp histhist ydisp 0,5delete range annulus (0,0) 0 9struct gen xc 0 yc 0 npoin 36 mat 2 thick 0.1 fang 0 theta 180 struct change area 0.2 inertia 0.025prop mat 2 st_dens 2500 st_prat 0.15 st_ymod 21e9prop mat 2 st_ycomp 4e6 st_yield 2e6 st_yresid 1e6prop mat 2 if_kn 1e9 if_ks 1e9 if_fric 45 if_ten 1e6 if_coh 1e6 ;重置计算步、位移、历史;设置拱顶位移监测点;开挖内部围岩;在隧道上半部分施加梁单元用以模拟喷射混凝土;设置喷射混凝土截面积、惯性矩;设置喷射混凝土密度、泊松比、弹性模量、抗压强度、抗拉强度、残余强度;设置喷射混凝土与围岩接触面参数(2)求解及结果输出求解及结果输出命令如下。

计算结果如图1-7~1-11所示。

step 4920save supp2.savpl bl stresspl ydisp fillpl hist 1pl bl struct axial fill struct lmagpl bl struct moment fill struct lmag ;求解(与solve命令类似,控制标准不同);保存计算结果;显示围岩应力;显示Y方向位移;显示记录点拱顶沉降曲线;显示喷射混凝土轴力;显示喷射混凝土弯矩图1-7 围岩应力图1-8 围岩位移图1-9 拱顶沉降曲线图1-10 喷射混凝土轴力图1-11 喷射混凝土弯矩3.求解开挖并施加喷射混凝土衬砌与锚杆联合支护(1)杀死开挖内部围岩,施加喷射混凝土与锚杆支护单元。

输入命令如下:rest supp1.savreset time disp histhist ydisp 0,5delete range annulus (0,0) 0 9struct gen xc 0 yc 0 npoin 18 mat 2 thick 0.1 fang 0 theta 180 struct change area 0.2 inertia 0.025 ;读取文件supp1.sav;重置计算步、位移、历史;设置拱顶位移监测点;开挖内部围岩;在隧道上半部分施加梁单元用以模拟喷射混凝土;设置喷射混凝土截面积、惯prop mat 2 st_dens 2500 st_prat 0.15 st_ymod 21e9prop mat 2 st_ycomp 4e6 st_yield 2e6 st_yresid 1e6prop mat 2 if_kn 1e9 if_ks 1e9 if_fric 45 if_ten 1e6 if_coh 1e6cable 1.7425 8.7655 5.4719 28.4148 20 3 0.001 3 connect cable -1.7392 8.7409 -5.7469 28.3352 20 3 0.001 3 connect cable -4.9449 7.4006 -16.0764 24.0165 20 3 0.001 3 connect prop mat 3 cb_dens 7500 cb_ymod 100e9 &cb_yield 1e7 cb_ycomp 1e10prop mat 3 cb_kb 1e9 cb_sb 1e6 性矩;设置喷射混凝土密度、泊松比、弹性模量、抗压强度、抗拉强度、残余强度;设置喷射混凝土与围岩接触面参数;施加锚杆,并与梁单元连接;赋予锚杆参数;锚杆注浆浆液参数(2)求解及结果输出求解及结果输出命令如下。

计算结果如图1-12~1-17所示。

step 9920save supp3.savpl bl stresspl ydisp fillpl hist 1pl bl struct axial fill struct lmagpl bl struct moment fill struct lmag pl bl cable axial fill cable lmag ;求解(与solve命令类似,控制标准不同);保存计算结果;显示围岩应力;显示Y方向位移;显示记录点拱顶沉降曲线;显示喷射混凝土轴力;显示喷射混凝土弯矩;显示锚杆轴力图1-12 围岩应力图1-13 围岩位移图1-14 拱顶沉降曲线图1-15 喷射混凝土轴力图1-16 喷射混凝土弯矩图1-17 锚杆轴力第一种情况,即只有喷射混凝土单独支护的工况,喷射混凝土被安置在隧道上半部,在开挖隧道之前,模型首先达到平衡状态,然后隧道块体被删除,设置衬砌并继续进行计算,隧道拱顶一点竖向位移被记录,图1-9的历史记录不难看出,拱顶位移先是逐渐趋于收敛,但后来突然急剧增大,显示出隧道顶部正在坍塌。

在第二种情况,锚杆和喷射混凝土一起被设置在拱顶,且锚杆与衬砌连接,使得二者形成联合支护。

计算结果可以看出,顶部楔形体在移动大约0.435m后位移趋于收敛。

图1-14显示了拱顶沉降的历史记录。

另外,通过对比两种工况的计算结果,我们也不难看出,工况二的围岩应力、喷射混凝土轴力、喷射混凝土弯矩都比工况一小得多,充分体现锚杆提供的支护作用。

相关文档
最新文档