第十七章17.1勾股定理
2024八年级数学下册第十七章勾股定理17.1勾股定理第3课时应用勾股定理解数学问题课件新版新人教版
出它的面积;
【解】△ABC如图①,S△ABC= .
探索创新:
(3)若△ABC三边的长分别为 a,2 a, a(a>0),请利
用图③中的正方形网格(每个小正方形的边长均为a)画出相
应的△ABC,并求出它的面积;
【解】△ABC如图②,可得
∵∠ABC=120°,AB=BC,
∴∠BAC=∠BCA=30°, ∵∠AOB=90°,
∴OB= a,
∴OF=OB+BF= ,OA=OC= .
∴AC=CE= a.
易得∠PFO=∠OEM=90°.
∵点P的坐标为(-2 ,3),
∴ =3,即a=2.
∴OE=OC+CE=
=3
( − ) + 的最小值.
【解】如图,作BD=12,过点B作AB⊥BD,过点D作
ED⊥BD,使AB=2,ED=3,连接AE交BD于点C.则AE的长
即为代数式 + + ( − ) + 的最小值.
过点A作AF⊥DE交ED的延长线于点F,得到长方形ABDF,
则AB=DF=2,AF=BD=12,∴EF=ED+DF=3+2=5.
∴AE= + =13,即 +
+ ( − ) + 的最小值为13.
利用勾股定理探求格点三角形面积
11.[新考法 构图求面积法]问题背景:
在△ABC中,AB,BC,AC三边的长分别为 , ,
,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个
∴∠CAD=45°=∠ACD.
∴AD=CD=2 cm.
初中数学人教版八年级下册第十七章17.1勾股定理
初中数学·人教版·八年级下册——第十七章勾股定理17.1 勾股定理基础闯关全练拓展训练1.在△ABC中,∠C=90°,2∠A=∠B,∠A,∠B,∠C的对边分别为a,b,c,则a∶b∶c等于()A.1∶2∶1B.1∶√2∶1C.1∶√3∶2D.1∶2∶√3答案C设∠A=x°,则∠B=2x°,∵△ABC中∠C=90°,∴∠A+∠B=90°,即x°+2x°=90°,解得x=30,∴∠A=30°,∠B=60°,设a=1,∴c=2,由勾股定理得b=√c2-a2=√4-1=√3,∴a∶b∶c=1∶√3∶2.故选C.2.如图是由5个正方形和5个等腰直角三角形组成的图形,已知③号正方形的面积是1,那么①号正方形的面积是()A.4B.8C.16D.32答案C如图,根据勾股定理知④号正方形的边长为√12+12=√2,则②号正方形的边长为√(√2)2+(√2)2=2,⑤号正方形的边长为√22+22=2√2,则①号正方形的边长为√(2√2)2+(2√2)2=4,所以①号正方形的面积为4×4=16.故选C.3.(2016广西防城港期中)如图,长方体的长、宽、高分别为4cm,3cm,12cm,则BD'=.答案13cm解析连接BD,则BD=√42+32=5(cm),故BD'=√52+122=13(cm).4.(2016江西宜春高安期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.答案24cm2解析∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得a2+b2=c2,即(a+b)2-2ab=c2,∴196-2ab=100,即ab=48,则Rt△ABC的面积为1ab=24cm2.2能力提升全练拓展训练1.图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若直角边AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是.答案76解析在题图乙的四个大直角三角形中,两直角边长分别为5,12,所以斜边长为13,所以这个风车的外围周长为4×13+4×6=76.2.(2014山东潍坊中考)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,所以该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是尺.答案25解析由题意可知葛藤绕圆柱五周到达点B,故先把圆柱平均分成五段,将最下边一段圆柱的侧面展开图画出,并连接其对角线,则该对角线的长即为每段的最短长度,为√32+42=5(尺),所以葛藤的最短长度为5×5=25尺,故答案为25.3.(2016山东聊城莘县期中)如图,已知直角△ABC的两直角边长分别为6,8,分别以其三边为直径向外作半圆,则图中阴影部分的面积为.答案24解析在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB=√AC2+BC2=10,则S阴影=S半圆AC+S半圆BC+S△ABC-S半圆AB=322π+12×42×π+12×6×8-522π=24.4.如图,在长方形ABCD中,AD=4,DC=3,将△ADC按逆时针方向绕点A旋转到△AEF(点A、B、E在同一直线上),连接CF,则CF=.答案5√2解析△AEF是由△ADC旋转得来的,可得△AEF≌△ADC,所以∠EAF=∠DAC,AF=AC.则△CAF是等腰直角三角形,所以CF=√FA2+CA2,又AC=√DA2+DC2=√42+32=5,所以CF=√52+52=5√2.三年模拟全练拓展训练1.(2016广东深圳翰林学校第一次月考,15,★★☆)如图,长方体的长为15cm,宽为10cm,高为20cm,点B到点C的距离为5 cm,一只蚂蚁如果沿着长方体的表面从A点爬到B点,需要爬行的最短距离是.答案25cm解析(1)当长方形NFGC与长方形CGAD展开在一个面上时,AB=√BD2+AD2=√152+202=25(cm);(2)当长方形NMDC与长方形CDAG展开在一个面上时,AB=√AG2+BG2=√102+252=5√29(cm);(3)当长方形NCGF与长方形FGAE展开在一个面上时,AB=√AC2+BC2=√302+52=5√37(cm).因为25<5√29<5√37,所以蚂蚁需要爬行的最短距离是25cm.2.(2016河北保定模拟,23,★★☆)(1)如图①所示,分别以Rt△ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间的关系(不必证明);(2)如图②,分别以Rt△ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系并证明;(3)如图③,分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.解析(1)S2+S3=S1.(2)S2+S3=S1.证明:S3=π8AC2,S2=π8BC2,S1=π8AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=π8(BC2+AC2)=π8AB2=S1,∴S2+S3=S1.(3)S2+S3=S1.证明:S1=√34AB2,S2=√34BC2,S3=√34AC2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=√34(BC2+AC2)=√34AB2=S1,∴S2+S3=S1.五年中考全练拓展训练1.(2016湖南株洲中考,8,★☆☆)如图,以直角三角形的边a、b、c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数为()A.1B.2C.3D.4答案D根据勾股定理可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积,然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积,然后根据a2+b2=c2,可得S1+S2=S3.故满足S1+S2=S3的图形个数为4.2.(2016浙江杭州中考,9,★☆☆)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形.若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0B.m2-2mn+n2=0C.m2+2mn-n2=0D.m2-2mn-n2=0答案C根据题意画图,如图.在Rt△ABC中,n>m且△ABE和△AEC均为等腰三角形,∴AB=BE=m,则AE=EC=n-m,根据勾股定理可得AE=√2AB,即n-m=√2m,两边平方整理得,m2+2mn-n2=0,故选C.3.(2014广西钦州中考,12,★☆☆)如图,在6个边长为1的小正方形及其部分对角线构成的图形中,从A点到B点只能沿图中的线段走,那么从A点到B点的最短路程的走法共有()A.1种B.2种C.3种D.4种答案C根据题意得出最短路径如图所示,最短路程为√22+22+1=2√2+1,则从A点到B点的最短路程的走法共有3种.故选C.4.(2013四川雅安中考,17,★★☆)在平面直角坐标系中,已知点A(-√5,0),B(√5,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标.答案(0,2),(0,-2),(-3,0),(3,0)解析如图,①当点C位于y轴上时,设C(0,b).则√(√5)2+b2+√(√5)2+b2=6,解得b=2或b=-2,此时C(0,2)或C(0,-2).②当点C位于x轴上时,设C(a,0).则|-√5-a|+|a-√5|=6,即2a=6或-2a=6,解得a=3或a=-3,此时C(-3,0)或C(3,0).综上所述,满足条件的所有点C的坐标是(0,2),(0,-2),(-3,0),(3,0).核心素养全练拓展训练1.(2014浙江温州中考改编)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感.他惊喜地发现:当两个全等的直角三角形如图①或图②摆放时,都可以用“面积法”来证明.下面是小聪利用图①证明勾股定理的过程:将两个全等的直角三角形按图①所示方式摆放,其中∠DAB=90°.求证:a2+b2=c2.图①图②证明:连接DB,过点D作BC边上的高DF,则DF=EC=b-a.∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab,又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b-a),∴12b2+12ab=12c2+12a(b-a).∴a2+b2=c2.请参照上述证法,利用图②完成下面的证明.将两个全等的直角三角形按图②所示方式摆放,其中∠DAB=90°.求证:a2+b2=c2.证明:连接.∵S五边形ACBED=,又∵S五边形ACBED=,∴.∴a2+b2=c2.证明连接BD,过点B作DE边上的高BF,则BF=b-a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=12ab+12b2+12ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=12ab+12c2+12a(b-a),∴12ab+12b2+12ab=12ab+12c2+12a(b-a),∴a2+b2=c2.2.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式√x2+4+√(12-x)2+9的最小值.解析(1)√(8-x)2+25+√x2+1.(2)当A、C、E三点共线时,AC+CE的值最小.(3)如图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,且AB=2,ED=3,连接AE交BD于点C.设BC=x,AE的长即为代数式√x2+4+√(12-x)2+9的最小值.过点A作AF∥BD交ED的延长线于点F,得长方形ABDF,则AB=DF=2,AF=BD=12.所以AE=√122+(3+2)2=13.即√x2+4+√(12-x)2+9的最小值为13.。
人教版八年级数学下册课件:17.1勾股定理--1.3 勾股定理在几何中的应用
l
B
0 1 2 A•3 C 4
6
知识点一:利用勾股定理在数轴上表示实数
新知探究
1、利用同样的方法,可以在数轴上画出表示
7
知识点一:利用勾股定理在数轴上表示实数
新知探究
2、利用勾股定理,可以作出长为 , , …的线段.
1 12
34 5
8
知识点一:利用勾股定理在数轴上表示实数
学以致用
3.在每个小正方形的边长为1的网格图中,每个小正方形的顶
点称为格点,以顶点都是格点的正方形ABCD的边为斜边,
向内作四个全等的直角三角形,使四个直角顶点E,F,G,
H都是格点,且四边形EFGB为正方形,我们把这样的图形称
为格点弦图,例如,在图①所示的格点
弦图中,正方形ABCD的边长为 时,
正方形 EFCH的面积的所有可能值
17
知识点二:利用勾股定理解决几何问题
归纳总结
利用勾股定理求非直角三角形中线段的长的方法: 作三角形一边上的高,将其转化为两个直角三角形,然 后利用勾股定理并结合已知条件,采用推理或列方程的 方法解决问题.
18
知识点二:利用勾股定理解决几何问题
学以致用
1. 如图,OC为∠AOB的平分线,CM⊥OB,
A. B. C. D.
13
知识点一:利用勾股定理在数轴上表示实数
学以致用
4.如图,在长方形ABCD中,AB=3,AD=1,AB在数轴上, 若以点A为圆心,对角线AC的长为半径作弧交数轴于点M, 则点M表示的数为( C )
A. 2 B. -1 C. -1 D.
14
知识点一:利用勾股定理在数轴上表示实数
人教版初中数学八下第十七章 勾股定理 17.1 勾股定理 第2课时 勾股定理的应用
17.1 勾股定理 第2课时 勾股定理的应用
知识点 勾股定理的应用
1.如图,某公园有一块长方形草坪,有极少数人为了避开拐角∠AOB而走“捷 径”,在草坪内走出了一条“路”AB.他们踩伤草坪,仅仅少走了( A )
A.4 m
B.6 m
C.8 m
D.10 m
第1题图
2.如图,一艘轮船以16 n mile/h的速度从港口A出发向东北方向航行,另一艘轮船以 12 n mile/h的速度同时从港口A出发向东南方向航行,离开港口2 h后两船相距 (C)
第4题图
5.如图,若河岸的两边平行,河宽AC=800 m,河岸上B,C两点之间的距离为600 m.一只船由河岸的A处沿直线方向开往对岸的B处,船的速度为200 m/min,求船从 A处到B处所需的时间.
答:船从A处到B处所需的时间为5 min.
7.(教材P25例2变式)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时, 梯子底端B到左墙脚C的距离为0.7 m,顶端A距离地面2.4 m.如果保持梯子底端位置 不动,将梯子斜靠在右墙时,顶端A'距离地面2 m,求小巷的宽度.
答:小巷的宽度为2.2 m.
8.如图,在高为5 m,坡面长为13 m的楼梯表面铺地毯,则至少需要地毯( A ) A.17 m B.18 m C.25 m D.26 m
9.如图,小明将一张长为20 cm,宽为15 cm的长方形纸(AE>DE)剪去了一角,量 得AB=3 cm,CD=4 cm,则剪去的直角三角形的斜le
C.40 n mile
D.50 n mile
第2题图
3.已知一根竹子原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地, 抵地处离竹子底部6尺远,则折断处离地面的高度为 3.2 尺.
第十七章 勾股定理 单元解读课件
学习目标
教学内容
学习目标
1.了解互逆命题、互逆定理之间的联系与区别, 并能写出一个命题的逆命题. 2.掌握勾股定理的逆定理,会运用勾股定理的 逆定理判断一个三角形是不是直角三角形,能 17.2 勾股定理的逆定理 够理解勾股定理及其逆定理的区别与联系. 3.了解勾股数,会判断三个数是不是勾股数. 4.经历勾股定理的逆定理的探索过程,体验用 全等三角形证明勾股定理的逆定理的过程.
勾股定理
单元教材解读
课标解读
教学内容
课标要求
17.1 勾股定理 17.2 勾股定理的逆定理
探索勾股定理及其逆定理,并能运用它们解决 一些简单的实际问题
学习目标
教学内容
学习目标
17.1 勾股定理
1.经历勾股定理的探索过程,了解关 于勾股定理的文化历史背景. 2.会运用勾股定理在数轴上确定无理 数对应的点. 3.能利用勾股定理解决一些简单问题.
教学建议
3.适当总结和定理、逆定理有关的内容 本章引出了逆定理的概念,为了让学生对这一概念掌握得更好,可
以在小结时结合已学过的一些结论来加深理解.如:“角的平分线上 的点到角的两边的距离相等”和“角的内部到角的两边的距离相等的 点在角的平分线上”.还可以举出其他的一些例子.这样就可以从定 理、逆定理的角度认识已学的一些结论.明确其中一些结论之间的关 系.对互逆命题、互逆定理的概念,学生理解它们通常困难不大.但 对那些不是以“如果……那么……”形式给出的命题,叙述它们的逆 命题有时就会有困难,可以尝试先把命题变为“如果……那么……” 的形式.当然,要注意把握教学要求,不宜涉及结构太复杂的命题.
互逆定理
一般的,如果一个定理的逆命题经过证明是正确的, 那么它也是一个定理,称这两个定理互为逆定理.
2024八年级数学下册第十七章勾股定理17.1勾股定理第2课时应用勾股定理解实际问题课件新版新人教版
【解】(1)如图,过点A作AE⊥CD于点E,
则∠AEC=∠AED=90°.
∵∠ACD=60°,∴∠CAE=90°-60°=30°.
∴CE= AC=
DE=
km.∴AE=
km,
km.
∴AE=DE.∴△ADE是等腰直角三角形.∴AD=
+ = = AE= ×
度为x尺,则可列方程为( D )
A.x2-3=(10-x)2
B.x2-32=(10-x)2
C.x2+3=(10-x)2
D.x2+32=(10-x)2
【点拨】
如图,已知折断处离地面的高度为x尺,即AC=x尺,
则AB=(10-x)尺,BC=3尺.在Rt△ABC中,AC2+BC2=
AB2,即x2+32=(10-x)2.故选D.
2.[2023·岳阳 新考向·传承数学文化]我国古代数学名著《九章
算术》中有这样一道题:“今有圆材,径二尺五寸,欲为
方版,令厚七寸,问广几何?”结合如图,其大意是:今
有圆形材质,直径BD为25寸,要做成方形板材,使其厚
度CD达到7寸,则BC的长是( C )
A. 寸
B.25寸
C.24寸
D.7寸
选B.
4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙
时,梯子底端到左墙脚的距离为0.7 m,顶端距离地面2.4
m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶
端距离地面2 m,那么小巷的宽度为( C )
A.0.7 m
B.1.5 m
C.2.2 m
D.2.4 m
【点拨】
如图,BC=2.4 m,AC=0.7 m,DE=
八年级数学下册第十七章勾股定理17.1勾股定理第2课时勾股定理在实际生活中的应用7
第十七章勾股定理
在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角
两点间的距离.
上任意两点
处放上了点儿火腿肠粒,你
的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多
求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径.
第1题图第2题图
如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是
的长度可能是()
A.9cm
B.12cm
C.15cm
D.18cm
10cm和6cm,A和B是。
人教版八年级数学下册第十七章第一节 第1课时 勾股定理
B
解:(1) 据勾股定理得
c a2 b2 52 52 50 5 2. C
A
(2) 据勾股定理得
b c2 a2 22 12 3.
【变式题1】在 Rt△ABC 中, ∠C = 90°. (1) 若 a∶b = 1∶2 ,c = 5,求 a ; (2) 若 b = 15,∠A = 30°,求 a,c. 解:(1) 设 a = x,b = 2x,根据勾股定理建立方程得 x2 + (2x)2 = 52,解得 x 5, ∴ a 5 . (2) ∵A 30°,b 15,∴c 2a . 因此设 a = x,c = 2x,根据勾股定理建立方程得 (2x)2 - x2 = 152,解得 x 5 3 . ∴ a 5 3 ,c 10 3 .
1 4
BC2.
勾股定理
内容 注意
在Rt△ABC 中,∠C = 90°,a,
b 为直角边,c 为斜边,则有 a2 + b2 = c2.
在直角三角形中
看清哪个角是直角
已知两边没有指明是直角边 还是斜边时一定要分类讨论
D
根据三角形面积公式,
3
∴ ∴
1 2
AC×BC
12
CD = 5 .
=
1 2
AB×CD.
C
4
B
归纳 由直角三角形的面积求法可知直角三角形两直角
边的积等于斜边与斜边上高的积,它常与勾股定理联
合使用.
练一练
求下列图中未知数 x、y 的值:
81 x
144
解:由勾股定理可得 81 + 144 = x2,
解得 x = 15.
勾股定理有着悠久的历史:古巴比伦人和古代中国人 看出了这个关系,古希腊的毕达哥拉斯学派首先证明 了这关系,下面让我们一起来通过视频来了解吧:
初中数学:17.1.1勾股定理(人教版八年级数学下册第十七章勾股定理)
第17章勾股定理17.1勾股定理第1课时勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】直接运用勾股定理如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD=AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:由全等三角形的知识,可知△ABC的形状无法确定,但△ABD的形状可以确定.如图所示,△ABC存在两种不同的情况,因此需要分两种情况进行讨论:△ABC为锐角三角形和钝角三角形.△ABC的周长=28+BC,其中BC=BD+CD或BC=BD-CD.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42.(2)当△ABC 为钝角三角形时,如图②所示.同理,BD =9,CD =5,∴BC =9-5=4,∴△ABC 的周长为15+13+4=32.∴当△ABC 为锐角三角形时,△ABC 的周长为42;当△ABC 为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明探索与研究:方法1:如图,对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图,该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD 的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S四边形ABCD=S△ABC+S△ACD,S四边形ABCD=S△ABD+S△BCD,∴S△ABC+S△ACD=S△ABD+S△BCD,即1 2b2+12ab=12c2+12a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.第2课时勾股定理的应用1.熟练运用勾股定理解决实际问题;(重点)2.掌握勾股定理的简单应用,探究最短距离问题.(难点)一、情境导入如图,在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理的实际应用【类型一】勾股定理在实际问题中的应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保留根号)?解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC,AC长度即可求得AB的值,然后解答即可.解:在Rt△ABC中,BC=13米,AC=5米,则AB=BC2-AC2=12米.6秒后,B′C=13-0.5×6=10米,则AB′=B′C2-AC2=53(米),所以船向岸边移动的距离为(12-53)米.方法总结:本题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将已知条件转化到同一直角三角形中求解.【类型二】利用勾股定理解决方位角问题如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了1003km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.解析:根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.解:∵AD∥BE,∴∠ABE=∠DAB=60°.∵∠CBF=30°,∴∠ABC=180°-∠ABE-∠CBF=180°-60°-30°=90°.在Rt△ABC中,AB=1003km,BC=100km,∴AC=AB2+BC2=(1003)2+1002=200(km),∴A、C两点之间的距离为200km.方法总结:先确定△ABC是直角三角形,再根据各边长,用勾股定理可求出AC的长.【类型三】利用勾股定理解决立体图形最短距离问题如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?解:分两种情况比较最短距离:如图①所示,蚂蚁爬行最短路线为AM,AM=102+(20+5)2=529(cm),如图②所示,蚂蚁爬行最短路线为AM,AM=202+(10+5)2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型四】运用勾股定理解决折叠中的有关计算如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,则AM的长是()A.1.5B.2C.2.25D.2.5解析:连接BM,MB′.设AM=x,在Rt△ABM中,AB2+AM2=BM2.在Rt△MDB′中,MD2+DB′2.∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2.故选B.方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型五】勾股定理与方程思想、数形结合思想的应用如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.解析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2.设AD=x m,根据两只猴子经过的路程一样可列方程组,从而求出x的值,即可计算树高.解:在Rt△ABC中,∠B=90°,设AD=x m.∵两猴子所经过的路程都是15m,则10+BC=x+AC=15.∴BC=5,AC=15-x,AB=x+10.又∵在Rt△ABC中,由勾股定理得(10+x)2+52=(15-x)2,解得x=2,即AD=2米.∴AB=AD+DB=2+10=12(米).答:树高AB为12米.方法总结:勾股定理表达式中有三个量,如果条件中只有一个己知量,通常需要巧设未知数,灵活地寻找题中的等量关系,然后利用勾股定理列方程求解.探究点二:勾股定理与数轴如图所示,数轴上点A所表示的数为a,则a的值是()A.5+1B.-5+1 C.5-1 D.5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是5.那么点A所表示的数为5-1.故选C.方法总结:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A 的位置,再根据A的位置来确定a的值.三、板书设计1.勾股定理的应用方位角问题;路程最短问题;折叠问题;数形结合思想.2.勾股定理与数轴本节课充分锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力,让学生充分体验到了数学思想的魅力和知识创新的乐趣,突现教学过程中的师生互动,使学生真正成为主动学习者.。
人教版八下数学17.1 课时1 勾股定理教案+学案
人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理教案【教学目标】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题;3.了解利用拼图验证勾股定理的方法..【教学重点】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题.【教学难点】了解利用拼图验证勾股定理的方法.【教学过程设计】一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究知识点一:勾股定理【类型一】直接运用勾股定理例1如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD=AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用例2在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC 的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC 的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明例3探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S 四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD=S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a 2+b 2=c 2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.知识点二:勾股定理与图形的面积例4 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.【板书设计】17.1 勾股定理课时1 勾股定理1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.【教学反思】在课堂教学中应注意调动学生学习数学的积极性.让学生满怀激情地投入到数学学习中,提高数学课堂教学效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理学案【学习目标】1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景,会用面积法来证明勾股定理,体会数形结合的思想;2.会用勾股定理进行简单的计算.【学习重点】掌握用面积法来证明勾股定理,体会数形结合的思想.【学习难点】能够运用勾股定理进行有关的运算.【自主学习】一、知识回顾网格中每个小正方形的面积为单位1,你能数出图中的正方形A、B 的面积吗?你又能想到什么方法算出正方形C的面积呢?AB CCBA方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):左图:S c=__________________________;右图:S c=__________________________.方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):左图:S c=__________________________;右图:S c=__________________________.二、合作探究考点1:勾股定理的认识及验证想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A,B和C面积之间的关系,你能想到是什么关系吗?2.右图中正方形A、B、C所围成的等腰直角三角形三边之间有什么特殊关系?3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?(每个小正方形的面积为单位1)4.正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?思考你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么________.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想.证法利用我国汉代数学家赵爽的“赵爽弦图”=________,证明:∵S大正方形S小正方形=________,S大正方形=___·S三角形+S小正方形,∴________=________+__________.要点归纳:勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 公式变形:222222, ,=+--.a cb bc a c a b知识点2:利用勾股定理进行计算【典例探究】例1如图,在Rt△ABC中,∠C=90°.(1)若a=b=5,求c;(2)若a=1,c=2,求b.变式题1 在Rt△ABC中,∠C=90°.(1)若a:b=1:2 ,c=5,求a;(2)若b=15,∠A=30°,求a,c.方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2在Rt△ABC中,AB=4,AC=3,求BC的长.方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.例2已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.【跟踪训练】求下列图中未知数x、y的值:三、知识梳理内容勾股定理如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.注意1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论四、学习中我产生的疑惑【学习检测】1.下列说法中,正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c22. 如图,Rt△ABC(∠C=90°)的主要性质:(用几何语言表示)(1)两锐角之间的关系:____________________.(2)若∠B=30°,则∠B的对边和斜边:_________.3.如果直角三角形的两直角边分别为a、b,斜边为c,那么_________.4. 右图中阴影部分是一个正方形,则此正方形的面积为_____________.5.在△ABC中,∠C=90°.(1)若a=15,b=8,则c=_______.(2)若c=13,b=12,则a=_______.6.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.7.如图所示,所有的四边形都是正方形,三角形是直角三角形,其中最大的正方形的边长为6,则正方形A,B的面积的和为_______.8.求斜边长17cm、一条直角边长15cm的直角三角形的面积.9.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.10.如图,将长为10米的梯子AC斜靠在墙上,BC长为6米,求梯子上端A到墙的底端B的距离AB。
人教版八下数学第17章勾股定理17.1《勾股定理》教案
-勾股定理在实际问题中的灵活运用;
-通过勾股定理的学习,培养学生的逻辑思维和解决问题的能力。
举例解释:
-重点一:学生需要掌握勾股定理的表达式(a² + b² = c²),并能够识别直角三角形中的勾股数,理解其在三角形中的应用;
-重点二:学生应理解并能够复述勾股定理的几何法和代数法的证明过程,包括如何通过图形或代数公式推导出定理;
在总结回顾环节,我发现大部分同学能够掌握勾股定理的基本概念和应用,但仍有少数同学对某些知识点存在疑问。为了确保每位同学都能跟上教学进度,我决定在课后设置一个答疑环节,鼓励同学们提问,并及时解答他们的疑惑。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表述和证明这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作直角三角形模型,测量边长,验证勾股定理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-难点二:面对非标准直角三角形问题,学生可能不知道如何将问题转化为勾股定理的应用,需要教师提供多样的解题策略和技巧;
-难点三:学生可能难以将勾股定理与实际生活和其他学科知识联系起来,教师应通过跨学科案例和实际情境来加深学生的理解。
2024八年级数学下册第十七章勾股定理17.1勾股定理
∴S
重叠部分=12
DE ·A B =1 2
×25 4
×6=75 4
15.(类比探究)【问题背景】△ABC 三边的长分别为 2 2 , 13 , 17 ,求这个三 角形的面积.
小辉同学在解这道题时,先建立了一个正方形网格(每个小正方形的边长均为 1), 再在网格中作出格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),如图①所示, 这样不需要作△ABC 的高,借用网格就能计算出△ABC 的面积为_____5_______;
解:略
知识点 3:勾股定理与图形的计算 7.如图,在 Rt△ABC 中,∠C=90°,AC=12,BC=18,DE 是线段 AB 的垂直 平分线,分别交 BC,AB 于点 D,E,则 BD 的长为( C ) A.8 B.10 C.13 D.15
8.如图,在 Rt△ABC 中,∠C=90°,AD 平分∠BAC 交 BC 于点 D,DE∥AB 交 AC 于点 E,已知 CE=3,CD=4,则 AD 长为 _____4__5________.
【思维拓展】我们把上述求△ABC 面积的方法叫做“构图法”.若△ABC 三边的长 分别为 5 a, 10 a, 13 a,请利用图②的正方形网格(每个小正方形的边长均为 a) 画出相应的△ABC,并求出它的面积;
【探索创新】若△ABC 三边的长分别为 4m2+n2 , 4m2+9n2 , 16m2+4n2 (其 中 m>0,n>0,且 m≠n),请利用构图法求出这个三角形的面积.
17.1 勾股定理 第3课时 利用勾股定理作图与计算
知识点 1:勾股定理与实数
1.如图,数轴上的点 A 对应的数是 0,点 B 对应的数是 1,BC⊥AB,垂足为 B,
且 BC=2,以点 A 为圆心,AC 的长为半径画弧,交数轴于点 D,则点 D 表示的数为
人教版八年级数学下第十七章 勾股定理
第十七章勾股定理17.1勾股定理第1课时勾股定理(1)了解勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算.重点勾股定理的内容和证明及简单应用.难点勾股定理的证明.一、创设情境,引入新课让学生画一个直角边分别为3 cm和4 cm的直角△ABC,用刻度尺量出斜边的长.再画一个两直角边分别为5和12的直角△ABC,用刻度尺量出斜边的长.你是否发现了32+42与52的关系,52+122与132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗?由一学生朗读“毕达哥拉斯观察地面图案发现勾股定理”的传说,引导学生观察身边的地面图形,猜想毕达哥拉斯发现了什么?拼图实验,探求新知1.多媒体课件演示教材第22~23页图17.1-2和图17.1-3,引导学生观察思考.2.组织学生小组合作学习.问题:每组的三个正方形之间有什么关系?试说一说你的想法.引导学生用拼图法初步体验结论.生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和.师:这只是猜想,一个数学命题的成立,还要经过我们的证明.归纳验证,得出定理(1)猜想:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.(2)是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明已有几百种之多,下面我们就看一看我国数学家赵爽是怎样证明这个定理的.①用多媒体课件演示.②小组合作探究:a.以直角三角形ABC的两条直角边a,b为边作两个正方形,你能通过剪、拼把它拼成弦图的样子吗?b.它们的面积分别怎样表示?它们有什么关系?c.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证法.想一想还有什么方法?师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题讲解【例1】填空题.(1)在Rt△ABC中,∠C=90°,a=8,b=15,则c=________;(2)在Rt△ABC中,∠B=90°,a=3,b=4,则c=________;(3)在Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________;(4)一个直角三角形的三边为三个连续偶数,则它的三边长分别为________;(5)已知等边三角形的边长为2 cm,则它的高为________cm,面积为________cm2.【答案】(1)17(2)7(3)68(4)6,8,10(5)3 3【例2】已知直角三角形的两边长分别为5和12,求第三边.分析:已知两边中,较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进行计算.让学生知道考虑问题要全面,体会分类讨论思想.【答案】119或13三、巩固练习填空题.在Rt△ABC中,∠C=90°.(1)如果a=7,c=25,则b=________;(2)如果∠A=30°,a=4,则b=________;(3)如果∠A=45°,a=3,则c=________;(4)如果c=10,a-b=2,则b=________;(5)如果a,b,c是连续整数,则a+b+c=________;(6)如果b=8,a∶c=3∶5,则c=________.【答案】(1)24(2)43(3)32(4)6(5)12(6)10四、课堂小结1.本节课学到了什么数学知识?2.你了解了勾股定理的发现和验证方法了吗?3.你还有什么困惑?本节课的设计关注学生是否积极参与探索勾股定理的活动,关注学生能否在活动中积极思考、能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理地表达活动过程和所获得的结论等.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理.第2课时勾股定理(2)能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点将实际问题转化为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实际问题.一、复习导入问题1:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?师生行为:学生分小组讨论,建立直角三角形的数学模型.教师深入到小组活动中,倾听学生的想法.生:根据题意,(如图)AC是建筑物,则AC=12 m,BC=5 m,AB是梯子的长度,所以在Rt△ABC中,AB2=AC2+BC2=122+52=132,则AB=13 m.所以至少需13 m长的梯子.师:很好!由勾股定理可知,已知两直角边的长分别为a,b,就可以求出斜边c的长.由勾股定理可得a2=c2-b2或b2=c2-a2,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长,也就是说,在直角三角形中,已知两边就可求出第三边的长.问题2:一个门框的尺寸如图所示,一块长3 m、宽2.2 m的长方形薄木板能否从门框内通过?为什么?学生分组讨论、交流,教师深入到学生的数学活动中,引导他们发现问题,寻找解决问题的途径.生1:从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.生2:在长方形ABCD中,对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否能通过.师生共析:解:在Rt△ABC中,根据勾股定理AC2=AB2+BC2=12+22=5.因此AC=5≈2.236.因为AC>木板的宽,所以木板可以从门框内通过.二、例题讲解【例1】如图,山坡上两棵树之间的坡面距离是43米,则这两棵树之间的垂直距离是________米,水平距离是________米.分析:由∠CAB=30°易知垂直距离为23米,水平距离是6米.【答案】23 6【例2】教材第25页例2三、巩固练习1.如图,欲测量松花江的宽度,沿江岸取B,C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为________.【答案】503米2.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B 200米,结果他在水中实际游了520米,求该河流的宽度.【答案】约480 m四、课堂小结1.谈谈自己在这节课的收获有哪些?会用勾股定理解决简单的应用题;会构造直角三角形.2.本节是从实验问题出发,转化为直角三角形问题,并用勾股定理完成解答.这是一节实际应用课,过程中要充分发挥学生的主导性,鼓励学生动手、动脑,经历将实际问题转化为直角三角形的数学模型的过程,激发了学生的学习兴趣,锻炼了学生独立思考的能力.第3课时勾股定理(3)1.利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等.2.利用勾股定理,能在数轴上找到表示无理数的点.3.进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点在数轴上寻找表示2,3,5,…这样的表示无理数的点.难点利用勾股定理寻找直角三角形中长度为无理数的线段.一、复习导入复习勾股定理的内容.本节课探究勾股定理的综合应用.师:在八年级上册,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.你们能用勾股定理证明这一结论吗?学生思考并独立完成,教师巡视指导,并总结.先画出图形,再写出已知、求证如下:已知:如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC =A′C′.求证:△ABC≌△A′B′C′.证明:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,根据勾股定理,得BC =AB2-AC2,B′C′=A′B′2-A′C′2.又AB=A′B′,AC=A′C′,∴BC=B′C′,∴△ABC ≌△A′B′C′(SSS).师:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出13所对应的点吗?教师可指导学生寻找像长度为2,3,5,…这样的包含在直角三角形中的线段.师:由于要在数轴上表示点到原点的距离为2,3,5,…,所以只需画出长为2,3,5,…的线段即可,我们不妨先来画出长为2,3,5,…的线段.生:长为2的线段是直角边都为1的直角三角形的斜边,而长为5的线段是直角边为1和2的直角三角形的斜边.师:长为13的线段能否是直角边为正整数的直角三角形的斜边呢?生:设c=13,两直角边长分别为a,b,根据勾股定理a2+b2=c2,即a2+b2=13.若a,b为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3,所以长为13的线段是直角边长分别为2,3的直角三角形的斜边.师:下面就请同学们在数轴上画出表示13的点.生:步骤如下:1.在数轴上找到点A,使OA=3.2.作直线l垂直于OA,在l上取一点B,使AB=2.3.以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示13的点.二、例题讲解【例1】飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?分析:根据题意,可以画出如图所示的图形,A点表示男孩头顶的位置,C,B点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题.解:根据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得AB2=AC2+BC2,即50002=BC2+48002,所以BC=1400米.飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400×6×60=504000(米)=504(千米),即飞机飞行的速度为504千米/时.【例2】在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少?解:根据题意,得到上图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD,所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36,∴6AC=27,AC=4.5,所以这里的水深为4.5分米.【例3】在数轴上作出表示17的点.解:以17为长的边可看作两直角边分别为4和1的直角三角形的斜边,因此,在数轴上画出表示17的点,如下图:师生行为:由学生独立思考完成,教师巡视指导.此活动中,教师应重点关注以下两个方面:①学生能否积极主动地思考问题;②能否找到斜边为17,另外两条直角边为整数的直角三角形.三、课堂小结1.进一步巩固、掌握并熟练运用勾股定理解决直角三角形问题.2.你对本节内容有哪些认识?会利用勾股定理得到一些无理数,并理解数轴上的点与实数一一对应.本节课的教学中,在培养逻辑推理的能力方面,做了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续,注重数学与生活的联系,从学生的认知规律和接受水平出发,这些理念贯彻到课堂教学当中,很好地激发了学生学习数学的兴趣,培养了学生善于提出问题、敢于提出问题、解决问题的能力.17.2勾股定理的逆定理第1课时勾股定理的逆定理(1)1.掌握直角三角形的判别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的探究方法.重点探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题的有关概念及关系.难点归纳猜想出命题2的结论.一、复习导入活动探究(1)总结直角三角形有哪些性质;(2)一个三角形满足什么条件时才能是直角三角形?生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余;(3)两直角边的平方和等于斜边的平方;(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.师:那么一个三角形满足什么条件时,才能是直角三角形呢?生1:如果三角形有一个内角是90°,那么这个三角形就为直角三角形.生2:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b与斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人是如何做的?问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.这个问题意味着,如果围成的三角形的三边长分别为3,4,5,有下面的关系:32+42=52,那么围成的三角形是直角三角形.画画看,如果三角形的三边长分别为2.5 cm,6 cm,6.5 cm,有下面的关系:2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4 cm,7.5 cm,8.5 cm,再试一试.生1:我们不难发现上图中,第1个结到第4个结是3个单位长度即AC=3;同理BC =4,AB=5.因为32+42=52,所以我们围成的三角形是直角三角形.生2:如果三角形的三边长分别是2.5 cm,6 cm,6.5 cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5 cm的边所对的角是直角,并且2.52+62=6.52.再换成三边长分别为4 cm,7.5 cm,8.5 cm的三角形,可以发现8.5 cm的边所对的角是直角,且有42+7.52=8.52.师:很好!我们通过实际操作,猜想结论.命题2如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.再看下面的命题:命题1如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.它们的题设和结论各有何关系?师:我们可以看到命题2与命题1的题设、结论正好相反,我们把像这样的两个命题叫做互逆命题.如果把其中的一个叫做原命题,那么另一个叫做它的逆命题.例如把命题1当成原命题,那么命题2是命题1的逆命题.二、例题讲解【例1】说出下列命题的逆命题,这些命题的逆命题成立吗?(1)同旁内角互补,两条直线平行;(2)如果两个实数的平方相等,那么这两个实数相等;(3)线段垂直平分线上的点到线段两端点的距离相等;(4)直角三角形中30°角所对的直角边等于斜边的一半.分析:(1)每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用;(2)理顺它们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.解略.三、巩固练习教材第33页练习第2题.四、课堂小结师:通过这节课的学习,你对本节内容有哪些认识?学生发言,教师点评.本节课的教学设计中,将教学内容精简化,实行分层教学.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验,真正体现学生是学习的主人.将目标分层后,满足不同层次学生的做题要求,达到巩固课堂知识的目的.第2课时勾股定理的逆定理(2)1.理解并掌握证明勾股定理的逆定理的方法.2.理解逆定理、互逆定理的概念.重点勾股定理的逆定理的证明及互逆定理的概念.难点理解互逆定理的概念.一、复习导入师:我们学过的勾股定理的内容是什么?生:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.师:根据上节课学过的内容,我们得到了勾股定理逆命题的内容:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.师:命题2是命题1的逆命题,命题1我们已证明过它的正确性,命题2正确吗?如何证明呢?师生行为:让学生试着寻找解题思路,教师可引导学生理清证明的思路.师:△ABC的三边长a,b,c满足a2+b2=c2.如果△ABC是直角三角形,它应与直角边是a,b的直角三角形全等,实际情况是这样吗?我们画一个直角三角形A′B′C′,使B′C′=a,A′C′=b,∠C′=90°(如图),把画好的△A′B′C′剪下,放在△ABC上,它们重合吗?生:我们所画的Rt△A′B′C′,(A′B′)2=a2+b2,又因为c2=a2+b2,所以(A′B′)2=c2,即A′B′=c.△ABC和△A′B′C′三边对应相等,所以两个三角形全等,∠C=∠C′=90°,所以△ABC 为直角三角形.即命题2是正确的.师:很好!我们证明了命题2是正确的,那么命题2就成为一个定理.由于命题1证明正确以后称为勾股定理,命题2又是命题1的逆命题,在此,我们就称定理2是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理.师:但是不是原命题成立,逆命题一定成立呢?生:不一定,如命题“对顶角相等”成立,它的逆命题“如果两个角相等,那么它们是对顶角”不成立.师:你还能举出类似的例子吗?生:例如原命题:如果两个实数相等,那么它们的绝对值也相等.逆命题:如果两个数的绝对值相等,那么这两个实数相等.显然原命题成立,而逆命题不一定成立.二、新课教授【例1】教材第32页例1【例2】教材第33页例2【例3】一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量出了这个零件各边的尺寸,那么这个零件符合要求吗?分析:这是一个利用直角三角形的判定条件解决实际问题的例子.解:在△ABD中,AB2+AD2=9+16=25=BD2,所以△ABD是直角三角形,∠A是直角.在△BCD中,BD2+BC2=25+144=169=132=CD2,所以△BCD是直角三角形,∠DBC是直角.因此这个零件符合要求.三、巩固练习1.小强在操场上向东走80 m后,又走了60 m,再走100 m回到原地.小强在操场上向东走了80 m后,又走60 m的方向是________.【答案】向正南或正北2.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A,B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,求甲巡逻艇的航向.【答案】解:由题意可知:AC=120×6×160=12,BC=50×6×160=5,122+52=132.又AB=13,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∴∠CAB=40°,航向为北偏东50°.四、课堂小结1.同学们对本节的内容有哪些认识?2.勾股定理的逆定理及其应用,熟记几组勾股数.本节课我采用以学生为主体,引导发现、操作探究的教学设计,符合学生的认知规律和认知水平,最大限度地调动了学生学习的积极性,有利于培养学生动手、观察、分析、猜想、验证、推理的能力,切实使学生在获取知识的过程中得到能力的培养.。
17.1勾股定理
感悟新知
6-1. 古诗赞美荷花“竹色溪下绿, 荷 花镜里香”. 平静的湖面上,一朵 荷花亭亭玉立,露出水面10 cm, 忽见它随风斜倚,花朵恰好浸入 水面,仔细观察,发现荷花偏离 原地40 cm(如图).请问:水深多少?
知3-练
感悟新知
知3-练
解:设水深CB=x cm,则AC=(x+10) cm, 即CD=(x+10) cm. 在Rt△BCD中,由勾股定理得x2+402=(x+10)2, 解得x=75. 答:水深75 cm.
会改变; 2. 根据同一种图形的面积的不同表示方法列出等式; 3. 利用等式性质变换验证结论成立,即拼出图形→写出图形面
积的表达式→找出等量关系→恒等变形→推导命题结论. 通过拼图,利用求面积来验证,这种方法以数形转换为指导思 想,以图形拼补为手段,以各部分面积之间的关系为依据而达 到目的.
感悟新知
感悟新知
2. 在数轴上作出表示 n 的点
知4-讲
如图17.1-6,构造两条直角边长都是1 的直角三角
形,利用勾股定理得到斜边的长为 2 ,再用圆规截取
的方法画出 2在数轴上的对应点;
感悟新知
知4-讲
构造两直角边长分别为 2 ,1 的直角三角形,利用 勾股定理得到斜边的长为 3 ,再用圆规截取的方法画出
知3-讲
(1)已知直角三角形的任意两边求第三边;
(2)已知直角三角形的任意一边确定另两边的关系;
(3)证明包含有平方(算术平方根)关系的几何问题;
(4)求解几何体表面上的最短路程问题;
(5) 构造方程(或方程组)计算有关线段长度,解决生产、生
活中的实际问题.
感悟新知
特别提醒
知3-讲
运用勾股定理解决实际问题的一般步骤:
2022春八年级数学下册 第十七章 勾股定理17.1 勾股定理第1课时勾股定理习题课件新人教版
∵S△ABC=3×3-12×1×2-12×1×3-12×2×3=72,
∴12AC·BD=72,∴ 13·BD=7,
∴BD=7
13 13 .
【答案】D
*6. (2020·孝感)如图①,四个全等的直角三角形围成一个大正方 形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周 髀算经》时给出的,人们称它为“赵爽弦图”. 在此图形中连接 四条线段得到如图②的图案,记阴影部分的面积为 S1,空白 部分的面积为 S2,大正方形的边长为 m,小正方形的边长为 n, 若 S1=S2,则mn 的值为________.
13. 如图,在四边形 ABCD 中,∠B=∠D=90°,AB=20 m, BC=15 m,CD=7 m,求四边形 ABCD 的面积.
【点拨】将不规则四边形分割成特殊的三角形,再 利用特殊的三角形性质求面积.
解:如图,连接AC. 因为∠B=∠D=90°, 所以△ABC与△ACD都是直角三角形.
在 Rt△ABC 中,根据勾股定理, 得 AC2=AB2+BC2=202+152=625,则 AC=25 m. 在 Rt△ACD 中, 根据勾股定理,得 AD2=AC2-CD2=252-72=576,则 AD=24 m. 故 S 四边形 ABCD=S△ABC+S△ACD=12AB·BC+12AD·CD=12×20×15+12 ×24×7=234(m2).
(A) A. 18
B. 9
C. 6
D. 无法计算
3. (中考·滨州)在直角三角形中,若勾为 3,股为 4,则弦为( A )
A. 5
B. 6
C. 7
D. 8
4. 如图,在 Rt△ABC 中,∠ACB=90°,CD 为 AB 边上的高, CE=BE,AD=2,CE=5,则 CD 等于( C )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17. 1勾股定理(一)
、学习目标
1•了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2 .培养在实际生活中发现问题总结规律的意识和能力。
3 •介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
、教学重难点
1•重点:勾股定理的内容及证明。
2 •难点:勾股定理的证明。
三、评价任务
1•例1 (补充)通过对定理的证明,让学生确信定理的正确性;
2•通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
3•例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。
进一步让学生确信勾股定理的正确性。
四、教学过程
导入
目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
我国数学家华罗庚曾建议,发射一种反映勾股定
理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。
这个事实可以说明勾股定理的重大意义。
尤其是在两千年前,是非常了不起的成就。
让学生画一个直角边为3cm和4cm的直角△ ABC,用刻度尺量出AB的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ ABC,用刻度尺量AB的长。
你是否发现32+42与52的关系,52+122和132的关系,即有勾2+股2=弦2。
对于任意的直角三角形也有这个性质吗? 32+42=52, 52+122=132,那么就
D C
例习题分析
例1 (补充)已知:在厶ABC中,/ C=90°,Z A、/ B、/ C的对边为a、b、c。
求证:a2+
b2=c2。
分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:4&+S小正=S大正
1
4x ab+( b—a) 2=c2,化简可证。
2
⑶发挥学生的想象能力拼出不同的图形,进行证明。
⑷ 勾股定理的证明方法,达300余种。
这个古老的精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
例2已知:在厶ABC中,/
C=90°,Z A、/ B、/ C 的对边为a、b、c。
求证:a2+ b2=c2。
分析:左右两边的正方形边长相等,则两个
正方形的面积相等。
1 2
左边S=4x ab+ c
2
右边S= (a+b)2
左边和右边面积相等,即
1 2
4 x ab+ c = (a+b)
2
化简可证。
课堂练习
1 •勾股定理的具体内容是:
2 .如图,直角△ ABC的主要性质是:/ C=90°,(用几何语言表示)
⑴两锐角之间的关系:_______________________________ ;
⑵若D为斜边中点,则斜边中线_______________________ ;
⑶若/ B=30°,则/ B的对边和斜边: b a
⑷三边之间的关系:
3 .△ ABC的三边a、b、c,若满足b2= a2+ c2,则___________________ =90° ;若
满足b2>c2+ a2,则/ B是__________________ 角;若满足b2v c2+ a2,则/ B是
角。
课后练习
1.已知在Rt A ABC中,/ B=90°, a、b、c是厶ABC的三边,贝U
⑴c= _____________ 。
(已知a、b,求c)
⑵a= _____________ 。
(已知b、c, 求a)
⑶b= _____________ 。
(已知a、c, 求b)
2 .如下表,表中所给的每行的三个数a、b、c,有a v b v c,试根据表中已有数的规律, 写出当a=19时,b, c的值,并把b、c用含a的代数式表示出来。
3、4、5^2 2 _2
3 +
4 =5
5、12、13 2 2 2
5 +12 =13
7、24、25 2 2 2
7 +24 =25
9、40、41 2 2 2
9 +40 =41
19, b、c"2.2 2
19 +b =c
3.在△ ABC 中,/ BAC=120°, AB=AC=1^. 3 cm,一动点P从B 向C 以每秒2cm 的速度移动,问当P点移动多少秒时,PA与腰垂直。
4 .已知:如图,在△ ABC中,AB=AC, D在CB的延长线上。
4 .根据如图所示,利用面积法证明勾股定理。
求证:⑴ AD2—AB2=BD - CD
A
⑵若D在CB上,结论如何,试证明你的结论。
课后反思:
B。