三角函数的诱导公式教学设计
(完整word版)《三角函数的诱导公式》教学设计完美版
《三角函数的诱导公式》教学设计一.教材分析(1)教材的地位与作用:《三角函数的诱导公式》选自《普通高中课程标准数学教科书·数学必修4》(人教A版)第一章第3节第一课时,是三角函数这一章中的一个重要内容,它涉及三角函数的求值、化简、证明等应用,而且公式推导过程中所渗透的类比、化归、分类讨论、整体代换等思想方法,都是学生今后学习和工作中必备的数学素养。
(2)从知识的体系来看:《三角函数的诱导公式》是《任意角和弧度制》与《任意角的三角函数》内容的延续,不仅能加深对三角函数的理解,也为以后学三角函数的图像与性质做好铺垫。
二.学情分析(1)学生的已有的知识结构:掌握了任意角和弧度制,任意角的三角函数的定义,同角三角函数的基本关系。
(2)教学对象:高一理科试验班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。
(3)从学生的认知角度来看:学生很容易把本节内容与任意角的三角函数的定义及诱导公式一等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的种类繁多,要求归纳总结的知识多,这对学生的思维是一个突破。
三.教学目标根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标:理解并掌握三角函数的诱导公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题.(2)过程与方法目标:通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.(3)情感,态度与价值观:培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。
四.重点、难点分析教学重点:公式的推导、公式的特点和公式的运用。
三角函数的诱导公式教学设计与教学反思
三角函数的诱导公式教学设计与教学反思教学设计:教学目标:1.理解和掌握三角函数的诱导公式(一)的概念和应用。
2.学会运用三角函数的诱导公式(一)解决相关的数学问题。
教学步骤:引入:1.引导学生回顾三角函数的基本概念和性质,并复习正弦函数和余弦函数的定义。
2.引入诱导公式的概念,说明其作用和重要性。
讲解和演示:1. 介绍三角函数的诱导公式(一):$\sin(\pi - x) = \sin x$ 和$\cos(\pi - x) = -\cos x$。
2.解释诱导公式的意义:通过改变角度的正负和大小,可以得到新的三角函数值。
3.提供具体的例子,以展示诱导公式的应用。
练习:1.让学生通过计算练习题来巩固和运用诱导公式。
2.引导学生将练习题中出现的不同角度和三角函数代入诱导公式中进行推导和计算。
拓展:1.提供拓展练习题,要求学生利用诱导公式求解更复杂的三角函数问题,如求解三角方程等。
2.鼓励学生思考和讨论,分享他们的解题方法,以促进彼此之间的学习和启发。
总结:1.总结诱导公式的基本概念和使用方法。
2.强调诱导公式在解决三角函数问题中的重要作用。
3.鼓励学生复习和总结本节课的内容,并提醒他们在接下来的学习中要灵活运用诱导公式。
教学反思:这节课的教学设计主要围绕三角函数的诱导公式(一)展开,通过理论讲解、例题演示和练习题训练等环节,旨在帮助学生理解和掌握诱导公式的概念和应用。
通过引入和讲解,可以帮助学生了解三角函数的诱导公式是如何作用和产生的,为后续的练习和拓展打下基础。
在设计课堂内容时,我注重了理论与实践的结合。
通过让学生参与课堂练习和讨论,我希望能够增强他们对诱导公式的理解和应用能力。
在练习环节,我尽量提供丰富多样的题目,既包括基础的计算题,也包括一些较为复杂的问题,以便学生能够充分运用诱导公式解决不同类型的数学问题。
在教学过程中,我发现了一些问题。
首先,有些学生对于一些概念和性质理解不深,导致对诱导公式的理解和应用困难。
三角函数诱导公式的市公开课获奖教案省名师优质课赛课一等奖教案
三角函数诱导公式的教案一、教学目标1. 了解三角函数诱导公式的概念;2. 掌握三角函数诱导公式的推导过程;3. 能够灵活运用三角函数诱导公式解决问题。
二、教学准备1. 教学课件;2. 录音设备。
三、教学步骤步骤一:引入1. 引导学生回顾正弦函数、余弦函数、正切函数和割函数的定义;2. 提问:“你们观察到什么规律?是否有什么关系?”步骤二:推导1. 使用三角函数关系式sin^2x + cos^2x = 1,推导出tan^2x + 1 = sec^2x;2. 对第一步推导的结论进行验证,让学生自己尝试;3. 使用tanx = sinx/cosx,推导出cot^2x + 1 = csc^2x;4. 对第三步推导的结论进行验证,让学生自己尝试。
步骤三:应用1. 给出一个实际问题,让学生运用三角函数诱导公式解决;2. 引导学生思考如何使用三角函数诱导公式简化问题的求解过程;3. 让学生自己尝试解决其他实际问题。
四、教学反思1. 梳理教学中的重点和难点,及时进行解答;2. 听取学生的反馈意见,改进教学方法;3. 总结课堂要点,强化学生对三角函数诱导公式的理解。
五、课后作业1. 完成课后习题,巩固对三角函数诱导公式的掌握;2. 预习下一课内容,为下节课做好准备。
六、教学延伸1. 探究其他三角函数诱导公式的推导过程;2. 进一步应用三角函数诱导公式解决更复杂的问题;3. 拓展计算器或电脑软件的使用,简化三角函数诱导公式的计算过程。
通过以上的教案,学生可以系统地学习到三角函数诱导公式的概念、推导过程以及应用方法。
这样的教学设计可以帮助学生理解三角函数之间的关联,并强化他们的数学推导能力和解决问题的能力。
在教学反思和延伸环节,还可以进一步加深学生对知识点的理解和应用,提高他们的数学思维能力。
数学三角函数的诱导公式教案
数学三角函数的诱导公式教案一、引言三角函数是数学中重要的概念之一,它们在解决几何和物理问题中具有广泛的应用。
理解三角函数的性质和关系对于学习高等数学和物理学科至关重要。
其中,诱导公式是理解和推导三角函数之间关系的重要工具。
本教案将详细介绍数学三角函数的诱导公式。
二、正文1. 正弦函数的诱导公式正弦函数是三角函数中最基本的一种,它的诱导公式可以通过相关角的三角函数进行推导。
设角A和角B为锐角,且满足A + B = 90°,则有如下关系:sin(A + B) = cos(90° - (A + B))= cos(90° - A - B)= cos(90° - A)cos(90° - B) - sin(90° - A)sin(90° - B)= cos(90° - A)cosB - sin(90° - A)sinB= sinAcosB + cosAsinB这即为正弦函数的诱导公式。
2. 余弦函数的诱导公式余弦函数是正弦函数的互补关系,因此可以通过正弦函数的诱导公式来推导余弦函数的诱导公式。
根据正弦函数的诱导公式,将A取代为(90° - A)和B取代为B,则有如下关系:cos(90° - A + B) = sin((90° - A)cosB + cos((90° - A)sinB)= sin(90° - A)cosB + cos(90° - A)sinB= cosAcosB - sinAsinB这即为余弦函数的诱导公式。
3. 正切函数的诱导公式正切函数是正弦函数和余弦函数的商,因此其诱导公式可以通过正弦函数和余弦函数的诱导公式来推导。
设角A和角B为锐角,且满足A + B = 90°,则有如下关系:tan(A + B) = sin(A + B)/cos(A + B)= (sinAcosB + cosAsinB)/(cosAcosB - sinAsinB)= (sinA/cosA)(cosB/sinB) + (cosA/sinA)(sinB/cosB)= tanA + tanB / (1 - tanAtanB)这即为正切函数的诱导公式。
高中数学教案:三角函数的诱导公式
高中数学教案:三角函数的诱导公式三角函数的诱导公式(一)一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。
所以,在教学中,不但要使学生“知其然”而且要使学生“知其所以然”。
所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。
所以本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。
在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二.教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A 版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时, 教学内容为公式(二)、(三)、(四). 教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四). 同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求. 为此本节内容在三角函数中占有非常重要的地位.三.学情分析本节课的授课对象是本校高一( 1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.四.教学目标(1) . 基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2) . 水平训练目标:能准确使用诱导公式求任意角的正弦、余弦、正切值,以及实行简单的三角函数求值与化简;(3) . 创新素质目标:通过对公式的推导和使用,提升三角恒等变形的水平和渗透化归、数形结合的数学思想,提升学生分析问题、解决问题的水平;(4) . 个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,使用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.五.教学重点和难点1. 教学重点理解并掌握诱导公式.2. 教学难点准确使用诱导公式,求三角函数值,化简三角函数式.六.教法学法以及预期效果分析“授人以鱼不如授之以鱼”,作为一名老师, 我们不但要传授给学生数学知识, 更重要的是传授给学生数学思想方法, 如何实现这个目的, 要求我们每一位教者苦心钻研、认真探究. 下面我从教法、学法、预期效果等三个方面做如下分析..教法数学教学是数学思维活动的教学,而不但仅是数学活动的结果,数学学习的目的不但仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提升人的思维品质.在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.2 .学法“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推动的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情. 如何能让学生水准的消化知识,提升学习热情是教者必须思考的问题.在本节课的教学过程中,本人引导学生的学法为思考问题共同探讨解决问题简单应用重现探索过程练习巩固.让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.3. 预期效果本节课预期让学生能准确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.七.教学流程设计(一)创设情景1 .复习锐角300,450,60 0的三角函数值;。
必修四1.3.三角函数的诱导公式(教案)
教案教学目标一、知识与技能1.牢记诱导公式.2.理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明.二、过程与方法1.通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法.2.通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式.3.通过基础训练题和能力训练题的练习,提高学生分析问题和解决问题的实践能力.三、情感、态度与价值观1.通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神.2.通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想.教学重点、难点教学重点:用联系的观点,发现并证明诱导公式,进而运用诱导公式解决问题.教学难点:如何引导学生从单位圆的对称性和任意角终边的对称性中,发现问题,提出研究方法.学法与教学用具学法:在教师的组织和引导下学生以自主探索、动手实践、合作交流的方式进行学习.在学习中了解和体验公式的发生、发展过程,让学生领会到诱导公式是前面三角函数定义、单位圆对称性等知识的延续和拓展,应用迁移规律,引导学生联想、类比、归纳推导公式.教学用具:电脑、投影机、三角板.教学设想:一、创设情境在前面的学习中,我们知道终边相同的角的同名三角函数值相等,即公式一,并且利用公式一可以把绝对值较大的角的三角函数转化为0°到360°(0到2π)内的角的三角函数值,求锐角三角函数值,我们可以通过查表求得,对于90°到360°(π2到2π)范围内的角的三角函数怎样求解,能不能有像公式一那样的公式把它们转化到锐角范围内来求解,这一节就来探讨这个问题.二、探究新知1.诱导公式二:思考:(1)锐角α的终边与180α+的终边位置关系如何?1(2)写出α的终边与180α+的终边与单位圆交点,'P P 的坐标. (3)任意角α与180α+呢?结论:任意α与180α+的终边都是关于原点中心对称的.则有(,),'(,P x y P x y--,由正弦函数、余弦函数的定义可知: sin y α=, cos x α=;sin(180)y α+=-, cos(180)x α+=-.从而,我们得到诱导公式二:sin(180)α+=sin α-;cos(180)α+=-cos α.说明:①公式中的α指任意角;②若α是弧度制,即有sin(π)α+=sin α-,cos(π)α+=-cos α; ③公式特点:函数名不变,符号看象限; ④可以导出正切:sin(180)sin tan(180)tan cos(180)cos αααααα+-+===-+-.用弧度制可表示如下:sin(π-sin αα+=);cos(π-cos αα+=);tan(πtan αα+=).2. 诱导公式三:思考:(1)360α-的终边与α-的终边位置关系如何?从而得出应先研究α-; (2)任意角α与α-的终边位置关系如何?结论:同诱导公式二推导可得:诱导公式三:sin()sin αα-=-;cos()cos αα-=. 说明:①公式中的α指任意角;②在角度制和弧度制下,公式都成立; ③公式特点:函数名不变,符号看象限; ④可以导出正切:tan()tan αα-=-.3. 诱导公式四: sin(180)sin αα-=;cos(180)cos αα-=-.2说明:①公式四中的α指任意角;②在角度制和弧度制下,公式都成立; ③公式特点:函数名不变,符号看象限; ④可以导出正切:tan(180)tan αα-=-. 用弧度制可表示如下:s i n (πs i n αα-=);cos(π-cos αα-=);tan(πtan αα-=-).4. 终边与角α的终边关于直线y =x 对称的角有何数量关系.结论:如图所示,设任意角α的终边与单位圆的交点P 1的坐标为(x ,y ),由于角π2-α的终边与角α的终边关于直线y =x 对称,角π2-α的终边与单位圆的交点P 2与点P 1关于直线y=x 对称,因此点P 2的坐标是(y ,x ),于是我们有sin α=y ,cos α=x ;sin(π2-α) = x , cos(π2-α) = y . 从而得到诱导公式五:sin(π2-α) = cos α, cos(π2-α) = sin α.由于π2+α =π-(π2-α),由公式四及五可得 公式六sin(π2+α) = cos α, cos(π2+α) =- sin α.公式五和公式六可以概括如下:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.利用公式五或公式六,可以实现正弦函数与余弦函数的相互转化. 公式一~六都叫做诱导公式. 三、例题讲解3例1 求下列三角函数值:(1)sin 960; (2)43cos()6π-. 解:(1)sin 960sin(960720)sin 240=-=sin(18060)sin 60=+=-32=-. (2)43π43πcos()cos 66-=7π7πcos(6π)cos66=+= ππcos(π)cos 66=+=-32=-. 例2 已知:tan 3α=,求2cos(π)3sin(π)4cos()sin(2π)αααα--+-+-的值.解:∵tan 3α=,∴原式2cos 3sin 23tan 74cos sin 4tan αααααα-+-+===--.例3 化简sin(π)sin(π)()sin(π)cos(π)n n n n n αααα++-∈+-Z .解:①当2n k k =∈Z ,时, 原式sin(2π)sin(2π)2sin(2π)cos(2π)cos k k k k ααααα++-==+-.②当21,n k k =+∈Z 时,原式sin[(21)π]sin[(21)π]2sin[(21)π]cos[(21)π]cos k k k k ααααα+++-+==-++-+例4.已知π2π63α<<,πcos()(0)3m m α+=≠,求2πtan()3α-的值. 解:因为2πππ()33αα-=-+, 所以,2ππcos()cos[π()]33αα-=-+=πcos()3α-+=-m .由于π2π63α<<所以42ππ032α<-<于是22π2πsin()1cos ()33αα-=--=21m -. 所以,2πsin()2π3tan()32πcos()3ααα--=-=m m 21-- 四、课堂小结1.五组公式可概括如下:360(),,180,360k k Z αααα+⋅∈-±-的三角函数值等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号;2.要化的角的形式为90k α⋅±(k 为常整数);记忆方法:“奇变偶不变,符号看象限”;(k 为奇数还是偶数)3.利用五组诱导公式就可以将任意角的三角函数转化为锐角的三角函数.其化简方向仍为:“负化正,大化小,化到锐角为终了”.五、作业课本第29页习题1.3B 组第1、2题.。
三角函数的诱导公式教案件
三角函数的诱导公式教案件一、教学目标1. 知识与技能:(1)理解三角函数诱导公式的概念和意义;(2)掌握三角函数诱导公式的推导过程;(3)能够运用诱导公式进行三角函数值的计算。
2. 过程与方法:(1)通过观察和分析,引导学生发现诱导公式的规律;(2)运用归纳法和演绎法,引导学生推导出诱导公式;(3)通过例题讲解和练习,提高学生运用诱导公式解决问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、严谨求实的科学态度;(3)培养学生合作交流、解决问题的能力。
二、教学重点与难点1. 教学重点:(1)三角函数诱导公式的概念和意义;(2)三角函数诱导公式的推导过程;(3)运用诱导公式进行三角函数值的计算。
2. 教学难点:(1)诱导公式的推导过程;(2)运用诱导公式解决复杂三角函数问题。
三、教学过程1. 导入:(1)复习已学的三角函数基本概念和性质;(2)提问:如何将一个角的三角函数值转化为另一个角的三角函数值?2. 探究与发现:(1)引导学生观察和分析单位圆上的三角函数值的变化规律;(2)引导学生发现诱导公式的规律;(3)引导学生运用归纳法推导出诱导公式。
3. 讲解与示范:(1)讲解诱导公式的推导过程;(2)示范运用诱导公式进行三角函数值的计算;(3)讲解诱导公式的应用范围和注意事项。
4. 练习与交流:(1)布置练习题,让学生独立完成;(2)组织学生进行小组交流,讨论解题思路和方法;(3)讲解练习题的解答过程和思路。
四、教学评价1. 课堂评价:(1)观察学生在课堂上的参与程度和表现;(2)评价学生对诱导公式的理解和运用能力。
2. 练习题评价:(1)评价学生对诱导公式的运用和计算能力;(2)评价学生的解题思路和方法。
五、教学资源1. 教学课件:(1)展示诱导公式的推导过程;(2)呈现练习题和解答过程。
2. 练习题:(1)提供不同难度的练习题;(2)设计具有代表性的例题。
《三角函数的诱导公式》教学设计
《三角函数的诱导公式》教学设计一、教学目标1.了解三角函数诱导公式的概念和性质;2.掌握三角函数诱导公式的推导方法;3.掌握三角函数诱导公式在解决三角方程和三角恒等式中的应用方法;4.培养学生的逻辑思维能力和推导能力。
二、教学内容1.三角函数诱导公式的概念和性质;2.三角函数诱导公式的推导方法;3.三角函数诱导公式在解决三角方程和三角恒等式中的应用方法。
三、教学过程A.导入(5分钟)1.回顾正弦函数和余弦函数的定义,引出诱导公式的概念。
2.以一个具体的例题引起学生思考,如证明sin(π/4) = cos(π/2- π/4)。
B.基本推导(10分钟)1.从一个直角三角形中引入角的概念,并给出三角函数的定义。
2.以一个直角三角形为例,推导出sin(α + β) 和cos(α + β)的公式。
3.总结得到sin(α + β) = sinαcosβ + cosαsinβ, cos(α + β) = cosαcosβ - sinαsinβ。
C.诱导公式的证明(20分钟)1.先证明sin(α + β) = sinαcosβ + cosαsinβ。
2.使用sin(α + β) 的性质,推导出sin(2α) 的表达式。
3.分别使用sin^2α + cos^2α = 1 和1 + tan^2α = sec^2α,推导出cos(α + β) 的表达式。
4.总结得到sin(α + β) = sinαcosβ + cosαsinβ 和cos(α + β) = cosαcosβ - sinαsinβ。
D.应用举例(25分钟)1.解决三角方程,如 sin2x + 3sinx - 4 = 0。
a)使用诱导公式将 sin2x 表示成 sinx 的函数;b)令 t = sinx,将方程转化为 t^2 + 3t - 4 = 0;c)求解t的值,再解出x的值。
2.证明三角恒等式,如tan(α + β) = (tanα + tanβ) / (1 - tanαtanβ)。
诱导公式教案完整版
1.3 三角函数的诱导公式(第1课时)一、教学目标:1.知识与技能(1)借助单位圆,推导出诱导公式。
(2)理解和掌握公式的内涵及结构特征,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,掌握有关三角函数求值问题,并进行简单三角函数式的化简和证明。
2.过程与方法(1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法。
(2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式。
(3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力。
3.情感、态度与价值观(1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神。
(2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想。
二、教学重点、难点:1、重点:诱导公式二、三、四的探究,运用诱导公式进行简单三角函数式的求值,提高对数学内部联系的认识。
2、难点:发现圆的对称性与任意角终边的坐标之间的联系;诱导公式的合理运用。
三、教学方法与手段:1、教学方法:讲解法、讨论法、探究法、演示法2、教学手段:多媒体、几何画板四、教学过程:(一)复习引入师:问题1:任意角α的正弦、余弦、正切是怎样定义的?生:学生口述三角函数的单位圆定义:sin =y,cos =x,tan =xy (x ≠0) 师:问题2:试写出诱导公式(一),并说出诱导公式的结构特征;生:诱导公式一:()∂=∙+sin 2sin παk ;απαcos )2cos(=∙+k ;απαtan )2tan(=∙+k ; (其中Z k ∈)结构特征:①终边相同的角的同一三角函数值相等②把求任意角的三角函数值问题转化为求0°~360°角的三角函数值。
师:这节课咱们继续学习三角函数的诱导公式,看看今天的诱导公式是解决什么问题的。
必修四1.3.三角函数的诱导公式(教案)
必修四1.3.三角函数的诱导公式(教案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1.3 三角函数的诱导公式教案 A教学目标一、知识与技能1.理解诱导公式的推导过程;2.通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用.3.进一步领悟把未知问题化归为已知问题的数学思想,通过一题多解,一题多变,多题归一,提高分析问题和解决问题的能力.二、过程与方法的轴对称性以及关于原点利用三角函数线,从单位圆关于x轴、y轴、直线y xO的中心对称性出发,通过学生的探究,明了三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程;培养学生的逻辑推理能力及运算能力,渗透转化及分类讨论的思想.三、情感、态度与价值观通过本节的学习使学生认识到了解任何新事物须从它较为熟悉的一面入手,利用转化的方法将新事物转化为我们熟知的事物,从而达到了解新事物的目的,并使学生养成积极探索、科学研究的好习惯.教学重点、难点教学重点:五组诱导公式的推导和六组诱导公式的灵活运用,三角函数式的求值、化简和证明等.教学难点:六组诱导公式的灵活运用.教学关键:五组诱导公式的探究.教学突破方法:问题引导,充分利用多媒体引导学生主动探究.教法与学法导航教学方法:探究式,讲练结合.学习方法:切实贯彻学案导学,以学生的学为主,教师起引导的作用,具体表现在教学过程当中.1.充分利用多媒体引导学生完善从特殊到一般的认知过程;2.强调记忆规律,加强公式的记忆;3.通过对例题的学习,完成学习目标.教学准备教师准备:多媒体,投影仪、直尺、圆规.学生准备:练习本、直尺、圆规.教学过程一、创设情境,导入新课1我们利用单位圆定义了三角函数,而圆具有很好的对称性.能否利用圆的这种对称性来研究三角函数的性质呢?例如,能否从单位圆关于x轴、y 轴、直线y=x的轴对称性以及关于原点O的中心对称性等出发,获得一些三角函数的性质呢?二、主题探究,合作交流提出问题①锐角α的终边与π+α角的终边位置关系如何?②它们与单位圆的交点的位置关系如何?师生互动:引导学生充分利用单位圆,并和学生一起讨论探究角的关系.无论α为锐角还是任意角,π+α的终边都是α的终边的反向延长线,所以先选择π+α为研究对象.利用图形还可以直观地解决问题②,角的终边与单位圆的交点的位置关系是关于原点对称的,对应点的坐标分别是P1(x,y)和P2 (-x,-y).指导学生利用单位圆及角的正弦、余弦函数的定义,导出公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.提出问题:-α角的终边与角α的终边位置关系如何?师生互动:让学生在单位圆中讨论-α与α的位置关系,这时可通过复习正角和负角的定义,启发学生思考.-α角的终边与角α的终边关于x轴对称,它们与单位圆的交点坐标的关系是横坐标相等,纵坐标互为相反数.从而完成公式三的推导,即:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.教师点拨学生注意:无论α是锐角还是任意角,公式均成立.并进一步引导学生观察分析公式三的特点,得出公式三的用途:可将求负角的三角函数值转化为求正角的三角函数值.2提出问题:π-α角的终边与角α的终边位置关系如何?师生互动:讨论π-α与α的位置关系,这时可通过复习互补的定义,引导学生思考:任意角α和π-α的终边的位置关系;它们与单位圆的交点的位置关系及其坐标:π-α角的终边与角α的终边关于y轴对称,它们与单位圆的交点坐标的关系是纵坐标相等,横坐标互为相反数.从而完成公式四的推导,即:sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα.强调无论α是锐角还是任意角,公式均成立.引导学生观察分析公式三的特点,得出公式四的用途:可将求π-α角的三角函数值转化为求角α的三角函数值.让学生分析总结诱导公式的结构特点,概括说明,加强记忆.我们可以用下面一段话来概括公式一~四:α+k·2π(k∈Z),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.进一步简记为:“函数名不变,符号看象限”.点拨、引导学生注意公式中的α是任意角.提出问题终边与角α的终边关于直线y=x对称的角有何数量关系?师生互动:我们借助单位圆探究终边与角α的终边关于直线y=x对称的角的数量关系.教师充分让学生探究,启发学生借助单位圆,点拨学生从终边关于直线y=x对称的两个角之间的数量关系,关于直线y=x对称的两个点的坐标之间的关系进行引导.讨论结果:如图,设任意角α的终边与单位圆的交点P1的坐标为(x,y),由于角π2-α的终边与角α的终边关于直线y=x对称,角π2-α的终边与单位圆的交点P2与点P1关于直线y=x对称,因此点P2的坐标是(y,x),于是,我们有sinα=y,cosα=x,cos(π2-α)=y,sin(π2-α)=x.从而得到公式五:cos(π2-α)=sinα, sin(π2-α)=cosα.提出问题能否用已有公式得出π2+α的正弦、余弦与α的正弦、余弦之间的关系式?34 师生互动:教师点拨学生将π2+α转化为π- (π2-α),从而利用公式四和公式五达到我们的目的.因为π2+α可以转化为π- (π2-α),所以求π2+α角的正余弦问题就转化为利用公式四接着转化为利用公式五,这时可以让学生独立推导出公式六: sin (π2+α)=cos α, cos(π2+α)=-sin α. 提出问题你能概括一下公式五、六吗?师生互动:结合上一堂课研究公式一~四的共同特征引导学生寻求公式五、六的共同特征,指导学生用类比的方法即可将公式五和公式六进行概括. 讨论结果:2π±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.进一步可以简记为:函数名改变,符号看象限.利用公式五或公式六,可以实现正弦函数与余弦函数的相互转化.公式一~六都叫做诱导公式. 三、拓展创新,应用提高例1 利用公式求下列三角函数值:(1)cos225°;(2)sin 11π3;(3)sin(16π3-);(4)cos(-2 040°). 解:(1)cos225°=cos(180°+45°)=-cos45°=22-; (2)sin 11π3=sin(4ππ3-)=-sin π3=23-; (3)sin(16π3-)=-sin 16π3=-sin(5π+π3)=-(-sin π3)=23; (4)cos(-2 040°)=cos2 040°=cos(6×360°-120°)=cos120°=cos(180°-60°)=-cos60°=21-. 点评:利用公式一~四把任意角的三角函数转化为锐角三角函数,一般可按下列步骤进行:5上述步骤体现了由未知转化为已知的化归的思想方法.例2 化简 0cos(180)sin(360).sin(180)cos(180)αααα︒++︒---︒- 解:sin(180)sin[(180)]αα--︒=-+︒ sin(180)(sin )sin ααα=-+︒=--= cos(180)cos[(180)]cos(180)cos .αααα-︒-=-︒+=︒+=-所以,原式cos sin 1.sin (cos )αααα-==- 例3 证明:(1)sin(3π2-α)=-cos α;(2)cos(3π2-α)=-sin α. 证明:(1)sin(3π2-α)=sin[π+(π2-α)]=-sin(π2-α)=-cos α; (2)cos(3π2-α)=cos[π+(π2-α)]=-cos(π2-α)=-sin α. 点评:由公式五及六推得3π2±α的三角函数值与角α的三角函数值之间的关系,从而进一步可以推广到212+k π(k ∈Z )的情形.本例的结果可以直接作为诱导公式直接使用.例4 化简π11πsin(2π)cos(π)cos()cos()22.9πcos(π)sin(3π)sin(π)sin()2a a a a a a a a -++-----+ 解:原式=π(sin )(cos )(sin )cos[5π()]2π(cos )sin(π)[sin(π)]sin[4()]2a a a a a a a a π---+----+++6 =2πsin cos [cos()]2π(cos )sin [(sin )]sin()2a a a a a a a ------+=a a cos sin -=-tan a . 四、小结①熟记诱导公式;②公式一至四记忆口诀:函数名不变,正负看象限;并进行简单的求值;③运用诱导公式进行简单的三角化简.课堂作业1.在△ABC 中,下列等式一定成立的是( )A .sin 2B A +=-cos 2C B .sin(2A +2B )=-cos2C C .sin(A +B )=-sin CD .sin(A +B )=sin C2.如果f (sin x )=cos x ,那么f (-cos x )等于( )A .sin xB .cos xC .-sin xD .-cos x3.计算下列各式的值:(1)sin(-1 200°)cos(1 290°)+cos(-1 020°)sin(-1 050°)+tan945°;(2)tan(27°-α)tan(49°-β)tan(63°+α)tan(139°-β).4.化简:sin(540)tan(270)cos(270).cos(180)tan(810)sin(360)a a a a a a •---︒-+-- 参考答案:1.D 2.A3.(1)2;(2)-1.4.-tan a .教案 B教学目标一、知识与技能1.牢记诱导公式.2.理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明.二、过程与方法1.通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法.2.通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式.3.通过基础训练题和能力训练题的练习,提高学生分析问题和解决问题的实践能力.三、情感、态度与价值观1.通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神.2.通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想.教学重点、难点教学重点:用联系的观点,发现并证明诱导公式,进而运用诱导公式解决问题.教学难点:如何引导学生从单位圆的对称性和任意角终边的对称性中,发现问题,提出研究方法.学法与教学用具78学法:在教师的组织和引导下学生以自主探索、动手实践、合作交流的方式进行学习.在学习中了解和体验公式的发生、发展过程,让学生领会到诱导公式是前面三角函数定义、单位圆对称性等知识的延续和拓展,应用迁移规律,引导学生联想、类比、归纳推导公式.教学用具:电脑、投影机、三角板.教学设想:一、创设情境在前面的学习中,我们知道终边相同的角的同名三角函数值相等,即公式一,并且利用公式一可以把绝对值较大的角的三角函数转化为0°到360°(0到2π)内的角的三角函数值,求锐角三角函数值,我们可以通过查表求得,对于90°到360°(π2到2π)范围内的角的三角函数怎样求解,能不能有像公式一那样的公式把它们转化到锐角范围内来求解,这一节就来探讨这个问题.二、探究新知1. 诱导公式二:思考:(1)锐角α的终边与180α+的终边位置关系如何?(2)写出α的终边与180α+的终边与单位圆交点,'P P 的坐标.(3)任意角α与180α+呢?结论:任意α与180α+的终边都是关于原点中心对称的.则有(,),'(,)P x y P x y --,由正弦函数、余弦函数的定义可知:sin y α=, cos x α=;sin(180)y α+=-, cos(180)x α+=-.从而,我们得到诱导公式二:sin(180)α+=sin α-;cos(180)α+=-cos α.说明:①公式中的α指任意角;②若α是弧度制,即有sin(π)α+=sin α-,cos(π)α+=-cos α;③公式特点:函数名不变,符号看象限;9 ④可以导出正切:sin(180)sin tan(180)tan cos(180)cos αααααα+-+===-+-. 用弧度制可表示如下: sin(π-sin αα+=);cos(π-cos αα+=);tan(πtan αα+=).2. 诱导公式三:思考:(1)360α-的终边与α-的终边位置关系如何?从而得出应先研究α-;(2)任意角α与α-的终边位置关系如何?结论:同诱导公式二推导可得:诱导公式三:sin()sin αα-=-;cos()cos αα-=.说明:①公式中的α指任意角;②在角度制和弧度制下,公式都成立;③公式特点:函数名不变,符号看象限;④可以导出正切:tan()tan αα-=-.3. 诱导公式四: sin(180)sin αα-=;cos(180)cos αα-=-.说明:①公式四中的α指任意角;②在角度制和弧度制下,公式都成立;③公式特点:函数名不变,符号看象限;④可以导出正切:tan(180)tan αα-=-.用弧度制可表示如下:sin(πsin αα-=);cos(π-cos αα-=);tan(πtan αα-=-). 4. 终边与角α的终边关于直线y =x 对称的角有何数量关系. 结论:如图所示,设任意角α的终边与单位圆的交点P 1的坐标为(x ,y ),由于角π2-α的终边与10角α的终边关于直线y =x 对称,角π2-α的终边与单位圆的交点P 2与点P 1关于直线y=x 对称,因此点P 2的坐标是(y ,x ),于是我们有sin α=y ,cos α=x ; sin(π2-α) = x , cos(π2-α) = y . 从而得到诱导公式五: sin(π2-α) = cos α, cos(π2-α) = sin α. 由于π2+α =π-(π2-α),由公式四及五可得 公式六 sin(π2+α) = cos α, cos(π2+α) =- sin α. 公式五和公式六可以概括如下:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.利用公式五或公式六,可以实现正弦函数与余弦函数的相互转化. 公式一~六都叫做诱导公式.三、例题讲解例1 求下列三角函数值:(1)sin 960; (2)43cos()6π-. 解:(1)sin 960sin(960720)sin 240=-=sin(18060)sin 60=+=-=. (2)43π43πcos()cos 66-=7π7πcos(6π)cos 66=+= ππcos(π)cos 66=+=-=.11例2 已知:tan 3α=,求2cos(π)3sin(π)4cos()sin(2π)αααα--+-+-的值. 解:∵tan 3α=,∴原式2cos 3sin 23tan 74cos sin 4tan αααααα-+-+===--. 例3 化简sin(π)sin(π)()sin(π)cos(π)n n n n n αααα++-∈+-Z . 解:①当2n k k =∈Z ,时, 原式sin(2π)sin(2π)2sin(2π)cos(2π)cos k k k k ααααα++-==+-. ②当21,n k k =+∈Z 时, 原式sin[(21)π]sin[(21)π]2sin[(21)π]cos[(21)π]cos k k k k ααααα+++-+==-++-+ 例4.已知π2π63α<<,πcos()(0)3m m α+=≠,求2πtan()3α-的值. 解:因为2πππ()33αα-=-+,所以,2ππcos()cos[π()]33αα-=-+=πcos()3α-+=-m . 由于π2π63α<<所以2ππ032α<-< 于是2πsin()3α-21m -. 所以,2πsin()2π3tan()32πcos()3ααα--=-=m m 21--12 四、课堂小结1.五组公式可概括如下:360(),,180,360k k Z αααα+⋅∈-±-的三角函数值等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号;2.要化的角的形式为90k α⋅±(k 为常整数);记忆方法:“奇变偶不变,符号看象限”;(k 为奇数还是偶数)3.利用五组诱导公式就可以将任意角的三角函数转化为锐角的三角函数.其化简方向仍为:“负化正,大化小,化到锐角为终了”.五、作业课本第29页习题1.3B 组第1、2题.。
《4.5 诱导公式》教学设计教学反思-2023-2024学年中职数学高教版2021基础模块上册
《诱导公式》教学设计方案(第一课时)一、教学目标1. 掌握诱导公式的概念和性质;2. 能够运用诱导公式进行简单的三角函数计算;3. 增强学生的逻辑思维和抽象思维能力。
二、教学重难点1. 教学重点:理解和掌握诱导公式;2. 教学难点:运用诱导公式解决复杂的三角函数问题。
三、教学准备1. 准备教学用具:黑板、白板、三角板、圆规等;2. 准备教学资料:相关例题、练习题、PPT等;3. 安排教学时间:本课时为单个诱导公式的讲解,建议课时为2小时。
四、教学过程:(一)复习引入在引入新课题之前,可以先进行一次小测验,考察学生已经掌握的基础知识,包括弧度制、角度制以及三角函数的基本公式等。
这不仅可以检查学生的复习情况,也能让学生意识到即将学习的内容与之前所学知识之间的联系,从而更好地理解和掌握。
(二)新课讲解诱导公式的讲解可以采用多种方式,例如分组讨论、个人展示、小组竞赛等,这样可以激发学生的学习兴趣,提高他们的参与度。
同时,也可以利用多媒体教学设备,通过图片、视频、动画等形式,将抽象的公式形象化,帮助学生更好地理解和记忆。
1. 内容一:首先,介绍任意角三角函数的概念和定义域、值域等基本性质。
接着,通过具体的例子和实例,让学生了解如何运用诱导公式进行三角函数的化简、求值和证明等操作。
在此过程中,教师可以引导学生进行思考和讨论,鼓励学生提出自己的见解和疑问,从而加深学生对公式的理解和运用。
2. 内容二:介绍三角函数诱导公式之间的相互关系和内在逻辑,帮助学生建立系统的知识体系。
可以通过一些典型的例题和练习题,让学生进行实践操作,检验学生对公式的掌握程度和应用能力。
同时,教师也可以针对学生的问题和不足,进行针对性的指导和讲解,帮助学生更好地掌握和运用公式。
(三)课堂互动在教学过程中,可以通过提问、讨论、小组合作等形式,鼓励学生积极参与课堂活动,表达自己的想法和意见。
教师也可以通过观察学生的表现和反应,及时调整教学策略和方法,确保教学效果的最大化。
三角函数诱导公式教案
三角函数诱导公式教案三角函数诱导公式是指由已知三角函数值求另一个三角函数值的公式。
它是三角函数的重要性质之一,掌握三角函数诱导公式可以简化计算过程,提高计算效率。
下面是一个关于三角函数诱导公式的教案,帮助学生理解和掌握这一概念。
教学目标:1. 了解三角函数诱导公式的概念;2. 掌握正弦、余弦、正切、余切的诱导公式;3. 能够运用诱导公式求解三角函数值。
教学过程:一、引入新知识(5分钟)1. 老师提问:“在平面直角坐标系中,是否可以利用角度小于90度的三角形和角度大于90度的三角形来证明三角函数的诱导公式呢?”2. 学生发表自己的看法。
二、学习新知识(15分钟)1. 老师板书三角函数的诱导公式:sin(π/2 - θ) = cosθ,cos(π/2 - θ) = sinθ,tan(π/2 - θ) = cotθ,cot(π/2 - θ) = tanθ,并解释公式的含义。
2. 老师通过示意图解释诱导公式的几何意义。
三、同步练习(10分钟)1. 学生独立完成练习题。
2. 学生交流答案,讨论解题过程。
四、巩固知识(15分钟)1. 老师提问:“利用诱导公式,求解sin(π/4),cos(π/3)和tan(π/6)。
”2. 学生互相交流,利用诱导公式求解。
五、拓展应用(10分钟)1. 老师布置课后作业:利用诱导公式求解一系列三角函数值。
2. 学生自主学习拓展问题:利用诱导公式可以推导出其他三角函数之间的关系吗?六、总结归纳(5分钟)1. 学生回答总结问题:“什么是三角函数诱导公式?掌握诱导公式有什么作用?”2. 老师对学生总结进行点评。
教学反思:这个教案通过提问和讨论的方式引导学生探讨三角函数诱导公式的几何意义,使学生在实践中发现公式的规律和应用方法。
通过练习和巩固知识环节,学生可以提高运用诱导公式解题的能力。
同时,教师提出拓展问题,引导学生在学习的过程中深化对诱导公式的理解,并扩展应用的广度。
三角函数的诱导公式教学设计与教学反思
三角函数的诱导公式教学设计与教学反思一、教学设计:主题:三角函数的诱导公式目标:通过本节课的教学,学生能够理解三角函数的诱导公式的概念并能够熟练运用该公式解决相关问题。
教学重点:三角函数的诱导公式的概念,应用。
教学难点:能够熟练运用诱导公式解决相关问题。
教学方法:讲授、讨论、实例演练、思考。
教学过程:1.导入(5分钟)通过提问“谁能告诉我sin(α+β)和cos(α+β)的展开公式是什么?”来引导学生复习并回忆有关的知识。
2.引入(10分钟)3.讲解(10分钟)首先,老师引导学生回顾并总结sin(α+β)和cos(α+β)的展开公式,然后引入三角函数的诱导公式。
依次讲解三角函数的诱导公式的推导过程和具体展开形式。
- sin(α+β)的诱导公式:sin(α+β)=sinαcosβ+cosαsinβ- cos(α+β)的诱导公式:cos(α+β)=cosαcosβ-sinαsinβ4.示例演练(15分钟)通过给出一些具体的问题,引导学生通过诱导公式来解决问题。
示例1:计算sin105°解:将105°表示为两个已知角的和:105°=60°+45°根据sin(α+β)的诱导公式,sin(105°)=sin(60°)cos(45°)+cos(60°)sin(45°)然后,运用已知关于常见角的三角函数值,计算得到结果。
示例2:计算cos165°解:将165°表示为两个已知角的和:165°=60°+105°根据cos(α+β)的诱导公式,cos(165°)=cos(60°)cos(105°)-sin(60°)sin(105°)然后,运用已知关于常见角的三角函数值,计算得到结果。
5.拓展应用(15分钟)通过给出一些更复杂的问题,引导学生综合运用诱导公式解决问题,并提出思考。
三角函数的诱导公式教案
三角函数的诱导公式(第1课时)一.教学目标1.知识与技能(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。
(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。
2.过程与方法(1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。
(2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。
3.情感、态度、价值观(1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。
(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。
二.教学重点与难点教学重点:探求π-α的诱导公式。
π+α与-α的诱导公式在小结π-α的诱导公式发现过程的基础上,教师引导学生推出。
教学难点:π+α,-α与角α终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。
三.教学方法与教学手段问题教学法、合作学习法,结合多媒体课件四.教学过程角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值.怎么求呢?先看一个具体的问题。
(一)问题提出如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题。
【问题1】求390°角的正弦、余弦值.一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系。
即有:sin(α+k·360°) = sinα,cos(α+k·360°) = cosα,(k∈Z)tan(α+k·360°) = tanα。
这组公式用弧度制可以表示成sin(α+2kπ) = sinα,cos(α+2kπ) = cosα,(k∈Z) (公式一)tan(α+2kπ) = tanα。
三角函数诱导公式的教案
三角函数诱导公式的教案
教案标题:三角函数诱导公式的教案
一、教学目标
1. 理解三角函数诱导公式的概念和意义;
2. 掌握三角函数诱导公式的推导方法;
3. 能够运用三角函数诱导公式解决相关问题。
二、教学重点和难点
1. 三角函数诱导公式的推导方法;
2. 三角函数诱导公式的应用。
三、教学准备
1. 教师准备:授课内容、教学课件、相关教学实例;
2. 学生准备:课前预习相关知识点。
四、教学过程
1. 导入:通过展示实际问题中三角函数诱导公式的应用,引出三角函数诱导公式的概念和意义;
2. 讲解:介绍三角函数诱导公式的定义和推导方法,重点讲解三角函数诱导公式的推导过程;
3. 实例演练:通过具体的实例,引导学生掌握三角函数诱导公式的应用方法;
4. 拓展:引导学生思考三角函数诱导公式在实际问题中的应用,并展示更多相关实例;
5. 总结:对本节课的内容进行总结,强调三角函数诱导公式的重要性和应用价值。
五、课堂作业
布置相关的课后作业,要求学生运用三角函数诱导公式解决相关问题。
六、教学反思
及时总结本节课的教学效果,对学生的学习情况进行分析,为下节课的教学做
好准备。
七、教学资源
1. 教学课件;
2. 相关教学实例;
3. 课堂作业。
八、教学评价
通过课堂表现、作业完成情况和考试成绩等多方面对学生的学习情况进行评价。
以上是三角函数诱导公式的教案设计,希朥能够对您有所帮助。
三角函数的诱导公式教案
三角函数的诱导公式教案【教案】三角函数的诱导公式一、教学目标1. 了解三角函数的诱导公式的概念和作用;2.掌握利用诱导公式推导三角函数恒等式的方法;3. 熟练运用诱导公式求解相关题目和实际问题。
二、教学内容1. 三角函数的诱导公式的概念和推导过程;2. 利用诱导公式推导三角函数的恒等式;3. 利用诱导公式求解相关题目和实际问题。
三、教学过程1. 导入新知识教师引导学生回顾正弦、余弦的定义,并鼓励他们尝试将正弦、余弦的变量角分别设置为60°和30°,观察结果。
2. 学习三角函数的诱导公式教师介绍诱导公式的概念,并通过具体的例子进行演示,使学生理解三角函数的诱导公式的作用和用法。
3. 推导正弦、余弦的诱导公式(1)求解正弦的诱导公式:根据正弦的定义,将变量角设置为∠A和∠B,其中∠A = 30°,∠B = 60°,则有:sin(∠A) = sin(∠B)sin(30°) = sin(60°)1/2 = √3/2(2)求解余弦的诱导公式:根据余弦的定义,将变量角设置为∠A和∠B,其中∠A = 30°,∠B = 60°,则有:cos(∠A) = cos(∠B)cos(30°) = cos(60°)√3/2 = 1/24. 运用诱导公式推导三角函数恒等式(1)推导正弦的相反角公式:根据诱导公式sin(π - θ) = sinθ,将变量角设置为θ,则有:sin(π - θ) = sinθsin(180° - θ) = sinθsinθ = sinθ(2)推导余弦的补角公式:根据诱导公式cos(π/2 - θ) = sinθ,将变量角设置为θ,则有:cos(π/2 - θ) = sinθcos(90° - θ) = sinθsi nθ = sinθ5. 拓展运用教师引导学生运用诱导公式求解相关题目和实际问题,巩固所学知识。
三角函数的诱导公式教案
三角函数的诱导公式(一)一、教学目标:1.借助单位圆,推导出正弦、余弦和正切的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
二、重点与难点:重点:四组诱导公式的记忆、理解、运用。
难点:四组诱导公式的推导、记忆及符号的判断; 三、学法与教学用具:(1)与学生共同探讨,应用数学解决现实问题;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯. 四、教学过程:创设情境:我们知道,任一角α都可以转化为终边在)2,0[π内的角,如何进一步求出它的三角函数值? 我们对)2,0[π范围内的角的三角函数值是熟悉的,那么若能把)2,2[ππ内的角β的三角函数值转化为求锐角α的三角函数值,则问题将得到解决,这就是数学化归思想 研探新知1. 诱导公式的推导由三角函数定义可以知道:终边相同的角的同一三角函数值相等,即有公式一:)(tan )2tan()(cos )2cos()(sin )2sin(Z k k Z k k Z k k ∈=+∈=+∈=+απααπααπα (公式一) 诱导公式(一)的作用:把任意角的正弦、余弦、正切化为)2,0[π之间角的正弦、余弦、正切。
【注意】:运用公式时,注意“弧度”与“度”两种度量制不要混用,如写成︒=+︒80sin )280sin(πk ,3cos)3603cos(ππ=︒⋅+k 是不对的【讨论】:利用诱导公式(一),将任意范围内的角的三角函数值转化到)2,0[π角后,又如何将)2,0[π角间的角转化到)2,0[π角呢?除此之外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、关于原点对称等。
那么它们的三角函数值有何关系呢?若角α的终边与角β的终边关于x 轴对称,那么α与β的三角函数值之间有什么关系?特别地,角α-与角α的终边关于x 轴对称,由单位圆性质可以推得:ααααααtan )tan(cos )cos(sin )sin(-=-=--=- (公式二)特别地,角απ-与角α的终边关于y 轴对称,故有ααπααπααπtan )tan(cos )cos(sin )sin(-=--=-=- (公式三)特别地,角απ+与角α的终边关于原点O 对称,故有ααπααπααπtan )tan(cos )cos(sin )sin(=+-=+-=+ (公式四) 所以,我们只需研究απαπαπ-+-2,,的同名三角函数的关系即研究了βα与的关系了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.3三角函数的诱导公式教学设计(第1课时)
一、三维目标
1.知识与技能
(1)建构合理的问题情境,让学生体验公式的推导过程并能够理解借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式;
(2)理解记忆的基本上,能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。
2.过程与方法
(1)经历由观察图形、直观感知探讨数量关系式的过程,培养学生的数学发现能力和概括能力;
(2)通过对诱导公式的发现和探究、运用过程,培养学生的化归能力,提高分析问题和解决问题的能力。
3.情感、态度、价值观
(1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度;
(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。
二、教学重点与难点
教学过程中的重点是,探求-α的诱导公式推导过程。
π+α,π-α与的诱导公式的推导,在小结-α的诱导公式发现过程的基础上,在教师的引导下由学生自己推出。
教学过程中的难点是,对角α的任意性的理解。
π+α,π-α与角α终边位置的几
何关系的发现以及表示。
以及发现由终边位置关系导致(与单位圆交点)的坐标关系,从而根据三角函数的定义发现三角函数的之间的关系即发现诱导公式的“路线图”。
三、教学方法与教学手段
问题教学法、自主探究法,多媒体课,数学实验
四、教学过程
课堂脉络:温故知新——问题引导——特殊探路——动画感知
自主探究——归纳方法——巩固反馈——开放小结(一)温故知新,问题提出
师:如何求任意角三角函数的函数值?(定义法,三角函数线)
师:如何将任意角三角函数求值问题转化为0°-360°角三角函数求值问题?
问题1求390°的正弦、余弦值.
【设计意图】哈尔莫斯说:问题是数学的心脏。
数学的课堂教学活动教学应当从问题开始。
教师通过设计合理的问题,把数学教学的“锚”,抛在学生最近发展区内,为教学的展开提供知识和思维的生长点。
通过问题激活学生思维的火花。
这个问题虽然只是一个特殊的问题,“承上”,复习三角函数的定义,“启下”,为后面诱导公式的导出作了很好的铺垫。
一般地,由三角函数的定义易知,终边相同角的同名三角函数值相等,即有: 结论1:三角函数具体数值与终边的位置关系密切相关
结论2: 三角函数值与终边单位圆交点的坐标存在对应关系
这组公式用弧度制可以表示成
运用这组诱导公式,我们可以把任意角转化为0~2π角,所以这组公式称为“诱导公式一”。
(二)特殊探路,动画感知
师:如何利用对称推导出角- α 与角的三角函数之间的关系。
下面我们通过几何画板的动画,三角函数值存在什么关系?
1.4
1.2
1
0.8
0.6
0.4
0.2
-0.2
-0.4
-0.6
-0.8
-1
-1.2
-3-2.5-2-1.5-1-0.5
0.51 1.52
-α
α
P cos α,sin α()
关于x 轴对称角-α:(0.76, -0.64)
P cos α,sin α()
线3线2线1线圆周原点
显示3显示2隐藏1任意角的三角函数任意角隐藏 轴
(三)自主探究——归纳方法
由三角函数定义,我们知道,终边相同的角的同一三角函数值一定相等。
反过来呢?如果两个角的同名三角函数值相等,它们的终边一定相同吗?比如说:
问题2你能找出和30°角余弦值相等,但终边不同的角吗? 举例说明.
角 与角 的终边关于x 轴对称,有:
研究路线:角间关系→对称关系→坐标关系→三角函数值间关系
sin(α+2k π) = sinα,
cos(α+2k π) = co sα, (k ∈Z )
tan(α+2k π) = ta nα。
sin(α+k ·360°) = sinα, cos(α+k ·360°) = co sα,(k ∈Z ) tan(α+k ·360°) = ta nα。
(公式一)
sin(-α) = -sin α,
cos(-α) = cos α,
tan(-α) = -tan α。
(公式二)
【设计意图】引导学生从关注坐标到关注角的终边之间的对称关系,从而将对称作为三角函数的一种研究方法使用,将上述研究的结果一般化。
思考1 请大家回顾一下,刚才我们是如何获得这组公式(公式二)的?
【设计意图】引导反思,阶段概括。
在这里留足学生讨论的时间,带着学生去总结反思,细化得到公式的步骤。
师:如何利用对称推导出π+ α,π- α与α的三角函数值之间的关系。
两个角的终边关于x 轴对称,你有什么结论?两个角的终边关于原点对称呢?
1.41.2
1
0.8
0.6
0.4
0.2
-0.2
-0.4
-0.6
-0.8
-1
-1.2
-3-2.5-2-1.5-1-0.5
0.51 1.52
π-α
α
P cos α,sin α()
关于y 对称角π-α:(-0.62, 0.78)
P cos α,sin α()
线3线2线1线圆周原点
显示3隐藏2显示1任意角的三角函数任意角隐藏 轴
1.4
1.2
1
0.8
0.6
0.4
0.2
-0.2
-0.4
-0.6
-0.8
-1
-1.2
-3-2.5-2-1.5-1-0.5
0.51 1.52
π+α
α
P cos α,sin α()
关于原点对称π+α:(-0.43, -0.90)
P cos α,sin α()
线3线2线1线圆周原点
隐藏3显示2显示1任意角的三角函数任意角
隐藏 轴
角π- α 与角 的终边关于y 轴对称,有:
sin(π -α) = sin α,
cos(π -α) = - cos α, tan(π -α) = - tan α。
(公式三)
角π + α 与角 终边关于原点O 对称,有:
【设计意图】将上述研究的方法一般化.同时通过“你准备怎么研究”等元认知提示语,引导学生学会在解决问题时,合理地制订解题计划。
(四)简单应用,巩固反馈
例1 求下列各三角函数值:
(1) sin 7
6π ; (2) cos(-60°); (3)tan(-855︒)。
(请你和你的同桌互相出一些需要利用诱导公式一~四解决的简单三角函数求值问题) (追问学生你是怎么想的?从而引出思考2)
思考2 由例1和大家自己编制的问题,你能自己归纳一下利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤吗?
【设计意图】 阶段概括用公式的方法,感悟在解决问题的过程中,如何合理的使用这几组公式。
当然,公式的熟练使用不是一节课就可以完成的,需要学生在今后的学习中不断体会,不断总结和概括,进而将诱导公式内化到自己的知识结构中去。
(五)回顾反思,开放小结
问题4 回顾一下,我们是怎样获得诱导公式的?研究的过程中,你有哪些体会? 具体地,可以用知识树表示如下:
【设计意图】开放式小结,不同的学生有不同的学习体验和收获。
感受数学公式一脉相承的气息。
(六)分层作业,拓展探究
1、阅读课本,体会三角函数诱导公式推导过程中的思想方法;
2、必做题 课本23页 13
3、思考题
角间关系
对称关系 坐标关系 三角函值 公式二
公式一
公式三
公式四
sin(π + α) = -sin α, cos(π + α) = -cos α, tan(π + α) = tan α。
(公式四)
(1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗?
(2)角α和角β的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗?
【设计意图】阅读课本旨在培养学生良好的学习习惯。
事实上,本节课学完之后,还有几个问题需要研究:这几组公式之间是相互独立的吗?还有哪些对称需要我们去研究?以选做题的形式出现,促使学生的课后思考和自主探究。