第三讲函数与方程及函数的应用习题

合集下载

函数练习题及答案

函数练习题及答案

函数练习题及答案函数练习题及答案函数作为数学中的重要概念,被广泛应用于各个领域。

在数学学习过程中,通过练习题的形式巩固和提高对函数的理解和运用能力是非常有效的方法。

本文将介绍一些常见的函数练习题及其答案,希望能对读者的数学学习有所帮助。

一、函数定义与性质题1. 已知函数f(x) = 2x + 3,求f(4)的值。

解答:将x = 4代入函数表达式中,得到f(4) = 2(4) + 3 = 11。

2. 函数f(x) = x^2 + 2x - 1的定义域是什么?解答:由于函数中存在x的平方项,所以定义域应满足x^2存在的条件,即实数集R。

3. 函数f(x) = 3x^2 - 4x + 1的图像是否对称于y轴?解答:对称于y轴的函数满足f(x) = f(-x)。

将函数中的x替换为-x,得到f(-x) = 3(-x)^2 - 4(-x) + 1 = 3x^2 + 4x + 1。

由于f(x) ≠ f(-x),所以函数的图像不对称于y轴。

二、函数图像与方程题1. 函数f(x) = x^3的图像在坐标系中的形状是什么?解答:函数f(x) = x^3是一个奇函数,其图像关于原点对称。

当x > 0时,f(x) > 0;当x < 0时,f(x) < 0。

因此,函数图像在坐标系中呈现出一种类似"S"形的形状。

2. 已知函数f(x) = x^2 - 4x + 3,求解方程f(x) = 0。

解答:将f(x)置为0,得到x^2 - 4x + 3 = 0。

通过因式分解或者求根公式,可以得到(x - 1)(x - 3) = 0,解得x = 1或x = 3。

三、函数与导数题1. 已知函数f(x) = x^3 - 2x^2 + x,求f'(x)。

解答:对函数f(x)进行求导,得到f'(x) = 3x^2 - 4x + 1。

2. 已知函数f(x) = e^x,求f''(x)。

2023版高考数学一轮总复习2-6函数与方程及函数的综合应用习题

2023版高考数学一轮总复习2-6函数与方程及函数的综合应用习题

2.6 函数与方程及函数的综合应用基础篇 固本夯基考点一 函数的零点1.(2021云南顶级名校检测,4)函数f(x)=lnx-3x 的零点所在的区间是( ) A.(1,2) B.(2,e) C.(e,3) D.(3,+∞) 答案 C2.(2022届湖北襄阳五中10月月考,3)下列函数在(0,+∞)上单调递增且存在零点的是( )A.y=x 2-x-3 B.y=-0.2xC.y=sin2xD.y=x-1x 答案 D3.(2020四川石室中学月考,7)已知函数f(x)=(13)x-log 2x,设0<a<b<c,且满足f(a)·f(b)·f(c)<0,若实数x 0是方程f(x)=0的一个解,那么下列不等式中不可能成立的是( )A.x 0<aB.x 0>cC.x 0<cD.x 0>b 答案 B4.(2018课标Ⅰ,9,5分)已知函数f(x)={e x ,x ≤0,ln x ,x >0,g(x)=f(x)+x+a.若g(x)存在2个零点,则a 的取值范围是( ) A.[-1,0) B.[0,+∞) C.[-1,+∞) D.[1,+∞)答案 C5.(2022届黑龙江八校期中联考,11)已知f(x)=e -x-lnx-2x,若x 0是函数f(x)的一个零点,则x 0+lnx 0的值为( )A.0B.1e -1 C.1 D.e+1 答案 A6.(2021辽宁铁岭一模,6)若关于x 的方程√2x -x 2-mx-3=0有两个不相等的实数根,则实数m 的取值范围是( ) A.(-∞,-43)B.(-∞,-32]∪(-43,+∞) C.(-32,-43]D.[-32,-43) 答案 D7.(2021河南焦作二模,15)若函数f(x)=|e x-a|-1有两个零点,则实数a 的取值范围是 . 答案 (1,+∞)8.(2020宁夏石嘴山三中三模,16)已知函数f(x)={x 2+2x -3,x ≤1,2x ,x >1,则函数y=f(f(x))的图象与直线y=4的交点个数为 . 答案 3考点二 函数模型及应用1.(2021全国甲,4,5分)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L=5+lgV.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(√1010≈1.259)( )A.1.5B.1.2C.0.8D.0.6 答案 C2.(2021合肥质监,6)2019年1月1日起,我国个人所得税税额根据应纳税所得额、税率和速算扣除数据确定,计算公式为:个税税额=应纳税所得额×税率-速算扣除数.应纳税所得额的计算公式为:应纳税所得额=综合所得收入额-基本减除费用-专项扣除-专项附加扣除-依法确定的其他扣除.其中,“基本减除费用”(免征额)为每年60000元.部分税率与速算扣除数见下表:级数全年应纳税所得额所在区间税率(%)速算扣除数1 [0,36000] 3 02 (36000,144000] 10 25203 (144000,300000] 20 169204 (300000,420000] 25 319205 (420000,660000] 30 52920若某人全年综合所得收入额为249600元,专项扣除占综合所得收入额的20%,专项附加扣除是52800元,依法确定其他扣除是4560元,则他全年应缴纳的个人所得税应该是( ) A.5712元 B.8232元C.11712元D.33000元答案 A3.(2020课标Ⅲ,4,5分)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=x1+e-0.23(x-53),其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln19≈3)()A.60B.63C.66D.69答案 C4.(2019课标Ⅱ,4,5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:x1 (x+x)2+x2x2=(R+r)x1x3.设α=xx .由于α的值很小,因此在近似计算中3x3+3x4+x5(1+x)2≈3α3,则r的近似值为( )A.√x 2x 1RB.√x22x 1R C.√3x 2x 13R D.√x23x 13R答案 D5.(2022届云南大理统测,4)牛顿曾经提出了常温环境下的温度冷却模型:t=-1x ·lnx -x 0x 1-x 0(t 为时间,单位为分钟,θ0为环境温度,θ1为物体初始温度,θ为冷却后温度),假设一杯开水温度θ1=90℃,环境温度θ0=10℃,常数k=16,大约经过 分钟水温降为40℃(参考数据:ln2≈0.7,ln3≈1.1)( ) A.8 B.7 C.6 D.7 答案 C6.(2020陕西咸阳二模,15)为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y(mg/m 3)与时间t(h)的函数关系为y={xx ,0<x <12,1xx,t ≥12,如图所示,实验表明,当药物释放量y<0.75(mg/m 3)时对人体无害. (1)k= ;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过 分钟人方可进入房间. 答案 (1)2 (2)407.(2020北京,15,5分)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为W=f(t),用-x (x )-x (x )x -x的大小评价在[a,b]这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t 1,t 2]这段时间内,甲企业的污水治理能力比乙企业强; ②在t 2时刻,甲企业的污水治理能力比乙企业强; ③在t 3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t 1],[t 1,t 2],[t 2,t 3]这三段时间中,在[0,t 1]的污水治理能力最强. 其中所有正确结论的序号是 . 答案 ①②③综合篇 知能转换考法一 判断函数零点所在区间和零点的个数1.(2021山西吕梁一模,9)函数f(x)=2x+14x-5的零点x 0∈[a -1,a],a∈N *,则a=( ) A.1 B.2 C.3 D.4 答案 C2.(2021江西八所重点中学4月联考,6)定义在R 上的函数y=f(x)满足f(6-x)=f(x),(x-3)f'(x)>0(x≠3),若f(0)·f(1)<0,则函数f(x)在区间(5,6)内( ) A.没有零点 B.有且仅有1个零点 C.至少有2个零点 D.可能有无数个零点 答案 B3.(2021东北三省四市教研联合体二模,11)若函数f(x)={|2x -1|,x <2,3x -1,x ≥2,则函数g(x)=f[f(x)]-2的零点个数为( ) A.3 B.4 C.5 D.6 答案 B4.(2022届四川攀枝花统考一,7)方程f(x)=f'(x)的实数根叫做函数f(x)的“新驻点”.如果函数g(x)=lnx+2的“新驻点”为a,那么a 的取值范围是( ) A.(0,12) B.(12,1) C.(1,32) D.(32,2) 答案 B5.(2022届兰州西北师大附中期中,12)设函数f(x)是定义在R 上的偶函数,且f(x+2)=f(2-x),当x∈[-2,0]时,f(x)=(√22)x-1,则在区间(-2,6)上关于x 的方程f(x)-log 8(x+2)=0的解的个数为( ) A.4 B.3 C.2 D.1 答案 B6.(2021北京,15,5分)已知函数f(x)=|lgx|-kx-2,给出下列四个结论:①当k=0时,f(x)恰有2个零点; ②存在负数k,使得f(x)恰有1个零点; ③存在负数k,使得f(x)恰有3个零点; ④存在正数k,使得f(x)恰有3个零点. 其中所有正确结论的序号是 . 答案 ①②④考法二 已知函数有零点(方程有根)求参数值(或取值范围) 1.(2017课标Ⅲ,11,5分)已知函数f(x)=x 2-2x+a(e x-1+e -x+1)有唯一零点,则a=( )A.-12B.13C.12D.1答案 C2.(2020天津,9,5分)已知函数f(x)={x 3,x ≥0,-x ,x <0.若函数g(x)=f(x)-|kx 2-2x|(k∈R)恰有4个零点,则k 的取值范围是( ) A.(-∞,-12)∪(2√2,+∞) B.(-∞,-12)∪(0,2√2) C.(-∞,0)∪(0,2√2) D.(-∞,0)∪(2√2,+∞) 答案 D3.(2022届山西长治第八中学阶段性测评,10)已知函数f(x)={e x -x,x ≤0,ln x -x ,x >0,函数y=f(x)+2x+a 有且只有两个零点,则a 的取值范围为( ) A.(-1,+∞) B.[-1,+∞) C.(-∞,1) D.(-∞,1] 答案 B4.(2022届河北衡水第一中学调研一,8)定义在R 上的偶函数f(x)满足f(2-x)=f(2+x),且当x∈[0,2]时,f(x)={e x -1,0≤x ≤1,x 2-4x +4,1<x ≤2.若关于x 的不等式m|x|≤f(x)的整数解有且仅有9个,则实数m 的取值范围为( ) A.(e -17,e -15] B.[e -17,e -15] C.(e -19,e -17] D.[e -19,e -17]答案 C5.(2020吉林延边自治州4月模拟,12)已知函数f(x)={|log2(x-1)|,1<x≤3,x2-8x+16,x>3,若方程f(x)=m有4个不同的实根x1,x2,x3,x4,且x1<x2<x3<x4,则(1x1+1x2)(x3+x4)=( )A.6B.7C.8D.9答案 C6.(2022届赣州十七校期中联考,15)已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=e x(x+1),若关于x的方程f(x)=m有三个不同的实数根,则实数m的取值范围为.答案(-1e2,1 e2)7.(2018浙江,15,6分)已知λ∈R,函数f(x)={x-4,x≥λ,x2-4x+3,x<λ.当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是______.答案(1,4);(1,3]∪(4,+∞)8.(2019江苏,14,5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=√1−(x-1)2,g(x)={x(x+2),0<x≤1,-12,1<x≤2,其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.答案[13,√24)应用篇知行合一应用函数模型的实际应用1.(2020新高考Ⅰ,6,5分模型应用)基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天 答案 B2.(2021昆明质量检测二,11生活实践情境)饮酒驾车、醉酒驾车是严重危害《道路交通安全法》的违法行为,将受到法律处罚.检测标准:“饮酒驾车:车辆驾驶人员血液中的酒精含量大于或者等于20mg/100ml,小于80mg/100ml 的驾驶行为;醉酒驾车:车辆驾驶人员血液中的酒精含量大于或者等于80mg/100ml 的驾驶行为.”据统计,停止饮酒后,血液中的酒精含量平均每小时比上一小时降低20%.某人饮酒后测得血液中的酒精含量为100mg/100ml,若经过n(n∈N *)小时,该人血液中的酒精含量小于20mg/100ml,则n 的最小值为(参考数据:lg2≈0.3010)( )A.7B.8C.9D.10 答案 B3.(2021河北衡水五校模拟,4模型应用)要测定古物的年代,可以用放射性碳法:在动植物的体内都含有微量的放射性14C,动植物死亡后,停止新陈代谢,14C 不再产生,且原有的14C 会自动衰减.经科学测定,14C 的半衰期为5730年设14C 的原始量为1,经过x 年后,14C 的含量f(x)=a x,即f(5730)=12.现有一古物,测得14C 为原始量的79.37%,则该古物距今约 年参考数据:√123≈0.7937,√125730≈0.9998( )A.1910B.3581C.9168D.17190 答案 A4.(2022届长春重点高中第一次月考,9生活实践情境)2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆.嫦娥五号返回舱之所以能达到如此高的再入精度,主要是因为它采用弹跳式返回弹道,实现了减速和再入阶段弹道调整,这与“打水漂”原理类似(如图所示).现将石片扔向水面,假设石片第一次接触水面的速率为100m/s,这是第一次“打水漂”,然后石片在水面上多次“打水漂”,每次“打水漂”的速率为上一次的90%,若要使石片的速率低于60m/s,则至少需要“打水漂”的次数为(参考数据:取ln0.6≈-0.511,ln0.9≈-0.105)( ) A.4 B.5 C.6 D.7答案 C5.(2022届山东潍坊安丘等三县10月测试,6生活实践情境)某投资机构从事一项投资,先投入本金a(a>0)元,得到的利润是b(b>0)元,收益率为xx (%),假设在第一次投资的基础上,此机构每次都定期追加投资x(x>0)元,得到的利润也增加了x 元,若使得该项投资的总收益率是增加的,则( )A.a≥bB.a≤bC.a>bD.a<b 答案 C6.(2022届山东德州期中,6生活实践情境)声音大小(单位为分贝)取决于声波通过介质时,所产生的压力变化(简称声压,单位为N/m 2).已知声音大小y 与声压x 的关系式为y=10×lg (x2×10-5)2,且根据我国《城市区域环境噪音标准》规定,在居民区内,户外白昼噪声容许标准为50分贝,夜间噪声容许标准为40分贝,则居民区内,户外白昼噪声容许标准的声压是户外夜间噪声容许标准的声压的( )A.√10 倍B.2√10 倍C.10倍D.20倍 答案 A7.(2021北京西城一模,15生活实践情境)长江流域水库群的修建和联合调度,极大地降低了洪涝灾害风险,发挥了重要的防洪减灾效益.每年洪水来临之际,为保证防洪需要、降低防洪风险,水利部门需要在原有蓄水量的基础上联合调度,统一蓄水,用蓄满指数(蓄满指数=水库实际蓄水量÷水库总蓄水量×100)来衡量每座水库的水位情况.假设某次联合调度要求如下:(1)调度后每座水库的蓄满指数仍属于区间[0,100]; (2)调度后每座水库的蓄满指数都不能降低; (3)调度前后,各水库之间的蓄满指数排名不变.记x 为调度前某水库的蓄满指数,y 为调度后该水库的蓄满指数,给出下面四个y 关于x 的函数解析式:①y=-120x 2+6x;②y=10√x ;③y=10x50;④y=100sin π200x.则满足此次联合调度要求的函数解析式的序号是 . 答案 ②④8.(2022届河南期中联考,21生产生活)如图所示是一个长方体容器,长方体的上、下底面为正方形,容器顶部有一个圆形的盖子,圆与上底面四条边都相切,该容器除了盖子以外的部分均用铁皮制作,共使用铁皮的面积为16dm 2.假设圆形盖子的半径为rdm,该容器的容积为Vdm 3,铁皮厚度忽略不计. (1)求V 关于r 的函数关系式;(2)该容器的高AA 1为多少分米时,V 取最大值?解析 (1)设AA 1=adm.由题意得(2r)2-πr 2+(2r)2+8ar=16,可得a=16+(π-8)x 28x,所以V=(2r)2a=8r+(π2-4)r 3.由a>0,得16+(π-8)x 28x>0,解得0<r<√8−π.因此V=8r+(π2-4)r 3,r∈(0√8−π).(2)V'=8+3(π2-4)r 2,令V'>0,得0<r<√3(8−π);令V'<0,得√3(8−π)<r<√8−π,所以V 在(0√3(8−π))上单调递增,在(√3(8−π)√8−π)上单调递减,所以当r=√3(8−π)时,V 取最大值,此时a=√3(8−π)3,即该容器的高AA 1为√3(8−π)3dm 时,V 取最大值.9.(2022届山东鱼台一中月考,21生活实践情境)某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为km 2),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为24m 2,三月底测得凤眼莲的覆盖面积为36m 2,凤眼莲的覆盖面积y(单位:m 2)与月份x(单位:月)的关系有两个函数模型y=ka x(k>0,a>1)与y=p x 12+k(p>0,k>0)可供选择. (1)试判断哪个函数模型更适合,并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg2≈0.3010,lg3≈0.4771)11解析 (1)函数y=ka x (k>0,a>1)与y=p x 12+k(p>0,k>0)在(0,+∞)上都是增函数,随着x 的增加,函数y=ka x (k>0,a>1)的值增加得越来越快,而函数y=p x 12+k 的值增加得越来越慢,由于凤眼莲在湖中的蔓延速度越来越快,因此选择模型y=ka x (k>0,a>1)符合要求.根据题意可知当x=2时,y=24;当x=3时,y=36, 所以{xx 2=24,xx 3=36,解得{x =323,x =32.故该函数模型的解析式为y=323·(32)x ,1≤x≤12,x∈N *. (2)元旦放入凤眼莲的覆盖面积是323m 2,由323·(32)x >10×323,得(32)x >10,∴x>log 3210=lg10lg 32=1lg3−lg2≈5.7,∵x∈N *,∴x≥6.即凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.。

数学三维设计答案及解析

数学三维设计答案及解析

第一部分 专题复习 培植新的增分点专题一 集合与常用逻辑用语、函数与导数、不等式第一讲 集合与常用逻辑用语基础·单纯考点[例1] 解析:(1)∵A ={x >2或x <0},B ={x |-5<x <5}, ∴A ∩B ={x |-5<x <0或2<x <5}, A ∪B =R .(2)依题意,P ∩Q =Q ,Q ⊆P ,于是⎩⎪⎨⎪⎧2a +1<3a -5,2a +1>3,3a -5≤22,解得6<a ≤9,即实数a 的取值范围为(6,9].答案:(1)B (2)D[预测押题1] (1)选A 本题逆向运用元素与集合的关系求参数的取值范围,抓住1∉A作为解题的突破口,1∉A 即1不满足集合A 中不等式,所以12-2×1+a ≤0⇒a ≤1.(2)选B 对于2x (x -2)<1,等价于x (x -2)<0,解得0<x <2,所以A ={x |0<x <2};集合B 表示函数y =ln(1-x )的定义域,由1-x >0,得x <1,故B ={x |x <1},∁R B ={x |x ≥1},则阴影部分表示A ∩(∁R B )={x|1≤x<2}.[例2] 解析:(1)命题p 是全称命题:∀x ∈A ,2x ∈B , 则┐p 是特称命题:∃x ∈A ,2x ∉B .(2)①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一为假,④不正确.答案:(1)D (2)A[预测押题2] (1)选A 因为x 2-3x +6=⎝ ⎛⎭⎪⎫x -322+154>0,所以①为假命题;若ab =0,则a 、b 中至少一个为零即可,②为假命题;x =k π+π4(k ∈R )是tan x =1的充要条件,③为假命题.(2)解析:“∃x ∈R ,2x 2-3ax +9<0”为假命题,则“∀x ∈R ,2x 2-3ax +9≥0”为真命题,因此Δ=9a 2-4×2×9≤0,故-22≤a ≤2 2.答案:[-22,22][例3] 解析:(1)当x =2且y =-1时,满足方程x +y -1=0,即点P (2,-1)在直线l 上.点P ′(0,1)在直线l 上,但不满足x =2且y =-1,∴“x =2且y =-1”是“点P (x ,y )在直线l 上”的充分而不必要条件.(2)因为y =-m n x +1n 经过第一、三、四象限,所以-m n >0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.答案:(1)A (2)B[预测押题3] (1)选B 由10a >10b 得a >b ,由lg a >lg b 得a >b >0,所以“10a >10b”是“lg a >lg b ”的必要不充分条件.(2)解析:由|x -m |<2,得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m-2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2,m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)交汇·创新考点 [例1] 选A 在同一坐标系下画出椭圆x 2+y 24=1及函数y =2x的图象,结合图形不难得知它们的图像有两个公共点,因此A ∩B 中的元素有2个,其子集共有22=4个.[预测押题1] 选B A ={x |x 2+2x -3>0}={x |x >1或x <-3},函数y =f (x )=x 2-2ax -1的对称轴为x =a >0,f (-3)=6a +8>0,根据对称性可知,要使A ∩B 中恰含有一个整数,则这个整数解为2,所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤09-6a -1>0,所以⎩⎪⎨⎪⎧a ≥34,a <43,即34≤a <43,选B.[例2] 解析:对①:取f (x )=x -1,x ∈N *,所以B =N *,A =N 是“保序同构”;对②:取f (x )=92x -72(-1≤x ≤3),所以A ={x |-1≤x ≤3},B ={x |-8≤x ≤10}是“保序同构”;对③:取f (x )=tan ⎝⎛⎭⎪⎫πx -π2(0<x <1),所以A ={x |0<x <1},B =R 是“保序同构”,故应填①②③.答案:①②③[预测押题2] 解析:∵A ⊆M ,且集合M 的子集有24=16个,其中“累计值”为奇数的子集为{1},{3},{1,3},共3个,故“累积值”为奇数的集合有3个.答案:3[例3] 解析:对于①,命题p 为真命题,命题q 为真命题,所以p ∧綈q 为假命题,故①正确;对于②当b =a =0时,l 1⊥l 2,故②不正确,易知③正确.所以正确结论的序号为①③.答案:①③[预测押题3] 选D 由y =tan x 的对称中心为⎝ ⎛⎭⎪⎫k π2,0(k ∈Z ),知A 正确;由回归直线方程知B 正确;在△ABC 中,若sin A =sin B ,则A =B ,C 正确.第二讲 函数的图像与性质基础·单纯考点[例1] 解析:(1)由题意,自变量x应满足{x +3>0,1-2x≥0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)设t =1+sin x ,易知t ∈[0,2],所求问题等价于求g (t )在区间[0,2]上的值域.由g (t )=13t 3-52t 2+4t ,得g ′(t )=t 2-5t +4=(t -1)(t -4).由g ′(t )=0,可得t=1或t =4.又因为t ∈[0,2],所以t =1是g (t )的极大值点.由g (0)=0,g (1)=13-52+4=116,g (2)=13×23-52×22+4×2=23,得当t ∈[0,2]时,g (t )∈⎣⎢⎡⎦⎥⎤0,116,即g (1+sin x )的值域是⎣⎢⎡⎦⎥⎤0,116.答案:(1)A (2)⎣⎢⎡⎦⎥⎤0,116[预测押题1] (1)解析:∵f (π4)=-tan π4=-1,∴f (f (π4))=f (-1)=2×(-1)3=-2.答案:-2(2)由题意知:a ≠0,f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图像关于y 轴对称,所以2a +ab =0,b =-2.所以f (x )=-2x 2+2a 2,因为它的的值域为(-∞,2],所以2a 2=2.所以f (x )=-2x 2+2.答案:-2x 2+2[例2] 解析:(1)曲线y =e x 关于y 轴对称的曲线为y =e -x ,将y =e -x向左平移1个单位长度得到y =e -(x +1),即f (x )=e -x -1.(2)由题图可知直线OA 的方程是y =2x ;而k AB =0-23-1=-1,所以直线AB 的方程为y =-(x -3)=-x +3.由题意,知f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,-x +3,1<x ≤3,所以g (x )=xf (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,-x 2+3x ,1<x ≤3.当0≤x ≤1时,故g (x )=2x 2∈[0,2];当1<x ≤3时,g (x )=-x 2+3=-⎝ ⎛⎭⎪⎫x -32+94,显然,当x =32时,取得最大值94;当x =3时,取得最小值0. 综上所述,g (x )的值域为⎣⎢⎡⎦⎥⎤0,94. 答案:(1)D (2)B[预测押题2] (1)选C 因为函数的定义域是非零实数集,所以A 错;当x <0时,y >0,所以B 错;当x →+∞时,y →0,所以D 错.(2)选B 因为f (x )=f (-x ),所以函数f (x )是偶函数.因为f (x +2)=f (x ),所以函数f (x )的周期是2,再结合选项中的图像得出正确选项为B.[例3] 解析:(1)函数y =-3|x |为偶函数,在(-∞,0)上为增函数.选项A ,D 是奇函数,不符合;选项B 是偶函数但单调性不符合;只有选项C 符合要求.(2)∵f (x )=ax 3+b sin x +4, ①∴f (-x )=a (-x )3+b sin(-x )+4,即f (-x )=-ax 3-b sin x +4, ② ①+②得f (x )+f (-x )=8. ③又∵lg(log 210)=lg ⎝ ⎛⎭⎪⎫1lg 2=lg(lg 2)-1=-lg(lg 2),∴f (lg(lg 210))=f (-lg(lg 2))=5.又由③式知f (-lg(lg 2))+f (lg(lg 2))=8, ∴5+f (lg(lg 2))=8, ∴f (lg(lg 2))=3. 答案:(1)C (2)C[预测押题3] (1)选A 依题意得,函数f (x )在[0,+∞)上是增函数,且f (x )=f (|x |),不等式f (1-2x )<f (3)⇔f (|1-2x |)<f (3)⇔|1-2x |<3⇔-3<1-2x <3⇔-1<x <2.(2)解析:∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f ⎝ ⎛⎭⎪⎫x +32=-f (x +3)=-f (x ), ∴f (x )=f (x +3),∴f (x )是以3为周期的周期函数. 则f (2014)=f (671×3+1)=f (1)=3. 答案:3(3)解析:因为函数f (x )的图像关于y 轴对称,所以该函数是偶函数,又f (1)=0,所以f (-1)=0.又已知f (x )在(0,+∞)上为减函数,所以f (x )在(-∞,0)上为增函数.f (-x )+f (x )x<0,可化为xf (x )<0,所以当x >0时,解集为{x |x >1};当x <0时,解集为{x |-1<x <0}.综上可知,不等式的解集为(-1,0)∪(1,+∞). 答案:(-1,0)∪(1,+∞)交汇·创新考点[例1] 解析:设x <0,则-x >0.∵当x ≥0时,f (x )=x 2-4x ,∴f (-x )=(-x )2-4(-x ).∵f (x )是定义在R 上的偶函数,∴f (-x )=f (x ),∴f (x )=x 2+4x (x <0),∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x ≥0,x 2+4x ,x <0.由f (x )=5得⎩⎪⎨⎪⎧x 2-4x =5,x ≥0,或⎩⎪⎨⎪⎧x 2+4x =5,x <0,∴x =5或x =-5.观察图像可知由f (x )<5,得-5<x <5.∴由f (x +2)<5,得-5<x +2<5,∴-7<x <3.∴不等式f (x +2)<5的解集是{x |-7<x <3}.答案:{x |-7<x <3}[预测押题1] 解析:根据已知条件画出f (x )图像如图所示.因为对称轴为x =-1,所以(0,1)关于x =-1的对称点为(-2,1).因f (m )<1,所以应有-2<m <0,m +2>0.因f (x )在(-1,+∞)上递增,所以f (m +2)>f (0)=1.答案:>[例2] 解析:因为A ,B 是R 的两个非空真子集,且A ∩B =∅,画出韦恩图如图所示,则实数x 与集合A ,B 的关系可分为x ∈A ,x ∈B ,x ∉A 且x ∉B 三种.(1)当x ∈A 时,根据定义,得f A (x )=1.因为A ∩B =∅,所以x ∉B ,故f B (x )=0.又因为A ⊆(A ∪B ),则必有x ∈A ∪B ,所以f A ∪B (x )=1.所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+0+1=1.(2)当x ∈B 时,根据定义,得f B (x )=1.因为A ∩B =∅,所以x ∉A ,故f A (x )=0.又因为B ⊆(A ∪B ),则必有x ∈A ∪B ,所以f A ∪B (x )=1.所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+0+1=1.(3)当x ∉A 且x ∉B ,根据定义,得f A (x )=0,f B (x )=0.由图可知,显然x ∉(A ∪B ),故f A ∪B (x )=0,所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=0+10+0+1=1.综上,函数的值域中只有一个元素1,即函数的值域为{1}. 答案:{1}[预测押题2] 解:当x ∈A ∩B 时,因为(A ∩B )⊆(A ∪B ),所以必有x ∈A ∪B .由定义,可知f A (x )=1,f B (x )=1,f A ∪B (x )=1,所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+1+1=23. 故函数F (x )的值域为{23}.第三讲 基本初等函数、函数与方程及函数的应用基础·单纯考点[例1] 解析:(1)当x =-1,y =1a -1a =0,所以函数y =a x-1a的图像必过定点(-1,0),结合选项可知选D.(2)a =log 36=log 33+log 32=1+log 32,b =log 510=log 55+log 52=1+log 52,c =log 714=log 77+log 72=1+log 72,∵log 32>log 52>log 72,∴a >b >c .答案:(1)D (2)D[预测押题1] (1)选A 函数y =x -x 13为奇函数.当x >0时,由x -x 13>0,即x 3>x ,可得x 2>1,故x >1,结合选项,选A.(2)选B 依题意的a =ln x ∈(-1,0),b =⎝ ⎛⎭⎪⎫12ln x ∈(1,2),c =e ln x ∈(e -1,1),因此b >c >a .[例2] 解析:(1)由f (-1)=12-3<0,f (0)=1>0及零点定理,知f (x )的零点在区间(-1,0)上.(2)当f (x )=0时,x =-1或x =1,故f [f (x )+1]=0时,f (x )+1=-1或1.当f (x )+1=-1,即f (x )=-2时,解得x =-3或x =14;当f (x )+1=1即f (x )=0时,解得x =-1或x =1.故函数y =f [f (x )+1]有四个不同的零点.答案:(1)B (2)C[预测押题2] 解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1.答案:(0,1][例3] 解:(1)由年销售量为x 件,按利润的计算公式,有生产A ,B 两产品的年利润y 1,y 2分别为y 1=10x -(20+mx )=(10-m )x -20(x ∈n ,0≤x ≤200),y =18x -(8x +40)-0.05x 2=-0.05x 2+10x -40(x ∈n ,0≤x ≤120).(2)因为6≤m ≤8,所以10-m >0,函数y 1=(10-m )x -20在[0,200]上是增函数,所以当x =200时,生产A 产品有最大利润,且y 1max =(10-m )×200-20=1980-200m (万美元).又y 2=-0.05(x -100)2+460(x ∈N ,0≤x ≤120),所以当x =100时,生产B 产品有最大利润,且y 2max =460(万美元).因为y 1max -y 2max =1980-200m -460=1520-200m ⎩⎪⎨⎪⎧>0,6≤m <7.6,=0,m =7.6,<0,7.6<m ≤8.所以当6≤m <7.6时,可投资生产A 产品200件;当m =7.6时,生产A 产品或生产B 产品均可(投资生产A 产品200件或生产B 产品100件);当7.6<m ≤8时,可投资生产B 产品100件.[预测押题3] 解:(1)设投入广告费t (百万元)后由此增加的收益为f (t )(百万元),则f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3).所以当t =2时,f (t )max =4,即当集团投入两百万广告费时,才能使集团由广告费而产生的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告费的费用为(3-x )(百万元),则由此两项所增加的收益为g (x )=⎝ ⎛⎭⎪⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3).对g (x )求导,得g ′(x )=-x 2+4,令g ′(x )=-x 2+4=0,得x =2或x =-2(舍去).当0≤x <2时,g ′(x )>0,即g (x )在[0,2)上单调递增;当2<x ≤3时,g ′(x )<0,即g (x )在(2,3]上单调递减.∴当x =2时,g (x )max =g (2)=253.故在三百万资金中,两百万元用于技术改造,一百万元用于广告促销,这样集团由此所增加的受益最大,最大收益为253百万元.交汇·创新考点[例1] 选B ∵⎝⎛⎭⎪⎫x -π2f ′(x )>0,x ∈(0,π)且x ≠π2,∴当0<x <π2时,f ′(x )<0,f (x )在(0,π2)上单调递减.当π2<x <π时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递增. ∵当x ∈[0,π]时,0<f (x )<1.∴当x ∈[π,2π],则0≤2π-x ≤π.又f (x )是以2π为最小正周期的偶函数,知f (2π-x )=f (x ).∴x ∈[π,2π]时,仍有0<f (x )<1.依题意及y =f (x )与y =sin x 的性质,在同一坐标系内作y =f (x )与y =sin x 的简图.则y =f (x )与y =sin x 在x ∈[-2π,2π]有4个交点. 故函数y =f (x )-sin x 在[-2π,2π]上有4个零点.[预测押题] 选D 根据f ⎝ ⎛⎭⎪⎫x +54=-f ⎝ ⎛⎭⎪⎫x -54,可得f ⎝ ⎛⎭⎪⎫x +52=-f (x ),进而得f (x +5)=f (x ),即函数y =f (x )是以5为周期的周期函数.当x ∈[-1,4]时,f (x )=x 2-2x,在[-1,0]内有一个零点,在(0,4]内有x 1=2,x 2=4两个零点,故在一个周期内函数有三个零点.又因为2012=402×5+2,故函数在区间[0,2010]内有402×3=1206个零点,在区间(2010,2012]内的零点个数与在区间(0,2]内零点的个数相同,即只有一个零点,所以函数f (x )在[0,2012]上零点的个数为1207.第四讲 不等式基础·单纯考点[例1] 解析:(1)原不等式等价于(x -1)(2x +1)<0或x -1=0,即-12<x <1或x =1,所以原不等式的解集为⎝ ⎛⎦⎥⎤-12,1. (2)由题意知,一元二次不等式f (x )>0的解集为⎩⎨⎧⎭⎬⎫x |-1<x <12.而f (10x )>0,∴-1<10x <12,解得x <lg 12,即x <-lg 2.答案:(1)A (2)D[预测押题1] (1)选B 当x >0时,f (x )=-2x +1x2>-1,∴-2x +1>-x 2,即x 2-2x+1>0,解得x >0且x ≠1.当x <0时,f (x )=1x>-1,即-x >1,解得x <-1.故x ∈(-∞,-1)∪(0,1)∪(1,+∞).(2)解析:∵f (x )=x 2+ax +b 的值域为[0,+∞),∴Δ=0,∴b -a 24=0,∴f (x )=x2+ax +14a 2=⎝ ⎛⎭⎪⎫x +12a 2.又∵f (x )<c 的解集为(m ,m +6),∴m ,m +6是方程x 2+ax +a 24-c =0的两根.由一元二次方程根与系数的关系得⎩⎪⎨⎪⎧2m +6=-a ,m (m +6)=a 24-c ,解得c =9. 答案:9[例2] 解析:(1)曲线y =|x |与y =2所围成的封闭区域如图阴影部分所示,当直线l :y =2x 向左平移时,(2x -y )的值在逐渐变小,当l 通过点A (-2,2)时,(2x -y )min =-6.(2)设租用A 型车x 辆,B 型车y 辆,目标函数为z =1600x +2400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈n ,作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值z min =36800(元).答案:(1)A (2)C[预测押题2] (1)选C 题中的不等式组表示的平面区域如图阴影部分所示,平移直线x -y =0,当平移经过该平面区域内的点(0,1)时,相应直线在x 轴上的截距达到最小,此时x -y 取得最小值,最小值是x -y =0-1=-1;当平移到经过该平面内区域内的点(2,0)时,相应直线在x 轴上的截距达到最大,此时x -y 取得最大值,最大值是x -y =2-0=2.因此x -y 的取值范围是[-1,2].(2)解析:作出可行域,如图中阴影部分所示,区域面积S =12×⎝ ⎛⎭⎪⎫2a +2×2=3,解得a=2.答案:2[例3] 解析:(1)因-6≤a ≤3,所以3-a ≥0,a +6≥0,∴(3-a )(a +6)≤3-a +a +62=92,当且仅当a =-32时等号成立.(2)f (x )=4x +a x≥24x ·ax =4a (x >0,a >0),当且仅当4x =a x,即x =a2时等号成立,此时f (x )取得最小值4a .又由已知x =3时,f (x )min =4a ,∴a2=3,即a =36.答案:(1)B (2)36[预测押题3] (1)选D 依题意,点A (-2,-1),则-2m -n +1=0,即2m +n =1(m >0,n >0),∴1m +2n =⎝ ⎛⎭⎪⎫1m +2n (2m +n )=4+⎝ ⎛⎭⎪⎫n m +4m n ≥4+2n m ×4m n =8,当且仅当n m =4m n,即n =2m=12时取等号,即1m +2n的最小值是8. (2)选A 由已知得a +2b =2.又∵a >0,b >0,∴2=a +2b ≥22ab ,∴ab ≤12,当且仅当a =2b =1时取等号.交汇·创新考点[例1] 选C 作出可行域,如图中阴影部分所示,三个顶点到圆心(0,1)的距离分别是1,1,2,由A ⊆B 得三角形所有点都在圆的内部,故m ≥2,解得:m ≥2.[预测押题1] 选C 如图,若使以(4,1)为圆心的圆与阴影部分区域至少有两个交点,结合图形,当圆与直线x -y -2=0相切时,恰有一个公共点,此时a =⎝ ⎛⎭⎪⎫122=12,当圆的半径增大到恰好过点A (2,2)时,圆与阴影部分至少有两个公共点,此时a =5,故a 的取值范围是12<a ≤5,故选C.[例2] 选 C z =x 2-3xy +4y 2(x ,y ,z ∈R +),∴z xy =x 2-3xy +4y 2xy =x y +4yx-3≥2x y ·4y x -3=1.当且仅当x y =4y x ,即x =2y 时“=”成立,此时z =x 2-3xy +4y 2=4y2-6y 2+4y 2=2y 2,∴x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2.∴当y =1时,x +2y -z 取得最大值2.[预测押题2] 解析:4x 2+y 2+xy =1,∴(2x +y )2=3xy +1=32×2xy +1≤32×⎝ ⎛⎭⎪⎫2x +y 22+1,∴(2x +y )2≤85,∴(2x +y )max =2105.答案:2105第五讲 导数及其应用基础·单纯考点[例1] 解析:(1)∵点(1,1)在曲线y =x 2x -1上,y ′=-1(2x -1)2,∴在点(1,1)处的切线斜率为y ′|x =1=-1(2-1)2=-1,所求切线方程为y -1=-(x -1),即x +y -2=0.(2)因为y ′=2ax -1x,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,a =12.答案:(1)x +y -2=0 (2)12[预测押题1] 选D 由f (x +2)=f (x -2),得f (x +4)=f (x ),可知函数为周期函数,且周期为4.又函数f (x )为偶函数,所以f (x +2)=f (x -2)=f (2-x ),即函数的对称轴是x =2,所以f ′(-5)=f ′(3)=-f ′(1),所以函数在x =-5处的切线的斜率k =f ′(-5)=-f ′(1)=-1.[例2] 解:(1)f ′(x )=e x(ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4.故b =4,a +b =8.从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x(x +2)-2x -4=4(x +2)⎝⎛⎭⎪⎫e x -12.令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.[预测押题2] 解:(1)当m =1时,f (x )=13x 3+x 2-3x +1,又f ′(x )=x 2+2x -3,所以f ′(2)=5.又f (2)=53,所以所求切线方程为y -53=5(x -2),即15x -3y -25=0.所以曲线y =f (x )在点(2,f (2))处的切线方程为15x -3y -25=0.(2)因为f ′(x )=x 2+2mx -3m 2,令f ′(x )=0,得x =-3m 或x =m .当m =0时,f ′(x )=x 2≥0恒成立,不符合题意;当m >0时,f (x )的单调递减区间是(-3m ,m ),若f (x )在区间(-2,3)上是减函数,则⎩⎪⎨⎪⎧-3m ≤-2,m ≥3,解得m ≥3;当m <0时,f (x )的单调递减区间是(m ,-3m ),若f (x )在区间(-2,3)上是减函数,则⎩⎪⎨⎪⎧m ≤-2,-3m ≥3,解得m ≤-2.综上所述,实数m 的取值范围是(-∞,-2]∪[3,+∞).[例3] 解:(1)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值.②当a >0时,令f ′(x )=0,得e x=a ,即x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得最小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.(2)当a =1时,f (x )=x -1+1e x .直线l :y =kx -1与曲线y =f (x )没有公共点,等价于关于x 的方程kx -1=x -1+1e x 在R 上没有实数解,即关于x 的方程:(k -1)x =1ex (*)在R 上没有实数解.①当k =1时,方程(*)可化为1e x =0,在R 上没有实数解.②当k ≠1时,方程(*)可化为1k -1=x e x.令g (x )=x e x ,则有g ′(x )=(1+x )e x.令g ′(x当x =-1时,g (x )min =-e,同时当x 趋于+∞时,g (x )趋于+∞,从而g (x )的取值范围为⎣⎢⎡⎭⎪⎫-1e ,+∞.所以当1k +1∈⎝ ⎛⎭⎪⎫-∞,-1e 时,方程(*)无实数解,解得k 的取值范围是(1-e ,1).综合①②,得k 的最大值为1.[预测押题3] 解:(1)f ′(x )=a +2x 2-3x ,由题意可知f ′(23)=1,解得a =1.故f (x )=x -2x -3ln x ,∴f ′(x )=(x -1)(x -2)x2,由f ′(x )=0,得x =2.∴f min (2)f ′(x )=a +2x -3x =ax 2-3x +2x(x >0),由题意可得方程ax 2-3x +2=0有两个不等的正实根,不妨设这两个根为x 1,x 2,并令h (x )=ax 2-3x +2,则⎩⎪⎨⎪⎧Δ=9-8a >0,x 1+x 2=3a >0,x 1x 2=2a >0.也可以为⎩⎪⎨⎪⎧Δ=9-8a >0,--32a >0,h (0)>0.解得0<a <98.交汇·创新考点[例1] 解:(1)证明:设φ(x )=f (x )-1-a ⎝⎛⎭⎪⎫1-1x =a ln x -a ⎝ ⎛⎭⎪⎫1-1x (x >0),则φ′(x )=a x -ax2.令φ′(x )=0,则x =1,易知φ(x )在x =1处取到最小值,故φ(x )≥φ(1)=0,即f (x )-1≥a ⎝ ⎛⎭⎪⎫1-1x .(2)由f (x )>x 得a ln x +1>x ,即a >x -1ln x .令g (x )=x -1ln x (1<x <e),则g ′(x )=ln x -x -1x (ln x )2.令h (x )=ln x -x -1x (1<x <e),则h ′(x )=1x -1x2>0,故h (x )在定义域上单调递增,所以h (x )>h (1)=0.因为h (x )>0,所以g ′(x )>0,即g (x )在定义域上单调递增,则g (x )<g (e)=e -1,即x -1ln x<e -1,所以a 的取值范围为[e -1,+∞).[预测押题1] 解:(1)由f (x )=e x (x 2+ax -a )可得,f ′(x )=e x [x 2+(a +2)x ].当a =1时,f (1)=e ,f ′(1)=4e.所以曲线y =f (x )在点(1,f (1))处的切线方程为y -e =4e(x -1),即y =4e x -3e.(2)令f ′(x )=e x [x 2+(a +2)x ]=0,解得x =-(a +2)或x =0.当-(a +2)≤0,即a ≥-2时,在区间[0,+∞)上,f ′(x )≥0,所以f (x )在[0,+∞)上是增函数,所以方程f (x )=k 在[0,+∞)上不可能有两个不相等的实数根.当-(a +2)>0,即a <-2时,f ′(x ),f (x )随由上表可知函数f (x )在[0,+∞)上的最小值为f (-(a +2))=ea +2.因为函数f (x )在(0,-(a +2))上是减函数,在(-(a +2),+∞)上是增函数,且当x ≥-a 时,有f (x )≥f (-a )=e -a(-a )>-a ,又f (0)=-a ,所以要使方程f (x )=k 在[0,+∞)上有两个不相等的实数根,k 的取值范围是⎝ ⎛⎦⎥⎤a +4e a +2,-a .[例2] 选C 法一:曲线y =x 与直线x =1及x 轴所围成的曲边图形的面积S =⎠⎛01xd x =⎪⎪⎪23x 3210=23,又∵S △AOB =12,∴阴影部分的面积为S ′=23-12=16,由几何概型可知,点P 取自阴影部分的概率为P =16.法二:S 阴影=⎠⎛01(x -x )d x =16,S 正方形OABC =1,∴点P 取自阴影部分的概率为P =16.[预测押题2] 解析:画出草图,可知所求概率P =S 阴影S △AOB =⎠⎛04x d x18=⎪⎪⎪23x 324018=16318=827.答案:827[例3] 解:(1)因为方程ax -(1+a 2)x 2=0(a >0)有两个实根x 1=0,x 2=a1+a 2,故f (x )>0的解集为{x |x 1<x <x 2}.因此区间I =⎝ ⎛⎭⎪⎫0,a 1+a 2,故I 的长度为a1+a 2.(2)设d (a )=a 1+a 2,则d ′(a )=1-a2(1+a 2)2(a >0).令d ′(a )=0,得a =1.由于0<k <1,故当1-k ≤a <1时,d ′(a )>0,d (a )单调递增;当1<a ≤1+k 时,d ′(a )<0,d (a )单调递减.所以当1-k ≤a ≤1+k 时,d (a )的最小值必定在a =1-k 或a =1+k 处取得.而d (1-k )d (1+k )=1-k1+(1-k )21+k 1+(1+k )2=2-k 2-k 32-k 2+k3<1,故d (1-k )<d (1+k ).因此当a =1-k 时,d (a )在区间[1-k ,1+k ]上取得最小值1-k2-2k +k2.[预测押题3] 解:(1)f (x )的定义域为(-∞,-1)∪(-1,+∞),f ′(x )=a (x +1)-(ax +b )(x +1)2=a -b(x +1)2.当a >b 时,f ′(x )>0,函数f (x )在(-∞,-1),(-1,+∞)上单调递增;当a <b 时,f ′(x )<0,函数f (x )在(-∞,-1),(-1,+∞)上单调递减.(2)① 计算得f (1)=a +b 2>0,f (b a )=2ab a +b >0,f (b a )=ab >0.因为f (1)f (ba)=a +b2·2ab a +b =ab =⎣⎢⎡⎦⎥⎤f (b a )2,即f (1)f (b a )=⎣⎢⎡⎦⎥⎤f (b a )2. (*)所以f (1),f (b a),f (b a )成等比数列.因为a +b 2≥ab ,所以f (1)≥f (b a ).由(*)得f (b a )≤f (b a). ②由①知f (b a )=H ,f (b a )=G .故由H ≤f (x )≤G ,得f (b a )≤f (x )≤f (ba ). (**)当a =b 时,(b a )=f (x )=f (b a )=a .这时,x 的取值范围为(0,+∞);当a >b 时,0<ba<1,从而b a <b a ,由f (x )在(0,+∞)上单调递增(**)式,得b a ≤x ≤b a,即x 的取值范围为⎣⎢⎡⎦⎥⎤ba ,b a ;当a <b 时,b a >1,从而b a >b a ,由f (x )在(0,+∞)上单调递减与(**)式,得b a≤x ≤b a ,即x 的取值范围为⎣⎢⎡⎦⎥⎤b a ,b a .综上,当a =b 时,x 的取值范围为(0,+∞);当a >b时,x 的取值范围为⎣⎢⎡⎦⎥⎤b a ,b a ;当a <b 时,x 的取值范围为⎣⎢⎡⎦⎥⎤b a ,b a .专题二 三角函数、解三角形、平面向量第一讲 三角函数的图像与性质基础·单纯考点 [例1] 解析:(1)1-2sin (π+θ)sin ⎝⎛⎭⎪⎫3π2-θ=1-2sin θcos θ=|sin θ-cos θ|,又θ∈⎝ ⎛⎭⎪⎫π2,π,∴sin θ-cos θ>0,故原式=sin θ-cos θ.(2)由已知得|OP |=2,由三角函数定义可知sin α=12,cos α=32,即α=2k π+π6(k ∈Z ).所以2sin2α-3tan α=2sin ⎝ ⎛⎭⎪⎫4k π+π3-3tan ⎝ ⎛⎭⎪⎫2k π+π6=2sin π3-3tan π6=2×32-3×33=0. 答案:(1)A (2)D[预测押题1] (1)选C 由已知可得-2tan α+3sin β+5=0,tan α-6sin β=1,解得tan α=3,故sin α=31010.(2)解析:由A 点的纵坐标为35及点A 在第二象限,得点A 的横坐标为-45,所以sin α=35,cos α=-45,tan α=-34.故tan2α=2tan α1-tan 2α=-247. 答案:35 -247[例2] 解析:(1)∵34T =512π-⎝ ⎛⎭⎪⎫-π3=34π,∴T =π,∴2πω=π(ω>0),∴ω=2.由图像知当x =512π时,2×512π+φ=2k π+π2(k ∈Z ),即φ=2k π-π3(k∈Z ).∵-π2<φ<π2,∴φ=-π3.(2)y =cos(2x +φ)的图像向右平移π2个单位后得到y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π2+φ的图像,整理得y =cos(2x -π+φ).∵其图像与y =sin ⎝⎛⎭⎪⎫2x +π3的图像重合,∴φ-π=π3-π2+2k π,∴φ=π3+π-π2+2k π,即φ=5π6+2k π.又∵-π≤φ<π∴φ=5π6.答案:(1)A (2)5π6[预测押题2] (1)选C 将y =sin ⎝⎛⎭⎪⎫2x +π4的图像向左平移π4个单位,再向上平移2个单位得y =sin ⎝⎛⎭⎪⎫2x +3π4+2的图像,其对称中心的横坐标满足2x +3π4=k π,即x =k π2-3π8,k ∈Z ,取k =1,得x =π8. (2)选C 根据已知可得,f (x )=2sin π4x ,若f (x )在[m ,n ]上单调,则n -m 取最小值.又当x =2时,y =2;当x =-1时,y =-2,故(n -m )min =2-(-1)=3.[例3] 解:(1)f (x )4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π4=22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx ·cos2ωx )+2=2sin ⎝⎛⎭⎪⎫2ωx +π4+ 2.因为f (x )的最小正周期为π,且ω>0,从而由2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎪⎫2x +π4+ 2.若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增;当π2≤2x +π4≤5π5,即π8≤x ≤π2时,f (x )单调递减;综上可知,f (x )在区间[0,π8]上单调递增,在区间[π8,π2]上单调递减.[预测押题3] 解:(1)因为f (x )=32sin 2x +1+cos 2x 2+a =sin(2x +π6)+a +12,所以T =π.由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x≤2π3+k π,k∈Z .故函数f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ). (2)因为-π6≤x ≤π3,所以-π6≤2x +π6≤5π6,-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1.因为函数f (x )在⎣⎢⎡⎦⎥⎤-π6,π3上的最大值与最小值的和为⎝⎛⎭⎪⎫1+a +12+⎝ ⎛⎭⎪⎫-12+a +12=32,所以a =0.交汇·创新考点[例1] 解:(1)f (x )=1+cos (2ωx -π3)2-1-cos2ωx 2=12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2ωx -π3+cos2ωx =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12cos2ωx +32sin2ωx +cos2ωx =12⎝ ⎛⎭⎪⎫32sin2ωx +32cos2ωx =32⎝ ⎛⎭⎪⎫12sin2ωx +32cos2ωx =32sin ⎝ ⎛⎭⎪⎫2ωx +π3.由题意可知,f (x )的最小正周期T =π,∴2π|2ω|=π.又∵ω>0,∴ω=1,∴f (π12)=32sin ⎝ ⎛⎭⎪⎫2×π12+π3=32sin π2=32.(2)|f (x )-m |≤1,即f (x )-1≤m ≤f (x )+1.∵对∀x ∈⎣⎢⎡⎦⎥⎤-7π12,0,都有|f (x )-m |≤1,∴m ≥f (x )max -1且m ≤f (x )min +1.∵-7π12≤x ≤0,∴-5π6≤2x +π3≤π3,∴-1≤sin ⎝ ⎛⎭⎪⎫2x +π3≤32,∴-32≤32sin ⎝ ⎛⎭⎪⎫2x +π3≤34,即f (x )max =34,f (x )min =-32,∴-14≤m ≤1-32.故m 的取值范围为⎣⎢⎡⎦⎥⎤-14,1-32.[预测押题1] 解:(1)f (2π3)=cos 2π3·cos π3=-cos π3·cos π3=-⎝ ⎛⎭⎪⎫122=-14.(2)f (x )=cos x ·cos ⎝ ⎛⎭⎪⎫x -π3=cos x ·⎝ ⎛⎭⎪⎫12cos x + 32sin x =12cos 2x +32sin x cos x =14(1+cos2x )+34sin2x =12cos ⎝ ⎛⎭⎪⎫2x -π3+14.f (x )<14等价于12cos ⎝ ⎛⎭⎪⎫2x -π3+14<14,即cos ⎝⎛⎭⎪⎫2x -π3<0.于是2k π+π2<2x -π3<2k π+3π2,k ∈Z .解得k π+5π12<x <k π+11π12,k ∈Z .故使f (x )<14成立的x 的取值集合为⎩⎨⎧⎭⎬⎫x |k π+5π12<x <k π+11π12,k ∈Z .[例2] 解析:因为圆心由(0,1)平移到了(2,1,),所以在此过程中P 点所经过的弧长为2,其所对圆心角为2.如图所示,过P 点作x 轴的垂线,垂足为A ,圆心为C ,与x 轴相切与点B ,过C 作PA 的垂线,垂足为D ,则∠PCD =2-π2,|PD |=sin ⎝⎛⎭⎪⎫2-π2=-cos2,|CD |=cos ⎝⎛⎭⎪⎫2-π2=sin2,所以P 点坐标为(2-sin2,1-cos2),即OP →的坐标为(2-sin2,1-cos2).答案:(2-sin2,1-cos2)[预测押题2] 选A 画出草图,可知点Q 点落在第三象限,则可排除B 、D ;代入A ,cos∠QOP =6×(-72)+8×(-2)62+82=-502100=-22,所以∠QOP =3π4.代入C ,cos ∠QOP =6×(-46)+8×(-2)62+82=-246-16100≠-22.第二讲 三角恒等变换与解三角形基础·单纯考点[例1] 解:(1)因为f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12,所以f (-π6)=2cos ⎝ ⎛⎭⎪⎫-π6-π12=2cos ⎝ ⎛⎭⎪⎫-π4=2cos π4=2×22=1. (2)因为θ∈⎝ ⎛⎭⎪⎫3π2,2π,cos θ=35,所以sin θ=1-cos 2θ=-1-⎝ ⎛⎭⎪⎫352=-45,cos2θ=2cos 2θ-1=2×(35)2-1=-275,sin 2θ=2sin θcos θ =2×35×⎝ ⎛⎭⎪⎫-45=-2425.所以f (2θ+π3)=2cos ⎝ ⎛⎭⎪⎫2θ+π3-π12=2cos ⎝ ⎛⎭⎪⎫2θ+π4=2×⎝ ⎛⎭⎪⎫22cos2θ-22sin2θ=cos2θ-sin2θ=-725-⎝ ⎛⎭⎪⎫-2425=1725.[预测押题1] 解:(1)由已知可得f (x )=3cos ωx +3sin ωx =23sin ⎝ ⎛⎭⎪⎫ωx +π3.所以函数f (x )的值域为[-23,23].又由于正三角形ABC 的高为23,则BC =4,所以函数f (x )的周期T =4×2=8,即2πω=8,解得ω=π4.(2)因为f (x 0)=835,由(1)得f (x 0)=23sin ⎝ ⎛⎭⎪⎫πx 04+π3=835,即sin ⎝⎛⎭⎪⎫πx 04+π3=45.由x 0∈⎝ ⎛⎭⎪⎫-103,23得πx 04+π3∈⎝ ⎛⎭⎪⎫-π2,π2.所以cos ⎝ ⎛⎭⎪⎫πx 04+π3=1-⎝ ⎛⎭⎪⎫452=35,故f (x 0+1)=23sin ⎝ ⎛⎭⎪⎫πx 04+π4+π3=23sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫πx 04+π3+π4 =23⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫πx 04+π3cos π4+cos ⎝ ⎛⎭⎪⎫πx 04+π3sin π4=23⎝ ⎛⎭⎪⎫45×22+35×22=765.[例2] 解:(1)由已知得,∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=3+14-2×3×12cos30°=74.故PA =72. (2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得3sin150°=sin αsin (30°-α),化简得3sin α=4sin α.则tan α=34,即tan ∠PBA =34.[预测押题2] 解:(1)由正弦定理得2sin B cos C =2sin A -sin C .∵在△ABC 中,sin A =sin(B +C )=sin B cos C +sin C cos B ,∴sin C (2cos B -1)=0.又0<C <π,sin C >0,∴cos B =12,注意到0<B <π,∴B =π3.(2)∵S △ABC =12ac sin B =3,∴ac =4,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ≥ac =4,当且仅当a =c =2时,等号成立,∴b 的取值范围为[2,+∞).交汇·创新考点[例1] 解:(1)∵f (x )=cos ⎝ ⎛⎭⎪⎫2x -4π3+2cos 2x =cos ⎝⎛⎭⎪⎫2x +π3+1,∴f (x )的最大值为2.f (x )取最大值时,cos ⎝⎛⎭⎪⎫2x +π3=1,2x +π3=2k π(k ∈Z ),故x 的集合为{x |x =k π-π6,k ∈Z }.(2)由f (B +C )=cos ⎣⎢⎡⎦⎥⎤2(B +C )+π3+1=32,可得cos ⎝⎛⎭⎪⎫2A -π3=12,由A ∈(0,π),可得A =π3.在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc ,由b +c =2,知bc ≤⎝ ⎛⎭⎪⎫b +c 22=1,当b =c =1时,bc 取最大值,此时a 取最小值1.[预测押题1] 解:(1)由已知得AB →·AC →=bc cos θ=8,b 2+c 2-2bc cos θ=42,故b 2+c 2=32.又b 2+c 2≥2bc ,所以bc ≤16,(当且仅当b =c =4时等号成立),即bc 的最大值为16.即8cos θ≤16,所以cos θ≥12.又0<θ<π,所以0<θ≤π3,即θ的取值范围是(0,π3].(2)f (θ)=3sin2θ+cos2θ+1=2sin ⎝⎛⎭⎪⎫2θ+π6+1.因为0<θ≤π3,所以π6<2θ+π6≤5π6,12≤sin ⎝⎛⎭⎪⎫2θ+π6≤1.当2θ+π6=5π6,即θ=π3时,f (θ)min =2×12+1=2;当2θ+π6=π2,即θ=π3时,f (θ)max =2×1+1=3.[例2] 解:(1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理AB sin C =AC sin B ,得AB =ACsin B ×sin C =12606365×45=1040(m).所以索道AB 的长为1040m. (2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+5t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1040130,即0≤t ≤8,故当t =3537(min)时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =AC sin B ,得BC =AC sin B ×sin A =12606365×513=500(m).乙从B 出发时,甲已经走了50×(2+8+1)=550(m),还需要走710m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得125043≤v ≤62514,所以使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度控制在⎣⎢⎡⎦⎥⎤125043,62514(单位:m/min)范围内.[预测押题2] 解:(1)因为点C 的坐标为⎝ ⎛⎭⎪⎫35,45,根据三角函数的定义,得sin ∠COA =45,cos ∠COA =35.因为△AOB 为正三角形,所以∠AOB =60°.所以cos ∠BOC =cos (∠COA +60°)=cos ∠COA cos60°-sin ∠COA sin60°=35×12-45×32=3-4310.(2)因为∠AOC =θ⎝⎛⎭⎪⎫0<θ<π2,所以∠BOC =π3+θ.在△BOC 中,|OB |=|OC |=1,由余弦定理,可得f (θ)=|BC |2=|OC |2+|OB |2-2|OC |·|OB |·cos ∠COB =12+12-2×1×1×cos ⎝ ⎛⎭⎪⎫θ+π3=2-2cos ⎝⎛⎭⎪⎫θ+π3.因为0<θ<π2,所以π3<θ+π3<5π6.所以-32<cos ⎝ ⎛⎭⎪⎫θ+π3<12.所以1<2-2cos ⎝ ⎛⎭⎪⎫θ+π3<2+ 3.所以函数f (θ)的值域为(1,2+3).第三讲 平面向量基础·单纯考点[例1] 解析:以向量:a 的终点为原点,过该点的水平和竖直的网格线所在直线为x 轴、y 轴建立平面直角坐标系,设一个小正方形网格的边长为1,则a =(-1,1),b =(6,2),c =(-1,-3).由c =λa +μb ,即(-1,-3)=λ(-1,1)+μ(6,2),得-λ+6μ=-1,λ+2μ=-3,故λ=-2,μ=-12,则λμ=4.答案:4[预测押题1] (1)选A 由已知,得AB →=(3,-4),所以|AB →|=5,因此与AB →同方向的单位向量是15AB →=⎝ ⎛⎭⎪⎫35,-45.(2)选C 如图,连接BP ,则AP →=AC →+CP →=b +PR →,① AP →=AB →+BP →=a +RP →-RB →,②①+②,得2AP →=a +b -RB →.③ 又RB →=12QB →=12(AB →-AQ →)=12⎝ ⎛⎭⎪⎫a -12AP →,④将④代入③,得2AP →=a +b -12⎝⎛⎭⎪⎫a -12AP →,解得AP →=27a +47b .[例2] 解析:(1)由已知得AB →=(2,1),CD →=(5,5),因此AB →在CD →方向上的投影为AB →·CD →|CD →|=1552=322.(2)设AB 的长为a (a >0),又因为AC →=AB →+AD →,BE →=BC →+CE →=AD →-12AB →,于是AC →·BE →=(AB→+AD →)·(AD →-12AB →)=12AB →·AD →-12AB →2+AD →2=-12a 2+14a +1,由已知可得-12a 2+14a +1=1.又a >0,∴a =12,即AB 的长为12.答案:(1)A (2)12[预测押题2] (1)选D a ⊥(a +b)⇒a ·(a +b )=a 2+a·b =|a |2+|a ||b |cos<a ,b >=0,故cos<a ,b >=-963=-32,故所求夹角为5π6.(2)选C 设BC 的中点为M ,则AG →=23AM →.又M 为BC 中点,∴AM →=12(AB →+AC →),∴AG →=23AM →=13(AB →+AC →),∴|AG →|=13AB →2+AC →2+2AB →·AC →=13AB →2+AC →2-4.又∵AB →·AC →=-2,∠A =120°,∴|AB →||AC →|=4.∵|AG →|=13AB →2+AC →2-4≥132|AB →||AC →|-4=23,当且仅当|AB →|=|AC→|时取等号,∴|AG →|的最小值为23.交汇·创新考点[例1] 解析:设P (x ,y ),则AP →=(x -1,y +1).由题意知AB →=(2,1),AC →=(1,2).由AP →=λAB →+μAC →知(x -1,y +1)=λ(2,1)+μ(1,2),即⎩⎪⎨⎪⎧2λ+μ=x -1,λ+2μ=y +1.∴⎩⎪⎨⎪⎧λ=2x -y -33,μ=2y -x +33,∵1≤λ≤2,0≤μ≤1,∴⎩⎪⎨⎪⎧3≤2x -y -3≤6,0≤2y -x +3≤3.作出不等式组表示的平面区域(如图阴影部分),由图可知平面区域D 为平行四边形,可求出M (4,2),N (6,3),故|MN |= 5.又x -2y =0,x -2y -3=0之间的距离d =35,故平面区域D 的面积为S =5×25=3.答案:3[预测押题1] 选D 如图作可行域,z =OA →·OP →=x +2y ,显然在B (0,1)处z max =2.故选D.[例2] 解:(1)∵g (x )=sin(π2+x )+2cos(π2-x )=2sin x +cos x ,∴OM →=(2,1),∴|OM →|=22+12= 5.(2)由已知可得h (x )=sin x +3cos x =2sin(x +π3),∵0≤x ≤π2,∴π3≤x +π3≤5π6,∴h (x )∈[1,2].∵当x +π3∈[π3,π2]时,即x ∈[0,π6]时,函数h (x )单调递增,且h (x )∈[3,2];当x +π3∈(π2,5π6]时,即x ∈(π6,π2]时,函数h (x )单调递减,且h (x )∈[1,2).∴使得关于x 的方程h (x )-t =0在[0,π2]内恒有两个不相等实数解的实数t 的取值范围为[3,2).[预测押题2] 解:(1)由题设,可得(a +b )·(a -b )=0,即|a |2-|b |2=0.代入a ,b的坐标,可得cos 2α+(λ-1)2sin 2α-cos 2β-sin 2β=0,所以(λ-1)2sin 2α-sin 2α=0.因为0<α<π2,故sin 2α≠0,所以(λ-1)2-1=0,解得λ=2或λ=0(舍去,因为λ>0).故λ=2.(2)由(1)及题设条件,知a·b =cos αcos β+sin αsin β=cos(α-β)=45.因为0<α<β<π2,所以-π2<α<β<0.所以sin(α-β)=-35,tan(α-β)=-34.所以tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=-34+431-(-34)×43=724.所以tan α=724.[例3] 选D a ∘b =a·b b 2=|a||b||b|2cos θ=|a||b|cos θ,b ∘a =|a||b|cos θ,因为|a |>0,|b |>0,0<cos θ<22,且a ∘b 、b ∘a ∈⎩⎨⎧⎭⎬⎫n 2|n ∈Z ,所以|a||b|cos θ=n 2,|a||b|cos θ=m 2,其中m ,n ∈N *,两式相乘,得m ·n 2=cos 2θ.因为0<cos θ<22,所以0<cos 2θ<12,得0<m ·n <2,故m=n =1,即a ∘b =12.[预测押题3] 选D 依题意,MF 1→=(-1-x ,-y )=(-1-x )e 1-y e 2,MF 2→=(1-x ,-y )=(1-x )e 1-y e 2,由|MF 1→|=|MF 2→|,得MF 1→2=MF 2→2,∴[(-1-x )e 1-y e 2]2=[(1-x )e 1-y e 2]2,∴4x +4y e 1·e 2=0.∵∠xOy =45°,∴e 1·e 2=22,故2x +2y =0,即2x +y =0.专题三 数列第一讲 等差数列、等比数列基础·单纯考点[例1] 解析:(1)∵{a n }是等差数列,S m -1=-2,S m =0,∴a m =S m -S m -1=2.∵S m +1=3,∴a m +1=S m +1-S m =3,∴d =a m +1-a m =1.又S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m=-2+(m -1)·1=2,∴m =5.(2)设等比数列{a n }的首项为a 1,公比为q ,则:由a 2+a 4=20得a 1q (1+q 2)=20,①,由a 3+a 5=40得a 1q 2(1+q 2)=40.②由①②解得q =2,a 1=2.故S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.答案:(1)C (2)2 2n +1-2[预测押题1] 解:(1)设等差数列的公差为d ,d >0.由题意得,(2+d )2=2+3d +8,d 2+d -6=(d +3)(d -2)=0,得d =2.故a n =a 1+(n -1)·d =2+(n -1)·2=2n ,故a n =2n .(2)b n =a n +2a n =2n +22n .S n =b 1+b 2+…+b n =(2+22)+(4+24)+…+(2n +22n)=(2+4+6+...+2n )+(22+24+ (22))=(2+2n )·n 2+4·(1-4n )1-4=n 2+n +4n +1-43.[例2] 解:(1)设数列{a n }的公比为q (q ≠0,q ≠1),由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4,即2a 1q 2=a 1q 4+a 1q 3.由a 1≠0,q ≠0得q 2+q -2=0,解得q 1=-2,q 2=1(舍去),。

高考数学二轮专题突破辅导与测试基本初等函数函数与方程及函数的应用公开课一等奖课件省赛课获奖课件

高考数学二轮专题突破辅导与测试基本初等函数函数与方程及函数的应用公开课一等奖课件省赛课获奖课件

c=log2.11.5<log2.12.1=1,
因此 c<a<b.
(2)选项A,由于函数在区间上为增函数,由单调性定义可
知(x1-x2)[f(x1)-f(x2)]>0,故A错误;选项B,由函数图像的凸
凹性可知f
x1+x2 2
>
fx1+fx2 2
,故B错误;选项C,令g(x)=
fx x

ln x x
=exx在(-∞,0),(0,1)上为减函数,在(1,+∞)上为增函数,故 C
错误;同理,令 h(x)=xex,则 h′(x)=ex+xex=(1+x)ex,所以
h(x)=xex 在(-∞,-1)上为减函数,在(-1,+∞)上为增函数,
故 D 错误.
答案:B
——————————规律·总结————————————
2.已知函数 f(x)=2xx+-112,,xx∈∈210,,212.,
若存在 x1,x2,当 0≤x1<x2<2
时,f(x1)=f(x2),则 x1f(x2)的取值范围是_____.
x1+12=2x2-1,
解析:作出函数
f(x)的图像,由图知
22-12≤x1<12,
21≤x2<1.
所以
x1f(x2)
1 x
图像交点的个数,在同一坐标系中画出两个
函数图像如图所示:
由图可知共有6个交点,故函数F(x)=xf(x)-1的零点 个数为6.
(3)由x2-3≥x-1解得x≤-1或x≥2,所以f(x)=
|x-1|,x≤-1或x≥2, x2-3,-1<x<2.
函数y=f(x)-c恰有两个零点,即函
数y=f(x),y=c的图像恰有两个交点,作出函数y=f(x),y=c

九年级数学函数与方程练习题及答案

九年级数学函数与方程练习题及答案

九年级数学函数与方程练习题及答案1. 函数1.1 定义函数函数是一种特殊的关系,将一个集合的元素映射到另一个集合的元素。

我们用 f(x) 表示函数,其中 x 是输入变量,f(x) 是输出变量。

1.2 函数的性质函数具有以下性质:- 每个输入变量只有唯一对应的输出变量。

- 可以通过输入变量的值计算输出变量的值。

- 函数可以表示为一个表格、一条曲线或者一个方程。

2. 方程2.1 一次方程一次方程是指次数为1的等式,通常形式为ax + b = c,其中a、b、c 是已知常数,x 是未知数。

2.2 解一次方程的方法解一次方程的基本步骤如下:- 将方程移项,将未知数的项移到等式一边,已知常数的项移到等式的另一边。

- 合并同类项,将未知数的系数与未知数相乘,得到一个整数。

- 用求得的整数除以未知数的系数,得到未知数的值。

3. 习题及答案3.1 函数练习题1) 设有函数 f(x) = 3x + 2,求当 x = 4 时的函数值。

解: 将 x = 4 代入函数 f(x) = 3x + 2,得到 f(4) = 3(4) + 2 = 14。

2) 设有函数 g(x) = x^2 - 5x + 6,求当 x = 2 时的函数值。

解: 将 x = 2 代入函数 g(x) = x^2 - 5x + 6,得到 g(2) = 2^2 - 5(2) + 6 = 4 - 10 + 6 = 0。

3.2 方程练习题1) 解方程 2x + 5 = 15。

解:将方程移项得 2x = 15 - 5 = 10,再将等式两边都除以 2 得 x = 10 / 2 = 5。

所以方程的解为 x = 5。

2) 解方程 3(x - 4) = 6 + 2x。

解:展开方程得 3x - 12 = 6 + 2x,移项得 3x - 2x = 6 + 12,合并同类项得 x = 18。

所以方程的解为 x = 18。

3) 解方程 2(3x - 1) + 5(x + 2) = 4(2x + 3) - 7。

函数与数列的极限的强化练习题答案(含详细分析)

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案一、单项选择题1.下面函数与y x=为同一函数的是()2.A y=.B y=ln.xC y e=.ln xD y e=解:ln lnxy e x e x===,且定义域(),-∞+∞,∴选D2.已知ϕ是f的反函数,则()2f x的反函数是()()1.2A y xϕ=().2B y xϕ=()1.22C y xϕ=().22D y xϕ=解:令()2,y f x=反解出x:()1,2x y=ϕ互换x,y位置得反函数()12y x=ϕ,选A3.设()f x在(),-∞+∞有定义,则下列函数为奇函数的是()()().A y f x f x=+-()().B y x f x f x=--⎡⎤⎣⎦()32.C y x f x=()().D y f x f x=-⋅解:()32y x f x=的定义域(),-∞+∞且()()()()()3232y x x f x x f x y x-=-=-=-∴选C4.下列函数在(),-∞+∞内无界的是()21.1A yx=+.arctanB y x=.sin cosC y x x=+.sinD y x x=解: 排除法:A21122xxx x≤=+有界,B arctan2xπ<有界,C sin cosx x+≤故选D5.数列{}n x有界是lim nnx→∞存在的()A 必要条件B 充分条件C 充分必要条件D 无关条件解:{}n x收敛时,数列n x有界(即nx M≤),反之不成立,(如(){}11n--有界,但不收敛,选A6.当n→∞时,21sinn与1kn为等价无穷小,则k= ()A12B 1C 2D -2解:2211sinlim lim111n nk kn nn n→∞→∞==,2k=选C二、填空题(每小题4分,共24分)7.设()11f xx=+,则()f f x⎡⎤⎣⎦的定义域为解:∵()f f x⎡⎤⎣⎦()111111f xx==+++112x xx≠-+=+ ∴()f f x ⎡⎤⎣⎦定义域为(,2)(2,1)(1,)-∞-⋃--⋃-+∞8.设2(2)1,f x x +=+ 则(1)f x -=解:(1)令()22,45x t f t t t +==-+()245f x x x =-+(2)()221(1)4(1)5610f x x x x x -=---+=-+9.函数44log log 2y =的反函数是解:(1)4log y =,反解出x :214y x -=(2)互换,x y 位置,得反函数214x y -=10.n =解:原式32n =有理化11.若105lim 1,knn e n --→∞⎛⎫+= ⎪⎝⎭则k =解:左式=5lim ()510n kn k ne e e →∞---==故2k =12.2352limsin 53n n n n→∞++= 解:当n →∞时,2sinn ~2n∴原式=2532lim 53n n n n →∞+⋅+= 65三、计算题(每小题8分,共64分)13.求函数21arcsinx y -=解:{21113471110x x x x x --≤≤-≤≤><-->⎧⎪⎨⎪⎩⇔或∴函数的定义域为[](3,1)1,4--⋃ 14.设sin1cos 2x f x ⎛⎫=+ ⎪⎝⎭求()f x 解:22sin 2cos21sin 222x x x f⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭()()221f⎡⎤∴=-⎣⎦故()()221f x x =-15.设()f x ln x =,()g x 的反函数()()1211x g x x -+=-,求()()f g x解: (1) 求22():1x g x y x +=- ∴反解出x :22xy y x -=+22x y y =+-互换,x y 位置得()22g x x x =+- (2)()()ln ln 22f g x g x x x ==⎡⎤⎣⎦+-16.判别()f x (ln x =的奇偶性。

第三章 函数的概念与性质(习题课 函数的概念及其表示的综合应用)-讲练课件(人教A019必修第一册)

第三章 函数的概念与性质(习题课 函数的概念及其表示的综合应用)-讲练课件(人教A019必修第一册)

2
1
x

= 3x + 1 ,则 f 2 = ___________.
3
>
m
<
>
/m
<
(2)二次函数 f x = ax 2 + bx + c a, b ∈ , a ≠ 0 满足条件:①当 x ∈ 时, f x 的图象关于
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
>
/m
<
直线 x = −1 对称;② f 1 = 1 ;③ f x 在 上的最小值为0.求函数 f x 的解析式.
值域.对于 f x = ax + b + cx + d (其中 a , b , c , d 为常数,且 a ≠ 0 )型的函数常用
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
>
/m
<
换元法.
返回至目录
针对训练3.(1) 函数 f x =
A. [0,1]
[解析] ∵
x2
1

第二部分 专题一 第三讲 基本初等函数、函数与方程及函数的应用

第二部分   专题一   第三讲   基本初等函数、函数与方程及函数的应用

因此当 0<x1<x0 时,有 f(x1)>f(x0),又 x0 是函数 f(x)的零点, 因此 f(x0)=0,所以 f(x1)>0,即此时 f(x1)的值恒为正值.
返回
3.选 C
log 1 -x,-x>0 log 1 -x,x<0, 2 f(-x)= = 2 log2x,-x<0 log2x,x>0.
返回
取得最大值100元. 返回
创新预测 1.选 D
10.3 分别结合指数函数与对数函数的图像可得,a=2 ∈
(0,1),b=(0.3)-2∈(1,+∞),c=log 1 2=-1,故 b>a>c.
2
2.选 A 注意到函数
1x f(x)=5 -log3x
在(0,+∞)上是减函数,
(2)依题意得,当 x-1>0,即 x>1 时,f(x)=1-ln x,令 f(x)=0 得 x=e>1; 当 x-1=0,即 x=1 时,f(x)=0-ln 1=0;当 x-1<0,即 x<1 时,f(x)= 1 -1-ln x,令 f(x)=0 得 x=e <1.因此,函数 f(x)的零点个数为 3.
答案:9
返回
[热点透析高考]
例1:解析:(1)由于π>1,则y=πx递增,因此a=π0.3>π0=1,
又由于π>3,因此b=logπ3<logππ=1,而c=30=1,所以a>c>b.
(2)依题意得f(x+2)=f[-(2-x)]=f(x-2),即 f(x+4)=f(x),则函数f(x)是以4为周期的函数, 结合题意画出函数f(x)在x∈(-2,6)上的图像与 函数y=loga(x+2)的图像,结合图像分析可知, 要使f(x)与y=loga(x+2)的图像有4个不同的交点,则有

1-1-3函数与方程及函数的实际应用

1-1-3函数与方程及函数的实际应用

上有零点2和3,却有f(1)·f(4)>0.
数学(理) 第7页
新课标· 高考二轮总复习
3.由于函数y=f(x)的零点就是方程f(x)=0的根,所以在
研究方程的有关问题时,如比较方程根的大小、确定方程根 的分布、证明根的存在性等,都可以将方程问题转化为函数 问题,借助函数的零点,结合函数的图象加以解决.
数学(理) 第9页
新课标· 高考二轮总复习
(3)根据函数的零点与相应方程的根的关系可知,求函数
的零点与求相应方程的根是等价的.对于求方程f(x)=g(x)的
根,可以构造函数F(x)=f(x)-g(x),函数F(x)的零点即为方 程f(x)=g(x)的根. 5.解决实际问题的解题过程: (1)对实际问题进行抽象概括:研究实际问题中量与量之
数学(理) 第11页
新课标· 高考二轮总复习
(4)解析并回答实际问题.
这些步骤用框图表示如下:
数学(理) 第12页
新课标· 高考二轮总复习
高频考点
类型一 【例1】 函数的零点及其应用 (2011· 山东)已知函数f(x)=logax+x-
b(a>0,且a≠1),当2<a<3<b<4时,函数f(x)的零点x0∈ (n,n+1),n∈N*,则n=________.
数学(理) 第31页
新课标· 高考二轮总复习
4.(2011· 西安地区八校联考)函数 f(x)=
x2+2x-3,x≤0 -2+lnx,x>0
的零点个数为( B.1 D.3
)
A.0 C.2
解析:当x≤0时,f(x)的零点为x=-3;当x>0时,f(x)的 零点为x=e2.故共有两个零点.
x f′(x) f(x)

高中数学高考总复习函数与方程及应用题习题及详解

高中数学高考总复习函数与方程及应用题习题及详解

高中数学高考总复习函数与方程及应用题习题及详解一、选择题1.(文)(2010·北京市延庆县)函数f (x )=ln x -2x 的零点所在的区间是( )A .(1,2)B .(2,e )C .(e,3)D .(3,4)[答案] B[解析] ∵f (2)=ln2-1<0,f (e )=1-2e>0,故选B.(理)(2010·北京东城区)若f (x )=(m -2)x 2+mx +(2m +1)=0的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是( )A.⎝⎛⎭⎫-12,14B.⎝⎛⎭⎫-14,12C.⎝⎛⎭⎫14,12D.⎣⎡⎦⎤14,12[答案] C[解析] 由题意知,f (-1)·f (0)=(2m -1)·(2m +1)=4m 2-1<0,∴-12<m <12,又f (1)·f (2)=(4m -1)(8m -7)<0,∴14<m <78,∴14<m <12.2.(2010·四川)函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是( ) A .m =-2 B .m =2 C .m =-1D .m =1[答案] A[解析] 由-m2=1得,m =-2.3.(文)(2010·福建理,4)函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x >0的零点个数为( )A .0B .1C .2D .3[答案] C[解析] 令x 2+2x -3=0得,x =-3或1 ∵x ≤0,∴x =-3,令-2+ln x =0得,ln x =2 ∴x =e 2>0,故函数f (x )有两个零点.(理)(2010·福建省福州市)已知三个函数f (x )=2x +x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a 、b 、c ,则( )A .a <b <cB .a <c <bC .b <a <cD .c <a <b[答案] B[解析] 由于f (-1)=12-1=-12<0,f (0)=1>0,故f (x )=2x +x 的零点a ∈(-1,0);∵g (2)=0,故g (x )的零点b =2;h ⎝⎛⎭⎫12=-1+12=-12<0,h (1)=1>0,故h (x )的零点c ∈⎝⎛⎭⎫12,1,因此,a <c <b .[点评] 求函数f (x )的零点可直接令f (x )=0解方程;若f (x )为分段函数,则要注意每段上自变量的允许取值范围;若是讨论零点个数或比较零点的大小,常用单调性和图象辅助讨论.请再练习下列两题:①(2010·合肥市)函数f (x )=⎩⎪⎨⎪⎧ln x +2x -6 (x >0)-x (x +1) (x ≤0)的零点个数是( )A .0B .1C .2D .3 [答案] D[解析] 令-x (x +1)=0得x =0或-1,满足x ≤0; 当x >0时,∵ln x 与2x -6都是增函数, ∴f (x )=ln x +2x -6(x >0)为增函数, ∵f (1)=-4<0,f (3)=ln3>0,∴f (x )在(0,+∞)上有且仅有一个零点, 故f (x )共有3个零点.②(2010·吉林市质检)函数f (x )=⎝⎛⎭⎫12x-sin x 在区间[0,2π]上的零点个数为( ) A .1个 B .2个 C .3个 D .4个 [答案] B[解析] 在同一坐标系中作出函数y =⎝⎛⎭⎫12x 与y =sin x 的图象,易知两函数图象在[0,2π]内有两个交点.4.(2010·安徽江南十校联考)某流程图如图所示,现输入如下四个函数,则可以输出的函数是( )A .f (x )=|x |xB .f (x )=12x -1+12C .f (x )=e x -e -xe x +e -xD .f (x )=lgsin x[答案] C[解析] 根据程序框图知输出的函数为奇函数,并且此函数存在零点.经验证:f (x )=|x |x不存在零点;f (x )=12x -1+12不存在零点;f (x )=e x -e -x e x +e -x 的定义域为全体实数,且f (-x )=e -x -e x e -x +e x =-f (x ),故此函数为奇函数,且令f (x )=e x -e -xe x +e-x =0,得x =0,函数f (x )存在零点;f (x )=lgsin x 不具有奇偶性.5.(文)(2010·福州市质检)已知函数f (x )是(-∞,+∞)上的偶函数,若对于任意x ≥0,都有f (x +2)=-f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (2009)+f (-2010)的值为( )A .-2B .-1C .1D .2[答案] C[解析] 依题意得,x ≥0时,有f (x +4)=-f (x +2)=f (x ),即x ≥0时,f (x )是以4为周期的函数.因此,f (2009)+f (-2010)=f (2009)+f (2010)=f (1)+f (2),而f (2)=-f (0)=-log 2(0+1)=0,f (1)=log 2(1+1)=1,故f (2009)+f (-2010)=1,故选C.(理)(2010·安徽合肥质检)已知函数f (x )=⎩⎪⎨⎪⎧2x-1 (x ≤0)f (x -1)+1 (x >0),把函数g (x )=f (x )-x 的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为( )A .a n =n (n -1)2(n ∈N *)B .a n =n (n -1)(n ∈N *)C .a n =n -1(n ∈N *)D .a n =2n -2(n ∈N *) [答案] C[解析] 当x ≤0时,f (x )=2x -1;当0<x ≤1时,f (x )=f (x -1)+1=2x -1-1+1=2x -1;当1<x ≤2时,f (x )=f (x -1)+1=f (x -2)+2=2x -2-1+2=2x -2+1;…∴当x ≤0时,g (x )的零点为x =0;当0<x ≤1时,g (x )的零点为x =1;当1<x ≤2时,g (x )的零点为x =2;…当n -1<x ≤n (n ∈N *)时,g (x )的零点为n , 故a 1=0,a 2=1,a 3=2,…,a n =n -1.6.(文)(2010·山东临沂)若a ,b 在区间[0,3]上取值,则函数f (x )=ax 3+bx 2+ax 在R 上有两个相异极值点的概率是( )A.12B.33C.36D .1-36[答案] C[分析] ①f (x )在R 上有两个相异极值点,即f (x )在R 上的变化规律为增→减→增(或减→增→减).又f (x )为三次函数,故其导函数f ′(x )为二次函数,f ′(x )=0应有两不等实根,∴Δ>0.②凡涉及两个变量在实数区间内取值的概率问题,一般都可以通过把这两个变量看作坐标平面内点的坐标转化为平面上的区域问题求解.[解析] 易得f ′(x )=3ax 2+2bx +a ,函数f (x )=ax 3+bx 2+ax 在R 上有两个相异极值点的充要条件是a ≠0且其导函数的判别式大于0,即a ≠0且4b 2-12a 2>0,又a ,b 在区间[0,3]上取值,则a >0,b >3a ,点(a ,b )满足的区域如图中阴影部分所示,其中正方形区域的面积为3,阴影部分的面积为32,故所求的概率是36. (理)设a ∈{1,2,3,4},b ∈{2,4,8,12},则函数f (x )=x 3+ax -b 在区间[1,2]上有零点的概率为( )A.12B.58C.1116D.34[答案] C[解析] 因为f (x )=x 3+ax -b ,所以f ′(x )=3x 2+a .因为a ∈{1,2,3,4},因此f ′(x )>0,所以函数f (x )在区间[1,2]上为增函数.若存在零点,则⎩⎪⎨⎪⎧f (1)=1+a -b ≤0f (2)=8+2a -b ≥0,解得a +1≤b ≤8+2a .因此能使函数在区间[1,2]上有零点的有:a =1,2≤b ≤10,故b =2,b =4,b =8.a =2,3≤b ≤12,故b =4,b =8,b =12.a =3,4≤b ≤14,故b=4,b=8,b=12.a=4,5≤b≤16,故b=8,b=12.根据古典概型可得有零点的概率为1116.7.(文)(2010·济南一中)如图,A、B、C、D是四个采矿点,图中的直线和线段均表示公路,四边形ABQP、BCRQ、CDSR近似于正方形,A、B、C、D四个采矿点的采矿量之比为6 2 3 4,且运矿费用与路程和采矿量的乘积成正比.现从P、Q、R、S中选一个中转站,要使中转费用最少,则应选()A.P点B.Q点C.R点D.S点[答案] B[解析]设图中每个小正方形的边长均为1,A、B、C、D四个采矿点的采矿量分别为6a,2a,3a,4a(a>0),设s i(i=1,2,3,4)表示运矿费用的总和,则只需比较中转站在不同位置时s i(i =1,2,3,4)的大小.如果选在P点,s1=6a+2a×2+3a×3+4a×4=35a,如果选在Q点,s2=6a×2+2a+3a×2+4a×3=32a,如果选在R处,s3=6a×4+2a×3+3a+4a×2=33a,如果选在S处,s4=6a×4+2a×3+3a×2+4a=40a,显然,中转站选在Q点时,中转费用最少.(理)(2010·北京西城区抽检)某航空公司经营A、B、C、D这四个城市之间的客运业务.它的部分机票价格如下:A—B为2000元;A—C为1600元;A—D为2500元;B—C为1200元;C—D为900元.若这家公司规定的机票价格与往返城市间的直线距离成正比,则B—D 的机票价格为()(注:计算时视A、B、C、D四城市位于同一平面内)A.1000元B.1200元C.1400元D.1500元[答案] D[解析]注意观察各地价格可以发现:A、C、D三点共线,A、C、B构成以C为顶点的直角三角形,如图可知BD=5×300=1500.[点评]观察、分析、联想是重要的数学能力,要在学习过程中加强培养.8.定义域为D的函数f(x)同时满足条件:①常数a,b满足a<b,区间[a,b]⊆D,②使f(x)在[a,b]上的值域为[ka,kb](k∈N*),那么我们把f(x)叫做[a,b]上的“k级矩形”函数.函数f (x )=x 3是[a ,b ]上的“1级矩形”函数,则满足条件的常数对(a ,b )共有( )A .1对B .2对C .3对D .4对[答案] C[分析] 由“k 级矩形”函数的定义可知,f (x )=x 3的定义区间为[a ,b ]时,值域为[a ,b ],可考虑应用f (x )的单调性解决.[解析] ∵f (x )=x 3在[a ,b ]上单调递增, ∴f (x )的值域为[a 3,b 3].又∵f (x )=x 3在[a ,b ]上为“1级矩形”函数,∴⎩⎪⎨⎪⎧ a 3=a b 3=b ,解得⎩⎪⎨⎪⎧ a =-1b =0或⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =-1b =1, 故满足条件的常数对共有3对.[点评] 自定义题是近年来备受命题者青睐的题型,它能较好地考查学生对新知识的阅读理解能力,而这恰是学生后续学习必须具备的能力,解决这类问题的关键是先仔细审题,弄清“定义”的含义,把“定义”翻译为我们已掌握的数学知识.然后加以解决.9.(文)(2010·江苏南通九校)若a >1,设函数f (x )=a x +x -4的零点为m ,g (x )=log a x +x -4的零点为n ,则1m +1n的取值范围是( )A .(3.5,+∞)B .(1,+∞)C .(4,+∞)D .(4.5,+∞)[答案] B[分析] 欲求1m +1n 的取值范围,很容易联想到基本不等式,于是需探讨m 、n 之间的关系,观察f (x )与g (x )的表达式,根据函数零点的意义,可以把题目中两个函数的零点和转化为指数函数y =a x 和对数函数y =log a x 与直线y =-x +4的交点的横坐标,因为指数函数y =a x 和对数函数y =log a x 互为反函数,故其图象关于直线y =x 对称,又因直线y =-x +4垂直于直线y =x ,指数函数y =a x 和对数函数y =log a x 与直线y =-x +4的交点的横坐标之和是直线y =x 与y =-x +4的交点的横坐标的2倍,这样即可建立起m ,n 的数量关系式,进而利用基本不等式求解即可.[解析] 令a x +x -4=0得a x =-x +4,令log a x +x -4=0得log a x =-x +4, 在同一坐标系中画出函数y =a x ,y =log a x ,y =-x +4的图象,结合图形可知,n +m为直线y =x 与y =-x +4的交点的横坐标的2倍,由⎩⎪⎨⎪⎧y =xy =-x +4,解得x =2,所以n +m=4,因为(n +m )⎝⎛⎭⎫1n +1m =1+1+m n +n m ≥4,又n ≠m ,故(n +m )⎝⎛⎭⎫1n +1m >4,则1n +1m >1. (理)函数f (x )=x 2-ax +2b 的零点有两个,一个在区间(0,1)上,另一个在区间(1,2)上,则2a +3b 的取值范围是( )A .(2,9)B .(2,4)C .(4,9)D .(4,17)[答案] A[解析] f (x )=x 2-ax +2b ,由题意知,⎩⎪⎨⎪⎧ f (0)>0f (1)<0f (2)>0,∴⎩⎪⎨⎪⎧b >0a -2b -1>0a -b -2<0,二元一次不等式组表示的可行域如图中阴影部分所示(不包括边界),由⎩⎪⎨⎪⎧a -2b -1=0a -b -2=0,解得A (3,1), 由⎩⎪⎨⎪⎧a -2b -1=0b =0,解得B (1,0). 令z =2a +3b ,则当直线2a +3b =z 经过可行域内点A 时,z max =2×3+3×1=9,经过可行域内点B (1,0)时,z min =2×1-3×0=2,故z ∈(2,9),选A.10.如图所示,为了测量该工件上面凹槽的圆弧半径R ,由于没有直接的测量工具,工人用三个半径均为r (r 相对R 较小)的圆柱棒O 1、O 2、O 3放在如图与工件圆弧相切的位置上,通过深度卡尺测出卡尺水平面到中间量棒O 2顶侧面的垂直深度h ,若r =10mm ,h =4mm ,则R 的值为( )A .25mmB .5mmC .50mmD .15mm[答案] C[解析] 如图所示,在△O 1O 2H 中,O 1O 2=20, O 2H =(r +h )-r =4.∵O 1H 2=O 1O 22-O 2H 2=OO 12-OH 2 ∴202-42=R 2-(R -4)2,∴R =50(mm).[点评] 致力于数学应用是新课标的重要指导思想,近几年高考在命题形式上与生活联系更加密切,贴近实际.像函数模型、正余弦定理、导数(理:定积分)都会成为高考的重要出题点,要加强复习.二、填空题11.(文)(2010·辽宁锦州)用二分法求方程x 3-2x -5=0在区间[2,3]上的近似解,取区间中点x 0=2.5,那么下一个有解区间为________.[答案] [2,2.5][解析] 令f (x )=x 3-2x -5,∵f (2)=-1<0,f (2.5)=458>0,∴f (x )在区间[2,2.5]内有零点.(理)设函数f (x )=|x |x +bx +c ,给出下列4个命题: ①b =0,c >0时,方程f (x )=0只有一个实数根; ②c =0时,y =f (x )是奇函数; ③y =f (x )的图象关于点(0,c )对称;④函数f (x )至多有2个零点.上述命题中的所有正确命题的序号是________. [答案] ①②③[解析] 当b =0时,f (x )=x |x |+c =0,结合图形知f (x )=0只有一个实数根,故①正确;当c =0时,f (x )=x |x |+bx ,f (-x )=-f (x ),故y =f (x )是奇函数,故②正确;y =f (x )的图象可由奇函数f (x )=x |x |+bx 向上或向下平移|c |而得到,y =f (x )的图象与y 轴交点为(0,c ),故函数y =f (x )的图象关于点(0,c )对称,故③正确;方程|x |x -5x +6=0有三个解-6、2、3,即三个零点,故④错误.12.(文)2005年底,某地区经济调查队对本地区居民收入情况进行抽样调查,抽取1000户,按本地区确定的标准,情况如表:2010年要实现一个美好的愿景由右边圆图显示,则中等收入家庭的数量在原有的基础要增加的百分比和低收入家庭的数量在原有的基础要降低的百分比分别为________.[答案] 62.5% 57.9%[解析] 中等收入原有400户,2010年要变为650户,提高650-400400=0.625,低收入原有475户,2010年要变为1000×20%=200户,需降低475-200475≈0.579.(理)(2010·揭阳市模拟)某农场,可以全部种植水果、蔬菜、稻米、甘蔗等农作物,且产品全部供应距农场d (km)(d <200km)的中心城市,其产销资料如表:当距离d 达到n (km)以上时,四种农作物中以全部种植稻米的经济效益最高.(经济效益=市场销售价值-生产成本-运输成本),则n 的值为________.[答案] [解析] 设单位面积全部种植水果、蔬菜、稻米、甘蔗的经济效益分别为y 1、y 2、y 3、y 4,则y 1=50-0.6d ,y 2=15-0.3d ,y 3=40-0.4d ,y 4=18-0.3d ,由⎩⎪⎨⎪⎧y 3≥y 1y 3≥y 2y 3≥y 4d <200⇒50≤d <200,故n =50.13.(文)(2010·上海市嘉定区模考)已知函数y =f (x )的定义域和值域都是[-1,1](其图象如下图所示),函数g (x )=sin x ,x ∈[-π,π].定义:当f (x 1)=0(x 1∈[-1,1])且g (x 2)=x 1(x 2∈[-π,π])时,称x 2是方程f (g (x ))=0的一个实数根.则方程f (g (x ))=0的所有不同实数根的个数是________.[答案] 8[解析] 由图知f (x )在[-1,1]上有4个零点,分别位于区间⎝⎛⎭⎫-1,-12,⎝⎛⎭⎫-12,0,⎝⎛⎭⎫0,12和12,1内,当f (x 1)=0,x 1∈⎝⎛⎭⎫-1,-12时,存在两个值x 2∈[-π,π],使g (x 2)=sin x 2=x 1,同理在其它区间上也都有两个这样的x 2,故在[-π,π]上共有8个x 2,使f [g (x 2)]=0成立.(理)对于函数f (x )=x -1x +1,设f 1(x )=f (x ),f 2(x )=f [f 1(x )],f 3(x )=f [f 2(x )],…,f n +1(x )=f [f n (x )](n∈N *,且n ≥2),若x ∈C (C 为复数集),则方程f 2010(x )=x 的解集是________.[答案] {i ,-i }[解析] f 1(x )=1-2x +1,f 2(x )=1-2f 1(x )+1=1-22-2x +1=-1x ,f 3(x )=1+x 1-x ,f 4(x )=x ,f 5(x )=x -1x +1=f (x ). 故{f n (x )}是周期为4的函数列. ∴f 2010(x )=f 2(x )=-1x,故方程f 2010(x )=x 化为-1x=x ,∴x =±i .14.(2010·浙江金华十校联考)有一批材料可以建成200m 长的围墙,如果用此批材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的矩形(如图所示),则围成场地的最大面积为________(围墙的厚度不计).[答案] 2500m 2[解析] 设所围场地的长为x ,则宽为200-x 4,其中0<x <200,场地的面积为x ×200-x 4≤14⎝⎛⎭⎫x +200-x 22=2500m 2,等号当且仅当x =100时成立. 三、解答题15.(2010·山东烟台)设某市现有从事第二产业人员100万人,平均每人每年创造产值a 万元(a 为正常数),现在决定从中分流x 万人去加强第三产业.分流后,继续从事第二产业的人员平均每人每年创造产值可增加2x %(0<x <100).而分流出的从事第三产业的人员,平均每人每年可创造产值1.2a 万元.(1)若要保证第二产业的产值不减少,求x 的取值范围;(2)在(1)的条件下,问应分流出多少人,才能使该市第二、三产业的总产值增加最多?[解析] (1)由题意得,⎩⎪⎨⎪⎧ 0<x <100(100-x )(1+2x %)a ≥100a , ∴⎩⎪⎨⎪⎧0<x <100x 2-50x ≤0,∴0<x ≤50. (2)设该市第二、三产业的总产值增加f (x )(0<x ≤50)万元,则f (x )=(100-x )(1+2x %)a -100a +1.2ax=-a 50(x 2-110x )=-a 50[(x -55)2-3025] ∵x ∈(0,50]时,f (x )单调递增,∴x =50时,f (x )max =60a即应分流出50万人才能使该市第二、三产业的总产值增加最多.16.(2010·济南一中)2009年,浙江吉利与褔特就收购福特旗下的沃尔沃达成初步协议,吉利计划投资20亿美元来发展该品牌.据专家预测,从2009年起,沃尔沃汽车的销售量每年比上一年增加10000辆(2009年销售量为20000辆),销售利润每辆每年比上一年减少10%(2009年销售利润为2万美元/辆).(1)第n 年的销售利润为多少?(2)求到2013年年底,浙江吉利能否实现盈利(即销售利润超过总投资,0.95≈0.59).[解析] (1)∵沃尔沃汽车的销售量每年比上一年增加10000辆,∴沃尔沃汽车的销售量构成了首项为20000,公差为10000的等差数列{a n }.∴a n =10000+10000n .∵沃尔沃汽车的销售利润按照每辆每年比上一年减少10%,因此每辆汽车的销售利润构成了首项为2,公比为1-10%的等比数列{b n }.∴b n =2×0.9n -1. 第n 年的销售利润记为c n ,则c n =a n ·b n =(10000+10000n )×2×0.9n -1. (2)设到2013年年底,浙江吉利盈利为S ,则S =20000×2+30000×2×0.9+40000×2×0.92+50000×2×0.93+60000×2×0.94① 0.9S =20000×2×0.9+30000×2×0.92+40000×2×0.93+50000×2×0.94+60000×2×0.95②①-②得,0.1S =20000×2+20000×(0.9+0.92+0.93+0.94)-60000×2×0.95,解得S =10×(220000-320000×0.95)≈31.2×104>(20+1.5)×104.所以到2013年年底,浙江吉利能实现盈利.17.(文)甲方是一农场,乙方是一工厂,由于乙方生产须占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付的情况下,乙方的年利润x (元)与年产量t (吨)满足函数关系:x =2000t .若乙方每生产一吨产品必须赔付甲方s 元(以下称s 为赔付价格).(1)将乙方的年利润w (元)表示为年产量t (吨)的函数,并求出乙方获得最大利润的年产量;(2)在乙方年产量为t 吨时,甲方每年受乙方生产影响的经济损失金额y =0.002t 2(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s 是多少?[解析] (1)因为赔付价格为s 元/吨,所以乙方的实际年利润为:w =2000t -st (t ≥0)因为w =2000t -st =-s (t -1000s )2+10002s, 所以当t =⎝⎛⎭⎫1000s 2时,w 取得最大值.所以乙方取得最大利润的年产量t =⎝⎛⎭⎫1000s 2吨(2)设甲方净收入为v 元,则v =st -0.002t 2,将t =⎝⎛⎭⎫1000s 2代入上式,得到甲方纯收入v 与赔付价格s 之间的函数关系式:v =10002s -2×10003s 4, 又v ′=-10002s 2+8×10003s 5=10002(8000-s 3)s 5,令v ′=0得s =20.当s <20时,v ′>0;当s >20时,v ′<0.所以s =20时,v 取得最大值.因此甲方向乙方要求赔付价格s =20(元/吨)时,获最大纯收入.(理)某乡镇为了盘活资本,优化组合,决定引进资本拯救出现严重亏损的企业.长年在外经商的王先生为了回报家乡,决定投资线路板厂和机械加工厂.王先生经过预算,如果引进新技术在优化管理的情况下,线路板厂和机械加工厂可能的最大盈利率分别为95%和80%,可能的最大亏损率分别为30%和10%。

人教A版高中数学教材目录(全)

人教A版高中数学教材目录(全)

人教A版高中数学目录必修1第一章集合与函数概念1 .1 集合2 .3 变量间的相关关系阅读与思考相关关系的强与弱2.5等比数列的前n项和1 .2 函数及其表示1 .3 函数的基本性质第三章概率3 .1 随机事件的概率第三章不等式第二章基本初等函数(Ⅰ)2.1 指数函数2 .2 对数函数2 .3 幂函数阅读与思考天气变化的认识过程3 .2 古典概型3 .3 几何概型3.1不等关系与不等式3.2一元二次不等式及其解法第三章函数的应用3.1 函数与方程3 .2 函数模型及其应用必修 4第一章三角函数1 .1 任意角和弧度制1 2 .任意角的三角函数3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域1 .3 三角函数的诱导公式必修21 .4 三角函数的图象与性质1 .5 函数 y=Asin (ωx+ψ) 3.3.2 简单的线性规划问题第一章空间几何体1 .6 三角函数模型的简单应1 .1 空间几何体的结构用1 .2 空间几何体的三视图和 3.4 基本不等式直观图1 .3 空间几何体的表面积与第二章平面向量体积 2 .1 平面向量的实际背景及第二章点、直线、平面之间的位置关系2 .1 空间点、直线、平面之间的位置关系2 .2 直线、平面平行的判定基本概念2 .2 平面向量的线性运算2 .3 平面向量的基本定理及坐标表示2 4 .平面向量的数量积2 5 .平面向量应用举例选修1-1第一章常用逻辑用语1.1命题及其关系及其性质2 .3 直线、平面垂直的判定及其性质第三章三角恒等变换3 .1 两角和与差的正弦、余弦和正切公式1.2充分条件与必要条件3 .2 简单的三角恒等变换第三章直线与方程1.3简单的逻辑联结词3.1 直线的倾斜角与斜率3 .2 直线的方程必修 51.4全称量词与存在量词 3 .3 直线的交点坐标与距离公式第一章解三角形必修31.1正弦定理和余弦定理第二章圆锥曲线与第一章算法初步1 .1 算法与程序框图 1.2应用举例方程1 .2 基本算法语句1 .3 算法案例阅读与思考割圆术1.3实习作业2.1椭圆2.2双曲线第二章统计2 .1 随机抽样阅读与思考一个著名的案第二章数列2.3抛物线例阅读与思考广告中数据的可靠性2.1数列的概念与简单表示法用第三章导数及其应阅读与思考如何得到敏感性问题的诚实反应2.2等差数列2 .2 用样本估计总体阅读与思考生产过程中的2.3等差数列的前n 项和质量控制图2.4等比数列3.1变化率与导数3.2导数的计算1人教A版高中数学目录选修 2-12.6导数在研究函数中 1.3 导数在研究函数的应用中的应用第一章常用逻辑用2.7生活中的优化问题 1.4 生活中的优化问语举例题举例3.4命题及其关系3.3.2定积分的概念1.5充分条件与必要选修1-21.4微积分基本定理条件第一章统计案例 1.7 定积分的简单应1.3 简单的逻辑联结用词1.1 回归分析的基本思想及其初步应用2.4全称量词与存在量词第二章推理与证明 1.2 独立性检验的基本思想及其初步应用2.5合情推理与演绎推理第二章圆锥曲线与方程第二章推理与证明 2.2 直接证明与间接证明 2.1 曲线与方程2.1 合情推理与演绎证明 2.3 数学归纳法2.2 椭圆2.2 直接证明与间接2.3 双曲线证明3.3抛物线第三章数系的扩充与复数的引入第三章数系的扩充 3.1 数系的扩充和复与复数的引入数的概念第三章空间向量与立体几何3.1 数系的扩充和复数 3.2 复数代数形式的的概念四则运算3.1空间向量及其运算3.2 复数代数形式的四则运算3.2立体几何中的向选修2-3 量方法第一章计数原理第四章框图选修 2-21.1分类加法计数原4.1 流程图理与分步乘法计数原理第一章导数及其应4.2 结构图1.2 排列与组合用1.3二项式定理 1.1 变化率与导数1.2导数的计算2人教A版高中数学目录第二章随机变量及第二讲直线与圆的其分布位置关系选修 3-22.8离散型随机变量第三讲圆锥曲线性及其分布列质的探讨选修 3-3 2.2 二项分布及其应用选修4-2 第一讲从欧氏几何3.5离散型随机变量看球面的均值与方差第一讲线性变换与二阶矩阵第二讲球面上的距3.6正态分布离和角第二讲变换的复合第三章统计案例与二阶矩阵的乘法第三讲球面上的基本图形3.3.3回归分析的基本第三讲逆变换与逆思想及其初步应用矩阵第四讲球面三角形3.3.4独立性检验的基第五讲球面三角形第四讲变换的不变本思想及其初步应用量与矩阵的特征向量的全等第六讲球面多边形与欧拉公式选修3-1 选修4-3第七讲球面三角形的第一讲早期的算术边角关系选修4-4 与几何第八讲欧氏几何与第一讲坐标系第二讲古希腊数学非欧几何第二讲参数方程第三讲中国古代数学瑰宝选修 3-4第四讲平面解析几选修4-5 何的产生第一讲平面图形的对称群第一讲不等式和绝第五讲微积分的诞对值不等式生第二讲代数学中的对称与抽象群的概念第二讲证明不等式第六讲近代数学两的基本方法巨星第三讲对称与群的故事第三讲柯西不等式第七讲千古谜题与排序不等式第八讲对无穷的深第四讲数学归纳法入思考选修 4-1证明不等式第九讲中国现代数第一讲相似三角形学的开拓与发展的判定及有关性质3人教 A 版高中数学目录2 .4 向量的应用 选修 4-6第二章 函数 2 .1 函数第一讲 整数的整除2 .2 一次函数和二次函数 2 .3 函数的应用(Ⅰ) 第三章 三角恒等变换3.1 和角公式2 .4 函数与方程3 .2 倍角公式和半角公式 第二讲 同余与同余 3 .3 三角函数的积化和差与方程和差化积 第三章 基本初等函数 (Ⅰ) 3 .1 指数与指数函数 程第三讲 一次不定方3 .2 对数与对数函数 3 .3 幂函数 3 .4 函数的应用(Ⅱ) 必修五 第一章 解直角三角形 1.1 正弦定理和余弦定理第四讲 数伦在密码中的应用必修二第一章 立体几何初步1 .2 应用举例 第二章 数列1.1 空间几何体 2 .1 数列 1 .2 点、线、面之间的位置 2 .2 等差数列 关系 2 .3 等比数列 选修 4-7第三章 不等式 第二章 平面解析几何初步第一讲 优选法 2 .1 平面真角坐标系中的基 本公式3 .1 不等关系与不等式 3 .2 均值不等式第二讲试验设计初2 .2 直线方程 2 .3 圆的方程3 .3 一元二次不等式及其解 法 步3 .4 不等式的实际应用 2 .4 空间直角坐标系3 .5 二元一次不等式(组) 与简单线性规划问题必修三选修 4-8选修 4-9第一章 算法初步1.1 算法与程序框图1 .2 基本算法语句1 .3 中国古代数学中的算法 案例选修 1-1 第一章 常用逻辑用语 1.1 命题与量词 1 .2 基本逻辑联结词1 .3 充分条件、必要条件与命题的四种形式第一讲 风险与决策的基本概念第二章 统计 2.1 随机抽样2 .2 用样本估计总体2 .3 变量的相关性第二章 圆锥曲线与方程2.1 椭圆2 .2 双曲线2 .3 抛物线第二讲 决策树方法第三章 概率 3 1 . 随机现象第三讲 风险型决策3 2第三章 导数及其应用3 .1 导数3 .2 导数的运算 3 .3 导数的应用WORD格式.古典概型的敏感性分析33.随机数的含义与应用34.概率的应用第四讲马尔可夫型决策简介必修四选修 1-2第一章统计案例第二章推理与证明第一章基本初等函( Ⅱ)高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1 .2 集合之间的关系与运算1 .1 任意角的概念与弧度制1 .2 任意角的三角函数1 .3 三角函数的图象与性质第二章平面向量2 .1 向量的线性运算2 .2 向量的分解与向量的坐标运算2 .3 平面向量的数量积第三章数系的扩充与复数的引入第四章框图选修 4-5第一章不等式的基本性质和证明的基本方法1 .1 不等式的基本性质和一元二次不等式的解法1 2 .基本不等式4WORD格式人教A版高中数学目录1 .3 绝对值不等式的解法1 .4 绝对值的三角不等式1 .5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2 .2 排序不等式2 .3 平均值不等式( 选学)2 .4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3 .2 用数学归纳法证明不等式,贝努利不等式5。

在线MOOC教材《高等数学》教材课后习题参考解答

在线MOOC教材《高等数学》教材课后习题参考解答

第一本在线课程配套教材,“十三五”普通高等教育本科国家级规划教材,国防科技大学朱健民、李建平主编,高等教育出版社出版的 《高等数学》教材课后习题解答.这些课后习题都是非常经典的,学习高数课程应知应会,必须熟练掌握的基本典型练习题,不管是对于课程学习、还是考研、竞赛等相关内容的学习、复习、备考,都应该逐题过关!参考习题解答列表第一章 映射与函数习题1.1 《集合与映射》部分练习参考解答习题1.2 《函数》部分练习参考解答习题1.3 《曲线的参数方程与极坐标方程》部分练习参考解答第二章 数列极限与数值级数习题2.1 《数列极限的概念与性质》部分练习参考解答习题2.2 《数列收敛的判定方法》部分练习参考解答习题2.3 《数值级数的基本概念与性质》部分练习参考解答习题2.4-《同号级数的敛散性判别方法》部分习题参考解答习题2.5-《变号级数收敛性判别方法》部分习题参考解答第三章 函数极限与连续习题3.1-《函数极限的概念》部分习题参考解答习题3.2-《函数极限运算法则及存在性的判定准则》部分习题及参考解答 习题3.3-《无穷小的比较与渐近线》练习题及参考解答习题3.4-《函数的连续性与间断点》练习题及参考解答第四章 导数与不定积分习题4.1 《导数的概念及基本性质》练习题及参考解答习题4.2-《导数的计算》专题练习及参考解答习题4.3-《一元函数的微分》专题练习与参考解答习题4.4-《变化率与相关变化率》专题练习与参考解答习题4.5-《不定积分基本概念、性质和基本计算》专题练习与参考解答 第五章 导数的应用习题5.1-《极值与最优化》专题练习专题练习与参考解答习题5.2-《微分中值定理及其应用》专题练习专题练习与参考解答习题5.3-《泰勒公式及其应用》专题练习与参考解答习题5.4-《函数单调性与凹凸性及其应用》专题练习及参考解答习题5.5-《曲率》专题练习及参考解答第六章 定积分及其应用习题6.1-《定积分基本概念与性质》专题练习及参考解答习题6.2-《变限积分及其应用》专题练习及参考解答习题6.3-《不定积分与定积分》专题练习及参考解析习题6.4 -《定积分的应用》专题练习及其参考解析习题6.5 -《反常积分》专题练习及其参考解析第七章 常微分方程习题7.1-《微分方程的基本概念》专题练习与参考解答习题7.2-《一阶微分方程》专题练习及参考解答习题7.3 -《可降阶微分方程》专题练习及参考解答习题7.4 -《线性微分方程》专题练习及参考解答第八章 空间解析几何习题08-01 《向量及其运算》专题练习与参考解答习题08-02 《空间平面与直线》专题练习与参考解答习题08-03-《空间曲面及其方程》专题练习与参考解答习题08-04-《空间曲线及其方程》专题练习与参考解答第九章 向量值函数的导数与积分习题09-123-《向量值函数》专题练习与参考解析第十章 多元函数的导数及其应用习题10-01-《多元函数基本概念与性质》专题练习与参考解答习题10-02《偏导数与全微分》专题练习与参考解答习题10-03 《多元复合函数和隐函数求偏导》专题练习与参考解答习题10-04 《方向导数与梯度、泰勒公式》专题练习与参考解析习题10-05《多元函数的极值与最值》专题练习,知识点与典型习题视频解析 第十一章 重积分习题11-01 《重积分基本概念与性质》专题练习与参考解答习题11-02 《重积分直角坐标计算法》专题练习及典型习题视频解析习题11-03 《重积分的柱坐标、球坐标、换元法》专题练习与参考解答 习题11-04 《重积分的应用》专题练习与参考解答第十二章 曲线积分与曲面积分习题12-01《曲线积分的基本概念与计算》专题练习及参考解答习题12-02《格林公式、积分与曲线无关》专题练习与参考解答习题12-03 《曲面积分的基本概念、基本计算》专题练习与参考解答习题12-04 《高斯公式与斯托克斯公式》专题练习与参考解答第十三章 幂级数与傅里叶级数习题13-01《幂级数及其展开》专题练习与参考解答习题13-02 《傅里叶级数及其收敛性》内容总结、视频解析与专题练习。

高考冲刺-函数与方程的思想习题及答案

高考冲刺-函数与方程的思想习题及答案

高考 函数与方程的思想类型一、函数思想在方程中应用 1.已知155=-acb (a 、b 、c ∈R ),则有( ) (A) ac b 42> (B) ac b 42≥ (C) ac b 42< (D) ac b 42≤2.若关于x 的方程cos2x -2cos x +m =0有实数根,则实数m 的取值范围是________3.已知函数 32()f x ax bx cx d =+++的图象如下,则( ) (A )(),0b ∈-∞ (B)()0,1b ∈ (C) (1,2)b ∈ (D)(2,)b ∈+∞4.若关于x 的方程9x +(4+a )·3x +4=0有大于1的解,则实数a 的取值范围是( )A .a <253-B .a ≤-8C .a <133- D .a ≤-45.设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00()x y ,,则0x 所在的区间是( )A .(01),B .(12),C .(23),D .(34),类型二、函数思想在不等式中的应用6.当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 ;7.已知f (t )=log 2t ,t ∈[2,8],对于f (t )值域内所有实数m ,不等式x 2+mx +4>2m +4x 恒成立,求x 的取值范围.8.对于满足0≤p ≤4的实数p ,使x 2+px >4x +p -3恒成立的x 的取值范围是________类型三、函数思想在数列中的应用9.设等差数列{a n }的前n 项和为S n ,已知123=a ,12S >0,13S <0,(1)求公差d 的取值范围;(2)指出1S 、2S 、3S …,12S 中哪一个最大,并说明理由。

10.已知等差数列的公差,对任意都有,函数.(1)求证:对任意,函数的图象过一定点.(2)若,函数f(x)与x 轴的一个交点为(),且,求数列的通项公式.(3)在(2)的条件下,求.类型四、函数思想在立体几何中的应用 11.如图,已知面,于D ,.(1)令,,试把表示为x 的函数,并求其最大值;(2)在直线PA 上是否存在一点Q ,使成立?类型五、利用方程思想处理解析几何问题 12.直线与圆相切,则a 的值为( )A .B .C .1D .13.(2016 全国I 卷高考)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (I )求OH ON;(II )除H 以外,直线MH 与C 是否有其它公共点?说明理由. 14.直线和双曲线的左支交于A 、B 两点,直线l 过点P(-2,0)和线段AB 的中点M ,求l 在y 轴上的截距b 的取值范围.类型六、函数思想在三角中的应用 15.求的取值范围。

函数与方程及函数的综合应用课件——高三数学一复习

函数与方程及函数的综合应用课件——高三数学一复习
-1 200,已知每千件商
2
x 1
品售价为50万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
解析 (1)当0<x<50时,L(x)=50x- 1 x 2 10 x -200=- 1 x2+40x-200,
6
4 3
3 2
6
2
函数f(x)的一个零点位于 , 内,即x0∈ , .故选C.


6 4
答案 C


6 4
考法二 已知函数有零点(方程有根)求参数值(或取值范围)
1.直接法:利用零点构建关于参数的方程(组)或不等式(组),直接求解.
2.参数分离法:将参数与自变量分离,转化为求函数的最值或值域.
2
2

当x≥50时,L(x)=50x-52x- 7 200 +1 200-200=1 000- 2 x 7 200 ,
x 1
1 2
x 40 x 200,0 x 50,
所以L(x)= 2

1 000 2 x 7 200 , x 50.
3.5专题三、函数与方程及
函数的综合应用
知识梳理
基础篇
考点一 函数的零点
1.函数的零点
1)函数零点的定义:对于一般函数y=f(x),把使f(x)=0的实数x叫做函数y=
f(x)的零点.
注意:零点不是点,是满足f(x)=0的实数x.
2)三个等价关系:方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的

探索三角函数反三角函数与三角方程练习题

探索三角函数反三角函数与三角方程练习题

探索三角函数反三角函数与三角方程练习题三角函数是高中数学中的重要内容,它与反三角函数和三角方程密切相关。

在本文中,我们将深入探讨三角函数反三角函数与三角方程,并提供一些练习题来帮助读者加深理解。

开始我们的探索吧!一、三角函数与反三角函数在初学三角函数时,我们首先了解了正弦函数、余弦函数和正切函数。

这些函数可以用来描述角度与长度之间的关系。

正弦函数表示角度对应的纵坐标值与半径的比值,余弦函数表示角度对应的横坐标值与半径的比值,正切函数表示正弦值与余弦值的比值。

而反三角函数则是三角函数的逆运算,用来求解角度。

常见的反三角函数有反正弦函数、反余弦函数和反正切函数。

反三角函数的定义域是三角函数的值域范围,值域是角度的定义域。

为了更好地理解反三角函数的概念,我们可以通过以下练习题来巩固知识:1. 求解sinθ=0.5,其中θ∈[0°,180°]。

2. 求解cosθ=-0.8,其中θ∈[0°,360°]。

3. 求解tanθ=1,其中θ∈[0°,180°]。

二、三角方程三角方程是含有三角函数的方程,可以通过运用反三角函数的概念来解决。

在解三角方程时,我们需要注意以下几个步骤:1. 将含有三角函数的方程转化为含有反三角函数的方程。

2. 使用反三角函数的性质和公式将方程进行简化。

3. 求解反三角函数方程,得到解。

4. 检验解是否满足原方程。

下面是几个三角方程的练习题,你可以尝试解决它们:1. sinθ+cosθ=1,其中θ∈[0°,360°]。

2. 2sinθ+3cosθ=4,其中θ∈[0°,360°]。

3. tanθ=2sinθ,其中θ∈[0°,360°]。

三、综合练习题通过练习题的方式,我们可以更好地巩固和应用所学的知识。

下面是一些综合练习题,将涉及到三角函数、反三角函数和三角方程的概念,希望你能挑战一下:1. 求解sin(2x-30°)=sin(60°-x),其中x∈[0°,360°]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲函数与方程及函数的应用习题
一、选择题
1.(2014·九江七校联考)函数f (x )=x +1ln(1-x )的定义域是( )
A .(-1,1)
B .[-1,1)
C .[-1,1]
D .(-1,1]
2.(2014·广州综合测试一)若函数f (x )=x 2+ax +1的定义域为实数集R ,则实数a 的取值范围为( )
A .(-2,2)
B .(-∞,-2)∪(2,+∞)
C .(-∞,-2]∪[2,+∞)
D .[-2,2]
3.(2014·福建漳州七校联考)函数y =x 3
3x -1
的图象大致是( )
4.(2014·甘肃临夏中学三模)函数f (x )是定义域为R 的奇函数,且x ≤0时,f (x )=2x -12x +a ,则函数f (x )的零点个数是( )
A .1
B .2
C .3
D .4
5.(2014·重庆七校联盟联考)已知函数f (x )=⎩⎨⎧ (3a -1)x +4a ,x ≤1,log a x ,x >1
是 (-∞,+∞)上的减函数,那么实数a 的取值范围是( )
A .(0,1) B.⎝ ⎛⎭⎪⎫0,13 C.⎣⎢⎡⎭⎪⎫17,13 D.⎣⎢⎡⎭
⎪⎫17,1 6.(2014·云南统检)已知f (x )=⎩⎪⎨⎪⎧ 1+x x ,x <0,
log 12x ,x >0,则f (x )≥-2的解集是( )
A.⎝ ⎛⎦⎥⎤-∞,-13∪[4,+∞)
B.⎝ ⎛⎦
⎥⎤-∞,-13∪(0,4] C.⎣⎢⎡⎭⎪⎫-13,0∪[4,+∞) D.⎣⎢⎡⎭
⎪⎫-13,0∪(0,4] 7.(2014·乌鲁木齐第二次诊断)已知函数y =f (2x )+x 是偶函数,且f (2)=1,
则f (-2)=( )
A .2
B .3
C .4
D .5
8.(2014·贵州适应性考试)已知f (x )是定义在R 上的偶函数,且对任意x ∈R 都有f (x +4)=f (x )+f (2),则f (2 014)等于( )
A .0
B .3
C .4
D .6
9.(2014·济南一中等四校联考)函数y =x ln|x ||x |的图象可能是( )
二、填空题
11.(2014·北京西城期末)设函数f (x )=⎩
⎨⎧
log 2x ,x >0,4x ,x ≤0,则f (f (-1))=________;若函数g (x )=f (x )-k 存在两个零点,则实数k 的取值范围是________.
12.(2014·浙江考试院抽测)已知t >-1,当x ∈[-t ,t +2]时,函数y =(x -4)|x |的最小值为-4,则t 的取值范围________.
14.(2014·淄博质检)已知定义在R 上的函数y =f (x )满足以下三个条件:①对于任意的x ∈R ,都有f (x +1)=1f (x )
;②函数y =f (x +1)的图象关于y 轴对称;③对于任意的x 1,x 2∈[0,1],且x 1<x 2,都有f (x 1)>f (x 2).则f ⎝ ⎛⎭
⎪⎫32,f (2),f (3)从小到大的关系是________.。

相关文档
最新文档