3.2 探索型问题与开放型问题(课时测试)-2016届九年级数学二轮复习(解析版)
[整理]九年级数学专题复习---探索开放性问题.
初三数学专题复习---探索开放性问题知识要点:开放探索性问题可分为条件开放与探索问题、结论开放与探索问题、策略开放与探索问题。
对于条件开放与探索问题,要善于从问题的结论出发,逆向追索,多途寻因;对于结论开放与探索问题,包括相应的结论的“存在性”问题,解决这类问题的关键是充分利用条件进行大胆而合理的推理、猜想,发现规律,得出结论,主要考查发散性思维和所学基础知识的应用能力;策略开放与探索问题,一般是指解题方法不唯一,或解题路径不明确,解答这类题要注意不能墨守成规,要善于标新立异,积极发散思维,优化解题方案和过程。
注意:复习中要对各种题型进行针对性练习,优选各地中考试题,强化训练。
善于类比、联想、转化等数学思想方法的应用,提高观察、分析、比较、归纳探究及发散思维、动手操作的能力。
例题分析:1. 若a、b是无理数且a+b=2,则a,b的值可以是_____.(填上一组满足条件的值即可)分析与解答:这是一个条件开放题,由于题中只有一个关系式,因此只要先确定,其中一个无理数的大小,另一个也随之确定,本题答案不唯一,如。
2. 如图:在△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,需要补充的一个条件是_____.分析与解答:本题考查全等三角形的判定及分析问题能力和逻辑推理能力,已知一边一角对应相等,可以是SAS或ASA或AAS来证两个三角形全等。
如:BC=EF(或∠A=∠D或∠C=∠F)3. 已知两条抛物线y=x2+2x-3和y=2x2+x-3,请至少写出三条它们的共同特点:分析与解答:本题是结论开放性问题,考查二次函数的图象、性质及发散思维、归纳探索的能力,所以可以从两函数图象特征(开口方向,对称轴,顶点)及两函数图象交点与坐标轴交点等方面入手。
(1)开口方向都向上;(2)都过点(1,0),(0,-3);(3)对称轴都在y轴左侧;(4)都有最小值;(5)两函数图象的顶点都在第三象限等等。
九年级数学中考第二轮复习—开放探索问题同步练习人教实验版
初三数学人教实验版中考第二轮复习——开放探索问题同步练习(答题时间:50分钟)一、选择题1. 如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A. CB =CDB. ∠BAC =∠DACC. ∠BCA =∠DCAD. ∠B =∠D =90°A B CD*2. 在矩形ABCD 中,AB =1,AD =3,AF 平分∠DAB ,过C 点作CE ⊥BD 于E .延长AF 、EC 交于点H ,下列结论中:①AF =FH ;②BO =BF ;③CA =CH ;④BE =3ED 。
正确的是( )A. ②③B. ③④C. ①②④D. ②③④AB C D OE FH二、填空题1. 在△ABC 中,AB =AC =12cm ,BC =6cm ,D 为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B →A →C 的方向运动。
设运动时间为t ,那么当t =__________秒时,过D 、P 两点的直线将△ABC 的周长分成两个部分,使其中一部分是另一部分的2倍。
*2. 如图⊙O 1和⊙O 2的半径分别为1和3,连接O 1O 2,交⊙O 2于点P ,O 1O 2=8。
若将⊙O 1绕点P 按顺时针方向旋转360°,则⊙O 1与⊙O 2共相切__________次。
O 1O 2P三、解答题1.两地相距40km ,摩托车的速度为45km /h ,运货汽车的速度为35km /h (涂黑部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答。
2. 鲁西西开始研究整数的特征。
她发现:4=22-02,12=42-22,20=62-42。
4、12、20这些正整数都能表示为两个连续偶数的平方差,她称这些正整数为“和谐数”。
现在请你在鲁西西研究的基础上,进一步探究下列问题:(1)判断28、2008是否为“和谐数”;(2)根据上述判断,请你推广你的结论,指出判断一个正整数是否为“和谐数”的标准;(3)更进一步探究:两个连续奇数的平方差(取正数)是“和谐数”吗?为什么?3. 如图,在等腰梯形ABCD 中,∠C =60°,AD ∥BC ,且AD =DC ,E 、F 分别在AD 、DC 的延长线上,且DE =CF ,AF 、BE 交于点P 。
中考数学二轮复习专题:开放性问题(含答案)
A B CDE2018年中考数学二轮复习专题:开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类. 二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
三、中考考点精讲 考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1、如图, D 、E 分别在AC 、AB 上,且DE 与BC 不平行,请填上一个你认为合适的条件:__________________,使得△ADE ∽△ABC. 对应训练 (2006 东营)半径为2.5的⊙O 中,直径AB 的不同侧有定点C 和动点P .已知BC:CA = 4:3,点P 在 ︵AB 上运动,过点C 作CP 的垂线,与PB 的延长线交于点Q . (1)当点P 运动到与点C 关于AB 对称时,求CQ 的长;(2)当点P 运动到AB 弧的中点时,求CQ 的长.(3)当点P 运动到什么位置时,CQ 取到最大值,并求此时CQ 的长.考点二:结论开放的问题 给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2如图,点E 、F 分别是AD 上的两点,AB ∥CD ,AB=CD ,AF=DE .问:线段CE 、BF 有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。
初三数学第二轮复习-开放性问题
初三第二轮专题复习—开放性问题班级 姓名 学号学习目标:1.掌握开放型问题的特点及类型,熟练运用开放型问题的解题方法和步骤解决有关问题。
2.通过对各种类型的开放型问题的探索,培养学生创新意识与创新能力。
3.通过富有情趣的问题,激发学生进一步探索知识的激情。
感受到数学来源于生活。
学习重点:各种类型开放题的解题策略。
学习难点:开放题的正确答案不唯一,要灵活解题。
培养学生创新意识与创新能力。
教学过程一:【要点梳理】开放题的题目无论是条件、结论以及解题的策略或方法均可展开、发散,所以解决此类问题没有一种固定的模式可循。
但是,根据题意,寻找一般思考的规律还是可以找到解题的钥匙的,这类试题一般可归纳为条件开放型、结论开放型、条件和结论同时开放等三种基本题型 1条件开放型:没有确定已知条件的开发问题为条件开放题。
在题目要求的结论下,请你补充一些条件,使得适合题意,这类题强调的是题设的多样性。
2结论开放型:没有确定结果的开发问题为结论开发题。
题目给出了确定的条件,但没有确定的结论或者题设的条件去寻找不唯一的其他结论,这类体现了如何根据条件起探索结论的多样性3条件结论开发型:根据条件,由因导果可有多种不同的思考途径,解题时可有多种方法,常见的策略开放、情景开放等,这类题目强调的是解决实际问题的数学方法和思考的多样性]二:【例题】(一)条件开放例1.已知(x 1,y 1),(x 2,y 2)为反比例函数xky =图象上的点,当x 1<x 2<0时,y 1<y 2,则k 的一个值可为___________(只需写出符号条件的一个..k 的值)解: 答案不唯一,只要符合k <0即可例2、已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标:.答:(13)-,,(12)-,,(11)-,,(21)-,,(22)-,,(31)-,六个中任意写出一个即可 例3、如图1,四边形ABCD 是矩形,O 是它的中心,E 、F 是对角线AC 上的点. (1)如果__________ ,则ΔDEC ≌ΔBF A (请你填上能使结论成立的一个条件); (2)证明你的结论.分析:这是一道探索条件、补充条件的开放型试题,解决这类问题的方法是假设结论成立,逐步探索其成立的条件. 说明:考查了矩形的性质及三角形全等的判定. (二)结论开放例4、如图2,在△ABC 中,AB =AC ,AD ⊥BC ,D件可得________.(写出一个结论) 解:∠1=∠2或BD =DC或△ABD ≌△ACD等. 图2 例5:已知一次函数图像经过P (1,2),写出满足条件的一个一次函数的解析式:(只要满足条件的答案均可)解析:该题是一道结论开放的试题,其实只要掌握平面内,经过一点的直线有无数条,就不难求出经过点P (1,2)的直线。
九年级数学专题复习创新、开放与探究型问题
中考冲刺:创新、开放与探究型问题【中考展望】所谓开放探索型问题指的是有些数学问题的条件、结论或解决方法不确定或不唯一,需要根据题目的特点进行分析、探索,从而确定出符合要求的答案(一个、多个或所有答案)或探索出解决问题的多种方法.由于开放探究型问题对考查学生思维能力和创造能力有积极的作用,是近几年中考命题的一个热点.通常这类题目有以下几种类型:条件开放与探索,结论开放和探索,条件与结论都开放与探索及方案设计、命题组合型、问题开放型等.【方法点拨】由于开放探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不唯一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.【典型例题】类型一、探索规律例1.如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,C1B=CB,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2014,最少经过()次操作.A.7 B.6 C.5 D.4举一反三:【变式】如图,△A1A2A3,△A4A5A5,△A7A8A9,…,△A3n﹣2A3n﹣1A3n(n为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n,顶点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,则点A2016的坐标为 .类型二、条件开放型、结论开放型例2.在平面直角坐标系中,等腰三角形ABC的顶点A的坐标为(2,2).(1)若底边BC在x轴上,请写出一组满足条件的点B、点C的坐标:;(2)若底边BC的两端点分别在x轴、y轴上,请写出一组满足条件的点B、点C的坐标: .举一反三:【变式】在平面直角坐标系中,等腰三角形ABC的顶点A的坐标为(2,2).(1)若底边BC在x轴上,请写出一组满足条件的点B,点C的坐标:________________;设点B,点C的坐标分别为(m,0),(n,0),你认为m,n应满足怎样的条件?(2)若底边BC的两个端点分别在x轴,y轴上,请写出一组满足条件的点B,点C的坐标:______________;设点B,点C的坐标分别为(m,0),(0,n),你认为m,n应满足怎样的条件?类型三、条件和结论都开放的问题例3.如图(1),四边形ABCD中,AD与BC不平行,现给出三个条件:①∠CAB=∠DBA,②AC=BD,③AD=BC.请你从上述三个条件中选择两个条件,使得加上这两个条件后能够推出ABCD是等腰梯形,并加以证明(只需证明一种情况).举一反三:【变式】如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MNK的度数.(2)△MNK的面积能否小于12?若能,求出此时∠1的度数;若不能,试说明理由.(3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值.(备用图)类型四、动态探究型例4.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求EFEG的值.【思路点拨】(1)由∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,可得∠DEF=∠GEB,又由正方形的性质,可利用SAS证得Rt△FED≌Rt△GEB,则问题得证;(2)首先点E分别作BC、CD的垂线,垂足分别为H、I,然后利用SAS证得Rt△FEI≌Rt△GEH,则问题得证;(3)首先过点E分别作BC、CD的垂线,垂足分别为M、N,易证EM∥AB,EN∥AD,则可证得△CEN∽△CAD,△CEM∽△CAB,又由有两角对应相等的三角形相似,证得△GME∽△FNE,根据相似三角形的对应边成比例,即可求得答案.举一反三:【变式1】已知:如图(a),在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t 的值.若不存在,说明理由;(4)如图(b),连接PC,并把△POC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.举一反三:【变式2】如图,点D,E在△ABC的边BC上,连接AD,AE. ①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答);(2)请选择一个真命题进行证明(先写出所选命题,然后证明).ED CBA类型五、创新型例5.先阅读下列材料,然后解答问题:从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯.一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321n m m m m n n n --+=-⨯⨯⨯例从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种.【巩固练习】一、选择题1.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心圆圈的个数为()A.61 B.63 C.76 D.782.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D 重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.512532⨯B.69352⨯C.614532⨯D.711352⨯3.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ) A.495 B.497 C.501 D.5034.如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.(1)一个5×2的矩形用不同的方式分割后,小正方形的个数可以是 个,最少是 个; (2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是 个,最少是 个; (3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是 个;最少是 个.(n 是正整数)5. 一园林设计师要使用长度为4L 的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O 为圆心的两个同心圆弧和延长后通过O 点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.(1)使图①花圃面积为最大时R -r 的值为 ,以及此时花圃面积为 ,其中R 、r 分别为大圆和小圆的半径;(2)若L =160 m ,r =10 m ,使图面积为最大时的θ值为 .6.如图所示,已知△ABC 的面积1ABC S =△,在图(a)中,若11112AA BB CC AB BC CA ===,则11114A B C S =△; 在图(b)中,若22213AA BB CC AB BC CA ===,则222A B C 13S =△;在图(c),若33314AA BB CC AB BC CA ===,则333716A B C S =△.…按此规律,若88819AA BB CC AB BC CA ===,则888A B C S =△________.7.(2016•丹东模拟)已知,点D为直线BC上一动点(点D不与点B、C重合),∠BAC=90°,AB=AC,∠DAE=90°,AD=AE,连接CE.(l)如图1,当点D在线段BC上时,求证:①BD⊥CE,②CE=BC﹣CD;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CE、BC、CD三条线段之间的关系;(3)如图3,当点O在线段BC的反向延长线上时,且点A、E分别在直线BC的两侧,点F是DE的中点,连接AF、CF,其他条件不变,请判断△ACF的形状,并说明理由.8.如图(a)、(b)、(c),在△ABC中,分别以AB,AC为边,向△ABC外作正三角形、正四边形、正五边形,BE,CD相交于点O.(1)①如图(a),求证:△ADC≌△ABE;②探究:图(a)中,∠BOC=________;图(b)中,∠BOC=________;图(c)中,∠BOC=________;(2)如图(d),已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边.BE,CD的延长相交于点O.①猜想:图(d)中,∠BOC=________________;(用含n的式子表示)②根据图(d)证明你的猜想.9. 如图(a),梯形ABCD中,AD∥BC,∠ABC=90°, AD=9,BC=12,AB=a,在线段BC上任取一点P(P 不与B,C重合),连接DP,作射线.PE⊥DP,PE与直线AB交于点E.(1)试确定CP=3时,点E的位置;(2)若设CP=x(x>0),BE=y(y>0),试写出y关于自变量x的函数关系式;(3)若在线段BC上能找到不同的两点P1,P2,使按上述作法得到的点E都与点A重合,试求出此时a的取值范围.10. 点A,B分别是两条平行线m,n上任意两点,在直线n上找一点C,使BC=k·AB.连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.(1)如图(a),当k=1时,探究线段EF与EB的关系,并加以说明;说明:①如果你经过反复探索没有解决问题,请写出探索过程(要求至少写三步);②在完成①之后,可以自己添加条件(添加的条件限定为∠ABC为特殊角),在图(b)中补全图形,完成证明.(2)如图(c),若∠ABC=90°,k≠l,探究线段EF与EB的关系,并说明理由.。
2019-2020年九年级数学课时练:探索型问题(含答案)
【经典例题】类型一 条件开放型问题例题1.(2010福建宁德)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .⑴ 求证:△AMB ≌△ENB ;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ⑶ 当AM +BM +CM的最小值为13 时,求正方形的边长.例题2.如图,四边形ABCD 是平行四边形.O 是对角线AC 的中点,过点O 的直线EF 分别交AB 、DC 于点E 、F ,与CB 、AD 的延长线分别交于点G 、H .(1)写出图中不全等的两个相似三角形(不要求证明);(2)除AB =CD ,AD=BC ,OA=OC 这三对相等的线段外,图中还有多对相等的线段,请选出其中一对加以证明.例题3.(2010 甘肃)如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3),设抛物线的顶点为D . (1)求该抛物线的解析式与顶点D 的坐标;EA DB CNM(2)以B 、C 、D 为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.类型二 结论开放型问题例题4.(2010四川眉山)如图,Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC ' 交斜边于点E ,CC ' 的延长线交BB ' 于点F .(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC ' =β,试探索α、β满足什么关系时,△ACE 与△FBE是全等三角形,并说明理由.例题5.(2010安徽蚌埠)已知⊙O 过点D (3,4),点H 与点D 关于x 轴对称,过H 作⊙O 的切线交x 轴于点A 。
中考数学复习第二讲《开放探究型问题》经典题型含答案
中考数学复习专题第二讲开放探究型问题【要点梳理】开放探究型问题的内涵:所谓开放探究型问题是指已知条件、解题依据、解题方法、问题结论这四项要素中,缺少解题要素两个或两个以上,需要通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的条件或结论或方法.(1)常规题的结论往往是唯一确定的,而多数开放探究题的结论是不确定或不是唯一的,它是给学生有自由思考的余地和充分展示思想的广阔空间;(2)解决此类问题的方法,可以不拘形式,有时需要发现问题的结论,有时需要尽可能多地找出解决问题的方法,有时则需要指出解题的思路等.对于开放探究型问题,需要通过观察、比较、分析、综合及猜想,展开发散性思维,充分运用已学过的数学知识和数学方法,经过归纳、类比、联想等推理的手段,得出正确的结论.在解开放探究题时,常通过确定结论或补全条件,将开放性问题转化为封闭性问题.【学法指导】三个解题方法(1)条件开放型问题:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻,是一种分析型思维方式.它要求解题者善于从问题的结论出发,逆向追索,多途寻因;(2)结论开放型问题:从剖析题意入手,充分捕捉题设信息,通过由因导果,顺向推理或联想、类比、猜测等,从而获得所求的结论;(3)条件和结论都开放型:此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,需将已知的信息集中进行分析,探索问题成立所必须具备的条件或特定的条件应该有什么结论,通过这一思维活动得出事物内在联系,从而把握事物的整体性和一般性.【考点解析】条件开放型问题(2017贵州安顺)如图,DB∥AC,且DB=AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?【考点】LC:矩形的判定;L7:平行四边形的判定与性质.【分析】(1)要证明BC=DE,只要证四边形BCED是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.【解答】(1)证明:∵E是AC中点,∴EC=AC.∵DB=AC,∴DB∥EC.又∵DB∥EC,∴四边形DBCE是平行四边形.∴BC=DE.(2)添加AB=BC.( 5分)理由:∵DB AE,∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴▭ADBE是矩形.结论开放型问题(2017广西河池)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD 上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE ⊥BF于点M,探究AE与BF的数量关系,并证明你的结论.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AB=BC,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴=,∴AB=BC.存在开放型问题(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证: =;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C 四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.综合开放型问题(2017山东泰安)如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E 是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE 是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED=EF,ED与EF垂直吗?若垂直给出证明.【考点】LO:四边形综合题.【分析】(1)根据平行四边形的想知道的AD=AC,AD⊥AC,连接CE,根据全等三角形的判定和性质即可得到结论;(2)根据全等三角形的性质得到CF=AD,等量代换得到AC=CF,于是得到CP=AB=AE,根据平行四边形的判定定理即可得到四边形ACPE为平行四边形;(3)过E作EM⊥DA交DA的延长线于M,过E作EN⊥FC交FC的延长线于N,证得△AME≌△CNE,△ADE≌△CFE,根据全等三角形的性质即可得到结论.【解答】(1)证明:在▱ABCD中,∵AD=AC,AD⊥AC,∴AC=BC,AC⊥BC,连接CE,∵E是AB的中点,∴AE=EC,CE⊥AB,∴∠ACE=∠BCE=45°,∴∠ECF=∠EAD=135°,∵ED⊥EF,∴∠CEF=∠AED=90°﹣∠CED,在△CEF和△AED中,,∴△CEF≌△AED,∴ED=EF;(2)解:由(1)知△CEF≌△AED,CF=AD,∵AD=AC,∴AC=CF,∵DP∥AB,∴FP=PB,∴CP=AB=AE,∴四边形ACPE为平行四边形;(3)解:垂直,理由:过E作EM⊥DA交DA的延长线于M,过E作EN⊥FC交FC的延长线于N,在△AME与△CNE中,,∴△AME≌△CNE,∴∠ADE=∠CFE,在△ADE与△CFE中,,∴△ADE≌△CFE,∴∠DEA=∠FEC,∵∠DEA+∠DEC=90°,∴∠CEF+∠DEC=90°,∴∠DEF=90°,∴ED⊥EF.【真题训练】训练一:(2017日照)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD 为矩形.请加以证明.训练二:(2017湖北荆州)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.训练三:如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.训练四:(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO 是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB 为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证: =;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.训练五:(2017•黑龙江)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.参考答案:训练一:(2017日照)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD 为矩形.请加以证明.【考点】LC:矩形的判定;KD:全等三角形的判定与性质.【分析】(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.【解答】(1)证明:在△DCA和△EAC中,,∴△DCA≌△EAC(SSS);(2)解:添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;故答案为:AD=BC(答案不唯一).训练二:(2017湖北荆州)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.【考点】LB:矩形的性质;KD:全等三角形的判定与性质;Q2:平移的性质.【分析】(1)由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;(2)由AC=BD,DE=AC,得出BD=DE即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,∴AD=EC,在△ACD和△EDC中,,∴△ACD≌△EDC(SAS);(2)解:△BDE是等腰三角形;理由如下:∵AC=BD,DE=AC,∴BD=DE,∴△BDE是等腰三角形.训练三:如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【考点】L9:菱形的判定;KX:三角形中位线定理;L7:平行四边形的判定与性质.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.训练四:(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO 是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB 为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证: =;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C 四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.训练五:(2017•黑龙江)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;L8:菱形的性质;R2:旋转的性质.【分析】图2:根据四边形ABCD是正方形,得到AO=OC,BO=OD,AC⊥BD,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,等量代换得到AO=BO,OC′=OD′,∠AOC′=∠BOD′,根据全等三角形的性质得到AC′=BD′,∠OAC′=∠OBD′,于是得到结论;图3:根据四边形ABCD是菱形,得到AC⊥BD,AO=CO,BO=DO,求得OB=√3OA,OD=√3OC,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,求得OD′=√3OC′,∠AOC′=∠BOD′,根据相似三角形的性质得到BD′=√3AC′,于是得到结论.【解答】解:图2结论:AC′=BD′,AC′⊥BD′,理由:∵四边形ABCD是正方形,∴AO=OC,BO=OD,AC⊥BD,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴AO=BO,OC′=OD′,∠AOC′=∠BOD′,在△AOC′与△BOD′中,{AO=BO∠AOC′=∠BOD′OC′=OD′,∴△AOC′≌△BOD′,∴AC′=BD′,∠OAC′=∠OBD′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′;图3结论:BD′=√3AC′,AC′⊥BD’理由:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∵∠ABC=60°,∴∠ABO=30°,∴OB=√3OA,OD=√3OC,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴OD′=√3OC′,∠AOC′=∠BOD′,∴OBOA =OD′OC′=√3,∴△AOC′∽△BOD′,∴BD′AC′=OBOA=√3,∠OAC′=∠OBD′,∴BD′=√3AC′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′.【点评】本题考查了正方形的性质,菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.。
中考数学二轮专题复习(专题五 开放探索问题)
下 页
返 回
步步高中考简易通
【例题1】 (2012· 浙江义乌)如图,在△ABC中,点D
专 题 解 读
是BC的中点,作射线AD,在线段AD及其延长 线上分别取点E、F,连接CE、BF.添加一个条
件,使得△BDF≌△CDE,并加以证明.你添
加的条件是________.(不添加辅助线).
专 题 突 破
∵点P(x,y)的坐标满足x+y=xy,∴x,y符号相
同,代入数字进行验证,符合条件的点的坐标有
(0,0),(2,2)等.故答案为:(0,0). 答案 (0,0)(答案不唯一)
上 页
下 页
返 回
步步高中考简易通
专 题 解 读
三、综合开放型
这类问题没有明确的条件和结论,并且符合条件的 结论具有多样性,需将已知的信息集中进行分析, 探索问题成立所必须具备的条件或特定的条件应该 有什么结论,通过这一思维活动得出事物内在联 系,从而把握事物的整体性和一般性.
课 时 跟 踪 检 测
专 题 突 破
上 页
下 页
返 回
步步高中考简易通
【例题5】 (2011· 青海)学校在艺术周上,要求学生制
专 题 解 读
作一个精美的轴对称图形,请你用所给出的几何图 形:○○△△ (两个圆,两个等边三角形,
课 时 跟 踪 检 测
两条线段)为构件,构思一个独特,有意义的轴对 称图形,并写上一句简要的解说词.
上 页
下 页
返 回
步步高中考简易通
专 题 解 读
【例题3】 (2012· 浙江丽水)写出一个比-3大的无理 数是________.
解析 根据这个数即要比-3 大又是无理数,解答出
课 时 跟 踪 检 测
3.2 探索型问题与开放型问题(课时练习)-2016届九年级数学二轮复习(解析版)
初中数学中考二轮复习3.2 探索型问题与开放型问题(练)一.选择题1.(2015年山东济南)在平面直角坐标系中有三个点A (1,﹣1)、B (﹣1,﹣1)、C (0,1),点P (0,2)关于A 的对称点为P 1,P 1关于B 的对称点P 2, P 2关于C 的对称点为P 3,按此规律继续以A 、B 、C 为对称中心重复前面的操作,依次得到P 4,P 5,P 6,…,则点P 2015的坐标是( ) A .(0,0) B .(0,2) C .(2,﹣4) D .(﹣4,2) 【答案】A 【解析】 设P 1(x ,y ),∵点A (1,﹣1)、B (﹣1,﹣1)、C (0,1),点P (0,2)关于A 的对称点为P 1,P 1关于B 的对称点P 2, ∴2x =1,22y =﹣1,解得x=2,y=﹣4, ∴P 1(2,﹣4).同理可得,P 1(2,﹣4),P 2(﹣4,2),P 3(4,0),P 4(﹣2,﹣2),P 5(0,0),P 6(0,2),P 7(2,﹣4),…,…, ∴每6个数循环一次. ∵20156=335…5, ∴点P 2015的坐标是(0,0). 故选:A .考点:点的坐标;探索型问题2.(2015年福建福州)如图,在3x3的正方形网格中有四个格点A, B, C, D ,,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )A .A 点B .B 点C .C 点D .D 点 【答案】B 【解析】根据点与坐标的关系判断.A.原点是A点则点B、C、D的坐标分别是(1、1)(2、0)(2、-1)不存在点关于一条坐标轴对称;B.原点是B点则点A、C、D的坐标分别是(-1、-1)(1、-1)(1、-2)其中(-1、-1)(1、-1)关于X轴轴对称,C.原点是C点则点A、B、D的坐标分别是(-2、0)(-1、1)(0、-1)不存在点关于一条坐标轴对称;D.原点是D点则点A、B、C的坐标分别是(-2、1)(-1、2)(0、1)不存在点关于一条坐标轴对称;故选B.考点:点的坐标与平面直角坐标系;探索型问题3.(2015年福建福州)已知一个函数图像经过(1. -4)(2. -2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数 B.一次函数 c.反比例函数 D.二次函数【答案】D【解析】根据每个函数的增减性判断.A、B是直线如果过(1. -4)(2. -2)两点则有函数值y随x的增大而增大,故不可能;C.如果是反比例函数则K=-4,则在自变量x的某个取值范围内,都有函数值y随x的增大而增大;D.二次函数开口方向不一定所以在自变量x的某个取值范围内,有函数值y随x的增大而增大的可能性;故选D.考点:函数的性质;开放型问题4.(2015年福建南平)如图,从一块半径是1m的圆形铁皮(⊙O)上剪出一个圆心角为60°的扇形(点A,B,C在⊙O上),将剪下的扇形围成一个圆锥,则这个圆锥的底面圆的半径是()A mB mC m D.1m【答案】A.【解析】连接OA ,作OD ⊥AB 于点D .在直角△OAD 中,OA=1,∠OAD=12∠BAC=30°,则.则,,设底面圆的半径是r ,则2π,解得:.故选A .考点:圆锥的计算.5.(2015年福建莆田)数学兴趣小组开展以下折纸活动:(1)对折矩形ABCD ,使AD 和BC 重合,得到折痕EF ,把纸片展平;(2)再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN . 观察,探究可以得到∠ABM 的度数是( )A .25° B.30° C.36° D.45° 【答案】B . 【解析】连接AN ,∵EF 垂直平分AB ,∴AN=BN ,由折叠知AB=BN ,∴AN=AB=BN ,∴△ABN 为等边三角形,∴∠ABN=60°,∴∠ABM=∠NBM=30°.故选B .考点:翻折变换(折叠问题);探索型. 二.填空题6.(2015年山东聊城)如图,△ABC 的三个顶点和它内部的点P 1,把△ABC 分成3个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1、P 2,把△ABC 分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点 P 1、P 2、P 3,把△ABC 分成7个互不重叠的小三角形;…△ABC 的三个顶点和它内部的点 P 1、P 2、P 3、…、P n ,把△ABC 分成 个互不重叠的小三角形.【答案】3+2(n ﹣1) 【解析】利用图形得到,△ABC 的三个顶点和它内部的点1P ,把△ABC 分成互不重叠的小三角形的个数=3+2×0; △ABC 的三个顶点和它内部的点12P P 、,把△ABC 分成互不重叠的小三角形的个数=3+2×1; △ABC 的三个顶点和它内部的点123P P P 、、,把△ABC 分成互不重叠的小三角形的个数=3+2×2, 即分成的互不重叠的小三角形的个数为3加上P 点的个数与1的差的2倍,从而得到△ABC 的三个顶点和它内部的点123n P P P P 、、、、,把△ABC 分成的互不重叠的小三角形的个数为3+2(n ﹣1).考点:规律型:图形的变化类7.(2015年山东青岛)如图,平面直角坐标系的原点O 是正方形ABCD 的中心,顶点A ,B 的坐标分别为(1,1)、(-1,1),把正方形ABCD 绕原点O 逆时针旋转45°得到正方形A ′B ′C ′D ′则正方形ABCD 与正方形A ′B ′C ′D ′重叠部分形成的正八边形的边长为_______________.【答案】-2 【解析】如图所示:根据题意可得A ′D ′,=AB=2,A ′0=OD ′,OM=1,根据△FMD ′∽△A ′OD ′,则=FD MD A D OD¢′′′′,即'2FD ,则FD ′=2,则A ′E=FD ′=2∴EF=2-(2)-(2-2,即正八边形的边长为-2. 考点:相似三角形的应用8.(2015年湖北黄冈)在△ABC 中,AB=13cm ,AC=20cm ,BC 边上的高为12cm ,则△ABC 的面积为__________2cm . 【答案】126或66. 【解析】当∠B 为锐角时(如图1),在Rt △ABD 中,BD===5cm ,在Rt △ADC 中,==16cm ,∴BC=21,∴S △ABC =12BC ·AD=12×21×12=126cm 2;当∠B 为钝角时(如图2),在Rt △ABD 中,BD===5cm ,在Rt △ADC 中,==16cm ,∴BC=CD ﹣BD=16﹣5=11cm ,∴S △ABC =12BC ·AD=12×11×12=66cm 2,故答案为:126或66.考点:勾股定理;分类讨论9.(2015年广东珠海)如图,在△A 1B 1C 1中,已知A 1B 1=7,B 1C 1=4,A 1C 1=5,依次连接△A 1B 1C 1三边中点,得△A 2B 2C 2,再依次连接△A 2B 2C 2的三边中点得△A 3B 3C 3,…,则△A 5B 5C 5的周长为 .【答案】1. 【解析】∵A 2B 2、B 2C 2、C 2A 2分别等于A 1B 1、B 1C 1、C 1A 1的一半,∴以此类推:△A 5B 5C 5的周长为△A 1B 1C 1的周长的412,∴则△A 5B 5C 5的周长为(7+4+5)÷16=1.故答案为:1. 考点:三角形中位线定理;规律型;探索型10.(2015年辽宁本溪)如图,已知矩形ABCD 的边长分别为a ,b ,连接其对边中点,得到四个矩形,顺次连接矩形AEFG 各边中点,得到菱形I 1;连接矩形FMCH 对边中点,又得到四个矩形,顺次连接矩形FNPQ 各边中点,得到菱形I 2;…如此操作下去,得到菱形I n ,则I n 的面积是 .【答案】211()2n ab +. 【解析】由题意得:菱形I 1 的面积为:12×AG ×AE=12×12a ×12b =31()2ab ; 菱形I 2的面积为:12×FQ ×FN=12×(12×12a )×(12×12b )=51()2ab ;…,∴菱形I n 的面积为:211()2n ab +, 故答案为:211()2n ab +. 考点:中点四边形;探索型问题 三.解答题11.(2015年山东临沂)如图1,在正方形ABCD 的外侧,作两个等边三角形ADE 和DCF ,连接AF ,BE . (1)请判断:AF 与BE 的数量关系是 ,位置关系是 ;(2)如图2,若将条件“两个等边三角形ADE 和DCF ”变为“两个等腰三角形ADE 和DCF ,且EA=ED=FD=FC ”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;(3)若三角形ADE 和DCF 为一般三角形,且AE=DF ,ED=FC ,第(1)问中的结论都能成立吗?请直接写出你的判断.【答案】(1)AF=BE ,AF⊥BE(2)结论成立(3)结论都能成立 【解析】(1)AF=BE ,AF⊥BE. (2)结论成立.证明:∵四边形ABCD 是正方形, ∴BA=AD =DC ,∠BAD =∠ADC = 90°. 在△EAD 和△FDC 中, ,,,EA FD ED FC AD DC =⎧⎪=⎨⎪=⎩∴△EAD≌△FDC. ∴∠EAD=∠FDC.∴∠EAD+∠DAB=∠FDC+∠CDA,即∠BAE=∠ADF. 在△BAE 和△ADF 中, ,,,BA AD BAE ADF AE DF =⎧⎪∠=∠⎨⎪=⎩∴△BAE≌△ADF. ∴BE = AF ,∠ABE=∠DAF. ∵∠DAF +∠BAF=90°, ∴∠ABE +∠BAF=90°, ∴AF⊥BE.(3)结论都能成立.考点:正方形;等边三角形;探索型问题12.(2015年山东德州)(1)问题如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP. (2)探究如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由. (3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5,点P 以每秒1个单位长度的速度,由点A 出了,沿边AB 向点B 运动,且满足∠DPC=∠A,设点P 的运动时间为t (秒),当以D 为圆心,以DC 为半径的圆与AB 相切时,求t 的值.【答案】(1)证明见试题解析;(2)成立,理由见试题解析;(3)1或5. 【解析】(1)如图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC ,∴△ADP ∽△BPC ,∴AD APBP BC=,∴AD•BC=AP•BP;(2)结论AD•BC=AP•BP 仍然成立.理由:如图2,∵∠BPD=∠DPC+∠BPC ,∠BPD=∠A+∠ADP ,∴∠DPC+∠BPC=∠A+∠ADP ,∵∠DPC=∠A=∠B=θ,∴∠BPC=∠ADP ,∴△ADP ∽△BPC ,∴AD APBP BC=,∴AD•BC=AP•BP;(3)如图3,过点D 作DE ⊥AB 于点E .∵AD=BD=5,AB=6,∴AE=BE=3,由勾股定理可得DE=4,∵以点D 为圆心,DC 为半径的圆与AB 相切,∴DC=DE=4,∴BC=5﹣4=1,又∵AD=BD ,∴∠A=∠B ,∴∠DPC=∠A=∠B ,由(1)、(2)的经验可知AD•BC=AP•BP,∴5×1=t(6﹣t ),解得:11t =,25t =,∴t 的值为1秒或5秒.考点:1.相似形综合题;2.切线的性质;3.探究型. 13.(2015年福建龙岩)如图,已知点D 在双曲线20y x=(0x >)的图象上,以D 为圆心的⊙D 与y 轴相切于点C (0,4),与x 轴交于A ,B 两点,抛物线2y ax bx c =++经过A ,B ,C 三点,点P 是抛物线上的动点,且线段AP 与BC 所在直线有交点Q .(1)写出点D 的坐标并求出抛物线的解析式; (2)证明∠ACO=∠OBC ;(3)探究是否存在点P ,使点Q 为线段AP 的四等分点?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)D (5,4),215442y x x =-+;(2)证明见试题解析;(3)P 1(4+,11,P 2(4-,11+),P 3(4+,5),P 4(4-5+),P 5(4+,3-),P 6(4-,3+). 【解析】(1)∵以D 为圆心的⊙D 与y 轴相切于点C (0,4),∴点D 的纵坐标是4,又∵点D 在双曲线20y x=(0x >)的图象上,∴204x=,解得x=5,故点D 的坐标是(5,4),如图1,过点D 作DE ⊥x 轴,垂足为E ,连接AD ,BD ,在RT △DAE 中,DA=5,DE=4,∴=3,∴OA=OE ﹣AE=2,OB=OA+2AE=8,∴A (2,0),B (8,0),设抛物线的解析式为(2)(8)y a x x =--,由于它过点C (0,4),∴a (0﹣2)(0﹣8)=4,解得14a =,∴抛物线的解析式为215442y x x =-+; (2)如图2,连接AC ,在RT △AOC 中,OA=2,CO=4,∴tan ∠ACO=OA CO =12,在RT △BOC 中,OB=8,CO=4,∴tan ∠CBO=CO OB =12,∴∠ACO=∠CBO ; (3)∵B (8,0),C (0,4),∴直线BC 的解析式为142y x =-+,如图3,分别过点Q ,P 作QF ⊥x 轴,PG ⊥x 轴,垂足分别为F ,G ,设P (t ,215442t t -+),①AQ :AP=1:4,则易得Q (64t +,2101616t t -+),∵点Q 在直线142y x =-+上,∴216101642416t t t +-+-⨯+=,整理得28360t t --=,解得14t =+,24t =-,∴P 1(4+,11,P 2(4-,11);②AQ :AP=2:4,则易得Q (22t +,210168t t -+),∵点Q 在直线142y x =-+上,∴21210164228t t t +-+-⨯+=,整理得28120t t --=,解得P 3=4+,P 4=4-P 3(4+,5-),P 4(4-5+;③AQ :AP=3:4,则易得Q (324t +,23304816t t -+),∵点Q 在直线142y x =-+上,∴21323304842416t t t +-+-⨯+=,整理得2840t t --=,解得t 5=4+,t 6=4-∴P 5(4+,3),P 6(4-3+);综上所述,抛物线上存在六个点P ,使Q 为线段AP 的三等分点,其坐标分别为P 1(4+,11,P 2(4-,11),P 3(4+,5-),P 4(4-5+,P 5(4+3-),P 6(4-,3+).考点:二次函数综合题;分类讨论;探究型问题。
中考数学专题复习 开放性问题-人教版初中九年级全册数学试题
开放性问题【专题点拨】开放探索问题是指已知条件、解题依据、解题方法、问题结论这四项要素中,缺少解题要素两个或两个以上,或者条件、结论有待探求、补充等.【解题策略】在解决开放探索问题的时候,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答.【典例解析】类型一:条件开放型问题例题1:(2016·某某省滨州市·14分)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题;函数及其图象.【分析】(1)分别令y=0,x=0,即可解决问题.(2)由图象可知AB只能为平行四边形的边,易知点E坐标(﹣7,﹣)或(5,﹣),由此不难解决问题.(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.【解答】解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象可知AB只能为平行四边形的边,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.(3)如图所示,①当C为顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,==,∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).②当M3为顶点时,∵直线AC解析式为y=﹣x+1,线段AC的垂直平分线为y=x,∴点M3坐标为(﹣1,﹣1).③当点A为顶点的等腰三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1.2﹣).【点评】本题考查二次函数综合题、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握抛物线与坐标轴交点的求法,学会分类讨论的思想,属于中考压轴题.变式训练1:(2016·某某某某)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P 的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.类型二:结论开放型问题例题2:(2016·某某随州·3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c >0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个 B.3个 C.4个 D.5个【解析】二次函数图象与系数的关系.(1)正确.根据对称轴公式计算即可.(2)错误,利用x=﹣3时,y<0,即可判断.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.(4)错误.利用函数图象即可判断.(5)正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:(1)正确.∵﹣ =2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b=2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.变式训练2:(2016·某某某某·3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值X围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个类型三:解题策略开放型例题3:(2014 年某某襄阳)如图 Z3-1,在△ABC 中,点D,E 分别在边 AC,AB 上,BD 与 CE 交于点 O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形)(2)选择其中的成立条件进行证明。
九年级数学中考综合复习: 开放与探索性问题 复习讲义
综合复习.开放与探索性问题&.综合评述:开放与探索性问题改变了过去试题形式单一,知识点考查僵硬,不能充分调动学生的创新意识和探究兴趣的缺点,为学生提供了更广阔的思维空间,正因为如此,开放与探究性题成为近几年中考的热点题型之一。
一、开放性问题这类题一般没有具体的标准答案,解题时要灵活运用所学基础知识,多层次、多角度地思考问题,解决问题,一般答案只要符合题意即可。
二、探究性问题探究性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断、补充并加以证明的题型,探究性问题一般分为三类:1、条件探索型题;2、结论探究型题;3、探究存在型题。
条件型题是指所给问题中结论明确,需要完备条件的题目;结论探究型题是指题目中的结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论。
探究存在型题是指在一定的基础上,需探究发现某种数学关系是否存在的题目。
这类问题具有较强的综合性,涉及的数学基础知识非常广泛。
这种题型既能考查学生对基础知识掌握的熟练程度,又能较好的考查学生的观察、分析、概括能力,因此复习时,既要重视基础知识,又要强化数学思想方法训练,切实提高自己分析问题、解决问题的能力。
&.典型例题剖析:§.例1、多项式192+x 加上一个单项式后,使它成为一个整式的完全平方,那么加上的单项式可以是 .(填上一个你认为正确的即可)思路点拨:本题主要考查了完全平方式。
解:按完全平方公式得()2213619+=++x x x ,()2213619-=-+x x x ,另外22919x x -+21=,()22239119x x x ==-+,224212948119⎪⎭⎫⎝⎛+=++x x x ,故其答案是x 6±或29x -或1-或4481x .规律总结:本题属于条件探索题,可以从完全平方式入手,多层次、多角度思考问题,可繁可简,可难可易,一般答案只要符合题意即可。
中考数学第二轮复习资料
中考数学第二轮复习资料目录专题一选择题解题方法一、中考专题诠释选择题是各地中考必考题型之一,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二、解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略.具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三、中考考点精讲1.(莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A 出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为A.B.C.D.2.(自贡)如图,已知A、B是反比例函数y=kx(k>0,x>0)上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P 作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是A.B.C.D.3.(鄂州)一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是A.B.C.D.4.(巴中)在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是A.B.C.D.5.(宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是A.B.C.D.6.(菏泽)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为A.15°或30°B.30°或45°C.45°或60°D.30°或60°7.(邵阳)下列四个图形中,不是轴对称图形的是A.B.C.D.8.(南宁)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是A.三角形B.线段C.矩形D.正方形9.(长沙)在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是A.B.C.D.10.(达州)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是A.③①④②B.③②①④C.③④①②D.②④①③11.(陕西)如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是A .B .C .D .12.(黑龙江)如图,爸爸从家(点O )出发,沿着扇形AOB 上OA →弧AB →BO 的路径去匀速散步,设爸爸距家(点O )的距离为S ,散步的时间为t ,则下列图形中能大致刻画S 与t 之间函数关系的图象是A .B .C .D .13.(盐城)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有A .4种B .5种C .6种D .7种14.(咸宁)如图,正方形ABCD 是一块绿化带,其中阴影部分EOFB ,GHMN 都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为A .1732B .12C .1736D .173815.(雅安)如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB =30°,过点C 作⊙O 的切线交AB 的延长线于E ,则sin ∠E 的值为A .12B .32C .22D .3316.(衢州)如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿A →D →C →B →A 的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 的函数关系的是A .B .C .D .17.(柳州)如图,点P (a ,a )是反比例函数y =16x在第一象限内的图象上的一个点,以点P 为顶点作等边△P AB ,使A 、B 落在x 轴上,则△POA 的面积是A .3B .4C .123− D .33824− 18.(莱芜)下列说法错误的是A .若两圆相交,则它们公共弦的垂直平分线必过两圆的圆心B .22C .若a >|b |,则a >bD .梯形的面积等于梯形的中位线与高的乘积的一半19.(无锡)已知点A (0,0),B (0,4),C (3,t +4),D (3,t ).记N (t )为□ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为A .6、7B .7、8C .6、7、8D .6、8、920.(钦州)如图,图1、图2、图3分别表示甲、乙、丙三人由甲A 地到B 地的路线图(箭头表示行进的方向).其中E 为AB 的中点,AH >HB ,判断三人行进路线长度的大小关系为A .甲<乙<丙B .乙<丙<甲C .丙<乙<甲D .甲=乙=丙21.(邗江区一模)一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2)所示;(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示;(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示;(4)连结AE、AF,如图(5)所示.经过以上操作小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S△AEF:S圆=4π以上结论正确的有A.1个B.2个C.3个D.4个专题二 新定义型问题一、中考专题诠释 所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考考点精讲1.(湛江)阅读下面的材料,先完成阅读填空,再按要求答题:sin 30°=12,cos 30°sin 230°+cos 230°= ; ①sin 45°,cos 45°,则sin 245°+cos 245°= ;②sin 60°=2,cos 60°=12,则sin 260°+cos 260°= ; ③ …… 观察上述等式,猜想:对任意锐角A ,都有sin 2A +cos 2A = .④(1)如图,在锐角三角形ABC 中,利用三角函数的定义及勾股定理对∠A 证明你的猜想; (2)已知:∠A 为锐角(cosA >0)且sinA =35,求cosA . 2.(河北)定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1==-5.(1)求(-2)⊕3的值;(2)若3⊕x 的值小于13,求x 的取值范围,并在图所示的数轴上表示出来.3.(十堰)定义:对于实数a ,符号[a ]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a ]=-2,那么a 的取值范围是 .(2)如果[12x+]=3,求满足条件的所有正整数x.4.(钦州)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是A.2 B.3 C.4 D.55.(宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫做这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.6.(舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(-5,4),B(2,-3),A⊕B=(-5+2)+(4-3)=-2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E =E⊕F=F⊕D,则C,D,E,F四点A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点7.(常德)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是A.B.C.D.8.(上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 .9.(宜宾)如图,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中弧CD 、弧DE 、弧EF 的圆心依次是A 、B 、C ,如果AB =1,那么曲线CDEF 的长是 .10.(淄博)在△ABC 中,P 是AB 上的动点(P 异于A ,B ),过点P 的一条直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC的相似线.如图,∠A =36°,AB =AC ,当点P 在AC 的垂直平分线上时,过点P 的△ABC 的相似线最多有 条.11.(乐山)对非负实数x “四舍五入”到个位的值记为(x ).即当n 为非负整数时,若n -12≤x <n +12,则(x )=n .如(0.46)=0,(3.67)=4. 给出下列关于(x )的结论:①(1.493)=1;②(2x )=2(x );③若(12x -1)=4,则实数x 的取值范围是9≤x <11; ④当x ≥0,m 为非负整数时,有(m +2013x )=m +(2013x );⑤(x +y )=(x )+(y );其中,正确的结论有 (填写所有正确的序号).12.(莆田)定义:如图1,点C 在线段AB 上,若满足AC 2=BC •AB ,则称点C 为线段AB 的黄金分割点.如图2,△ABC 中,AB =AC =1,∠A =36°,BD 平分∠ABC 交AC 于点D .(1)求证:点D 是线段AC 的黄金分割点;(2)求出线段AD 的长.13.(大庆)对于钝角α,定义它的三角函数值如下:sinα=sin (180°-α),cosα=-cos (180°-α)(1)求sin 120°,cos 120°,sin 150°的值;(2)若一个三角形的三个内角的比是1:1:4,A ,B 是这个三角形的两个顶点,sinA ,cosB 是方程4x 2-mx -1=0的两个不相等的实数根,求m 的值及∠A 和∠B 的大小.14.(安徽)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”.其中∠B =∠C .(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD 中∠B =∠C .E 为边BC 上一点,若AB ∥DE ,AE ∥DC ,求证: AB BE DC EC=; (3)在由不平行于BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E .若EB =EC ,请问当点E 在四边形ABCD 内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,情况又将如何?写出你的结论.(不必说明理由)15.(北京)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下的定义:若⊙C 上存在两个点A 、B ,使得∠APB =60°,则称P 为⊙C 的关联点.已知点D (12,12),E (0,-2),F 0).(1)当⊙O 的半径为1时,①在点D 、E 、F 中,⊙O 的关联点是 ;②过点F 作直线l 交y 轴正半轴于点G ,使∠GFO =30°,若直线l 上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.专题三开放型问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等.三、中考考点精讲1.(盐城)写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系,使得另一边EF过原矩形的(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积(2)写出如图中的三对相似三角形,并选择其中一对进行证明.6.(荆州)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.7.(徐州)请写出一个是中心对称图形的几何图形的名称:.8.(钦州)请写出一个图形经过一、三象限的正比例函数的解析式.9.(连云港)若正比例函数y=kx(k为常数,且k≠0)的函数值y随着x的增大而减小,则k的值可以10使△ABC≌△DEF.第11题第12题第13题12.(绥化)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.13.(义乌市)如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.14.(齐齐哈尔)如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是____________(填一个即可)15.(邵阳)如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是.第14题第15题第16题第17题16.(吉林)如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是cm(写出一个符合条件的数值即可) 17.(昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t(s)的值为.(填出一个正确的即可)18.(杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已19.(盐城)市交警支队对某校学生进行交通安全知识宣传,事先以无记名的方式随机调查了该校部分学生闯红灯的情况,并绘制成如图所示的统计图.请根据图中的信息回答下列问题:(1)本次共调查了多少名学生?(2)如果该校共有1500名学生,请你估计该校经常闯红灯的学生大约有多少人;(3)针对图中反映的信息谈谈你的认识.(不超过30个字)专题四探究型问题一、中考专题诠释探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类.二、解题策略与解法精讲由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法,当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法,即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.三、中考考点精讲1.(襄阳)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.2.(新疆)如图,□ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.(1)求证:△AOE≌△COF;(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.3.(牡丹江)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.(2)MN在绕点A旋转过程中,当∠BCD=30°,BD CD=,CB=.4.(河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E =30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.8.(陕西)问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.9.(西城区一模)在平面直角坐标系xOy中,有一只电子青蛙在点A(1,0)处.第一次,它从点A先向右跳跃1个单位,再向上跳跃1个单位到达点A1;第二次,它从点A1先向左跳跃2个单位,再向下跳跃2个单位到达点A2;第三次,它从点A2先向右跳跃3个单位,再向上跳跃3个单位到达点A3;第四次,它从点A3先向左跳跃4个单位,再向下跳跃4个单位到达点A4;…依此规律进行,点A6的坐标为;若点A n的坐标为(2013,2012),则n=.10.(湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…是.11.(绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.12.(茂名)如图,在□ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.13.(白银)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.14.(无锡)如图,四边形ABCD中,对角线AC与BD相交于点O,在①AB∥CD;②AO=CO;③AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构造命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)15.(宁波)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.16.(凉山州)先阅读以下材料,然后解答问题:材料:将二次函数y=-x2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变).解:在抛物线y=-x2+2x+3图象上任取两点A(0,3)、B(1,4),由题意知:点A向左平移1个单位得到A′(-1,3),再向下平移2个单位得到A″(-1,1);点B向左平移1个单位得到B′(0,4),再向下平移2个单位得到B″(0,2).设平移后的抛物线的解析式为y=-x2+bx+c.则点A″(-1,1),B″(0,2)在抛物线上.可得:112b c c −−+=⎧⎨=⎩,解得:02b c =⎧⎨=⎩.所以平移后的抛物线的解析式为:y =-x 2+2. 根据以上信息解答下列问题:将直线y =2x -3向右平移3个单位,再向上平移1个单位,求平移后的直线的解析式.17.(湖州)一节数学课后,老师布置了一道课后练习题:如图,已知在Rt △ABC 中,AB =BC ,∠ABC =90°,BO ⊥AC ,于点O ,点P 、D 分别在AO 和BC 上,PB =PD ,DE ⊥AC 于点E ,求证:△BPO ≌△PDE .(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB 平分∠ABO ,其余条件不变.求证:AP =CD .(3)知识迁移,探索新知若点P 是一个动点,点P 运动到OC 的中点P ′时,满足题中条件的点D 也随之在直线BC 上运动到点D ′,请直接写出CD ′与AP ′的数量关系.(不必写解答过程)18.(淄博)分别以□ABCD (∠CDA ≠90°)的三边AB 、CD 、DA 为斜边作等腰直角三角形△ABE 、△CDG 、△ADF .(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF ,EF .请判断GF 与EF 的关系(只写结论,不需证明);(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF ,EF ,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.19.(张家界)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.20.(衡阳)如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.21.(宁夏)在□ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE,CP.已知∠A=60°;(1)若BC=8,AB=6,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值.(2)试探究当△CPE≌△CPB时,□ABCD的两边AB与BC应满足什么关系?22.(南平)在矩形ABCD中,点E在BC边上,过E作EF⊥AC于F,G为线段AE的中点,连接BF、(1)证明:△BGF是等腰三角形;(2)当k为何值时,△BGF是等边三角形?(3)我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.事实上,在一个三角形中,较大的边所对的角也较大;反之也成立.利用上述结论,探究:当△BGF分别为锐角、直角、钝角三角形时,k的取值范围.23.(德阳)如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O的切线与ED的延长线交于点P.24.(泉州)如图1,在平面直角坐标系中,正方形OABC的顶点A(-6,0),过点E(-2,0)作EF∥AB,交BO于F;25.(梅州)用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求∠P AB的度数.探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF 的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.返回专题五数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略.数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分.数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中.抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三.三、中考考点精讲1.(吉林)若a-2b=3,则2a-4b-5=.2.(福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是.3.(东营)如图,圆柱形容器中,高为 1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).4.(宁德质检)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连结DE,则DE的最小值为.5.(山西)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?。
九年级数学中考第二轮专题复习第五讲开放型问题
九年级数学中考第二轮专题复习第五讲开放型问题开放探索性试题在中考中越来越受到重视,由于条件与结论的不确定性,使得解题的方法与答案呈多样性,学生犹如八仙过海,各显神通。
探索性问题的特点是:问题一般没有明确的结论,没有固定的形式和方法,需要自己通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的结论或条件或方法,这类题主要考查学生分析问题和解决问题的能力和创新意识。
这类题对同学们的综合素质要求比较高,这类题往往作为中考试卷中的压轴题出现,在中考中所占比例在9%左右。
给出问题的结论,让解题者分析探索使结论成立应具备的条件,而满足结论的条件往往不惟一,这样的问题是条件开放性问题。
它要求解题者善于从问题的结论出发,逆向追索,多途寻因。
[例1] 已知△ABC 内接于⊙O ,⑴当点O 与AB 有怎样的位置关系时,∠ACB 是直角?⑵在满足⑴的条件下,过点C 作直线交AB 于D ,当CD 与AB 有什么样的关系时,△ABC ∽△CBD ∽△ACD ?⑶画出符合⑴、⑵题意的两种图形,使图形的CD =2cm 。
[解析]:⑴要使∠ACB =90°,弦AB 必须是直径,即O 应是AB 的中点;⑵当CD ⊥AB时,结论成立;⑶由⑵知DB AD CD ⋅=2,即422==⋅DB AD ,可作直径AB 为5的⊙O ,在AB 上取一点D ,使AD =1,BD =4,过D 作CD ⊥AB 交⊙O 于C 点,连结AC 、BC ,即得所求。
⑴当点O 在AB 上(即O 为AB 的中点)时,∠ACB 是直角; ⑵∵∠ACB 是直角,∴当CD ⊥AB 时,△ABC ∽△CBD ∽△ACD ;⑶作直径AB 为5的⊙O ,在AB 上取一点D ,使AD =1,BD =4,过D 点作CD ⊥AB 交⊙O 于C 点,连结AC 、BC ,即为所求(如下图所示)。
[评注]:本题是一个简单的几何条件探索题,它突破了过去“假设——求证”的封闭式论证,而是给出问题的结论,逆求结论成立的条件,强化了对学生通过观察、分析、猜想、推理、判断等探索活动的要求。
九年级数学中考专题系列-探索型问题专题辅导全国通用
探索型问题专题辅导探索型问题是近年来全国各地中考试卷中经常出现的题型.所谓探索型问题就是问题的条件或结论不直接给出,需要经过观察、分析、分类、推理、化归、特殊化、一般化、数形结合及猜想等一系列的探索活动,逐步确定要求的结论或条件.一、探索型问题的特点及分类该类试题的总体特点是:给出命题的结论,要求考生探索该结论成立的条件;给出命题的条件,要求考生探索命题的结论;给出一些特例,要求考生探索寓于这些特例中的一般规律;给出一个真命题,适当改变命题的某个条件,探索命题的结论是否仍然成立.以上这些特点的探索型问题分别是:条件探索题、结论探索题、规律探索题和存在性探索题.仔细分析近几年各地中考试卷中出现的探索型问题,其命题方式主要有填空题、选择题和综合题,其中以综合题为主.下面结合具体题目进行分析.1、条件探索题解这类题目的总体思路是采用分析法,把结论看作已知进行逆推,探索结论成立所需要的条件. 【例1】(1)如果一个立体图形的主视图为矩形,则这个立体图形可能是(•只需填上一个立体图形).(2)如图,点D E ,分别在线段AB AC ,上,BE CD ,相交于点O AE AD =,,要使ABE ACD △≌△,需添加一个条件是(只要写一个条件).【解析】(1)答案不唯一如:长方体、圆柱等;(2)B C ∠=∠,AEB ADC ∠=∠,CEO BDO ∠=∠,AB AC BD CE ==,(任选一个即可) 【点评】 由所给的结果出发,找寻适合的条件,这种逆向思维方式在这种开放性问题中得好较好的考查.当然,准确而快速地得到合适的条件还要靠我们对具体知识或某数学模型的熟练程度.【例2】已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标:.【解析】(13)-,,(12)-,,(11)-,,(21)-,,(22)-,,(31)-,六个中任意写出一个即可. 【点评】这道题要求我们根据所给的要求,探究符合条件的点P 的坐标,结果开放,在寻找过程 中,我们注意严格按照所限制的要求去寻找,不能顾此失彼,得到一个符合条件的坐标后再代入题中逐个验证,确保不出差错.OC EA DB2、结论探索题解这类探索题的总体思路是先假定结论存在,并以此进行推理.【例3】(1)写出一个两实数根符号相反的一元二次方程:__________________.(2)(2007年某某某某)请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果.(3)请写出一个图象在第二、四象限的反比例函数关系式_____________ (4)如图,将一X 等腰直角三角形纸片沿中位线剪开可以拼成不同形状的四边形,请写出其中一种四边形的名称. 【解析】(1)答案不唯一:如2230x x +-= (2)答案不唯一,如2x x 42++2=2(x +1)2(3)答案不唯一,如:y =-2x(4)平行四边形、矩形、等腰梯形(三种中任选一种即可)【点评】 这几道小的开放性填空题都是由因索果,根据所给的限制条件,可以探究出很多开放的结果.我们在处理此类题时注意的是所写的答案尽量简洁、贴近题意,不提倡过分的标新立异. 【例4】在市区内,我市乘坐出租车的价格y (元)与路 程x (km )的函数关系图象如图1所示. 请你根据图象写出两条信息.【解析】在0到2km 内都是5元;2km 后,每增加加1元. (答案不唯一)【点评】这类识图写信息的开放性问题近年来是命题热点,解决的关键是,认真看准图形中的关键点所对应的横坐标与纵坐标的意义.3、规律探索题【例5】根据以下10个乘积,回答问题:第(4)题图图111×29; 12×28; 13×27; 14×26; 15×25; 16×24; 17×23; 18×22; 19×21; 20×20.(1)试将以上各乘积分别写成一个“□2-○2”(两数平方差)的形式,并写出其中一个的思考过程; (2)将以上10个乘积按照从小到大的顺序排列起来; (3)试由(1)、(2)猜测一个一般性的结论.(不要求证明) 【解析】⑴11×29=202-92;12×28=202-82;13×27=202-72;14×26=202-62;15×25=202-52;16×24=202-42; 17×23=202-32;18×22=202-22;19×21=202-12; 20×20=202-02.例如,11×29;假设11×29=□2-○2, 因为□2-○2=(□+○)(□-○); 所以,可以令□-○=11,□+○=29. 解得,□=20,○=9.故229202911-=⨯. (或11×29=(20-9)(20+9)=202-92) ⑵ 这10个乘积按照从小到大的顺序依次是:1129122813271426⨯<⨯<⨯<⨯<152516241723⨯<⨯<⨯<182219212020⨯<⨯<⨯.⑶ ① 若40a b +=,a ,b 是自然数,则ab ≤202=400. ② 若a +b =40,则ab ≤202=400.③ 若a +b =m ,a ,b 是自然数,则ab ≤22m ⎛⎫ ⎪⎝⎭.④ 若a +b =m ,则ab ≤22m ⎛⎫⎪⎝⎭.⑤ 若a,b 的和为定值,则ab 的最大值为22a b +⎛⎫⎪⎝⎭.⑥ 若a 1+b 1=a 2+b 2=a 3+b 3=…=a n +b n =40.且 | a 1-b 1|≥|a 2-b 2|≥|a 3-b 3|≥…≥| a n -b n |, 则 a 1b 1≤a 2b 2≤a 3b 3≤…≤ a n b n . ⑦ 若a 1+b 1=a 2+b 2=a 3+b 3=…=a n +b n =m .且 | a 1-b 1|≥|a 2-b 2|≥|a 3-b 3|≥…≥| a n -b n |, 则a 1b 1≤a 2b 2≤a 3b 3≤…≤ a n b n .⑧ 若a +b =m ,a ,b 差的绝对值越大,则它们的积就越小.【点评】第(3)问的评分标准是:给出结论①或②之一的得1分;给出结论③、④或⑤之一的得2分;给出结论⑥、⑦或⑧之一的得3分.解决这类探索题的总体思路是通过观察、分析、归纳,从而发现寓于某些特例中的一般规律.4、存在性探索题【例6】如图,四边形OABC 是一X 放在平面直角坐标系中的矩形纸片,点A 在x 轴上,点C 在y 轴上,将边BC 折叠,使点B 落在边OA 的点D 处.已知折叠CE =3tan 4EDA ∠=.(1)判断OCD △与ADE △是否相似?请说明理由; (2)求直线CE 与x 轴交点P 的坐标;(3)是否存在过点D 的直线l ,使直线l 、直线CE 与x 轴所围成的三角形和直线l 、直线CE 与y 轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.【解析】(1)OCD △与ADE △相似. 理由如下:由折叠知,90CDE B ∠=∠=°,1290∠+∠=∴°,13902 3.∠+∠=∴∠=∠,又90COD DAE ∠=∠=∵°,OCD ADE ∴△∽△.(2)3tan 4AE EDA AD ∠==∵,∴设3AE t =, 则4AD t =.由勾股定理得5DE t =.358OC AB AE EB AE DE t t t ==+=+=+=∴.由(1)OCD ADE △∽△,得OC CDAD DE=, 845t CDt t=∴, 10CD t =∴.在DCE △中,222CD DE CE +=∵,(第24题图1)222(10)(5)t t +=∴,解得1t =.83OC AE ==∴,,点C 的坐标为(08),, 点E 的坐标为(103),,设直线CE 的解析式为y kx b =+,1038k b b +=⎧⎨=⎩,∴,解得128k b ⎧=-⎪⎨⎪=⎩,,182y x =-+∴,则点P 的坐标为(160),.(3)满足条件的直线l 有2条:212y x =-+,212y x =-.如图2:画出两条直线.【点评】这道题是由人教课标教材的复习题改编而成,主要考查学生综合运用知识的能力和思维的灵活性与严谨性.作为某某市的最后一道压轴题,这道题没有在知识与技能上“深挖洞”,让考生直接写出解析式并画出相应的直线,是为了让学生有更多的时间用于思考和探究,很好的体现了课改精神.二、命题趋势通过以上分析,笔者认为2010年关于探索型问题,我们应该注意以下几个方向: 1、融一些基本的、重要的知识于探索型问题中.初中学过的一些重要的知识,如实数的有关知识、方程(组)的求解、函数关系的确定、图形的变换、图形与坐标及图形性质探索的证明等都可以用一定的方式让学生去探索得到.2、结合探索型问题对学生思想进行考查.《数学课程标准》已把一些常用的基本数学思想作为重要的基础知识来要求学生掌握,正因为数学思想是基础知识,所以直接考查学生对数学思想的掌握情况的题目并不多,命题者越来越愿意把对数学思想方法的考查放到“探索型问题”里面,这样的探索型问题的解答必须依赖于一些重要的数学思想,如函数思想、数形结合思想、分类讨论思想等,不会应用这些数学思想就无法解答这样的探索问题.3、与图形的三种变换结合在一起.探索型问题常与几何变换联系在一起,几何变换的基本目标是通过对图形的改组,化不规则图形为规则图形,化一般为特殊,化隐蔽为明显关系.通过这样的“手段”来探讨图形在运动过程中哪些量和关系不变化,哪些量和关系变化,并从中找出规律.常用的三种变换是指平移变换、旋转变换和对称变换.4、与运动型问题相结合综合考查学生数学知识的应用能力.运动型问题往往是中考卷中的“压轴题”,运动型问题可分为点的运动和一个简单图形的运动,而点的运动又可分为一个点的运动和两个点的运动;简单图形的运动可分为平移运动和旋转运动.所有的动点问题都有一定的层次,能考查出学生对所学基础知识的掌握和综合运用知识分析问题、解决问题能力的情况,所以探索型问题常以“动”为基础.三、复习策略1、转变做题方式,注重解题过程.探索型问题的出现,更加要求我们注重知识与方法的形成过程,在探究过程中感受知识、体会方法、领悟思想.2、重视解题后的反思.题后反思常常被同学们所忽略,这个环节是学习更上层楼的一个重要环节,一道数学探索型问题解后,要认真反思这道问题的思路的发生与演变,考查了什么数学知识,涉及到了哪种数学方法,体现了怎样的数学思想等等,这些问题的反思,能帮助我们站在较高的层面上认识一道数学问题,能起到事半功倍的作用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学中考二轮复习3.2 探索型问题与开放型问题(测)时间:60分钟,满分:100分姓名:____________得分_____一.选择题(每题5分,共25分)1.(2015年山东临沂)如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能..使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE【答案】B【解析】根据平行四边形的性质可知AD∥BC,AD=BC,AB∥DC,AB=DC,因此可知DE∥BC,再由DE=AD,根据一组对边平行且相等的四边形DBCE是平行四边形.当AB=BE时,根据对角线相等的平行四边形是矩形,可证平行四边形DBCE是矩形,故能成为矩形;当BE⊥DC时,根据对角线互相垂直的平行四边形是菱形,可证平行四边形DBCE是矩形,故不能成为矩形;当∠ADB=90°时,可知∠BDE=90°,根据有一个角是直角的平行四边形是矩形,可证平行四边形DBCE是矩形,故能成为矩形;当CE⊥DE时,则∠CED=90°,根据有一个角是直角的平行四边形是矩形,可证平行四边形DBCE是矩形,故能成为矩形.故选B考点:矩形的判定;开放型问题2.(2015年山东泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A .135B .170C .209D .252 【答案】C . 【解析】∵a+(a+2)=20,∴a=9, ∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209,故选C . 考点:1.规律型:数字的变化类;2.综合题.3.(2015年浙江台州市)某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人。
”乙说:“两项都参加的人数小于5人。
”对于甲、乙两人的说法,有下列四个命题,其中真命题的是( ) A .若甲对,则乙对 B .若乙对,则甲对 C .若乙错,则甲错 D .若甲错,则乙对 【答案】B 【解析】如果甲正确,则乙就正确;如果乙正确,则甲错误. 考点:猜想题;探索型4.(2015年广东深圳)如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB=2AG ;③△GDE ∽△BEF ;④S ⊿BEF =572。
在以上4个结论中,正确的有( )A 、1B 、2C 、3D 、4 【答案】C 【解析】由折叠可知,DE=DC=DA ,∠DEF=∠C=90° ∠DFG=∠A=90° ∴△ADG ≌△FDG ,①正确; ∵正方形边长为12 ∴BE=EC=EF=6 设AG=GF=x 则FG=x+6,BG=12-x由勾股定理可得:222(6)6(12)x x +=+- 解得:x=4 ∴AG=GF=4,BG=8 ∴BG=2AG ②正确 BE=EF=6,△BEF 为等腰三角形 易知△GDE 不是等腰三角形 ③错误BEG S △=12×6×8=24 =BEF EF S EG △·BEG S △=610×24=725④正确. 考点:折叠图形的性质、勾股定理、三角形全等与相似. 5.(2015年黑龙江牡丹江)在△ABC 中,AB=12,AC=13,cos ∠B=,则BC 边长为( ).A .7B .8C .8或17D .7或17 【答案】D 【解析】根据特殊角的三角函数值:cos45°,所以∠B=45°,然后画出图形,分锐角三角形和钝角三角形两种情况,如图:①当△ABC 为钝角三角形时,如图1,作AD ⊥BC 交BC 的延长线于D ,由∠B=45°可知△ABD是等腰直角三角形,,∴=12,∵AC=13,由勾股定理得CD=5,∴BC=BD ﹣CD=12﹣5=7;②当△ABC 为锐角三角形时,如图2,作AD ⊥BC 交BC 于D,由∠B=45°可知△ABD 是等腰直角三角形,,∴=12,∵AC=13,由勾股定理得CD=5,∴BC=BD+CD=12+5=17;故BC 的值有两个7或17,选D .考点:解直角三角形.二.填空题(每题5分,共20分)6.(2015年山东莱芜)已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…, 观察上面的计算过程,寻找规律并计算=610C .【答案】210 【解析】对于b a C (b <a )来讲,等于一个分式,其中分母是从1到b 的b 个数相乘,分子是从a 开始乘,乘到a-b+1,共b 个数相乘.因此其规律是:;;;…;C106=1098765 123456⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=210.考点:规律探索7.(2015年湖北襄阳)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.【答案】55°或35°.【解析】①若E在AD上,如图,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠DAB=∠ABD=55°;②若E在AD的延长线上,如图,∵BE是AD边上的高,∠EBD=20°,∴∠E DB=90°﹣20°=70°,∵AD=BD,∴∠DAB=∠ABD=35°.故答案为:55°或35°.考点:平行四边形的性质;分类讨论;探索型问题8.(2015年广东佛山)各边长度都是整数、最大边长为8的三角形共有个.【答案】10【解析】利用三角形三边关系,由各边长度都是整数、最大边长为8,可知三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8; 3,7,8; 3,8,8; 4,5,8; 4,6,8; 4,7,8; 4,8,8;故各边长度都是整数、最大边长为8的三角形共有10个. 考点:三角形三边关系;探索型问题9.(2015年广东深圳)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有 个太阳。
【答案】21 【解析】第一行的规律是1,2,3,4,…,故第五个数是5;第二行的规律是1,2,4,8,…,故第五个数是16;故第五个图中共有5+16=21个太阳. 考点:规律题;探索型问题10.(2015年辽宁本溪)在△ABC 中,AB=6cm ,AC=5cm ,点D 、E 分别在AB 、AC 上.若△ADE 与△ABC 相似,且ΔADE BCED :S S 四边形=1:8,则AD= cm . 【答案】2或53. 【解析】∵ΔADE BCED :S S 四边形=1:8,∴ΔADE ΔABC :S S =1:9,∴△ADE 与△ABC 相似比为:1:3,①若∠AED 对应∠B 时,则13AD AC =,∵AC=5cm ,∴AD=53cm ; ②当∠ADE 对应∠B 时,则13AD AB =,∵AB=6cm ,∴AD=2cm ;故答案为:2或53.考点:.相似三角形的性质;分类讨论;开放型问题 三.解答题(共50分)11.(12分)(2015年河南省)如图1,在Rt △ABC 中,∠B=90°,BC=2AB=8,点D ,E 分别是边BC ,AC 的中点,连接DE. 将△EDC 绕点C 按顺时针方向旋转,记旋转角为α.(1)问题发现 ① 当︒=0α时,_____________=BD AE ;② 当︒=180α时,.__________=BDAE(2)拓展探究试判断:当0°≤α<360°时,DBAE的大小有无变化?请仅就图2的情况给出证明. (3)问题解决当△EDC 旋转至A 、D 、E 三点共线时,直接写出线段BD 的长. 【答案】(1)①25,②25.(2)无变化;理由参见解析.(3)54,5512.【解析】(1)当︒=0α时,∵点D ,E 分别是边BC ,AC 的中点,∠B=90°,BC=2AB=8,∴AB=4,BD=4,AC=45,AE=25,∴25452==BD AE ; 当︒=180α时,AE=65,BD=12,∴251256==BD AE ;(2)没有变化,∵△EDC 在旋转过程中形状大小不变,∴CE:CA=CD:CB 仍成立,又∵∠ACE=∠BCD=a,∴△ACE ∽△BCD,∴AE:BD=AC:BC,在Rt △ABC 中,AC=45,∴AC:BC=45:8=25;(3)当△EDC 在BC 上方,且A,D E 三ECD BA(图1)E DBAC (图2)(备用图)CBA点共线时,四边形ABCD 为矩形,∴BD=AC=45;当△EDC 在BC 下方,且A,E,D 三点共线时,△ADC 为直角三角形,用勾股定理求得AD=8,∴AE=6,由BD AE =25,可求得BD=5512.考点:1.三角形的图形变换问题;2.利用三角形的相似求线段.12.(12分)(2015年江苏南京)如图,AB∥CD,点E ,F 分别在AB ,CD 上,连接EF ,∠AEF、∠CFE 的平分线交于点G ,∠BEF、∠DFE 的平分线交于点H .(1)求证:四边形EGFH 是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G 作MN∥EF,分别交AB ,CD 于点M ,N ,过H 作PQ∥E F ,分别交AB ,CD 于点P ,Q ,得到四边形MNQP ,此时,他猜想四边形MNQP 是菱形,请在下列框中补全他的证明思路.【答案】(1)证明见试题解析;(2)答案不唯一,例如:FG 平分∠CFE ;GE=FH ;∠GME=∠FQH ;∠GEF=∠EFH . 【解析】(1)∵EH 平分∠BEF ,∴∠FEH=12∠BEF ,∵FH 平分∠DFE ,∴∠EFH=12∠DFE ,∵AB ∥CD ,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=12(∠BEF+∠DFE )=12×180°=90°,∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH )=180°﹣90°=90°,同理可得:∠EGF=90°,∵EG 平分∠AEF ,∴∠EFG=12∠AEF ,∵EH 平分∠BEF ,∴∠FEH=12∠BEF ,∵点A 、E 、B 在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=12(∠AEF+∠BEF )=12×180°=90°,即∠GEH=90°,∴四边形EGFH 是矩形;(2)答案不唯一:由AB ∥CD ,MN ∥EF ,PQ ∥EF ,易证四边形MNQP 是平行四边形, 要证▱MNQP 是菱形,只要证MN=NQ ,由已知条件:FG 平分∠CFE ,MN ∥EF , 故只要证GM=FQ ,即证△MGE ≌△QFH ,易证 GE=FH 、∠GME=∠FQH .故只要证∠MGE=∠QFH ,易证∠MGE=∠GEF ,∠QFH=∠EFH ,∠GEF=∠EFH ,即可得证.考点:菱形的判定;全等三角形的判定与性质;矩形的判定;探索型问题13.(12分)(2015年辽宁朝阳)问题:如图(1),在Rt △ACB 中,∠ACB=90°,AC=CB ,∠DCE=45°,试探究AD 、DE 、EB 满足的等量关系.[探究发现]小聪同学利用图形变换,将△CAD 绕点C 逆时针旋转90°得到△CBH ,连接EH ,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH ≌ ,得EH=ED . 在Rt △HBE 中,由 定理,可得BH 2+EB 2=EH 2,由BH=AD ,可得AD 、DE 、EB 之间的等量关系是. [实践运用](1)如图(2),在正方形ABCD 中,△AEF 的顶点E 、F 分别在BC 、CD 边上,高AG 与正方形的边长相等,求∠EAF 的度数;(2)在(1)条件下,连接BD ,分别交AE 、AF 于点M 、N ,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN 的长.【答案】[探究发现]△CDE ;勾股;222AD EB DE +=;[实践运用](1)45°;(2)正方形边长为6,. 【解析】根据“边角边”,可证△CEH ≌△CDE ,得EH=ED ,在Rt △HBE 中,由勾股定理,可得222MN MB ND =+,由BH=AD ,可得AD 、DE 、EB 之间的等量关系是222AD EB DE +=;故答案为:△CDE ;勾股;222AD EB DE +=;(1)在Rt △ABE 和Rt △AGE 中,∵AB=AG ,AE=AE ,∴Rt △ABE ≌Rt △AGE (HL ),∴∠BAE=∠GAE ,同理,Rt △ADF ≌Rt △AGF ,∴∠GAF=∠DAF ,∵四边形ABCD 是正方形,∴∠BAD=90°,∴∠EAF=12∠BAD=45°; (2)由(1)知,Rt △ABE ≌Rt △AGE ,Rt △ADF ≌Rt △AGF ,∴BE=EG=2,DF=FG=3,则EF=5,设AG=x ,则CE=x ﹣2,CF=x ﹣3,∵222CE CF EF +=,∴222(2)(3)5x x -+-=,解这个方程,得x=6或x=﹣1(舍去),∴AG=6,∴BD===,∴AB=6,∵222MN MB ND =+,设MN=a ,则222)a a =+-,所以,即 考点:几何变换综合题;探究型;压轴题14. (14分)(2015浙江湖州)问题背景:已知在△ABC 中,AB 边上的动点D 由A 向B 运动(与A ,B 不重合),点E 与点D 同时出发,由点C 沿BC 的延长线方向运动(E 不与C 重合),连结DE 交AC 于点F ,点H 是线段AF 上一点(1)初步尝试:如图1,若△ABC 是等边三角形,DH ⊥AC ,且点D ,E 的运动速度相等,求证:HF=AH+CF 小王同学发现可以由以下两种思路解决此问题:思路一:过点D 作DG ∥BC ,交AC 于点G ,先证GH=AH ,再证GF=CF ,从而证得结论成立. 思路二:过点E 作EM ⊥AC ,交AC 的延长线于点M ,先证CM=AH ,再证HF=MF ,从而证得结论成立. 请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分)(2)类比探究:如图2,若在△ABC 中,∠ABC=90°,∠ADH=∠BAC=30°,且点D ,E :1,求ACHF的值. (3)延伸拓展:如图3,若在△ABC 中,AB=AC ,∠ADH=∠BAC=36°,记BCAC=m ,且点D 、E 的运动速度相等,试用含m 的代数式表示ACHF(直接写出结果,不必写解答过程).图3图2图1A HF DEC BAHDFECBC MEF G H DA【答案】(1)详见解析;(2)AC HF =2 ;(3) 1AC m HF m+=. 【解析】(1)证明:方法一(选择思路一), 过点D 作DG ∥BC ,交AC 于点G ,如图1, ∵△ABC 是等边三角形, ∴∠ADG=∠B=60°, ∠A=60°, ∴△ADG 是等边三角形, ∴GD=AD=CE, ∵DH ⊥AC,GH=AH,∵DG ∥BC, ∴∠GDF=∠CEF, ∠DGF=∠ECF, ∴△GDF ≌△CEF, ∴GF=CF, ∴GH+GF=AH+CF,即HF=AH+CF . 方法二(选择思路二):过点E 作EM ⊥AC ,交AC 的延长线于点M ,如图1, ∵△ABC 是等边三角形, ∴∠A=∠ACB=∠ECM=60°, ∵DH ⊥AC, EM ⊥AC , ∴∠AHD=∠CME=90°, ∵AD=CE, ∴△ADH ≌△CEM, ∴AH=CM,DH=EM,又∵∠DHF=∠EMF=90°, ∠DFH=∠EFM, ∴△DFH ≌△EFM,∴HF=MF=CM+CF=AH+CF.(2)过点D作DG∥BC,交AC于点G,如图2, 则∠ADG=∠B=90°,∵∠BAC=∠ADH=30°,∴∠HGD=∠HDG=60°,∴GD,由题意可知,CE,∴GD=CE,∵DG∥BC, ∴∠GDF=∠CEF,∠DGF=∠ECF,∴△GDF≌△CEF, ∴GF=CF,∴GH+GF=AH+CF,即HF=AH+CF,∴ACHF=2.(3)1 AC mHF m+=.考点:等边三角形的判定及性质;全等三角形的判定及性质;平行线的性质;比例的性质.。