高中导数大题专题复习
高中高考数学专题复习《函数与导数》
50.设奇函数 在 上是增函数,且 ,则不等式 的解集为.
51.函数 在定义域 内可导,其图
象如图,记 的导函数为 ,则不等式 的解集为_____________
52.由直线 , ,曲线 及 轴所围成的图形的面积是.
53.曲线y=ex在 处的切线方程是.
54.对于三次函数 给出定义:设 是函数 的导数, 是函数 的导数,若方程 有实数解 ,则称点 为函数 的“拐点”,某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心。给定函数 ,请你根据上面探究结果,计算
9.曲线 在 处的切线平行于直线 ,则 点的坐标为()
A BLeabharlann C 和 D 和10.曲线 在点 处的切线方程是
A. B.
C. D.
11.若质点P的运动方程为S(t)=2t2+t(S的单位为米,t的单位为秒),则当t=1时的瞬时速度为()
A 2米/秒B 3米/秒C 4米/秒D 5米/秒
12.函数 图象上关于原点对称点共有( )
高中高考数学专题复习<函数与导数>
1.下列函数中,在区间 上是增函数的是()
A. B. C. D.
2.函数 的图象关于()
A.y轴对称B.直线y=-x对称
C.坐标原点对称D.直线y=x对称
3.下列四组函数中,表示同一函数的是()
A.y=x-1与y= B.y= 与y=
C.y=4lgx与y=2lgx2D.y=lgx-2与y=lg
A.“函数与方程”的上位B.“函数与方程”的下位
C.“函数模型及其应用”的上位D.“函数模型及其应用”的下位
29.已知 ()
A、 B、 C、 D、
导数大题拔高练-高考数学重点专题冲刺演练(原卷版)
导数大题拔高练-新高考数学复习分层训练(新高考通用)1.(2023春·湖南长沙·高三长沙一中校考阶段练习)已知函数()1e ln ax f x x x-=+,a ∈R .(1)当1a =时,求函数()f x x -的最小值;(2)若函数()f x x 的最小值为a ,求a 的最大值.2.(2023春·浙江杭州·高三浙江省杭州第二中学校考开学考试)已知函数()(π)sin b f x a x x =--,[π,)x ∈+∞(1)1b =时,若()0f x ≤恒成立,求a 的取值范围;(2)12b =,()f x 在3π,π2⎡⎤⎢⎥⎣⎦上有极值点0x ,求证:00()πf x x +>.3.(2023秋·浙江宁波·高三期末)已知函数1()ln ,0f x x k x k x ⎛⎫=--> ⎪⎝⎭.(1)当3k =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若对()()0,1,0x f x ∀∈<恒成立,求k 的取值范围;(3)求证:对(0,1)x ∀∈,不等式22e 11ln x x x x x-<+恒成立.4.(2023秋·广东茂名·高三统考阶段练习)已知0a >,函数()e x f x x a =-,()ln g x x x a =-.(1)证明:函数()f x ,()g x 都恰有一个零点;(2)设函数()f x 的零点为1x ,()g x 的零点为2x ,证明12x x a =.5.(2023春·广东·高三统考开学考试)已知函数()()2ln 2R f x a x x a a x=+++∈.(1)证明函数()f x 有唯一极小值点;(2)若e 04a <<,求证:()e 2x f x x x +<+.6.(2023秋·江苏苏州·高三苏州中学校考阶段练习)已知函数()sin ()cos f x x x a x =-+(a 为常数),函数3211()32g x x ax =+.(1)证明:(i )当0x >时,sin x x >;(ii )当0x <时,sin x x <;(2)证明:当0a ≥时,曲线()y f x =与曲线()y g x =有且只有一个公共点.7.(2023·山西朔州·怀仁市第一中学校校考二模)已知函数()ln a f x x x=+.(1)讨论函数()f x 的单调性;(2)令()()()2ln ln g x f x x x x =+--,若0x 是函数()g x 的一个极值点,且()02g x =-,求实数a 的值.8.(2023·江苏·高三专题练习)已知函数()ln m x n f x x+=在()()1,1f 处的切线方程为1y =.(1)求实数m 和n 的值;(2)已知()(),A a f a ,()(),B b f b 是函数()f x 的图象上两点,且()()f a f b =,求证:()()ln ln 1a b ab +<+.9.(2023秋·吉林松原·高三前郭尔罗斯县第五中学校考期末)已知函数()21e 12ax f x ax x =---.(1)当1a ≥时,证明:对任意的0x ≥,都有()0f x ≥;(2)证明:()()**112ln 1ln 2,nk n n k n k =>+-∈∈∑N N .10.(2023春·黑龙江哈尔滨·高三哈尔滨市第五中学校校考开学考试)已知函数2()ln 2x f x x =-,()(1)g x k x =-+.(1)求函数()f x 的单调递减区间;(2)若存在01x >,当()01,x x ∈时,1()()2f xg x +>,求实数k 的取值范围.11.(2023·黑龙江·黑龙江实验中学校考一模)设函数()()()e 2,x f x ax x a =--∈R .(1)若曲线()y f x =在点()()22f ,处的切线斜率为2e ,求a 的值;(2)若()f x 存在两个极值点()1212,x x x x <,且对任意[]()20,,0x x f x ∈<恒成立,求实数a 的取值范围.12.(2023春·安徽·高三校联考开学考试)已知函数()()2e x f x x -=-.(1)求()f x 的单调区间;(2)若a ,b 为两个不相等的实数,且满足()e e 2e e b a b a a b -=-,求证:6a b +>.13.(2023春·安徽亳州·高三校考阶段练习)已知函数32()61()f x x ax x a =+-+∈R ,且(1)6f '=-.(1)求函数()f x 的图象在点(1,(1))f 处的切线方程;(2)若函数()()g x f x m =-在区间[2,4]-上有三个零点,求实数m 的取值范围.14.(2023·安徽安庆·统考二模)已知函数()21ln e x f x a x bx -=+,a ,b ∈R .e 2.71828≈ .(1)若曲线()y f x =在点()()22f ,处的切线方程是ln 2y x =+,求a 和b 的值;(2)若e a =,且()f x 的导函数()f x '恰有两个零点,求b 的取值范围.15.(2023·重庆沙坪坝·重庆南开中学校考一模)设21()sin 2f x x x x =-+.(1)当0x ≥时,求证:()0f x ≥;(2)证明:对一切正整数n ,都有2222111111sin1sin sin sin sin 23422(1)n n +++++>-+ .16.(2023春·重庆沙坪坝·高三重庆八中校考阶段练习)已知函数21()ln 2f x x kx x =-+(1)讨论函数()f x 的单调性;(2)若()f x 有两个极值点12,x x ,证明:212()()22k f x f x -<-17.(2023春·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知函数()(0,1)x f x a a a =>≠在点()()11,A x f x 处的切线为1l :11y k x b =+,函数()log (0,1)a g x x a a =>≠在点()()22,B x g x 处的切线为2l :22y k x b =+.(1)若1l ,2l 均过原点,求这两条切线斜率之间的等量关系.(2)当e a =时,若12l l ∥,此时12b b -的最大值记为m ,证明:53ln 22m -<<.18.(2023·辽宁·校联考模拟预测)已知函数()e 3x f x x =+.(1)求()f x 在()3,-+∞上的极值;(2)若()()213,,32x ax x f x ∀∈-+∞≤-,求a 的最小值.19.(2023秋·江苏扬州·高三校考期末)已知函数()e 1ln x k f x x x+=+,其中0k ≥.(1)求函数()f x 的最小值;(2)证明:()11ln *,221n n n n ++>-∈≥+N .20.(2023·辽宁沈阳·统考一模)已知()()()2212ln 212f x x x x a x a x ⎛⎫=-+-+- ⎪⎝⎭,0a >.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的值.21.(2023·辽宁抚顺·统考模拟预测)已知函数2()()2ln f x x a x =++.(1)讨论函数()f x 的单调性;(2)若函数()f x 有两个极值点1x ,2x ,且12x x <,求证:()122x f x x <<.22.(2023秋·河北唐山·高三唐山市丰南区第一中学校考期末)已知函数()()2ln 0f x x x a x a =-->.(1)求()f x 的单调区间;(2)①若()0f x ≥,求实数a 的值;②设*n ∈N ,求证:()2111111ln 124n n n ⎛⎫⎛⎫++++++>+ ⎪⎝⎭⎝⎭ .23.(2023秋·河北衡水·高三河北衡水中学校考期末)已知函数()11e ln -=-+kx f x x kx x.(1)求证:()0f x ≥;(2)若()0,x ∀∈+∞,都()211e ≥+f x ,求k 满足的取值范围.24.(2023春·河北保定·高三校考阶段练习)已知函数()2ln f x ax x =-.(1)讨论()f x 的单调性;(2)设函数()2g x x =-,若对于任意31,e x ⎡⎤∈⎣⎦,都有()()f x g x ≥,求a 的取值范围.25.(2023秋·福建厦门·高三厦门外国语学校校考期末)已知函数()()2ex f x x x b =--(1)讨论函数()f x 的单调性(2)若()f x 有两个极值点1212,()x x x x >,且()()213,ef x f x ≥,求b 的取值范围26.(2023·山东枣庄·统考二模)已知函数()e sin x f x x x =-.(1)当π2x ≤时,求证:()0f x ≥;(2)当0x >时,函数()f x 的零点从小到大依次排列,记为{}()*n x n ∈N 证明:(i )1sin sin n n x x +>;(ii )212π2πn n x n x -+<<.27.(2023秋·湖北十堰·高三统考阶段练习)已知函数()()21e x f x x m x nx m=--+,且曲线()y f x =在0x =处的切线为=2y -.(1)求m ,n 的值和()f x 的单调区间;(2)若()()()()123123f x f x f x x x x ==<<,证明:120x x +>.28.(2023秋·湖北·高三湖北省云梦县第一中学校联考期末)已知函数()()ln 3(R)f x x a x x a a =--+-∈.(1)若0a =,求()f x 的极小值.(2)讨论函数()f x '的单调性;(3)当2a =时,证明:()f x 有且只有2个零点.29.(2023秋·湖南长沙·高三长沙一中校考阶段练习)已知函数()()e R x f x ax a =-∈,()πe cos 2x g x x =+.(1)若()0f x ≥,求a 的取值范围;(2)求函数()g x 在()0,∞+上的单调性;(3)求函数()()21e sinπ1x h x g x x -=--⎡⎤⎣⎦在()0,∞+上的零点个数.30.(2023·江苏泰州·泰州中学校考一模)已知函数e 1()e 1x x f x -=+(e 为自然对数的底数).(1)若不等式e 1()e 1f x ->+恒成立,求实数x 的取值范围;(2)若不等式1()ln 23f x ax a <+-在(ln 2,)x ∈+∞上恒成立,求实数a 的取值范围.。
导数复习题(含答案)
因为 ,所以 ,即 ,
所以 化为 ,
当 时,不等式 等价于 ,即 ,解得 ;
当 时,不等式 等价于 ,即 ,解得 ;
综上,不等式 的解集为 .
点睛:本题考查了与函数有关的不等式的求解问题,其中解答中涉及到利用条件构造新函数和利用导数研究函数的单调性,以及根据单调性和奇偶性的关系对不等式进行转化,解答中一定要注意函数值为零是自变量的取值,这是题目的一个易错点,试题综合性强,属于中档试题.
A. B. C. D.
【答案】A
【解析】由题意得 ,令
,选A.
点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.
故答案为B。
11.已知函数 有两个零点,则 的取值范围是()
A. B. C. D.
【答案】D
【解析】函数 的定义域为 ,因为 ,当 时, ,则函数 在 上单调递增,不满足条件;当 时,令 ,得 ,所以 在 上单调递减,在 上单调递增,所以 为极小值点,要使 有两个零点,即要 ,即 ,则 的取值范围是 ,故选D.
6.函数 的图象是()
A. B.
C. D.
【答案】A
【解析】由函数 ,则 ,所以函数 为奇函数,
图象关于原点对称,
又 时, ,
所以当 时, 单调递增,当 时, 单调递减,
综上,函数的图象大致为选项A,故选A.
7.已知函数 是函数 的导函数, ,对任意实数都有 ,设 则不等式 的解集为()
(完整版)高三复习导数专题
导 数一、导数的基本知识 1、导数的定义:)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 2、导数的公式: 0'=C (C 为常数) 1')(-=n n nxx (R n ∈) xx e e =')(a a a x x ln )('= xx 1)(ln '= exx a a log 1)(log '=x x cos )(sin '= x x sin )(cos '-=3、导数的运算法则: [()()]f x g x '+ =()()f x g x ''+ [()()]()()f x g x f x g x '''-=-[()]()af x af x ''= [()()]()()()()f x g x f x g x f x g x '''=+ 2()()()()()[]()[()]f x f x g x f x g x g x g x ''-'= 4、掌握两个特殊函数 (1)对勾函数()bf x ax x=+ ( 0a > ,0b >) 其图像关于原点对称(2)三次函数32()f x ax bx cx d =+++(0)a ≠导数导数的概念 导数的运算导数的应用导数的定义、几何意义、物理意义 函数的单调性 函数的极值函数的最值 常见函数的导数导数的运算法则 比较两个的代数式大小导数与不等式讨论零点的个数求切线的方程导数的基本题型和方法1、、导数的意义:(1)导数的几何意义:()k f x'=(2)导数的物理意义:()v s t'=2、、导数的单调性:(1)求函数的单调区间;()0()b]f x f x'≥⇔在[a,上递增()0()b]f x f x'≤⇔在[a,上递减(2)判断或证明函数的单调性;()f x c≠(3)已知函数的单调性,求参数的取值范围。
高中导数必会经典题型
《导数》必会经典题型【知识点】1.导数公式:'0C = '1()n n x nx -= '(sin )cos x x = '(cos )sin x x =-'()x x e e = '()ln x x a a a = '1(ln )x x = '1(log )ln a x x a = 2.运算法则:'''()u v u v +=+ '''()u v u v -=- '''()uv u v uv =+ '''2()u u v uv v v -= 3.复合函数的求导法则:(整体代换)例如:已知2()3sin (2)3f x x π=+,求'()f x 。
解:''()32sin(2)[sin(2)]33f x x x ππ=⋅+⋅+'6sin(2)cos(2)(2)333x x x πππ=+⋅++ 6sin(2)cos(2)212sin(2)cos(2)3333x x x x ππππ=+⋅+⋅=+⋅+26sin(4)3x π=+4.导数的物理意义:位移的导数是速度,速度的导数是加速度。
5.导数的几何意义:导数就是切线斜率。
6.用导数求单调区间、极值、最值、零点个数:对于给定区间[,]a b 内,若'()0f x >,则()f x 在[,]a b 内是增函数;若'()0f x <,则()f x 在[,]a b 内是减函数。
【题型一】求函数的导数 (1)ln x y x = (2)2sin(3)4y x π=- (3)2(1)x y e x =- (4)3235y x x =-- (5)231x x y x -=+ (6)2211()y x x x x =++ 【题型二】导数的物理意义的应用1.一杯90C 红茶置于25C 的房间里,它的温度会不断下降,设温度T 与时间t 的关系是函数()T f t =,则'()f t 符号为 。
高中导数题所有题型及解题方法
高中导数题所有题型及解题方法一、导数的概念1.1 导数的定义•导数的定义公式:f′(x)=limℎ→0f(x+ℎ)−f(x)ℎ•导数表示函数在某一点的变化率1.2 导数的几何意义•函数图象在某一点的切线斜率•函数图象在某一点的局部线性近似二、导数的基本运算法则2.1 基本导数公式•常数函数:d dx (C)=0•幂函数:d dx (x n)=nx n−1•指数函数:ddx(a x)=a x ln(a)2.2 函数和、差、积、商的导数•和的导数:(u+v)′=u′+v′•差的导数:(u−v)′=u′−v′•积的导数:(uv)′=u′v+uv′•商的导数:(uv)′=u′v−uv′v2,其中v≠02.3 复合函数的导数•复合函数的求导公式:如果y=f(u)及u=g(x), 则dy dx =dy dududx三、导数的应用3.1 函数的单调性•若f′(x)>0,则函数f(x)在该区间上单调递增•若f′(x)<0,则函数f(x)在该区间上单调递减3.2 函数的极值与最值•极大值:若f′(x0)=0,且f″(x0)<0,则f(x0)是函数f(x)在x0处的极大值•极小值:若f′(x0)=0,且f″(x0)>0,则f(x0)是函数f(x)在x0处的极小值3.3 函数的拐点•拐点:若f″(x0)=0,则f(x)在x0处的图像有拐点3.4 函数的图像•函数图象的基本性质–若f′(x)>0,则函数的图像上的点随x的增大而上升–若f′(x)<0,则函数的图像上的点随x的增大而下降–若f″(x)>0,则函数的图像在该区间上凹–若f″(x)<0,则函数的图像在该区间上凸四、基础导数题型4.1 求导数•题型1:求函数的导数y=f(x)•题型2:求函数的高阶导数y(n)=f(x)4.2 高阶导数应用•题型1:求函数的极值和拐点•题型2:求函数在某点的切线方程•题型3:求函数的图像4.3 求解极值问题•题型1:求一定范围内函数的极大值和极小值•题型2:求满足一定条件的函数极值4.4 函数的单调性•题型1:判断函数的单调区间•题型2:填空题,填写使函数单调递增或递减的区间五、综合题型5.1 数学建模•题型1:利用导数求解实际生活中的问题5.2 物理应用•题型1:利用导数求解物理问题,如速度、加速度等5.3 函数的变化率•题型1:求函数在某点的变化率•题型2:求函数在某段区间的平均变化率六、总结本篇文章主要介绍了高中阶段导数相关的内容,包括导数的基本定义、几何意义、基本运算法则,以及导数在函数的单调性、极值与最值、图像以及物理应用中的运用。
导数答题专题5大题型练习题 高三数学一轮复习
1导数大题专题训练一、 导数恒成立(存在)问题类型一 分离参数1.已知函数()ln (0)f x x x x =>.(分离参数,恒成立2问)(1) 求()f x 的单调区间和极值.(2) 若对任意23(0,),()2x mx x f x -+-∈+∞≥恒成立,求实数m 的最大值.2.已知函数ln()(),().xxf x ax e a Rg xx=-∈=(分离参数,存在2问)(1)求函数()f x的单调区间.(2)o (0,),()()xx f x g x e∃∈+∞≤-使不等式成立,恒成立,求实数a的取值范围.233. 已知函数()ln f x x =(1)求函数()(1)g x f x x =+-的最大值.(2)若对任意0x >时,不等式2()1f x ax x ≤≤+恒成立,求实数a 的取值范围.4. 已知函数2()ln +(0)f x x x a ax=+≠ (1)当1()a f x =时,求的极值.(2)若对任意1()2,x e e f x x -∈<+(,),时求实数a 的取值范围.4类型二 最值定位法解双参不等式恒成立问题1.设函数()2cos ,()ln (0)k f x x x g x x k x =--=-->(1)求函数()f x 的单调递增区间;(2)若对任意11[0,]2x ∈,总存在21[,1]2x ∈,使得12()()f x g x ≤,求实数k 的取值范围.52. 已知函数1()ln ,()(0)2a f x x mx g x x a x =-=->(1)求函数()f x 的单调递增区间;(2)若21221,,[2,2]2m x x e e=∀∈,都有12()()g x f x ≥成立,求实数a 的取值范围.63. 已知函数32333(),()(1)31,.x+12x f x g x x a x ax a -==-++--其中为常数 (1)当=1a 时,求曲线()y g x =在0x =处的切线方程;(2)若0a <,对与任意1[1,2]x ∈,总存在2[12]x ∈,,使得12()=()f x g x ,求实数a 的取值范围.7类型三 做差法构造函数(讨论参数成立时的范围)1. 已知函数22()ln f x a x x ax =-+(1)当1a =-时,求()f x 的极值;(2)若()0+f x <∞在(0,)上恒成立,求实数a 的取值范围.82. 已知函数21()1,(),.2x f x x a e g x x ax a =+-=+()其中为常数 (1)当2a =时,求函数()f x 在点(0)f (0,)处的切线方程; (2)若对任意的[0,)x ∈+∞,不等式()()f x g x ≥恒成立,求实数a 的取值范围.93. 函数2()2ln ,().f x x ax x a R =-+∈(1)若曲线()y f x =在点(1)f (1,)处的切线与直线210x y -+=垂直,求a 的值;(2)若不等式22ln 3x x x ax ≥-+-在区间0]e (,上恒成立,求实数a 的取值范围.10 二.导数与函数零点问题类型一、讨论函数零点的个数1. 已知函数()cos .x f x e x =-(1)求函数()f x 的图象(0)f (0,)在点处的切线方程;(2)求证:()f x 在(,)2π-+∞上仅有2个零点.11 2. 已知函数()cos 2x f x e x x =--(1)求函数()f x 的图象(0)f (0,)在点处的切线方程;(2)求()f x 在(,)2π-+∞上的零点个数.123. 已知函数()cos 1f x ax x =-在[0,]6π31π- (1)求a 的值;(2)求证:()f x 在(0)2π,上有且仅有2个零点.13类型二、由函数的零点个数确定参数取值范围4. 已知函数2()+ln 1()f x ax x a R =+∈(1)若函数()f x 在(1)+∞,上单调递减,求实数a 的取值范围; (2)若函数()f x 在区间1(,)e e 上有且只有两个零点,求实数a 的取值范围.145. 已知函数()(2)x f x e a x =-+(1)若1a =时,讨论()f x 的单调性;(2)若函数()f x 有两个零点,求a 的取值范围.6. 已知函数2=-+-∈f x a x x a x a R()ln(21)()f x的单调区间;(1)若1a=时,讨论()f x的极值;(2)求函数()f x有两个不同的零点,求a的取值范围. (3)若函数()1516三、导数与不等式证明类型一 构造函数证明不等式(()()()h x f x g x =-)1. 已知函数()2ln 1f x x x =+(1)求()f x 的最小值;(2)证明:21()2ln f x x x x x ≤-++.172. 已知函数21()ln ()2f x x a x a R =-∈ (1)讨论()f x 的单调性;(2)若1,(1,),a x =∈+∞证明:32()3f x x <3. 已知函数()=x-的图象在点(0,1)处的切线斜率为1-.f x e axf x的极值;(1)求a的值及()(2)证明:2当时,.0x><x x e1819类型二 将不等式转化为两个函数的最值进行比较(隔离分析最值法)4. 已知函数()ln ,().x x f x x x x g x e=+= (1)若不等式2()()f x g x ax ≤对[1,+x ∈∞)恒成立,求a 的最小值;(2)证明:()+1().f x x g x ->5. 已知函数2()lnf x ex x x=-.求证:当1 0()xx f x xee ><+时,20216. 已知函数()ln ()f x e x ax a R =-∈(1)讨论()f x 的单调性;(2)当a e =时,证明:()20.x xf x e ex -+≤22类型三 适当放缩证明不等式(1,ln 1x e x x x ≥+≤-)1. 已知函数2()ln(1),.1f x a x a x =-+-其中为实数 (1)求()f x 的单调区间;(2)证明:当2x >时,()(1)2.x f x e a x a <+--232. 已知函数()ln 1f x ax x =--(1)若()0f x ≥恒成立,求a 的最小值.(2)求证:ln 10xe x x x ++-≥.24四.极值点偏移类型一 利用1212,x x x x +问题转化,构造函数1. 已知函数21()ln 2f x x x a x =-+(1)当0a >时,讨论函数()f x 的单调性.(2)若函数()f x 有两个极值点12,x x ,证明:12ln 23()()24f x f x +>--25类型二 比值换元1. 已知函数()=()x x f x x R e∈,如果12x x ≠且12()=()f x f x ,证明:122x x +>262. 设函数()=(),x x x f x g x ae x a e=-,其中的实数., (1)求()f x 的单调区间;(2)若()g x 有两个零点1212,x x x (<x ),证明:1201x x << .273. 已知函数2()22ln ,f x ax x x a R =-∈(1)若()f x 存在单调递减区间,求a 的取值范围.(2)若函数()f x 有两个不同的极值点12,x x ,证明:122ln ln 1x x +>-.284. 已知函数()ln (,)mx n f x x m n R x-=-∈ (1)求函数()f x 在(1)f (1,)处的切线与直线0x y -=平行,求实数m 的值;(2)若1n =时,函数()f x 恰有两个零点1212,x x x (0<<x ),证明:122x x +>.29类型三 对称构造()()(2)F x f x f a x =--1.已知函数()=()x x f x x R e∈,如果12x x ≠且12()=()f x f x ,证明:122x x +>五.隐零点问题30。
导数复习导数大题练习(含详解答案)
1、函数f(*)=(2*2―k*+k)·e -*(Ⅰ)当k 为何值时,)(x f 无极值;(Ⅱ)试确定实数k 的值,使)(x f 的极小值为0 2、函数()ln f x ax x =+()a ∈R .(Ⅰ)假设2a =,求曲线()y f x =在1x =处切线的斜率;(Ⅱ)求()f x 的单调区间;〔Ⅲ〕设2()22g x x x =-+,假设对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值围. 3、设函数()1x f x x ae -=-。
〔I 〕求函数()f x 单调区间; 〔II 〕假设()0R f x x ≤∈对恒成立,求a 的取值围;〔III 〕对任意n 的个正整数1212,,nn a a a a a a A n++⋅⋅⋅⋅⋅⋅=记〔1〕求证:()11,2,i a iAa e i n A-≤=⋅⋅⋅〔2〕求证:A ≥4、函数b x x a x a x f +++-=23213)(,其中,a b ∈R . 〔Ⅰ〕假设曲线)(x f y =在点))2(,2(f P 处的切线方程为45-=x y ,求函数)(x f 的解析式; 〔Ⅱ〕当0>a 时,讨论函数)(x f 的单调性. 5、函数2()(21)(R x f x ax x e a -=-+⋅∈,e 为自然对数的底数).(I)当时,求函数()f x 的极值;(Ⅱ)假设函数()f x 在[-1,1]上单调递减,求a 的取值围. 6、函数2()(33)x f x x x e =-+⋅,设2t >-,(2),()f m f t n -==.〔Ⅰ〕试确定t 的取值围,使得函数()f x 在[]2,t -上为单调函数;〔Ⅱ〕试判断,m n 的大小并说明理由;〔Ⅲ〕求证:对于任意的2t >-,总存在0(2,)x t ∈-,满足0'20()2(1)3x f x t e =-,并确定这样的0x 的个数.7、函数2()ln (2)f x x ax a x =-+-.〔Ⅰ〕假设()f x 在1x =处取得极值,求a 的值;〔Ⅱ〕求函数()y f x =在2[,]a a 上的最大值. 8、函数221()()ln 2f x ax x x ax x =--+.()a ∈R . 〔I 〕当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程〔e 2.718...=〕; 〔II 〕求函数()f x 的单调区间.9、函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.〔Ⅰ〕当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;〔Ⅱ〕假设函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.10、函数36)2(23)(23-++-=x x a ax x f . 〔1〕当1=a 时,求函数)(x f 的极小值;〔2〕试讨论曲线)(x f y =与x 轴的公共点的个数。
导数专题复习题
导数专题复习一、求下列函数的导数1.(08浙江)()()f x x x a =-2.(07天津)2221()()1ax a f x x x -+=∈+R ,其中a ∈R . 3.(08陕西)21()kx f x x c+=+(0c >且1c ≠,k ∈R ) 4.(06山东) ()(1)ln(1)f x ax a x =-++,其中1a ≥- 5.(08安徽)1()(01)ln f x x x x x=>≠且6.(09全国)()()21f x x aIn x =++ 7.(07海南)2()ln(23)f x x x =++. 8.(07海南理) 2()ln()f x x a x =++ .*9.(09辽宁)f(x)=21x 2-ax+(a -1)ln x ,1a > 10.(07四川) 已知函数()()22ln 0f x x a xx x=++>,11.(08山东)1()1ln(1),(1)ng x x x x =-----其中n ∈N*,a 为常数. 12.(09陕西)1()ln(1),01xf x ax x x-=++≥+,其中0a > 13.08辽宁设函数ln ()ln ln(1)1xf x x x x=-+++. 14.(11全国)h (x )=2ln x +k -1x 2-1x (x >0),15.(07安徽)a ≥0,f (x )=x -1-ln 2 x +2a ln x (x >0).16.(05全国)设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,17.(11北京)kx e k x x f 2)()(-=18.(08重庆)2333()()422x g x x x e -=+- ,19.(09重庆)2()(0)xe g x k x k =>+20.(06全国)()11axx f x e x-+=- 21.(13年一模)2()=(1)x a f x x ,2()()e xf x x ax a -=++,2()xax x a f x e++=,()ln 1a f x x x =+-,x a ax x x f ln )1(21)(2-+-=,1()()2ln ()f x a x x a x =--∈R二、导数的几何意义1.(2010全国卷2文数)(7)若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则(A )1,1a b == (B) 1,1a b =-= (C) 1,1a b ==- (D) 1,1a b =-=- 2.若函数()y f x =的导函数...在区间[,]a b 上是增函数, 则函数()y f x =在区间[,]a b 上的图象可能是【 A 】.A .B .C .D .3.如图,已知函数()y f x =的图象,画出()f x '的图象 ~ab ab axyy y )b4.如图,已知函数()y f x '=的图象,画出()y f x =的图象5.(2010辽宁文数)(12)已知点P 在曲线41xy e =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 (A)[0,4π) (B)[,)42ππ (C ) 3(,]24ππ (D) 3[,)4ππ6.(11山东理科)函数2sin 2xy x =-的图象大致是|A .B .C .D .7.(2011石景山一模文8).定义在R 上的函数)(x f 满足1)4(=f ,()f x '为)(x f 的导函数,已知)('x f y =的图象如图所示,若两个正数a ,b 满足1)2(<+b a f ,则11++a b 的取值范围是( )A .)31,51(B .1(,)(5,)3-∞+∞ C .)5,31(D .)3,(-∞8. (2013届北京丰台区一模理科)已知函数1()f x x a=+,2()3g x x =+. (Ⅰ)若曲线()()()h x f x g x =-在点(1,0)处的切线斜率为0,求a,b 的值;;9. (2013届房山区一模理科数学)已知函数21()(1)ln 2f x ax a x x =-++ ,.(Ⅰ)当0a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;10. (2013届门头沟区一模理科)已知函数2()xax x af x e ++=.(Ⅰ)函数()f x 在点(0,(0))f 处的切线与直线210x y +-=平行,求a 的值; 11. (北京市东城区普通校2013届高三3月联考数学(理)试题 )已知函数x a ax x x f ln )1(21)(2-+-=xyOO yx(Ⅰ)若2=a ,求函数)(x f 在(1,)1(f )处的切线方程;12. (北京市顺义区2013届高三第一次统练数学理科试卷(解析))设函数()()()12,03123-+=>-=b bx x g a ax x x f . (I)若曲线()x f y =与曲线()x g y =在它们的交点()c ,1处具有公共切线,求b a ,的值; 13. (【解析】北京市石景山区2013届高三上学期期末考试数学理试题 )已知函数()=ln +1,f x x ax a R -∈是常数.(Ⅰ)求函数=()y f x 的图象在点(1,(1))P f 处的切线l 的方程;}三、利用导数研究函数的性质(一)单调性与导数的符号1.已知函数2()2ln 1f x x a x =--(0)a ≠,求函数()f x 的单调区间 2.求函数()ln f x a x x =+的单调区间3.求函数2()ln f x a x x =+,a ∈R ,的单调区间 4.已知函数21()(1)ln 2f x x ax a x =-+-,1a >,讨论函数()f x 的单调性。
(完整版)高三复习导数专题
导 数一、导数的基本知识 1、导数的定义:)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000。
2、导数的公式: 0'=C (C 为常数) 1')(-=n n nx x (R n ∈) xx e e =')(a a a x x ln )('= xx 1)(ln '= exx a a log 1)(log '=x x cos )(sin '= x x sin )(cos '-=3、导数的运算法则: [()()]f x g x '+ =()()f x g x ''+ [()()]()()f x g x f x g x '''-=-[()]()af x af x ''= [()()]()()()()f x g x f x g x f x g x '''=+ 2()()()()()[]()[()]f x f x g x f x g x g x g x ''-'= 4、掌握两个特殊函数 (1)对勾函数()bf x ax x=+( 0a > ,0b >) 其图像关于原点对称(2)三次函数32()f x ax bx cx d =+++(0)a ≠导 数导数的概念 导数的运算导数的应用导数的定义、几何意义、物理意义 函数的单调性 函数的极值函数的最值 常见函数的导数导数的运算法则 比较两个的代数式大小导数与不等式讨论零点的个数求切线的方程导数的基本题型和方法1、、导数的意义:(1)导数的几何意义:0()k f x '= (2)导数的物理意义:()v s t '=2、、导数的单调性:(1)求函数的单调区间;()0()b]f x f x '≥⇔在[a,上递增 ()0()b]f x f x '≤⇔在[a,上递减(2)判断或证明函数的单调性; ()f x c ≠ (3)已知函数的单调性,求参数的取值范围。
2023届全国高考数学复习:专题(导数的运算)重点讲解与练习(附答案)
2023届全国高考数学复习:专题(导数的运算)重点讲解与练习1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有[cf (x )]′=cf ′(x );[f (x )±g (x )]′=f ′(x )±g ′(x );[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); 3.复合函数的定义及其导数(1)一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )与u =g (x )的复合函数,记作y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ꞏu ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【方法总结】导数运算的原则和方法基本原则:先化简、再求导; 具体方法:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ;(2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).[例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x (4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( ) A .f (x )=sin x +cos x B .f (x )=ln x -2x C .f (x )=x 3+2x -1 D .f (x )=x e x(5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x 6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .94 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= . 12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-213.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .4 15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2.参考答案【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).解析 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x . (3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12sin4x , ∴y ′=-12sin 4x -12x ꞏ4cos 4x =-12sin 4x -2x cos 4x . (4)令u =2x -5,y =ln u .则y ′=(ln u )′u ′=12x -5ꞏ2=22x -5,即y ′=22x -5. [例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e xx +a.若f ′(1)=e 4,则a =________. 答案 1 解析 f ′(x )=e x (x +a )-e x (x +a )2=e x (x +a -1)(x +a )2,则f ′(1)=a e (a +1)2=e 4,整理可得a 2-2a +1=0,解得a =1.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .答案 -74 解析 ∵f (x )=2x 2-3xf ′(1)+ln x ,∴f ′(x )=4x -3f ′(1)+1x x =1代入,得f ′(1)=4-3f ′(1)+1,得f ′(1)=54.∴f (x )=2x 2-154x +ln x ,∴f (1)=2-154=-74.(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x 答案 C 解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2 022=4×505+2,∴f 2 022(x )=f 2(x )=cos x -sin x .故选C .(4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=x 3+2x -1D .f (x )=x e x答案 AB 解析 对于A :f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x ,∵x ∈⎝⎛⎭⎫0,π2,∴f ″(x )<0,f (x )在⎝⎛⎭⎫0,π2上是凸函数,故A 正确.对于B :f ′(x )=1x -2,f ″(x )=-1x 2<0,故f (x )在⎝⎛⎭⎫0,π2上是凸函数,故B 正确;对于C :f ′(x )=3x 2+2,f ″(x )=6x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故C 错误;对于D :f ′(x )=(x +1)e x ,f ″(x )=(x +2)e x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故D 错误.故选AB . (5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 答案 C 解析 由选项知f (x )的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x ,即⎣⎡⎦⎤f (x )x ′=1+1x ,故f (x )x =x +ln x +c (c 为待定常数),即f (x )=x 2+(ln x +c )x .又f (1)≥1,则c ≥0,故选C .【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 1.答案 B 解析 (log 2x )′=1x ln 2,故B 正确. 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 2.答案 B 解析 y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x3.答案 BCD 解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B ,C ,D 正确,故选BCD .4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .4.答案 1cos 2x -2x 3 解析 f ′(x )=(sin x )′ꞏcos x -sin x ꞏ(cos x )′cos 2x+(x -2)′=cos 2x +sin 2x cos 2x +(-2)x -3=1cos 2x -2x 3. 5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x5.答案 D 解析 由题意,f (x )=x sin x ,f 1(x )=f ′(x )=sin x +x cos x ,f 2(x )=f ′1(x )=cos x +cos x -x sin x =2cos x -x sin x ,f 3(x )=f ′2(x )=-3sin x -x cos x ,f 4(x )=f ′3(x )=-4cos x +x sin x ,f 5(x )=f ′4(x )=5sin x +x cos x ,…,据此可知f 2 019(x )=-2 019sin x -x cos x ,f 2 021(x )=2 021sin x +x cos x ,所以f 2019(x )+f 2 021(x )=2sin x ,故选D .6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e6.答案 B 解析 f ′(x )=2 021+ln x +x ×1x =2 022+ln x ,又f ′(x 0)=2 022,得2 022+ln x 0=2 022,则ln x 0 =0,解得x 0=1.7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .7.答案 2 解析 f ′(x )=-(ax -1)′(ax -1)2e x cos x -e x sin x =-a (ax -1)2+e x cos x -e xsin x ,∴f ′(0)=-a +1=-1, 则a =2.8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .8.答案 e 2解析 f ′(x )=12x -3ꞏ(2x -3)′+a e -x +ax ꞏ(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .949.答案 C 解析 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x 所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.10.答案 -4 解析 ∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),∴f ′(1)=-2,∴f ′(0)=2f ′(1)=2×(-2)=-4. 11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= .11.答案 1+e 解析 因为f (ln x )=x +ln x ,所以f (x )=x +e x ,所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e .12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-212.答案 C 解析 因为f ′(x )=f ′(1)ꞏ2x ln 2+2x ,所以f ′(1)=f ′(1)ꞏ2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2ꞏ2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2. 13.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x13.答案 BC 解析 对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意. 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .414.答案 C 解析 f ′(x )=-3e x (e x +1)2+3x 2,f ′(-x )=-3e x (e x +1)2+3x 2,所以f ′(x )为偶函数,f ′(2019)-f ′(-2019) =0,因为f (x )+f (-x )=31+e x+x 3+31+e -x -x 3=31+e x +3e x 1+e x =3,所以f (2020)+f (-2020)+f ′(2019)-f ′(-2019)=3.故选C .15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______.15.答案 8 解析 因为f ′(x )=4ax 3-b sin x +7,所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7.所以f ′(x )+f ′(-x )=14.又f ′(2 020)=6,所以f ′(-2 020)=14-6=8. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2. 16.解析 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x ꞏ1x =⎝⎛⎭⎫ln x +1x e x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3. (3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)∵y =ln 1+2x =12ln(1+2x ),∴y ′=12ꞏ11+2x ꞏ(1+2x )′=11+2x.(5)由已知f (x )=x -ln x +2x -1x 2.所以f ′(x )=1-1x -2x 2+2x 3=x 3-x 2-2x +2x 3.。
【3】导数【2023年高考数学复习——大题狂练解答210道】
2023年高考数学复习——大题狂练:导数(15题)一.解答题(共15小题)1.(2022秋•包头月考)已知函数f(x)=x3﹣a(x2+2x+2).(1)若a=2,求f(x)的单调区间;(2)证明:f(x)只有一个零点.2.(2022•梅河口市校级开学)已知函数f(x)=(1﹣x)e x﹣a(x2+1)(a∈R).(1)求f(x)的单调区间;(2)若f(x)有两个不同的零点x1,x2,证明:x1+x2<0.3.(2022春•大兴区期末)已知函数f(x)=.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求f(x)的最大值与最小值.4.(2022春•汪清县校级期末)已知函数,x∈(0,+∞).(1)求函数f(x)的图象在点(2,f(2))处的切线方程;(2)求函数f(x)的单调递增区间.5.(2022春•资阳期末)已知曲线f(x)=ax3﹣bx2+2在点(1,f(1))处的切线方程为y =1.(1)求a、b的值;(2)求f(x)的极值.6.(2022春•静安区校级期末)求函数f(x)=tan x的导函数,并由此确定正切函数的单调区间.7.(2022春•长宁区校级期末)求下列函数的导数:(1)f(x)=3x4+sin x;(2).8.(2022春•兴义市校级月考)已知函数f(x)=ax3+cx(a≠0)当x=1时,f(x)取得极值﹣2.(1)求函数f(x)的解析式;(2)求函数f(x)的单调区间和极大值;9.(2022春•乳山市校级月考)已知函数.(1)求函数f(x)的极值;(2)若函数y=f(x)的图象与直线y=0恰有三个交点,求实数a的取值范围.10.(2022春•重庆月考)已知函数f(x)=(x+a)e x.(1)若f(x)在x=1处取得极小值,求实数a的值;(2)若f(x)在(﹣1,1)上单调递增,求实数a的取值范围.11.(2022春•睢县校级月考)若函数f(x)=ax3+12x+a的减区间为(﹣2,2),求实数a 的值.12.(2022春•睢县校级月考)求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.13.(2022春•黄梅县期中)设函数f(x)=x3+x2﹣3x.(1)求函数f(x)的单调区间和极值;(2)求函数f(x)在[0,3]上的最值.14.(2022春•抚州期中)已知函数.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的极值.15.(2022春•焦作期中)已知函数f(x)=xln2x.(1)求f(x)的导函数f'(x);(2)设x0是f(x)的零点,求曲线y=f(x)在点(x0,f(x0))处的切线方程.2023年高考数学复习——大题狂练:导数(15题)参考答案与试题解析一.解答题(共15小题)1.(2022秋•包头月考)已知函数f(x)=x3﹣a(x2+2x+2).(1)若a=2,求f(x)的单调区间;(2)证明:f(x)只有一个零点.【考点】利用导数研究函数的单调性.【专题】函数思想;转化法;导数的综合应用;数学抽象;数学运算.【分析】(1)把a=2代入函数解析式,求出导函数,由导函数大于0求解原函数的增区间,由导函数小于0求解原函数的减区间;(2)问题转化为a=只有一个根,令g(x)=,利用导数研究其单调性,即可证明f(x)只有一个零点.【解答】解:(1)若a=2,则f(x)=x3﹣2x2﹣4x,f′(x)=x2﹣4x﹣4,由f′(x)=x2﹣4x﹣4>0,解得x<2﹣2或x>,由f′(x)=x2﹣4x﹣4<0,解得2﹣2<x<,∴f(x)的单调增区间为(﹣∞,2﹣2),(,+∞),单调减区间为(2﹣2,);证明:(2)函数f(x)的定义域为R,令f(x)=0,得x3﹣a(x2+2x+2)=0,则a=,令g(x)=,可得g′(x)==≥0,∴g(x)为单调增函数,∴关于x的方程至多有一个实根,又当x→﹣∞时,g(x)→﹣∞,当x→+∞时,g(x)→+∞,则g(x)的值域为R,故f(x)只有一个零点.【点评】本题考查利用导数研究函数的单调性,考查函数零点的判定,考查化归与转化思想,是中档题.2.(2022•梅河口市校级开学)已知函数f(x)=(1﹣x)e x﹣a(x2+1)(a∈R).(1)求f(x)的单调区间;(2)若f(x)有两个不同的零点x1,x2,证明:x1+x2<0.【考点】利用导数研究函数的单调性;利用导数研究函数的最值.【专题】分类讨论;分析法;综合法;导数的综合应用;数学运算.【分析】(1)求导后,根据f'(x)与0的大小关系,分a≥0,,和四种情况,讨论即可;(2)参变分离可得,设,求导,判断其单调性,结合分析法,将问题转化为证明g(x2)﹣g(﹣x2)<0,再构造新函数h(x)=(1﹣x)e2x ﹣x﹣1,x∈(0,1),证明h(x)<0,即可.【解答】(1)解:f′(x)=﹣xe x﹣2ax=﹣x(e x+2a),①当a≥0时,令f′(x)>0,解得x<0;令f′(x)<0,解得x>0,所以f(x)的减区间为(0,+∞),增区间为(﹣∞,0);②当a<0时,若ln(﹣2a)=0,即时,f′(x)≤0在R上恒成立,所以f(x)的减区间为R,无增区间;若ln(﹣2a)<0,即时,令f′(x)>0,解得ln(﹣2a)<x<0;令f′(x)<0,解得x<ln(﹣2a)或x>0,所以f(x)的增区间为(ln(﹣2a),0),减区间为(﹣∞,ln(﹣2a)),(0,+∞);若ln(﹣2a)>0,即时,令f′(x)>0,解得0<x<ln(﹣2a);令f′(x)<0,解得x<0或x>ln(﹣2a),所以f(x)的增区间为(0,ln(﹣2a)),减区间为(﹣∞,0),(ln(﹣2a),+∞),综上所述:当a≥0时,f(x)的减区间为(0,+∞),增区间为(﹣∞,0);当时,f(x)的减区间为R,无增区间;当时,f(x)的增区间为(ln(﹣2a),0),减区间为(﹣∞,ln(﹣2a)),(0,+∞);当时,f(x)的增区间为(0,ln(﹣2a)),减区间为(﹣∞,0),(ln(﹣2a),+∞).(2)证明:令f(x)=(1﹣x)e x﹣a(x2+1)=0,则,设,则g(x1)=g(x2)=a,所以,令g′(x)>0,解得x<0,令g′(x)<0,解得x>0,所以g(x)在(﹣∞,0)上单调递增,在(0,+∞)上单调递减,又当x<1时,g(x)>0,当x>1时,g(x)<0,不妨设x1<x2,则x1<0<x2<1,要证x1+x2<0,即证x1<﹣x2,因为g(x)在(﹣∞,0)上单调递增,所以只需证g(x1)<g(﹣x2),即证g(x2)<g(﹣x2),需证g(x2)﹣g(﹣x2)<0,即证,设h(x)=(1﹣x)e2x﹣x﹣1,x∈(0,1),则h′(x)=(1﹣2x)e2x﹣1,令u(x)=h′(x),则u′(x)=﹣4xe2x<0在(0,1)上恒成立,所以u(x)在(0,1)上单调递减,所以h′(x)=u(x)<u(0)=0,即h(x)在(0,1)上单调递减,所以h(x)<h(0)=0,故x1+x2<0.【点评】本题考查利用导数研究函数的单调性,证明不等式,理解函数的单调性与导数之间的联系,函数的零点与方程的根之间的关系是解题的关键,考查转化思想,逻辑推理能力和运算能力,属于难题.3.(2022春•大兴区期末)已知函数f(x)=.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求f(x)的最大值与最小值.【考点】利用导数研究函数的最值;利用导数研究曲线上某点切线方程.【专题】计算题;方程思想;综合法;导数的综合应用;逻辑推理;数学运算.【分析】(Ⅰ)对f(x)求导,进而求得f'(0)=3、f(0)=4,即可写出(0,f(0))处的切线方程;(Ⅱ)利用导数研究f(x)的单调性并确定极值,结合区间上函数值的符号判断最值情况.【解答】解:(Ⅰ)由题设,,则f'(0)=3,而f(0)=4,故(0,f(0))处的切线方程y﹣4=3x,即3x﹣y+4=0.(Ⅱ)由(Ⅰ),令3﹣8x﹣3x2=(3+x)(1﹣3x)=0,则x=﹣3或,若f'(x)<0,则x<﹣3或时,在上f(x)递减;若f'(x)>0,则时,则上f(x)递增;所以极小值为,极大值为,而(﹣∞,﹣3)上f(x)<0,上f(x)>0,综上,f(x)的最小值为,最大值为.【点评】本题主要考查导数的几何意义,由导数求函数最值的方法等知识,属于基础题.4.(2022春•汪清县校级期末)已知函数,x∈(0,+∞).(1)求函数f(x)的图象在点(2,f(2))处的切线方程;(2)求函数f(x)的单调递增区间.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【专题】整体思想;综合法;导数的综合应用;数学运算.【分析】(1)先求函数的导函数,然后求出切线的斜率,再求切线方程即可;(2)令f′(x)>0,解得0<x<2,即可求出函数的单调递增区间.【解答】解:(1)已知函数,x∈(0,+∞),则=,则,f(2)=ln2﹣1,则函数f(x)的图象在点(2,f(2))处的切线方程为:y﹣(ln2﹣1)=0,即所求切线方程为:y=ln2﹣1;(2)由(1)可得:令f′(x)>0,解得0<x<2,即函数f(x)的单调递增区间为(0,2).【点评】本题考查了导数的几何意义,重点考查了利用导数求函数的单调区间,属基础题.5.(2022春•资阳期末)已知曲线f(x)=ax3﹣bx2+2在点(1,f(1))处的切线方程为y =1.(1)求a、b的值;(2)求f(x)的极值.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【专题】计算题;方程思想;综合法;导数的综合应用;逻辑推理;数学运算.【分析】(1)由题意可知切线方程可知切点坐标为(1,1),切线的斜率为0,结合导函数的解析式得到关于a,b的方程组,求解方程组可得a,b的值;(2)结合(1)的结论可得f'(x)=6x2﹣6x,利用导数研究函数的单调性,然后求解函数的极值即可.【解答】解:(1)由函数的解析式可得f'(x)=3ax2﹣2bx,由切线方程可知切点坐标为(1,1),切线的斜率为0,从而有:,求解方程组可得,故a=2,b=3.(2)由题意可得f(x)=2x3﹣3x2+2,f'(x)=6x2﹣6x,当x∈(﹣∞,0)时,f'(x)>0,f(x)单调递增,当x∈(0,1)时,f'(x)<0,f(x)单调递减,当x∈(1,+∞)时,f'(x)>0,f(x)单调递增,故函数的极大值为f(0)=2,函数的极小值为f(1)=1.【点评】本题主要考查导数的几何意义,利用导数求函数的极值等知识,属于基础题.6.(2022春•静安区校级期末)求函数f(x)=tan x的导函数,并由此确定正切函数的单调区间.【考点】利用导数研究函数的单调性.【专题】对应思想;定义法;导数的综合应用;数学运算.【分析】根据导函数及定义域,即可求解单调区间.【解答】解:,又定义域为,所以单调递增区间为,无单调递减区间.【点评】本题考查了利用导数研究函数的单调性,属基础题.7.(2022春•长宁区校级期末)求下列函数的导数:(1)f(x)=3x4+sin x;(2).【考点】导数的运算.【专题】计算题;对应思想;定义法;导数的概念及应用;数学运算.【分析】(1)(2)由基本初等函数的导数公式及导数加减、乘法法则求导函数即可.【解答】解:(1)f(x)=3x4+sin x则f′(x)=12x3+cos x;(2),则f′(x)=+﹣2e2x﹣1.【点评】本题主要考查导数的基本运算,比较基础.8.(2022春•兴义市校级月考)已知函数f(x)=ax3+cx(a≠0)当x=1时,f(x)取得极值﹣2.(1)求函数f(x)的解析式;(2)求函数f(x)的单调区间和极大值;【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【专题】计算题;方程思想;综合法;导数的综合应用;逻辑推理;数学运算.【分析】(1)分析已知条件,当x=1时,f(x)取得极值﹣2得,可解得a,c;(2)由f'(x)>0 确定增区间,由f'(x)<0 得减区间,从而确定极值点.【解答】解:(1)由题意可得f′(x)=3ax2+c,又当x=1时,f(x)取得极值﹣2,∴,据此可得a=1,c=−3,∴f(x)=x3﹣3x.(2)f′(x)=3x2﹣3=3(x+1)(x﹣1),令f′(x)=0,得x=±1,当﹣1<x<1时,f′(x)<0,函数f(x)单调递减;当x<﹣1或x>1时,f′(x)>0,函数f(x)单调递增;∴函数f(x)的递增区间是(﹣∞,﹣1)和(1,+∞);递减区间为(﹣1,1).因此,f(x)在x=﹣1处取得极大值,且极大值为f(﹣1)=2.【点评】本题主要考查利用导数研究函数的极值,利用导数研究函数的单调性等知识,属于基础题.9.(2022春•乳山市校级月考)已知函数.(1)求函数f(x)的极值;(2)若函数y=f(x)的图象与直线y=0恰有三个交点,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【专题】计算题;转化思想;综合法;导数的综合应用;逻辑推理;数学运算.【分析】(1)求出导函数,求出极值点,通过函数的单调性,求解函数的极值即可.(2)函数y=f(x)的图象与直线y=0恰有三个交点,只需极大值大于0,极小值小于0,然后求解即可.【解答】解:(1)由已知得函数f(x)的定义域为R,函数.则f'(x)=x2﹣ax﹣2a2=(x﹣2a)(x+a),x﹣2a>0,f'(x)>0恒成立,故函数f(x)在x>2a上单调递增,当x+a<0时,由f'(x)>0,单调递增,﹣a<x<2a时;由f'(x)<0,单调递减,x=﹣a时函数取得极大值:+1.x=2a时函数取得极小值:1﹣a3.(2)函数y=f(x)的图象与直线y=0恰有三个交点,可得1﹣<0,解得a>,得实数a的取值范围为(,+∞).【点评】本题考查函数导数的应用,函数的单调性以及函数的极值的求法,考查分析问题解决问题的能力,是中档题.10.(2022春•重庆月考)已知函数f(x)=(x+a)e x.(1)若f(x)在x=1处取得极小值,求实数a的值;(2)若f(x)在(﹣1,1)上单调递增,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【专题】导数的综合应用;数学运算.【分析】(1)由函数在x=1处取得极小值,可得在x=1处导函数为0,计算出a,再进行检验即可;(2)由函数在(﹣1,1)单调递增,故其导函数在(﹣1,1)恒大于等于0,从而进行参变分离求解即可.【解答】解:(1)因为f'(x)=e x+(x+a)e x=(x+a+1)e x,所以f'(1)=(a+2)e=0,得a=﹣2,此时f'(x)=(x﹣1)e x,令f'(x)>0,解得x>1,f(x)在(﹣∞,1)上单调递减,在(1,+∞)上单调递增,所以f(x)在x=1处取得极小值,满足题意,所以实数a的值为﹣2;(2)由(1)知,f'(x)=(x+a+1)e x,由已知有f(x)在(﹣1,1)上单调递增,故f'(x)≥0在(﹣1,1)上恒成立,因为e x>0,所以x+a+1≥0在(﹣1,1)上恒成立,即a≥﹣x﹣1在(﹣1,1)上恒成立,故a≥0,故实数a的取值范围为[0,+∞).【点评】本题主要考查利用导函数研究函数极值及单调性,属于基础题.11.(2022春•睢县校级月考)若函数f(x)=ax3+12x+a的减区间为(﹣2,2),求实数a 的值.【考点】利用导数研究函数的单调性.【专题】函数思想;综合法;导数的综合应用;数学运算.【分析】由2和﹣2是f′(x)的零点得出实数a的值.【解答】解:f′(x)=3ax2﹣12.易知2和﹣2是f′(x)的零点且a>0,所以f′(2)=f′(﹣2)=12a﹣12=0,解得a=1.经检验成立.故实数a的取值为1.【点评】本题考查利用导数研究函数的单调性,属于基础题.12.(2022春•睢县校级月考)求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.【考点】导数的运算.【专题】计算题;方程思想;综合法;导数的概念及应用;数学运算.【分析】根据复合函数的求导法则、基本初等函数的求导公式求导计算即可.【解答】解:(1)∵,∴.(2)∵g(x)=(8﹣3x)7,∴g'(x)=7(8﹣3x)6⋅(8﹣3x)'=﹣21(8﹣3x)6.(3)∵p(x)=5cos(2x﹣3),∴p'(x)=﹣5sin(2x﹣3)⋅(2x﹣3)'=﹣10sin(2x ﹣3).(4)∵w(x)=ln(5x+6)2,∴【点评】本题考查导数的计算,注意复合函数的导数计算,属于基础题.13.(2022春•黄梅县期中)设函数f(x)=x3+x2﹣3x.(1)求函数f(x)的单调区间和极值;(2)求函数f(x)在[0,3]上的最值.【考点】利用导数研究函数的最值;利用导数研究函数的极值.【专题】函数思想;综合法;导数的综合应用;直观想象;数学运算.【分析】(1)对函数求导后,利用导函数的正负确定函数的单调区间及极值;(2)利用极值及端点函数值,比较大小可得答案.【解答】解:(1)f′(x)=x2+2x﹣3=(x+3)(x﹣1),令f′(x)=0,则x=﹣3或x=1,列表如下:x(﹣∞,﹣3)﹣3(﹣3,1)1(1,+∞)+0﹣0+f′(x)f(x)单调递增9单调递减﹣单调递增∴f(x)的增区间为(﹣∞,﹣3),(1,+∞);减区间为(﹣3,1);在x=﹣3处取得极大值为9;在x=1处取得极小值为﹣.(2)由上知f(x)在[0,3]上的极小值为f(1)=﹣,又f(0)=0,f(3)=9,所以f(x)在[0,3]上的最大值为9,最小值为﹣.【点评】本题考查了利用导数确定函数的单调区间及求给定区间上的最值,属于基础题.14.(2022春•抚州期中)已知函数.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的极值.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【专题】计算题;方程思想;综合法;导数的概念及应用;逻辑推理;数学运算.【分析】(1)分别确定切点坐标和切线的斜率即可求得切线方程;(2)由题意首先确定函数的单调性,然后求解函数的极值即可.【解答】解:(1)由函数的解析式可得f(0)=1,f′(x)=x2﹣4,∴f′(0)=﹣4,则切线方程为y﹣1=﹣4x,即4x+y﹣1=0.(2)令f′(x)=0可得x1=﹣2,x2=2,在区间(﹣∞,﹣2)上,f′(x)>0,f(x)单调递增,在区间(﹣2,2)上,f′(x)<0,f(x)单调递减,在区间(2,+∞)上,f′(x)>0,f(x)单调递增,则函数的极大值为,函数的极小值为.【点评】本题主要考查导数的几何意义,导数的应用,利用导数研究函数的极值等知识,属于基础题.15.(2022春•焦作期中)已知函数f(x)=xln2x.(1)求f(x)的导函数f'(x);(2)设x0是f(x)的零点,求曲线y=f(x)在点(x0,f(x0))处的切线方程.【考点】利用导数研究曲线上某点切线方程.【专题】函数思想;综合法;导数的综合应用;数学运算.【分析】(1)直接求导即可;(2)先求出,f(x0)=0,再求得切线斜率,由此可得切线方程.【解答】解:(1)函数的定义域为(0,+∞),;(2)易知,f(x0)=0,且,∴曲线f(x)在点处的切线方程为.【点评】本题考查导数的运算以及利用导数研究曲线上某点的切线方程,考查运算求解能力,属于基础题.考点卡片1.导数的运算【知识点的知识】1、基本函数的导函数①C′=0(C为常数)②(x n)′=nx n﹣1(n∈R)③(sin x)′=cos x④(cos x)′=﹣sin x⑤(e x)′=e x⑥(a x)′=(a x)*lna(a>0且a≠1)⑦[log a x)]′=*(log a e)=(a>0且a ≠1)⑧[lnx]′=.2、和差积商的导数①[f(x)+g(x)]′=f′(x)+g′(x)②[f(x)﹣g(x)]′=f′(x)﹣g′(x)③[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)④[]′=.3、复合函数的导数设y=u(t),t=v(x),则y′(x)=u′(t)v′(x)=u′[v(x)]v′(x)【典型例题分析】题型一:和差积商的导数典例1:已知函数f(x)=a sin x+bx3+4(a∈R,b∈R),f′(x)为f(x)的导函数,则f(2014)+f(﹣2014)+f′(2015)﹣f′(﹣2015)=()A.0 B.2014 C.2015 D.8解:f′(x)=a cos x+3bx2,∴f′(﹣x)=a cos(﹣x)+3b(﹣x)2∴f′(x)为偶函数;f′(2015)﹣f′(﹣2015)=0∴f(2014)+f(﹣2014)=a sin(2014)+b•20143+4+a sin(﹣2014)+b(﹣2014)3+4=8;∴f(2014)+f(﹣2014)+f′(2015)﹣f(﹣2015)=8故选D.题型二:复合函数的导数典例2:下列式子不正确的是()A.(3x2+cos x)′=6x﹣sin x B.(lnx﹣2x)′=ln2C.(2sin2x)′=2cos2x D.()′=解:由复合函数的求导法则对于选项A,(3x2+cos x)′=6x﹣sin x成立,故A正确;对于选项B,成立,故B正确;对于选项C,(2sin2x)′=4cos2x≠2cos2x,故C不正确;对于选项D,成立,故D正确.故选C.【解题方法点拨】1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.2.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0的根;(4)用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0得x>﹣1,即f(x)>2x+4的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.解:(Ⅰ)(2分)当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数(4分)(Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3∴,∴g'(x)=3x2+(m+4)x﹣2(6分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣2∴由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有:,∴(10分)(Ⅲ)令a=﹣1此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,(12分)∵n≥2,n∈N*,则有0<lnn<n﹣1,∴∴【解题方法点拨】若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件.3.利用导数研究函数的极值【知识点的知识】1、极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f (x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.2、极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.3、判别f(x0)是极大、极小值的方法:若x0满足f′(x0)=0,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.4、求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.4.利用导数研究函数的最值【利用导数求函数的最大值与最小值】1、函数的最大值和最小值观察图中一个定义在闭区间[a,b]上的函数f(x)的图象.图中f(x1)与f(x3)是极小值,f(x2)是极大值.函数f(x)在[a,b]上的最大值是f(b),最小值是f(x1).一般地,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.说明:(1)在开区间(a,b)内连续的函数f(x)不一定有最大值与最小值.如函数f(x)=在(0,+∞)内连续,但没有最大值与最小值;(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.(3)函数f(x)在闭区间[a,b]上连续,是f(x)在闭区间[a,b]上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个2、用导数求函数的最值步骤:由上面函数f(x)的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数f(x)在[a,b]上连续,在(a,b)内可导,则求f(x)在[a,b]上的最大值与最小值的步骤如下:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.5.利用导数研究曲线上某点切线方程【考点描述】利用导数来求曲线某点的切线方程是高考中的一个常考点,它既可以考查学生求导能力,也考察了学生对导数意义的理解,还考察直线方程的求法,因为包含了几个比较重要的基本点,所以在高考出题时备受青睐.我们在解答这类题的时候关键找好两点,第一找到切线的斜率;第二告诉的这点其实也就是直线上的一个点,在知道斜率的情况下可以用点斜式把直线方程求出来.【实例解析】例:已知函数y=xlnx,求这个函数的图象在点x=1处的切线方程.解:k=y'|x=1=ln1+1=1又当x=1时,y=0,所以切点为(1,0)∴切线方程为y﹣0=1×(x﹣1),即y=x﹣1.我们通过这个例题发现,第一步确定切点;第二步求斜率,即求曲线上该点的导数;第三步利用点斜式求出直线方程.这种题的原则基本上就这样,希望大家灵活应用,认真总结.。
高中导数试题题型及答案
高中导数试题题型及答案一、选择题1. 函数 \( y = 3x^2 - 2x + 1 \) 在 \( x = 1 \) 处的导数是:A. 6B. 4C. 5D. 72. 已知 \( f(x) = x^3 + ax^2 + bx + c \),其中 \( a = 1 \),\( b = -1 \),\( c = 1 \),求 \( f'(x) \):A. \( 3x^2 + 2x - 1 \)B. \( 3x^2 + 2x + 1 \)C. \( 3x^2 + 2x \)D. \( 3x^2 + 1 \)二、填空题3. 函数 \( y = x^3 \) 的导数是 ______ 。
答案:\( 3x^2 \)4. 如果 \( f(x) = \sin(x) \),那么 \( f'(x) \) 是 ______ 。
答案:\( \cos(x) \)三、计算题5. 求函数 \( y = x^4 - 5x^3 + 6x^2 \) 的导数。
答案:\( y' = 4x^3 - 15x^2 + 12x \)6. 已知 \( f(x) = \ln(x) + 2x^2 - 3x \),求 \( f'(x) \)。
答案:\( f'(x) = \frac{1}{x} + 4x - 3 \)四、应用题7. 某物体的位移函数是 \( s(t) = 2t^3 - 3t^2 + 4t \),求物体在\( t = 2 \) 秒时的瞬时速度。
答案:首先求导数 \( s'(t) = 6t^2 - 6t + 4 \),然后将 \( t= 2 \) 代入,得到 \( s'(2) = 6 \times 2^2 - 6 \times 2 + 4 =24 - 12 + 4 = 16 \) 米/秒。
8. 某工厂的产量函数是 \( P(x) = 100x - x^2 \),求工厂在 \( x= 10 \) 时的边际产量。
高考数学一轮总复习解答大题专项训练六大专题
高考大题专项(一) 导数的综合应用突破1导数与函数的单调性1.已知函数f(x)=x3-a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)略.2.已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)略.3.已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)略.4.(2019山东潍坊三模,21)已知函数f(x)=x2+a ln x-2x(a∈R).(1)求f(x)的单调递增区间;(2)略.5.设函数f(x)=(x-1)e x-x2(其中k∈R).(1)求函数f(x)的单调区间;(2)略.6.(2019河北衡水同卷联考,21)已知函数f(x)=x2e ax-1.(1)讨论函数f(x)的单调性;(2)略.突破2利用导数研究函数的极值、最值1.已知函数f(x)=ln x-ax(a∈R).(1)当a=时,求f(x)的极值;(2)略.2.(2019河北衡水深州中学测试)讨论函数f(x)=ln x-ax(a∈R)在定义域内的极值点的个数.3.设函数f(x)=2ln x-x2+ax+2.(1)当a=3时,求f(x)的单调区间和极值;(2)略.4.已知函数f(x)=.(1)当a=1时,判断f(x)有没有极值点?若有,求出它的极值点;若没有,请说明理由;(2)略.5.(2019湖北八校联考二,21)已知函数f(x)=ln x+ax2+bx.(1)函数f(x)在点(1,f(1))处的切线的方程为2x+y=0,求a,b的值,并求函数f(x)的最大值;(2)略.6.(2019广东广雅中学模拟)已知函数f(x)=ax+ln x,其中a为常数.(1)当a=-1时,求f(x)的最大值;(2)若f(x)在区间(0,e]上的最大值为-3,求a的值.突破3导数在不等式中的应用1.(2019湖南三湘名校大联考一,21)已知函数f(x)=x ln x.(1)略;(2)当x≥时,f(x)≤ax2-x+a-1,求实数a的取值范围.2.已知函数f(x)=a e x-ln x-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.3.已知函数f(x)=e x+ax+ln(x+1)-1.(1)若x≥0,f(x)≥0恒成立,求实数a的取值范围.(2)略.4.函数f(x)=(x-2)e x+ax2-ax.(1)略;(2)设a=1,当x≥0时,f(x)≥kx-2,求k的取值范围.5.已知函数f(x)=.(1)略;(2)若f(x)<x+1在定义域上恒成立,求a的取值范围.6.已知x1,x2(x1<x2)是函数f(x)=e x+ln(x+1)-ax(a∈R)的两个极值点.(1)求a的取值范围;(2)求证:f(x2)-f(x1)<2ln a.突破4导数与函数的零点1.已知函数f(x)=x2-m ln x.若m≥1,令F(x)=f(x)-x2+(m+1)x,试讨论函数F(x)的零点个数.2.(2019河北唐山三模,21)已知函数f(x)=x ln x-a(x2-x)+1,函数g(x)=f'(x).(1)若a=1,求f(x)的极大值;(2)当0<x<1时,g(x)有两个零点,求a的取值范围.3.(2019河南开封一模,21)已知函数f(x)=.(1)略;(2)若f(1)=1,且方程f(x)=1在区间(0,1)内有解,求实数a的取值范围.4.已知函数f(x)=ln x,g(x)=x3+2(1-a)x2-8x+8a+7.(1)若曲线y=g(x)在点(2,g(2))处的切线方程是y=ax-1,求函数g(x)在[0,3]上的值域;(2)当x>0时,记函数h(x)=若函数y=h(x)有三个零点,求实数a的取值范围.5.已知f(x)=x ln x.(1)求f(x)的极值;(2)若f(x)-ax x=0有两个不同解,求实数a的取值范围.6.(2019河北唐山三模,21)已知函数f(x)=x ln x-x2-ax+1,a>0,函数g(x)=f'(x).(1)若a=ln 2,求g(x)的最大值;(2)证明:f(x)有且仅有一个零点.参考答案高考大题专项(一) 导数的综合应用突破1导数与函数的单调性1.解(1)当a=3时,f(x)=x3-3x2-3x-3,f'(x)=x2-6x-3.令f'(x)=0,解得x=3-2或x=3+2当x∈(-∞,3-2)∪(3+2,+∞)时,f'(x)>0;当x∈(3-2,3+2)时,f'(x)<0.故f(x)在(-∞,3-2),(3+2,+∞)上单调递增,在(3-2,3+2)上单调递减.2.证明(1)当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0.设函数g(x)=(x2+1)e-x-1,则g'(x)=-(x2-2x+1)e-x=-(x-1)2e-x.当x≠1时,g'(x)<0,所以g(x)在(0,+∞)上单调递减.而g(0)=0,故当x≥0时,g(x)≤0,即f(x)≥1.3.解(1)由题意知f'(x)=(x-k+1)e x.令f'(x)=0,得x=k-1.当x∈(-∞,k-1)时,f'(x)<0,当x∈(k-1,+∞)时,f'(x)>0.所以f(x)的单调递减区间是(-∞,k-1),单调递增区间是(k-1,+∞).4.解(1)函数f(x)的定义域为(0,+∞),f'(x)=2x+-2=,令2x2-2x+a=0,Δ=4-8a=4(1-2a),若a,则Δ≤0,f'(x)≥0在(0,+∞)上恒成立,函数f(x)在(0,+∞)上单调递增;若a<,则Δ>0,方程2x2-2x+a=0,两根为x1=,x2=,当a≤0时,x2>0,x∈(x2,+∞),f'(x)>0,f(x)单调递增;当0<a<时,x1>0,x2>0,x∈(0,x1),f'(x)>0,f(x)单调递增,x∈(x2,+∞),f'(x)>0,f(x)单调递增.综上,当a时,函数f(x)单调递增区间为(0,+∞),当a≤0时,函数f(x)单调递增区间为,+∞,当0<a<时,函数f(x)单调递增区间为0,,,+∞.5.解(1)函数f(x)的定义域为(-∞,+∞),f'(x)=e x+(x-1)e x-kx=x e x-kx=x(e x-k),①当k≤0时,令f'(x)>0,解得x>0,∴f(x)的单调递减区间是(-∞,0),单调递增区间是(0,+∞).②∵当0<k<1时,令f'(x)>0,解得x<ln k或x>0,∴f(x)在(-∞,ln k)和(0,+∞)上单调递增,在(ln k,0)上单调递减.③当k=1时,f'(x)≥0,f(x)在(-∞,+∞)上单调递增.④当k>1时,令f'(x)>0,解得x<0或x>ln k,所以f(x)在(-∞,0)和(ln k,+∞)上单调递增,在(0,ln k)上单调递减.6.解(1)函数f(x)的定义域为R.f'(x)=2x e ax+x2·a e ax=x(ax+2)e ax.当a=0时,f(x)=x2-1,则f(x)在区间(0,+∞)内单调递增,在区间(-∞,0)内单调递减;当a>0时,f'(x)=ax x+e ax,令f'(x)>0得x<-或x>0,令f'(x)<0得-<x<0,所以f(x)在区间-∞,-内单调递增,在区间-,0内单调递减,在区间(0,+∞)内单调递增;当a<0时,f'(x)=ax x+e ax,令f'(x)>0得0<x<-,令f'(x)<0得x>-或x<0,所以f(x)在区间(-∞,0)内单调递减,在区间0,-内单调递增,在区间-,+∞内单调递减.突破2利用导数研究函数的极值、最值1.解(1)当a=时,f(x)=ln x-x,函数的定义域为(0,+∞),f'(x)=,令f'(x)=0,得x=2,于是当x变化时,f'(x),f(x)的变化情况如下表:x(0,2) 2 (2,+∞)f'(x) +0 -lnf(x) ↗↘2-1故f(x)的极大值为ln2-1,无极小值.2.解函数的定义域为(0,+∞),f'(x)=-a=(x>0).当a≤0时,f'(x)>0在(0,+∞)上恒成立,故函数f(x)在(0,+∞)上单调递增,此时函数f(x)在定义域上无极值点;当a>0时,若x∈0,,则f'(x)>0,若x∈,+∞,则f'(x)<0,故函数f(x)在x=处取极大值.综上可知,当a≤0时,函数f(x)无极值点,当a>0时,函数f(x)有一个极大值点.3.解(1)f(x)的定义域为(0,+∞).当a=3时,f(x)=2ln x-x2+3x+2,所以f'(x)=-2x+3=,令f'(x)==0,得-2x2+3x+2=0,因为x>0,所以x=2.f(x)与f'(x)在区间(0,+∞)上的变化情况如下:x(0,2) 2 (2,+∞)f'(x) +0 -2lnf(x) ↗↘2+4所以f(x)的单调递增区间为(0,2),单调递减区间为(2,+∞).f(x)的极大值为2ln2+4,无极小值.4.解(1)函数f(x)=,则x>0且x≠1,即函数的定义域为(0,1)∪(1,+∞).当a=1时,f(x)=,则f'(x)=,令g(x)=x-ln x-1,则g'(x)=1-,①当x∈(0,1)时,g'(x)<0,g(x)单调递减,g(x)>g(1)=0,∴f'(x)>0,f(x)在区间(0,1)上单调递增,所以无极值点;②当x∈(1,+∞)时,g'(x)>0,g(x)单调递增,g(x)>g(1)=0,∴f'(x)>0,f(x)在区间(1,+∞)上单调递增,所以无极值点.综上,当a=1时,f(x)无极值点.5.解(1)因为f(x)=ln x+ax2+bx,所以f'(x)=+2ax+b,则在点(1,f(1))处的切线的斜率为f'(1)=1+2a+b,由题意可得,1+2a+b=-2,且a+b=-2,解得a=b=-1.所以f'(x)=-2x-1==-,由f'(x)=0,可得x=(x=-1舍去),当0<x<时,f'(x)>0,f(x)单调递增;当x>时,f'(x)<0,f(x)单调递减,故当x=时,f(x)取得极大值,且为最大值,f=-ln2-故f(x)的最大值为-ln2-6.解(1)易知f(x)的定义域为(0,+∞),当a=-1时,f(x)=-x+ln x,f'(x)=-1+,令f'(x)=0,得x=1.当0<x<1时,f'(x)>0;当x>1时,f'(x)<0.∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.∴f(x)max=f(1)=-1.∴当a=-1时,函数f(x)的最大值为-1.(2)f'(x)=a+,x∈(0,e],则,+∞.①若a≥-,则f'(x)≥0,从而f(x)在(0,e]上单调递增,∴f(x)max=f(e)=a e+1≥0,不合题意.②若a<-,令f'(x)>0得,a+>0,又x∈(0,e],解得0<x<-;令f'(x)<0得,a+<0,又x∈(0,e],解得-<x≤e.从而f(x)在0,-上单调递增,在-,e上单调递减,∴f(x)max=f-=-1+ln-.令-1+ln-=-3,得ln-=-2,即a=-e2.∵-e2<-,∴a=-e2符合题意.故实数a的值为-e2.突破3导数在不等式中的应用1.解(2)由已知得a,设h(x)=,则h'(x)=∵y=x ln x+ln x+2是增函数,且x,∴y≥--1+2>0,∴当x∈,1时,h'(x)>0;当x∈(1,+∞)时,h'(x)<0,∴h(x)在x=1处取得最大值,h(1)=1,∴a≥1.故a的取值范围为[1,+∞).2.(1)解f(x)的定义域为(0,+∞),f'(x)=a e x-由题设知,f'(2)=0,所以a=从而f(x)=e x-ln x-1,f'(x)=e x-当0<x<2时,f'(x)<0;当x>2时,f'(x)>0.所以f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.(2)证明当a时,f(x)-ln x-1.设g(x)=-ln x-1,则g'(x)=当0<x<1时,g'(x)<0;当x>1时,g'(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当a时,f(x)≥0.3.解(1)若x≥0,则f'(x)=e x++a,令g(x)=e x++a,则g'(x)=e x-,g'(x)在[0,+∞)上单调递增,则g'(x)≥g'(0)=0,则f'(x)在[0,+∞)上单调递增,f'(x)≥f'(0)=a+2.①当a+2≥0,即a≥-2时,f'(x)≥0,则f(x)在[0,+∞)上单调递增,此时f(x)≥f(0)=0,满足题意.②当a<-2时,因为f'(x)在[0,+∞)上单调递增,f'(0)=2+a<0,当x→+∞时,f'(x)>0.所以∃x0∈(0,+∞),使得f'(x0)=0.则当0<x<x0时,f'(x)<f'(x0)=0,∴函数f(x)在(0,x0)上单调递减.∴f(x0)<f(0)=0,不合题意,舍去.综上所述,实数a的取值范围是[-2,+∞).4.解(2)令g(x)=f(x)-kx+2=(x-2)e x+x2-x-kx+2,则g'(x)=(x-1)e x+x-1-k,令h(x)=(x-1)e x+x-1-k,则h'(x)=x e x+1,当x≥0时,h'(x)=x e x+1>0,h(x)单调递增.∴h(x)≥h(0)=-2-k,即g'(x)≥-2-k.当-2-k≥0,即k≤-2时,g'(x)≥0,g(x)在(0,+∞)上单调递增,g(x)≥g(0)=0,不等式f(x)≥kx-2恒成立.当-2-k<0,即k>-2时,g'(x)=0有一个解,设为x0,∴当x∈(0,x0)时,g'(x)<0,g(x)为单调递减;当x∈(x0,+∞)时,g'(x)>0,g(x)单调递增,则g(x0)<g(0)=0,∴当x≥0时,f(x)≥kx-2不恒成立.综上所述,k的取值范围是(-∞,-2].5.解(2)由f(x)<x+1,得<x+1(x>0且x≠1),即a ln x-x+<0.令h(x)=a ln x-x+,则h'(x)=-1-令g(x)=x2-ax+1.①当Δ=a2-4≤0,即-2≤a≤2时,x2-ax+1≥0.∴当x∈(0,1)时,h'(x)≤0,h(x)单调递减,h(x)>h(1)=0,a ln x-x+<0成立.当x∈(1,+∞)时,h'(x)≤0,h(x)单调递减,h(x)<h(1)=0,a ln x-x+<0成立.故-2≤a≤2符合题意.②当Δ=a2-4>0,即a<-2或a>2时,设g(x)=x2-ax+1=0的两根为x1,x2(x1<x2).当a>2时,x1+x2=a>0,x1x2=1,∴0<x1<1<x2.由h'(x)>0,得x2-ax+1<0,解集为(x1,1)∪(1,x2),∴h(x)在(x1,1)上单调递增,h(x1)<h(1)=0,a ln x1-x1+>0,∴a>2不合题意.当a<-2时,g(x)的图象的对称轴x=<-1,g(x)在(0,+∞)上单调递增,g(x)>g(0)=1>0, ∴当x∈(0,1)时,h'(x)≤0,h(x)单调递减,h(x)>h(1)=0,a ln x-x+<0成立.当x∈(1,+∞)时,h'(x)≤0,h(x)单调递减,h(x)<h(1)=0,a ln x-x+<0成立.综上,a的取值范围是(-∞,2].6.(1)解由题意得f'(x)=e x+-a,x>-1,令g(x)=e x+-a,x>-1,则g'(x)=e x-,令h(x)=e x-,x>-1,则h'(x)=e x+>0,∴h(x)在(-1,+∞)上单调递增,且h(0)=0.当x∈(-1,0)时,g'(x)=h(x)<0,g(x)单调递减,当x∈(0,+∞)时,g'(x)=h(x)>0,g(x)单调递增.∴g(x)≥g(0)=2-a.①当a≤2时,f'(x)=g(x)>g(0)=2-a≥0.f(x)在(-1,+∞)上单调递增,此时无极值;②当a>2时,∵g-1=>0,g(0)=2-a<0,∴∃x1∈-1,0,g(x1)=0,当x∈(-1,x1)时,f'(x)=g(x)>0,f(x)单调递增;当x∈(x1,0)时,f'(x)=g(x)<0,f(x)单调递减,∴x=x1是f(x)的极大值点.∵g(ln a)=>0,g(0)=2-a<0,∴∃x2∈(0,ln a),g(x2)=0,当x∈(0,x2)时,f'(x)=g(x)<0,f(x)单调递减;当x∈(x2,+∞)时,f'(x)=g(x)>0,f(x)单调递增,∴x=x2是f(x)的极小值点.综上所述,a的取值范围为(2,+∞).(2)证明由(1)得a∈(2,+∞),-1<x1<0<x2<ln a,且g(x1)=g(x2)=0,∴x2-x1>0,<x1+1<1,1<x2+1<1+ln a,,-a<0,1<<a(1+ln a)<a2,∴f(x2)-f(x1)=+ln-a(x2-x1)=(x2-x1)-a+ln<ln a2=2ln a.突破4导数与函数的零点1.解F(x)=f(x)-x2+(m+1)x=-x2+(m+1)x-m ln x(x>0).易得F'(x)=-x+m+1-=-①若m=1,则F'(x)≤0,函数F(x)为减函数,∵F(1)=>0,F(4)=-ln4<0,∴F(x)有唯一零点;②若m>1,则当0<x<1或x>m时,F'(x)<0,当1<x<m时,F'(x)>0,所以函数F(x)在(0,1)和(m,+∞)上单调递减,在(1,m)上单调递增, ∵F(1)=m+>0,F(2m+2)=-m ln(2m+2)<0,所以F(x)有唯一零点.综上,当m≥1时,函数F(x)有唯一零点.2.解(1)f(x)=x ln x-x2+x+1(x>0),g(x)=f'(x)=ln x-2x+2,g'(x)=-2=,当x∈0,时,g'(x)>0,g(x)单调递增;当x∈,+∞时,g'(x)<0,g(x)单调递减.又g(1)=f'(1)=0,则当x∈,1时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.故当x=1时,f(x)取得极大值f(1)=1.(2)g(x)=f'(x)=ln x+1-2ax+a,g'(x)=-2a=,①若a≤0,则g'(x)>0,g(x)单调递增,至多有一个零点,不合题意.②若a>0,则当x∈0,时,g'(x)>0,g(x)单调递增;当x∈,+∞时,g'(x)<0,g(x)单调递减.则g≥g=ln+1=ln>0.不妨设g(x1)=g(x2),x1<x2,则0<x1<<x2<1.一方面,需要g(1)<0,得a>1.另一方面,由(1)得,当x>1时,ln x<x-1<x,则x<e x,进而,有2a<e2a,则e-2a<,且g(e-2a)=-2a e-2a+1-a<0,故存在x1,使得0<e-2a<x1<综上,a的取值范围是(1,+∞).3.解(2)由f(1)=1得b=e-1-a,由f(x)=1得e x=ax2+bx+1,设g(x)=e x-ax2-bx-1,则g(x)在(0,1)内有零点,设x0为g(x)在(0,1)内的一个零点, 由g(0)=g(1)=0知g(x)在(0,x0)和(x0,1)上不单调.设h(x)=g'(x),则h(x)在(0,x0)和(x0,1)上均存在零点,即h(x)在(0,1)上至少有两个零点.g'(x)=e x-2ax-b,h'(x)=e x-2a,当a时,h'(x)>0,h(x)在(0,1)上单调递增,h(x)不可能有两个及以上零点,当a时,h'(x)<0,h(x)在(0,1)上单调递减,h(x)不可能有两个及以上零点,当<a<时,令h'(x)=0得x=ln(2a)∈(0,1),∴h(x)在(0,ln(2a))上单调递减,在(ln(2a),1)上单调递增,h(x)在(0,1)上存在最小值h(ln(2a)),若h(x)有两个零点,则有h(ln(2a))<0,h(0)>0,h(1)>0,h(ln(2a))=3a-2a ln(2a)+1-e<a<,设φ(x)=x-x ln x+1-e(1<x<e),则φ'(x)=-ln x,令φ'(x)=0,得x=,当1<x<时,φ'(x)>0,φ(x)单调递增;当<x<e时,φ'(x)<0,φ(x)单调递减.∴φmax(x)=φ()=+1-e<0,∴h(ln(2a))<0恒成立.由h(0)=1-b=a-e+2>0,h(1)=e-2a-b>0,得e-2<a<1.综上,a的取值范围为(e-2,1).4.解(1)因为g(x)=x3+2(1-a)x2-8x+8a+7,所以g'(x)=2ax2+4(1-a)x-8,所以g'(2)=0.所以a=0,即g(x)=2x2-8x+7.g(0)=7,g(3)=1,g(2)=-1.所以g(x)在[0,3]上的值域为[-1,7].(2)当a=0时,g(x)=2x2-8x+7,由g(x)=0,得x=2±(1,+∞),此时函数y=h(x)有三个零点,符合题意.当a>0时,g'(x)=2ax2+4(1-a)x-8=2a(x-2)x+.由g'(x)=0,得x=2.当x∈(0,2)时,g'(x)<0;当x∈(2,+∞)时,g'(x)>0.若函数y=h(x)有三个零点,则需满足g(1)>0且g(2)<0,解得0<a<当a<0时,g'(x)=2ax2+4(1-a)x-8=2a(x-2)x+.由g'(x)=0,得x1=2,x2=-①当-<2,即a<-1时,因为g(x)极大值=g(2)=a-1<0,此时函数y=h(x)至多有一个零点,不符合题意;②当-=2,即a=-1时,因为g'(x)≤0,此时函数y=h(x)至多有两个零点,不符合题意;③当->2,即-1<a<0时.若g(1)<0,则函数y=h(x)至多有两个零点,不符合题意;若g(1)=0,则a=-,因为g-=8a3+7a2+8a+,所以g->0,此时函数y=h(x)有三个零点,符合题意;若g(1)>0,则-<a<0,由g-=8a3+7a2+8a+.记φ(a)=8a3+7a2+8a+,则φ'(a)>0,所以φ(α)>φ->0,此时函数y=h(x)有四个零点,不符合题意.综上所述,满足条件的实数a∈-∪0,.5.解(1)f(x)的定义域是(0,+∞),f'(x)=ln x+1,令f'(x)>0,解得x>,令f'(x)<0,解得0<x<,故f(x)在0,上单调递减,在,+∞上单调递增,故x=时,f(x)极小值=f=-(2)记t=x ln x,t≥-,则e t=e x ln x=(e ln x)x=x x,故f(x)-ax x=0,即t-a e t=0,a=,令g(t)=,g'(t)=,令g'(t)>0,解得-t<1,令g'(t)<0,解得t>1,故g(t)在-,1上单调递增,在(1,+∞)上单调递减,故g(t)max=g(1)=,由t=x ln x,t≥-,a=g(t)=的图象和性质有:①0<a<,y=a和g(t)有两个不同交点(t1,a),(t2,a),且0<t1<1<t2,t1=x ln x,t2=x ln x各有一解,即f(x)-ax x=0有2个不同解.②-<a<0,y=a和g(t)=仅有1个交点(t3,a),且-<t3<0,t3=x ln x有2个不同的解,即f(x)-ax x=0有两个不同解.③a取其他值时,f(x)-ax x=0最多1个解.综上,a的范围是-,0∪0,.6.(1)解g(x)=f'(x)=ln x+1-x-a,g'(x)=,当x∈(0,2)时,g'(x)>0,g(x)单调递增;当x∈(2,+∞)时,g'(x)<0,g(x)单调递减.故当x=2时,g(x)的最大值为g(2)=ln2-a.若a=ln2,g(x)取得最大值g(2)=0.(2)证明①若a=ln2,由(1)知,当x∈(0,+∞)时,f'(x)≤0,且仅当x=2时,f'(x)=0.此时f(x)单调递减,且f(2)=0,故f(x)只有一个零点x0=2.②若a>ln2,由(1)知,当x∈(0,+∞)时,f'(x)=g(x)<0,f(x)单调递减.此时,f(2)=2(ln2-a)<0,注意到x1=<1,(x ln x)'=ln x+1,故x ln x≥-,f(x1)=x1ln x1->->0,故f(x)仅存在一个零点x0∈(x1,2).③若0<a<ln2,则g(x)的最大值g(2)=ln2-a>0,即f'(2)>0,注意到f'=--a<0,f'(8)=ln8-3-a<0,故存在x2∈,2,x3∈(2,8),使得f'(x2)=f'(x3)=0.则当x∈(0,x2)时,f'(x)<0,f(x)单调递减;当x∈(x2,x3)时,f'(x)>0,f(x)单调递增;当x∈(x3,+∞)时,f'(x)<0,f(x)单调递减.故f(x)有极小值f(x2),有极大值f(x3).由f'(x2)=0得ln x2+1-x2-a=0,故f(x2)=x2-12>0,则f(x3)>0.存在实数t∈(4,16),使得ln t-t=0,且当x>t时,ln x-x<0,记x4=max,则f(x4)=x4ln x4-x4-ax4+1≤0,故f(x)仅存在一个零点x0∈(x3,x4].综上,f(x)有且仅有一个零点.高考大题专项(二) 三角函数与解三角形1.(2019浙江杭州检测)如图是f(x)=2sin(ωx+φ)0<ω<2π,-<φ<的图象,A,B,D为函数图象与坐标轴的交点,直线AB与f(x)交于C,|AO|=1,2|AD|2+2|CD|2=4+|AC|2.(1)求φ的值;(2)求tan∠DAC的值.2.(2019天津和平区二模)已知函数f(x)=cos x(sin x-cos x),x∈R.(1)求f(x)的最小正周期和最大值;(2)讨论f(x)在区间上的单调性.3.(2019湖南株洲二模)如图,在四边形ABCD中,∠ADC=,AD=3,sin∠BCD=,连接BD,3BD=4BC.(1)求∠BDC的值;(2)若BD=,∠AEB=,求△ABE面积的最大值.4.在△ABC中,AB=6,AC=4.(1)若sin B=,求△ABC的面积;(2)若点D在BC边上且BD=2DC,AD=BD,求BC的长.5.(2019河北石家庄三模)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若10cos B cos C=-1,a=,求△ABC的周长.6.(2019上海杨浦区二模)已知函数f(x)=(1+tan x)·sin 2x.(1)求f(x)的定义域;(2)求函数F(x)=f(x)-2在区间(0,π)内的零点.参考答案高考大题专项(二) 三角函数与解三角形1.解(1)由f(x)=2sin(ωx+φ)0<ω<2π,-<φ<的图象,A,B,D为函数图象与坐标轴的交点,直线AB与f(x)交于C,|AO|=1,可得1=2sinφ,所以φ=(2)如图,由三角函数图形的性质,可知四边形AECD是平行四边形,可得2|AD|2+2|CD|2=4+|AC|2=|ED|2+|AC|2,解得|ED|=2,所以T=2,则ω=π,所以f(x)=2sinπx+,所以B,0,D,0,k AC=-,k AD=-,所以tan∠DAC=2.解(1)由题意,得f(x)=cos x sin x-cos2x=sin2x-(1+cos2x)=sin2x-cos2x-=sin2x--所以f(x)的最小正周期T==π,其最大值为1-(2)令z=2x-,则函数y=2sin z的单调递增区间是-+2kπ,+2kπ,k∈Z.由-+2kπ≤2x-+2kπ,得-+kπ≤x+kπ,k∈Z.设A=,B=x-+kπ≤x+kπ,k∈Z,易知A∩B=.所以,当x∈时,f(x)在区间上单调递增;在区间上单调递减.3.解(1)在△BCD中,由正弦定理得,∴sin∠BDC=∵3BD=4BC,∴BD>BC,∴∠BDC为锐角,∴∠BDC=(2)在△ABD中,AD=3,BD=,∠ADB=,∴AB==2在△ABE中,由余弦定理得AB2=AE2+BE2-2AE·BE·cos,∴12=AE2+BE2-AE·BE≥2AE·BE-AE·BE=AE·BE,当且仅当AE=BE时等号成立, ∴AE·BE≤12,∴S△ABE=AE·BE·sin12=3,即△ABE面积的最大值为34.解(1)由正弦定理得,所以sin C=1,∠C=,所以BC==2,所以S=2×4=4(2)设DC=x,则BD=2x,由余弦定理可得=-,解得x=,所以BD=3DC=55.解(1)由三角形的面积公式可得S△ABC=ac sin B=,∴2c sin B sin A=a,由正弦定理可得2sin C sin B sin A=sin A,∵sin A≠0,∴sin B sin C=;(2)∵10cos B cos C=-1,∴cos B cos C=-,∴cos(B+C)=cos B cos C-sin B sin C=-,∴cos A=,sin A=,则由bc sin A=,可得bc=,由b2+c2-a2=2bc cos A,可得b2+c2=,∴(b+c)2==7,可得b+c=,经检验符合题意,∴三角形的周长a+b+c=6.解(1)由正切函数的性质可求f(x)的定义域为(2)∵f(x)=1+·2sin x cos x=sin2x+2sin2x=sin2x-cos2x+1=sin2x-+1,∴F(x)=f(x)-2=sin2x--1=0,解得2x-=2kπ+,或2x-=2kπ+,k∈Z,即x=kπ+,或x=kπ+,k∈Z,又x∈(0,π),∴k=0时,x=,或x=,故F(x)在(0,π)内的零点为x=,或x=高考大题专项(三) 数列1.(2019河南新乡三模,17)在数列{a n}中,a1=1,且a n,2n,a n+1成等比数列.(1)求a2,a3,a4;(2)求数列{a2n}的前n项和S n.2.在等比数列{a n}中,a1=1,a5=4a3.(1)求数列{a n}的通项公式;(2)记S n为数列{a n}的前n项和,若S m=63,求m.3.若数列{a n}的前n项和为S n,且a1=1,a2=2.(S n+1)·(S n+2+1)=(S n+1+1)2.(1)求S n;(2)记数列的前n项和为T n,证明:1≤T n≤2.4.设数列{a n}满足a1=2,-a n=3·22n-1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.5.已知数列{a n}中,a1=5且a n=2a n-1+2n-1(n≥2且n∈N*).(1)求a2,a3的值;(2)是否存在实数λ,使得数列为等差数列?若存在,求出λ的值;若不存在,请说明理由.6.(2019天津,文18)设{a n}是等差数列,{b n}是等比数列,公比大于0.已知a1=b1=3,b2=a3,b3=4a2+3.(1)求{a n}和{b n}的通项公式;(2)设数列{c n}满足c n=求a1c1+a2c2+…+a2n c2n(n∈N*).参考答案高考大题专项(三) 数列1.解(1)∵a n,2n,a n+1成等比数列,∴a n a n+1=(2n)2=4n.∵a1=1,∴a2==4,同理得a3=4,a4=16.(2)∵a n a n+1=(2n)2=4n,=4,则数列{a2n}是首项为4,公比为4的等比数列.故S n=2.解(1)设数列{a n}的公比为q,由题设得a n=q n-1.由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.故a n=(-2)n-1或a n=2n-1.(2)若a n=(-2)n-1,则S n=由S m=63得(-2)m=-188,此方程没有正整数解.若a n=2n-1,则S n=2n-1.由S m=63得2m=64,解得m=6.综上可得m=6.3.(1)解由题意有=…=,所以数列{S n+1}是等比数列.又S1+1=a1+1=2,S2+1=a1+a2+1=4,所以=2,数列{S n+1}是首项为2,公比为2的等比数列.所以S n+1=2×2n-1=2n,所以S n=2n-1.(2)证明由(1)知,n≥2时,S n=2n-1,S n-1=2n-1-1,两式相减得a n=2n-1.n=1时,a1=1也满足a n=2n-1,所以数列{a n}的通项公式为a n=2n-1(n∈N*).所以(n∈N*).所以T n=+…+=1++…+=2-因为n∈N*,所以0<1, 所以-1≤-<0.所以1≤2-<2.4.解(1)由已知a n+1-a n=3·22n-1,所以a n+1=[(a n+1-a n)+(a n-a n-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.当n=1时,a1=2也满足上式,所以数列{a n}的通项公式a n=22n-1.(2)由b n=na n=n·22n-1知,S n=1·2+2·23+3·25+…+n·22n-1. ①22·S n=1·23+2·25+3·27+…+n·22n+1. ②①-②得(1-22)S n=2+23+25+…+22n-1-n·22n+1.即S n=[(3n-1)22n+1+2].5.解(1)∵a1=5,∴a2=2a1+22-1=13,a3=2a2+23-1=33.(2)假设存在实数λ,使得数列为等差数列.设b n=,由{b n}为等差数列,则有2b n+1=b n+b n+2(n∈N*).∴2∴λ=4a n+1-4a n-a n+2=2(a n+1-2a n)-(a n+2-2a n+1)=2(2n+1-1)-(2n+2-1)=-1.综上可知,当λ=-1时,数列为首项是2,公差是1的等差数列.6.解(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.依题意,得解得故a n=3+3(n-1)=3n,b n=3×3n-1=3n.所以{a n}的通项公式为a n=3n,{b n}的通项公式为b n=3n.(2)a1c1+a2c2+…+a2n c2n=(a1+a3+a5+…+a2n-1)+(a2b1+a4b2+a6b3+…+a2n b n)=n×3+6+(6×31+12×32+18×33+…+6n×3n)=3n2+6(1×31+2×32+…+n×3n).记T n=1×31+2×32+…+n×3n,①则3T n=1×32+2×33+…+n×3n+1,②②-①得,2T n=-3-32-33-…-3n+n×3n+1=-+n×3n+1=所以a1c1+a2c2+…+a2n c2n=3n2+6T n=3n2+3(n∈N*).高考大题专项(四) 立体几何突破1空间中的平行与空间角1.(2019山东潍坊三模,18)如图,一简单几何体ABCDE的一个面ABC内接于圆O,G、H分别是AE、BC的中点,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(1)证明:GH∥平面ACD;(2)若AC=BC=BE=2,求二面角O-CE-B的余弦值.2.(2019湖北八校联考一,18)如图所示,四棱锥P-ABCD中,面PAD⊥面ABCD,PA=PD=,四边形ABCD为等腰梯形,BC∥AD,BC=CD=AD=1,E为PA的中点.(1)求证:EB∥平面PCD.(2)求面PAD与平面PCD所成的二面角θ的正弦值.3.(2019安徽“江南十校”二模,18)已知多面体ABC-DEF,四边形BCDE为矩形,△ADE与△BCF为边长为2的等边三角形,AB=AC=CD=DF=EF=2.(1)证明:平面ADE∥平面BCF.(2)求BD与平面BCF所成角的正弦值.4.(2019四川宜宾二模,19)如图,四边形ABCD是菱形,EA⊥平面ABCD,EF∥AC,CF∥平面BDE,G是AB中点.(1)求证:EG∥平面BCF;(2)若AE=AB,∠BAD=60°,求二面角A-BE-D的余弦值.5.(2017全国2,理19)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.6.(2014课标全国Ⅱ,理18)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.突破2空间中的垂直与空间角1.(2018全国卷3,理19)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M-ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.2.(2019河北唐山一模,18)如图,△ABC中,AB=BC=4,∠ABC=90°,E,F分别为AB,AC边的中点,以EF为折痕把△AEF折起,使点A到达点P的位置,且PB=BE.(1)证明:BC⊥平面PBE;(2)求平面PBE与平面PCF所成锐二面角的余弦值.3.(2019河北武邑中学调研二,19)如图,已知多面体ABC-A1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.4.(2019山西太原二模,18)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥AD,AD=2AB=2BC=2,△PCD是正三角形,PC⊥AC,E是PA的中点.(1)证明:AC⊥BE;(2)求直线BP与平面BDE所成角的正弦值.5.(2019山东实验等四校联考,18)如图,在直角△ABC中,B为直角,AB=2BC,E,F分别为AB,AC 的中点,将△AEF沿EF折起,使点A到达点D的位置,连接BD,CD,M为CD的中点.(1)证明:MF⊥面BCD;(2)若DE⊥BE,求二面角E-MF-C的余弦值.。
导数大题压轴练-高考数学重点专题冲刺演练(原卷版)
导数大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·广东·统考一模)已知函数()1e x f x x +=.(1)求()f x 的极值;(2)当0x >时,()()1ln 2f x a x x ≥+++,求实数a 的取值范围.2.(2023·广东深圳·深圳中学校联考模拟预测)设()()e xx f x x =∈R .(1)求()f x 的单调性,并求()f x 在12x =处的切线方程;(2)若(e )()(ln 1)x f x k x ⋅≤⋅+在()1,x ∈+∞上恒成立,求k 的取值范围.3.(2023·江苏南通·统考模拟预测)设函数()2ln f x x x =-,()()R g x ax a =∈.(1)若函数()y g x =图象恰与函数()y f x =图象相切,求实数a 的值;(2)若函数()()()2ln h x f x g x x =-+有两个极值点1x ,2x ,设点()()11,A x h x ,()()22,B x h x ,证明:A 、B 两点连线的斜率42a k a >-.4.(2023·江苏南通·校联考模拟预测)已知函数23()e 22x f x m x x =--.(1)当3m ≥时,证明:()f x 在区间(,)-∞+∞上单调递增;(2)若函数()()cos g x f x x =-存在两个不同的极值点,求实数m 的取值范围.5.(2023·辽宁大连·校联考模拟预测)已知函数()e x f x a x =-(e 为自然对数的底数).(1)若()f x 的最小值为1,求2()()2a g x f x x =-在[0,)+∞上的最小值;(2)若02b <≤,证明:当[0,)x ∈+∞时,2223e (3sin )(01)x x x b x a ++≤-<<.6.(2023·辽宁辽阳·统考一模)已知函数()()43430f x x x x =+>.(1)求()f x 的最小值.(2)若()()12f x f x =,且12x x <.证明:(ⅰ)()()3434111122x x x x +-<+-;(ⅱ)122x x +>.7.(2023·河北衡水·河北衡水中学校考三模)已知λ为正实数,函数()()()2ln 102x f x x x x λλ=+-+>.(1)若()0f x >恒成立,求λ的取值范围;(2)求证:()()215212ln 12ln 13n i n n i i =⎛⎫+-<-<+ ⎪⎝⎭∑(1,2,3,...i =).8.(2023·福建泉州·统考三模)已知()()211ln 2f x x a x x x =---有两个极值点1x 、2x ,且12x x <.(1)求a 的范围;(2)当01ln 2a <≤-时,证明:()()12112a f x f x +<+<.9.(2023·山东聊城·统考一模)已知函数()ln a f x x x x =+,()2e ln ln2x g x x x x =---.(1)若直线y x =是曲线()y f x =的一条切线,求a 的值;(2)若对于任意的()10,x ∞∈+,都存在()20,x ∈+∞,使()()12f x g x ≥成立,求a 的取值范围.10.(2023·湖北·校联考模拟预测)已知函数2sin ()π,[0,π]e x x f x x x x =-+∈.(1)求()f x 在(0,(0))f 处的切线方程;(2)若()f x m =存在两个非负零点12,x x ,求证:212ππ1m x x -≤-+.11.(2023·江苏·统考一模)已知R k ∈,函数()()2π3ln 1sin π2f x x x kx =+++,()1,2x ∈-.(1)若0k =,求证:()f x 仅有1个零点;(2)若()f x 有两个零点,求实数k 的取值范围.12.(2023·湖北·荆州中学校联考二模)已知*N n ∈,函数()ln n f x x n x =-有两个零点,记为n x ,()n n n y x y <.(1)证明:11n n n n y x y x ++-<-.(2)对于0αβ<<,若存在θ,使得()()()()n n n f f f βαθβα'-=-,试比较αβ+与2θ的大小.13.(2023·湖北武汉·华中师大一附中校联考模拟预测)已知函数()()()22e 21ln 21x f x a x x =-++.(1)当2a =时,研究函数()f x 的单调性;(2)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()()22cos 22f x x a x ≥--恒成立,求a 的取值范围.14.(2023·湖南邵阳·统考二模)已知函数()e cos x f x x =,()cos g x x x =-.(1)对任意的π,02x ⎡⎤∈-⎢⎥⎣⎦,()()0tf x g x '-≥恒成立,求实数t 的取值范围;(2)设方程()()f x g x '=在区间*ππ(2π,2πN )32n n n ++∈内的根从小到大依次为1x ,2x ,…,n x ,…,求证:12n n x x +->π.15.(2023·湖南·校联考模拟预测)设函数311()sin cos 0,()()sin 222f x x x x x g x f x x ax π⎛⎫=-<<=+- ⎪⎝⎭.(1)证明:当0,2x π⎛⎫∈ ⎪⎝⎭时,()f x 有唯一零点;(2)若任意[0,)x ∈+∞,不等式()0g x ≤恒成立,求实数a 的取值范围.16.(2023·湖南张家界·统考二模)已知函数()1ln 12f x x x x ⎛⎫=-- ⎪⎝⎭,()()()31ln 1h x a x a x x =-+-+-.(1)()()f x F x x=,求()F x 的最值;(2)若函数()()()g x h x f x =-恰有两个不同的零点,求a 的取值范围.17.(2023·湖南郴州·统考三模)已知函数()()()21,ln f x x ax g x x a a R =-+=+∈.(1)若()()1,a f x g x =>在区间()0,t 上恒成立,求实数t 的取值范围;(2)若函数()f x 和()g x 有公切线,求实数a 的取值范围.18.(2023·广东茂名·统考一模)若函数()()211ln 022f x a x x a x =-++>有两个零点12,x x ,且12x x <.(1)求a 的取值范围;(2)若()f x 在()1,0x 和()2,0x 处的切线交于点()33,x y ,求证:()312221x x x a <+<+.19.(2023·广东·校联考模拟预测)已知函数()e x m f x x +=.(1)当0m >时,求函数()f x 的极值点的个数;(2)当a ,b ,()0,c ∈+∞时,e e e 12e b c a c a b a b c m ---------++<-恒成立,求m 的取值范围.20.(2023·广东湛江·统考一模)已知函数()e cos 2x f x x =+-.(1)证明:函数()f x 只有一个零点;(2)在区间()0,∞+上函数()sin f x ax x >-恒成立,求a 的取值范围.21.(2023·江苏南通·海安高级中学校考一模)已知函数()2e ,0x f x a x a =->且1a ≠.(1)设()()e f x g x x x =+,讨论()g x 的单调性;(2)若1a >且()f x 存在三个零点123,,x x x .1)求实数a 的取值范围;2)设123x x x <<,求证:1233x x x ++>.22.(2023·江苏泰州·统考一模)已知函数()1e x x f x a -=和()ln a x g x x +=有相同的最大值.(1)求实数a ;(2)设直线y b =与两条曲线()y f x =和()y g x =共有四个不同的交点,其横坐标分别为()12341234,,,x x x x x x x x <<<,证明:1423x x x x =.23.(2023·辽宁朝阳·校联考一模)已知函数()22ln f x x ax bx =++.(,a b 为实数)(1)当1,1a b ==时,若正实数12,x x 满足()()124f x f x +=,证明:122x x +≥.(2)当0a =时,设()()11e 2x g x xf x -=+,若()0g x ≥恒成立,求b 的取值范围.24.(2023·福建福州·统考二模)已知函数()()1ln f x x x ax a =+-+.(1)若2a =,试判断()f x 的单调性,并证明你的结论;(2)若()1,0x f x >>恒成立.①求a 的取值范围:②设11111232n a n n n n=+++++++ ,[]x 表示不超过x 的最大整数.求[]10n a .(参考数据:ln 20.69≈)25.(2023·山东青岛·统考一模)已知函数()ln f x x =,圆()22:2C x y b +-=.(1)若1b =,写出曲线()y f x =与圆C 的一条公切线的方程(无需证明);(2)若曲线()y f x =与圆C 恰有三条公切线.(i)求b 的取值范围;(ii)证明:曲线22:12y D x -=上存在点(),T m n ()0,0m n >>,对任意0x >,()()1f mx f x n b =+--.26.(2023·山东·沂水县第一中学校联考模拟预测)已知函数()()()1ln f x x x ax a a =+-+∈R .(1)若2a =,试判断()f x 的单调性,并证明你的结论;(2)设01a <≤,求证:()()()()e 1311ln ln 1ax f x a x x x x ->+--+-+.27.(2023·湖北·统考模拟预测)已知函数()1ln 1x f x a x x -=-+.(1)当1a =时,求函数()f x 的单调区间;(2)若()()()()22ln 110g x a x x x a =---≠有3个零点1x ,2x ,3x ,其中123x x x <<.(ⅰ)求实数a 的取值范围;(ⅱ)求证:()()133122a x x -++<.28.(2023·湖南常德·统考一模)已知函数()ln 21a f x x a x =+-+(a ∈R ).(1)讨论函数()f x 的单调性;(2)若()f x 两个极值点1x ,2x ,且21e,e x ⎡⎤∈⎣⎦,求()()12f x f x -的取值范围.29.(2023·广东广州·统考一模)已知0a >,函数()()()1e 1x f x ax =--.(1)若1a =,证明:当0x >时,()ln 1f x x <+:(2)若函数()()()ln 1h x x f x =+-存在极小值点0x ,证明:()00f x ≥30.(2023·江苏南通·二模)已知函数()ln a f x ax x x=--.(1)若1x >,()0f x >,求实数a 的取值范围;(2)设12,x x 是函数()f x 的两个极值点,证明:12()()f x f x -<.。
期末复习专题(导数)
由导数的定义知D正确 由导数的定义知 正确. 正确
2.下列求导运算正确的是 C ) 下列求导运算正确的是( 下列求导运算正确的是 1 1 n)′=nxn A.(x B.( )′= 2 x x 1 C.(x )′= 2 x D.(sinx+cosx)′=cosx+sinx 因为(xn)′=nxn-1,所以 不正确 所以A不正确 不正确. 因为 1 1 因为( 所以B不正确 因为 )′=(x-1)′=-x-2=- ,所以 不正确 所以 不正确. x2 x 1 1 1 2 −1 1 2 因为(x)′=( x)′= ,所以 正确 所以C正确 因为 所以 正确. x= 因为(sinx+cosx)′=cosx-sinx,所以 不正确 所以D不正确 因为 所以 不正确. 故选C. 故选
x
4.导数的运算法则 导数的运算法则 (1)[f(x)±g(x)]′=f ′(x)±g′(x); [ ± ] ± f ′(x)g(x)+f(x)g′(x) ; (2)[f(x)·g(x)]′= [ ] (3)[f(x)g(x)]′= [ ]
f ′( x) g ( x ) − f ( x) g ′( x ) (g(x)≠0). [ g ( x)]2
∆s 的极限值. 的极限值 ∆t
1 ∆s=v0(t0+∆t)- g(t0+∆t)2-(v0t0-12gt02)
ห้องสมุดไป่ตู้
=(v0-gt0)∆t-
∆s 1 =v0-gt0- g∆t, 所以 2 ∆t ∆s 所以∆t→0时, →v0-gt0. 所以 时 ∆t
2 1 g(∆t)2, 2
故物体在时刻t 的瞬时速度为v 故物体在时刻 0的瞬时速度为 0-gt0. 的极限值, 为此, 要求瞬时速度, 的极限值 , 为此 , 要求瞬时速度 , 应先 求出平均速度. 求出平均速度 瞬时速度即是平均速度在∆t→0时 时 点评瞬时速度即是平均速度在
导数大题经典练习及答案
导数大题专题训练1.已知f(x)=xlnx-ax,g(x)=-x2-2,(Ⅰ)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;(Ⅱ)当a=-1时,求函数f(x)在[m,m+3](m>0)上的最值;(Ⅲ)证明:对一切x∈(0,+∞),都有lnx+1>成立.2、已知函数.(Ⅰ)若曲线y=f (x)在点P(1,f (1))处的切线与直线y=x+2垂直,求函数y=f (x)的单调区间;(Ⅱ)若对于都有f (x)>2(a―1)成立,试求a的取值范围;(Ⅲ)记g (x)=f (x)+x―b(b∈R).当a=1时,函数g (x)在区间[e―1,e]上有两个零点,求实数b的取值范围.3.设函数f (x)=lnx+(x-a)2,a∈R.(Ⅰ)若a=0,求函数f (x)在[1,e]上的最小值;(Ⅱ)若函数f (x)在上存在单调递增区间,试求实数a的取值范围;(Ⅲ)求函数f (x)的极值点.4、已知函数.(Ⅰ)若曲线在和处的切线互相平行,求的值;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的取值范围.5、已知函数(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(Ⅱ)若对于任意成立,试求a的取值范围;(Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间上有两个零点,求实数b的取值范围.6、已知函数.(1)若函数在区间(其中)上存在极值,求实数a的取值范围;(2)如果当时,不等式恒成立,求实数k的取值范围.1.解:(Ⅰ)对一切恒成立,即恒成立.也就是在恒成立;令,则,在上,在上,因此,在处取极小值,也是最小值,即,所以.(Ⅱ)当,,由得.①当时,在上,在上因此,在处取得极小值,也是最小值. .由于因此,②当,,因此上单调递增,所以,……9分(Ⅲ)证明:问题等价于证明由(Ⅱ)知时,的最小值是,当且仅当时取得,设,则,易知,当且仅当时取到,但从而可知对一切,都有成立.2、解:(Ⅰ)直线y=x+2的斜率为1.函数f (x)的定义域为(0,+∞),因为,所以,所以a=1.所以. .由解得x>0;由解得0<x<2. 所以f (x)的单调增区间是(2,+∞),单调减区间是(0,2)(Ⅱ),由解得;由解得.所以f (x)在区间上单调递增,在区间上单调递减.所以当时,函数f (x)取得最小值,. 因为对于都有成立,所以即可. 则.由解得.所以a的取值范围是.(Ⅲ)依题得,则.由解得x>1;由解得0<x<1.所以函数在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数在区间[e-1,e]上有两个零点,所以.解得.所以b的取值范围是.3.解:(Ⅰ)f (x)的定义域为(0,+∞). 因为,所以f (x)在[1,e]上是增函数,当x=1时,f (x)取得最小值f (1)=1.所以f (x)在[1,e]上的最小值为1.(Ⅱ)解法一:设g (x)=2x2―2ax+1,依题意,在区间上存在子区间使得不等式g (x)>0成立. 注意到抛物线g (x)=2x2―2ax+1开口向上,所以只要g (2)>0,或即可由g (2)>0,即8―4a+1>0,得,由,即,得,所以,所以实数a的取值范围是.解法二:,依题意得,在区间上存在子区间使不等式2x2―2ax+1>0成立.又因为x>0,所以.设,所以2a小于函数g (x)在区间的最大值.又因为,由解得;由解得.所以函数g (x)在区间上递增,在区间上递减.所以函数g (x)在,或x=2处取得最大值.又,,所以,所以实数a的取值范围是.(Ⅲ)因为,令h (x)=2x2―2ax+1①显然,当a≤0时,在(0,+∞)上h (x)>0恒成立,f (x)>0,此时函数f (x)没有极值点;②当a>0时,(i)当Δ≤0,即时,在(0,+∞)上h (x)≥0恒成立,这时f (x)≥0,此时,函数f (x)没有极值点;(ii)当Δ>0时,即时,易知,当时,h (x)<0,这时f (x)<0;当或时,h (x)>0,这时f (x)>0;所以,当时,是函数f (x)的极大值点;是函数f (x)的极小值点.综上,当时,函数f (x)没有极值点;当时,是函数f (x)的极大值点;是函数f (x)的极小值点.4.解:. (Ⅰ),解得.(Ⅱ).①当时,,,在区间上,;在区间上,故的单调递增区间是,单调递减区间是.②当时,,在区间和上,;在区间上,故的单调递增区间是和,单调递减区间是.③当时,,故的单调递增区间是.④当时,,在区间和上,;在区间上,故的单调递增区间是和,单调递减区间是.(Ⅲ)由已知,在上有.由已知,,由(Ⅱ)可知,①当时,在上单调递增,故,所以,,解得,故.②当时,在上单调递增,在上单调递减,故.由可知,,,所以,,,综上所述,.5、解:(Ⅰ)直线y=x+2的斜率为1,函数f(x)的定义域为因为,所以,所以a=1,所以由解得x>2 ;由解得0<x<2所以f(x)得单调增区间是,单调减区间是(Ⅱ),由解得由解得所以f(x)在区间上单调递增,在区间上单调递减所以当时,函数f(x)取得最小值因为对于任意成立,所以即可则,由解得;所以a得取值范围是(Ⅲ)依题意得,则由解得x>1,由解得0<x<1所以函数g(x)在区间上有两个零点,所以解得所以b得取值范围是6、解:(1)因为,,则,当时,;当时,.∴在上单调递增;在上单调递减,∴函数在处取得极大值.………3分∵函数在区间(其中)上存在极值,∴解得.(2)不等式,即为,记∴,…9分令,则,∵,∴,∴在上递增,∴,从而,故在上也单调递增,∴,∴.。
高中数学导数大题
1、已知函数在某区间内单调递增,且其一阶导数为正,二阶导数为负,则下列说法正确的是:A. 函数在该区间内始终大于零B. 函数在该区间内的增长速度逐渐减慢C. 函数在该区间内可能存在拐点D. 函数的一阶导数在该区间内先增后减(答案)B2、设函数f(x)在x=a处取得极大值,则下列关于f'(a)和f''(a)的说法正确的是:A. f'(a) = 0,f''(a) > 0B. f'(a) ≠ 0,f''(a) = 0C. f'(a) = 0,且f''(a)的存在性无法确定,但f(x)在x=a左右两侧导数符号相反D. f'(a) = 0,f''(a) < 0(答案)C3、若函数f(x)在区间(a, b)上可导,且f'(x) > 0,f''(x) < 0,则下列结论正确的是:A. f(x)在(a, b)上单调递减B. f(x)在(a, b)上先增后减C. f(x)在(a, b)上单调递增,但增长速度逐渐减慢D. f(x)在(a, b)上的凹凸性无法确定(答案)C4、已知函数f(x)在R上可导,且f'(x) = 2x - 3,则f(x)在x = 2处的切线斜率为:A. -1B. 0C. 1D. 2(答案)C5、设函数f(x) = x3 - 3x2 + 2x,则f(x)的极值点个数为:A. 0B. 1C. 2D. 3(答案)C6、已知函数f(x)在x=1处取得极小值,且f'(1) = 0,f''(1) > 0,则下列说法正确的是:A. f(x)在x=1处不可导B. f(x)在x=1处单调性改变C. f(x)在x=1处取得最大值D. f''(x)在x=1处必为零(答案)B7、若函数f(x)在区间[a, b]上连续,在(a, b)内可导,且f'(x)在(a, b)内恒大于零,则f(x)在[a,b]上的最小值为:A. f(a)B. f(b)C. f((a+b)/2)D. 无法确定(答案)A8、设函数f(x) = ex - x - 1,则f(x)在x = 0处的切线方程与x轴的交点横坐标为:A. -1B. 0C. 1D. 2(答案)A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中导数大题专题复习一、导数的基本应用(一)研究含参数的函数的单调性、极值和最值基本思路:定义域 →→ 疑似极值点 →→ 单调区间 →→ 极值 →→ 最值 基本方法: 一般通法:利用导函数研究法特殊方法:(1)二次函数分析法;(2)单调性定义法【例题】(2008北京理18/22)已知函数22()(1)x bf x x -=-,求导函数()f x ',并确定()f x 的单调区间.本组题旨在强化对导函数零点进行分类讨论的意识、能力和技巧 【例题】(2009北京文18/22)设函数3()3(0)f x x ax b a =-+≠. (Ⅱ)求函数()f x 的单调区间与极值点.【例题】(2009天津理20/22)已知函数22()(23)(),xf x x ax a a e x R =+-+∈其中a R ∈. (II )当23a ≠时,求函数()f x 的单调区间与极值.【例题】(2008福建文21/22)已知函数32()2f x x mx nx =++-的图象过点(1,6)--,且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m n 、的值及函数()y f x =的单调区间;(Ⅱ)若0a >,求函数()y f x =在区间(1,1)a a -+内的极值.【例题】(2009安徽文21/21)已知函数2()1ln f x x a x x=-+-,a >0, (I)讨论()f x 的单调性;(II)设a=3,求()f x 在区间[1,2e ]上值域.其中e=2.71828…是自然对数的底数.(二)利用函数的单调性、极值、最值,求参数取值范围基本思路:定义域 →→ 单调区间、极值、最值 →→ 不等关系式 →→ 参数取值范围 基本工具:导数、含参不等式解法、均值定理等【例题】(2008湖北文17/21)已知函数322()1f x x mx m x =+-+(m 为常数,且m >0)有极大值....9.. (Ⅰ)求m 的值;(Ⅱ)若斜率为5-的直线是曲线()y f x =的切线,求此直线方程.【例题】(2009四川文20/22)已知函数32()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x =-.(I )求函数()f x 的解析式; (II )设函数1()()3g x f x mx =+,若.()g x 的极值存在.....,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.★【例题】(2008全国Ⅱ文21/22) 设a ∈R ,函数233)(x ax x f -=. (Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围.★【例题】(2009陕西理20/22)已知函数1()ln(1),01xf x ax x x-=++≥+,其中0a > (Ⅱ)求()f x 的单调区间;(Ⅲ)若()f x 的最小值为1,求a 的取值范围.(三)导数的几何意义(2008海南宁夏文21/22)设函数()bf x ax x=-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --=.(Ⅰ)求()y f x =的解析式;(Ⅱ)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值.二、导数应用的变式与转化 (一)函数的零点存在与分布问题问题设置:根据函数零点或方程实数根的个数求参数取值范围 基本方法: 通性通法:函数最值控制法特殊方法:(1)二次函数判别式法;(2)零点存在性定理二次函数(1) 本组题旨在加深对二次函数零点存在性与分布问题的认识; (2) 本题旨在提升对函数与方程关系问题的认识水平; (3) 研究二次函数零点分布问题时,除了判别式法以外,应补充极值(最值)控制法,为三次函数零点分布研究做方法上的铺垫.【例题】(2009广东文21/21)已知二次函数)(x g y =的导函数的图像与直线2y x =平行,且)(x g y =在x =-1处取得最小值m -1(m 0≠).设函数xx g x f )()(=(1)若曲线)(x f y =上的点P 到点Q(0,2)的距离的最小值为2,求m 的值; (2))(R k k ∈如何取值时,函数kx x f y -=)(存在零点....,并求出零点.【例题】(2009重庆文19/21)已知2()f x x bx c =++为偶函数,曲线()y f x =过点(2,5),()()()g x x a f x =+.(Ⅰ)求曲线()y g x =有斜率为....0.的切线...,求实数a 的取值范围;【例题】(07广东文21/21)已知a 是实数,函数()a x ax x f --+=3222,如果函数()x f y =在.区间..[]1,1-上有零点....,求a 的取值范围.【例题】(2009浙江文21/22)已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R . (I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围.三次函数(1) 本组题旨在加深对二次函数零点存在性与分布问题的认识; (2) 本题旨在提升对函数与方程关系问题的认识水平;(3) 本组题旨在加深对二次函数、三次函数零点分布问题的认识,进而深化对导数方法、极值、最值的理解.【例题】(2009陕西文20/22)已知函数3()31,0f x x ax a =--≠ (I )求()f x 的单调区间;(II )若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交点.........., 求m 的取值范围.【例题】(2007全国II 理22/22)已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,若过点()a b ,可作曲线....()y f x =的三条切线.....,证明:()a b f a -<<(二)不等式恒成立与存在解问题问题设置:当不等关系在某个区间范围内恒成立或存在解为条件,求参数的取值范围 基本思路:转化为函数最值与参数之间的不等关系问题 基本方法: 通性通法:变量分离法、变量转换、最值控制法特殊方法:二次函数判别式法、二次函数根的分布研究【例题】(2009江西文17/22)设函数329()62f x x x x a =-+-. (1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值【例题】(2008安徽文20/22)设函数323()(1)1,32a f x x x a x a =-+++其中为实数. (Ⅰ)略;(Ⅱ)若'2()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围.【例题】(2008山东文21/22)设函数2132()x f x x eax bx -=++,已知2x =-和1x =为()f x 的极值点.(Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小.(2007湖北理20/21)已知定义在正实数集上的函数21()22f x x ax =+,2()3ln g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同.(三)“零点存在与分布问题”与“恒成立、存在解问题”之间的关系(1) 研究对象的本质相同,因此解题方向一致:函数的极值或最值控制是解决这两类问题的通性通法,针对特殊类型的函数,如二次函数,又都可以用相应的函数性质进行研究; (2) 研究对象的载体不同,因此解题方法不同:前者是函数与其所对应的方程之间关系的问题,后者是函数与其所对应的不等式之间关系的问题;(3)原型问题是根本,转化命题是关键:二者都可以进一步衍生出其他形式的问题,因此往往需要先将题目所涉及的问题转化为原型问题,然后利用通性通法加以解决,在转化过程中应注意命题的等价性.【例题】(2009天津文21/22)设函数0),(,)1(31)(223>∈-++-=m R x x m x x x f 其中 (Ⅰ)略;(Ⅱ)求函数的单调区间与极值; (Ⅲ)已知函数)(x f 有三个互不相同的零点0,21,x x ,且21x x <.若对任意的],[21x x x ∈,)1()(f x f >恒成立,求m 的取值范围.四、其它形式的问题【例题】(2008陕西文22/22)设函数3222()1,()21,f x x ax a x g x ax x =+-+=-+其中实数0a ≠.(Ⅰ)若0a >,求函数()f x 的单调区间;(Ⅱ)当函数()y f x =与()y g x =的图象只有一个公共点且()g x 存在最小值时,记()g x 的最小值为()h a ,求()h a 的值域;(Ⅲ)若()f x 与()g x 在区间(,2)a a +内均为增函数,求a 的取值范围.【例题】(2008湖南文21/21)已知函数43219()42f x x x x cx =+-+有三个极值点. (I )证明:275c -<<; (II )若存在实数c ,使函数)(x f 在区间[],2a a +上单调递减,求a 的取值范围.(2008辽宁文22/22)设函数322()31()f x ax bx a x a b =+-+∈R ,在1x x =,2x x =处取得极值,且122x x -=.(Ⅰ)若1a =,求b 的值,并求()f x 的单调区间;(Ⅱ)若0a >,求b 的取值范围.。