Sorting an LDL receptor with bound PCSK9 to intracellular degradation
高二英语科技词汇单选题40题(带答案)
高二英语科技词汇单选题40题(带答案)1.The new smartphone has a large _____.A.screenB.keyboardC.mouseD.printer答案:A。
“screen”是屏幕,新智能手机有一个大屏幕,符合常理。
“keyboard”是键盘,“mouse”是鼠标,“printer”是打印机,都与智能手机不匹配。
2.We can use a _____ to take pictures.puterB.cameraC.televisionD.radio答案:B。
“camera”是相机,可以用来拍照。
“computer”是电脑,“television”是电视,“radio”是收音机,都不能用来拍照。
3.The _____ can play music and videos.ptopB.speakerC.projectorD.scanner答案:A。
“laptop”是笔记本电脑,可以播放音乐和视频。
“speaker”是扬声器,“projector”是投影仪,“scanner”是扫描仪,都不能播放音乐和视频。
4.My father bought a new _____.A.tabletB.bookC.penD.pencil答案:A。
“tablet”是平板电脑。
“book”是书,“pen”是钢笔,“pencil”是铅笔,只有平板电脑是科技设备。
5.The _____ is very useful for online meetings.A.headphoneB.microphoneC.speakerD.camera答案:D。
“camera”摄像头在在线会议中很有用。
“headphone”是耳机,“microphone”是麦克风,“speaker”是扬声器,都不如摄像头在在线会议中的作用直接。
6.We can store a lot of data in a _____.A.flash driveB.penC.pencilD.book答案:A。
Sharp SP-1120N 网络兼容单面双面扫描仪说明书
Simple and network compatible scanner for businessSP-1120N Image ScannerAssistance for safe and reliable scanningSP-1120N comes with brake rollers to deliver accuratepage separation and prevent any multi-feeding errors from occurring. This mechanism, along with our ultrasonic multi-feed sensors, provides users with stable paper feeding, prevents any potential information loss from occurring, and enables scanning of all documents and cards at the office with maximized precision and efficiency. Application forms and ID cards at the reception desk, for instance, can be scanned in just one batch, allowing for quick processing and reduced customer wait times.Document software for maximized flexibilityEasily find the information you need using ABBYY® FineReader® Sprint. Specializing in OCR processing, thesoftware is compatible with over 190 languages and generates both searchable PDF and Microsoft Office documents.Flexible and easy operation to improve daily workflowHigh-speed USB 3.2 Gen 1x1 and wired network connection expands the versatility of user operation so that users are no longer confined to operating near the computer. Operation is now possible in a wider variety of locations, with reliable network environment support. SP-1120N is also compact in size, making it the perfect scanner to use on a desk or reception space where space is limited. This entry level model allows for a simple, push-scan from the front panel, for intuitive use. All these features combined, enable anyone to operate the scanner anywhere.The SP-1120N document scanner is a compact and network compatible scanner that provides high-value performance, perfect for entry-level for personal and small businesses. The SP-1120N scans 20 ppm/40 ipm (A4 portrait 200/300 dpi) and holds 50 sheets in the ADF, making it a great device formoderate batch scanning.PaperStream Capture makes scanning fast and easyEliminate the learning curve. PaperStream Capture’s user-friendly interface allows easy operation from start to finish. Changing scan settings is simple. Indexing and sorting features include barcode, patch code, and blank pageseparation – making batch scanning a breeze for operators.PaperStream ClickScan simplifies scanningEasy to use capture software for any business. Simple scanning interface with 3-steps: scan, select destination& save.Intelligent image processing with PaperStream IPPaperStream IP (PSIP) is a TWAIN/ISIS® - compliant driver that cleans up and optimizes scanned images without any advance settings. PSIP features:• Auto Color Detection to automatically identify the best color mode for the document • Auto Deskew to automatically corrects skewed images • Blank Page Detection to automatically remove blank pages • Front and Back Merge to place two sides of a page into one convenient image •Automatic hole punch removalCentralized fleet managementIncludes Scanner Central Admin Agent to remotely manage your entire fi Series fleet. Effectively allocate your resourcesbased on scan volume, consumables wear, and more.Network compatible image scannerSP-1120NV12108DS1120NMFor more information visit the Fujitsu Computer Products of America website , email ********************* or call 888-425-8228.¹ Actual scanning speeds are affected by data transmission and software processing times. 2 Indicated speeds are from using JPEG compression. 3 Indicated speeds are from using TIFF CCITT Group 4 compression. 4 Selectable maximum density may vary depending on the length of the scanned document. 5 Limitations may apply to the size of documents that can be scanned, depending on system environment, when scanning at high resolution (over 600 dpi). 6 Capable of scanning documents with dimensions exceeding that of Legal sizes. Resolutions are limited to 300 dpi or less when scanning documents >355.6 mm (14 in.) to > 863 mm (34 in.), 200 dpi or less when scanning documents ≦ 863mm (34 in.) in length. 7 Thicknesses of up to 127 to 209 g/m² (34 to 56 lb) can be scanned for A8 (52 x 74 mm / 2.1 x 2.9 in.) sizes. 8 ISO7810 ID-1 type compliant. Capable of scanning embossed cards with total thicknesses of 1.24 mm (0.049 in.) or less. 9 Maximum capacity depends on paper weight and may vary. 10 Capable of setting additional documents while scanning. 11 Numbers are calculated using scanning speeds and typical hours of scanner use, and are not meant to guarantee daily volume or unit durability. 12 Scanning speeds slow down when using USB 1.1. 13 When using USB, device must be connected to the USB hub connected to the PC port. If using USB 3.2 Gen 1x1 (USB 3.0) / USB 2.0, USB port and hub compatibility is required. 14 Excludes the ADF paper chute and stacker. 15 Functions equivalent to those offered by PaperStream IP may not be available with the WIA Driver. 16 Refer to the SP Series Support Site for software downloads. 17 In-box software only includes driver support for MacOS and Ubuntu.TrademarksABBYY and FineReader are registered trademarks of ABBYY Software, Ltd. which may be registered in some jurisdictions. ISIS is a trademark of Open Text. Microsoft, Windows, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.ENERGY STAR®PFU Limited, a Fujitsu company, has determined that this product meets the ENERGY STAR® guidelines for energy efficiency. ENERGY STAR® is a registered trademark of the United States.©2021 Fujitsu Computer Products of America, Inc. Fujitsu and the Fujitsu logo are registered trademarks of Fujitsu Limited. All text, graphics, trademarks, logos contained herein related to Fujitsu, PFU, or Fujitsu Computer Products of America, Inc. (“FCPA”) are owned, controlled or licensed by or to FCPA with all rights reserved. All other text, graphics, trademarks, service marks and logos used herein are the copyrights, trademarks, service marks or logos of their respective owners.Scanner TypeADF (Automatic Document Feeder), Duplex Scanning speed 1 (A4 Portrait)Color 2, Grayscale 2 and Monochrome 3Simplex: Duplex:20 ppm (200/300 dpi)40 ipm (200/300 dpi)Image Sensor Type Single line CMOS-CIS x 2 (front x 1, back x 1)Light Source RGB LED x 2 (front x 1, back x 1)Optical Resolution600 dpiOutput Resolution 4(Color / Grayscale / Monochrome)50 to 600 dpi (adjustable by 1 dpi increments)1,200 dpi (driver)5Output Format Color: 24-bit, Grayscale: 8-bit, Monochrome: 1-bit Background ColorsWhiteDocument Size Maximum MinimumLong Page Scanning s 6 (Maximum) 216 x 355.6 mm (8.5 x 14 in.)52 x 74 mm (2.0 x 2.9 in.)3,048 mm (120 in.)Paper Weight (Thickness)PaperPlastic Card 50 to 209 g/m² (13.4 to 56 lb)70.76 mm (0.0299 in.) or less 8ADF Capacity 9, 1050 sheets (A4 80 g/m² or Letter 20 lb) Expected Daily Volume 113,000 sheetsInterface USB 12, 13EthernetUSB 3.2 Gen 1x1 / USB 2.0 / USB 1.110BASE-T,100BASE-TX,1000BASE-T Power requirements AC 100 to 240 V ±10 %Power Consumption Operating Mode Sleep ModeAuto Standby (Off) Mode18 W or less 2 W or less 0.4 W or lessOperating Environment TemperatureRelative Humidity5 to 35 °C (41 to 95 °F)20 to 80% (non-condensing)Environmental Compliance ENERGY STAR 3.0®, RoHSDimensions 14(Width x Depth x Height)298 x 135 x 133 mm (11.7 x 5.3 x 5.2 in.)Weight2.5 kg (5.5 lb)Included in the box AC adapter, USB cable, Setup DVD-ROMIncluded Software / DriversPaperStream IP for SP Series (TWAIN/TWAIN x64/ISIS), WIA Driver 15, PaperStream Capture, PaperStream ClickScan, Software Operation Panel, Error Recovery Guide, ABBYY FineReader for ScanSnap 16, Scanner Central Admin, ABBYY™ FineReader Sprint™, Network Setup Tool for SP Series, SP Series Online Update Supported operating systemsMacOS V10.15 Catalina, V11 Big Sur 17Linux (Ubuntu)17Windows® 10Windows® 8.1 Windows® 7Windows Server® 2019Windows Server® 2016Windows Server® 2012 R2Windows Server® 2012Windows Server® 2008 R2Image processing functionsMulti image output, Automatic color detection, Automatic page size detection, Blank page detection, Dynamicthreshold (iDTC), Advanced DTC, SDTC, Error diffusion, Dither,De-Screen, Emphasis, Dropout color (None/Red/Green/Blue/White/Saturation/Custom), sRGB output, Split image,De-Skew, Edge filler, Vertical streaks reduction, Digitalendorser, Background pattern removal, Character thickness,Character augmentation, Character extractionTechnical InformationFujitsu industry-leading support keeps digital transformation projects on-time and on budget• U.S. based support • Specialized Teams • Flexible service programsFujitsu Imaging Solutions provide superior engineering at the forefront of innovation through:• Engineering Passion and Dedication • Human Centric Design • Worldwide ReliabilityAdvance Exchange SP1120N-AEMYNBD-33-year scanner contract shipping a replacement unit shipped overnight *PaperStream Capture ProPSCP-WG-0001PaperStream Capture Pro optional licenseRoller Set Pick Roller, Brake RollerPA03708-0001Every 100,000 sheets or one year ScanAid KitCG01000-287201Consumable kit with instructions and cleaning suppliesDuplex Scans both sidesScansPlastic CardsFlat and embossed 600Optical DPI24-bit ColorScanning supported TWAIN & I SIS SupportedIndustry Leading Net PromoterScore* Replacement units shipped overnight for all requests received by 2 P.M. PSTInsist on Genuine Fujitsu Service to keep your scanner running at its best。
组建滑雪社团英语翻译作文
As the winter season approaches,the allure of the snowcovered mountains and the thrill of skiing can be irresistible.If youre passionate about skiing and want to share this enthusiasm with others,organizing a ski club can be a fantastic way to bring likeminded individuals together.Heres a detailed plan on how to establish a ski club:1.Define the Purpose and Goals:Start by outlining the objectives of your ski club.Is it for beginners,experienced skiers, or a mix of both?Will it focus on recreational skiing,competitive events,or both?2.Create a Constitution:Draft a set of rules and guidelines that will govern the clubs operations.This should include membership criteria,meeting schedules,decisionmaking processes,and financial management.3.Register the Club:Depending on your location,you may need to register your club with local authorities or a national sports governing body.4.Establish a Committee:Form a core team to manage the club.This could include a president,treasurer, secretary,and other roles as needed.5.Recruit Members:Advertise your club through local community centers,schools,universities,and online e social media,flyers,and word of mouth to attract potential members.anize Regular Meetings:Schedule regular meetings to discuss club activities,plan trips,and share skiing tips and experiences.7.Plan Ski Trips:Organize group ski trips to local or regional ski resorts.Consider offering different levels of difficulty to cater to all skill levels.8.Arrange Coaching and Training:For beginners,arrange for professional ski coaching to ensure safe and effective learning.For advanced skiers,consider organizing training sessions to improve technique and performance.9.Ensure Safety:Make safety a priority.Ensure all members are aware of safety protocols and have the necessary equipment.10.Foster a Community:Encourage a sense of camaraderie among members through social events,such as aprèsski gatherings,and by creating an inclusive and supportive environment.11.Fundraising:Organize fundraising events to cover the costs of trips,equipment,and club activities. This could include bake sales,charity runs,or raffles.municate Effectively:Keep members informed about club news,updates,and events through regular newsletters,emails,or a dedicated club website.13.Collaborate with Other Clubs:Build relationships with other ski clubs for potential joint events,exchanges,or competitions.14.Celebrate Achievements:Recognize and celebrate the achievements of your members,whether its completing a challenging run,improving their technique,or participating in a competition.15.Continuously Improve:Regularly seek feedback from members and make adjustments to improve the clubs offerings and operations.By following these steps,you can create a thriving ski club that not only provides a platform for skiing enthusiasts to enjoy their passion but also fosters a strong community spirit.Remember,the key to a successful club is active participation,clear communication,and a shared love for the sport.。
3GPP TS 36.331 V13.2.0 (2016-06)
3GPP TS 36.331 V13.2.0 (2016-06)Technical Specification3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA);Radio Resource Control (RRC);Protocol specification(Release 13)The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.KeywordsUMTS, radio3GPPPostal address3GPP support office address650 Route des Lucioles - Sophia AntipolisValbonne - FRANCETel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16InternetCopyright NotificationNo part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.© 2016, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).All rights reserved.UMTS™ is a Trade Mark of ETSI registered for the benefit of its members3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational PartnersLTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM AssociationBluetooth® is a Trade Mark of the Bluetooth SIG registered for the benefit of its membersContentsForeword (18)1Scope (19)2References (19)3Definitions, symbols and abbreviations (22)3.1Definitions (22)3.2Abbreviations (24)4General (27)4.1Introduction (27)4.2Architecture (28)4.2.1UE states and state transitions including inter RAT (28)4.2.2Signalling radio bearers (29)4.3Services (30)4.3.1Services provided to upper layers (30)4.3.2Services expected from lower layers (30)4.4Functions (30)5Procedures (32)5.1General (32)5.1.1Introduction (32)5.1.2General requirements (32)5.2System information (33)5.2.1Introduction (33)5.2.1.1General (33)5.2.1.2Scheduling (34)5.2.1.2a Scheduling for NB-IoT (34)5.2.1.3System information validity and notification of changes (35)5.2.1.4Indication of ETWS notification (36)5.2.1.5Indication of CMAS notification (37)5.2.1.6Notification of EAB parameters change (37)5.2.1.7Access Barring parameters change in NB-IoT (37)5.2.2System information acquisition (38)5.2.2.1General (38)5.2.2.2Initiation (38)5.2.2.3System information required by the UE (38)5.2.2.4System information acquisition by the UE (39)5.2.2.5Essential system information missing (42)5.2.2.6Actions upon reception of the MasterInformationBlock message (42)5.2.2.7Actions upon reception of the SystemInformationBlockType1 message (42)5.2.2.8Actions upon reception of SystemInformation messages (44)5.2.2.9Actions upon reception of SystemInformationBlockType2 (44)5.2.2.10Actions upon reception of SystemInformationBlockType3 (45)5.2.2.11Actions upon reception of SystemInformationBlockType4 (45)5.2.2.12Actions upon reception of SystemInformationBlockType5 (45)5.2.2.13Actions upon reception of SystemInformationBlockType6 (45)5.2.2.14Actions upon reception of SystemInformationBlockType7 (45)5.2.2.15Actions upon reception of SystemInformationBlockType8 (45)5.2.2.16Actions upon reception of SystemInformationBlockType9 (46)5.2.2.17Actions upon reception of SystemInformationBlockType10 (46)5.2.2.18Actions upon reception of SystemInformationBlockType11 (46)5.2.2.19Actions upon reception of SystemInformationBlockType12 (47)5.2.2.20Actions upon reception of SystemInformationBlockType13 (48)5.2.2.21Actions upon reception of SystemInformationBlockType14 (48)5.2.2.22Actions upon reception of SystemInformationBlockType15 (48)5.2.2.23Actions upon reception of SystemInformationBlockType16 (48)5.2.2.24Actions upon reception of SystemInformationBlockType17 (48)5.2.2.25Actions upon reception of SystemInformationBlockType18 (48)5.2.2.26Actions upon reception of SystemInformationBlockType19 (49)5.2.3Acquisition of an SI message (49)5.2.3a Acquisition of an SI message by BL UE or UE in CE or a NB-IoT UE (50)5.3Connection control (50)5.3.1Introduction (50)5.3.1.1RRC connection control (50)5.3.1.2Security (52)5.3.1.2a RN security (53)5.3.1.3Connected mode mobility (53)5.3.1.4Connection control in NB-IoT (54)5.3.2Paging (55)5.3.2.1General (55)5.3.2.2Initiation (55)5.3.2.3Reception of the Paging message by the UE (55)5.3.3RRC connection establishment (56)5.3.3.1General (56)5.3.3.1a Conditions for establishing RRC Connection for sidelink communication/ discovery (58)5.3.3.2Initiation (59)5.3.3.3Actions related to transmission of RRCConnectionRequest message (63)5.3.3.3a Actions related to transmission of RRCConnectionResumeRequest message (64)5.3.3.4Reception of the RRCConnectionSetup by the UE (64)5.3.3.4a Reception of the RRCConnectionResume by the UE (66)5.3.3.5Cell re-selection while T300, T302, T303, T305, T306, or T308 is running (68)5.3.3.6T300 expiry (68)5.3.3.7T302, T303, T305, T306, or T308 expiry or stop (69)5.3.3.8Reception of the RRCConnectionReject by the UE (70)5.3.3.9Abortion of RRC connection establishment (71)5.3.3.10Handling of SSAC related parameters (71)5.3.3.11Access barring check (72)5.3.3.12EAB check (73)5.3.3.13Access barring check for ACDC (73)5.3.3.14Access Barring check for NB-IoT (74)5.3.4Initial security activation (75)5.3.4.1General (75)5.3.4.2Initiation (76)5.3.4.3Reception of the SecurityModeCommand by the UE (76)5.3.5RRC connection reconfiguration (77)5.3.5.1General (77)5.3.5.2Initiation (77)5.3.5.3Reception of an RRCConnectionReconfiguration not including the mobilityControlInfo by theUE (77)5.3.5.4Reception of an RRCConnectionReconfiguration including the mobilityControlInfo by the UE(handover) (79)5.3.5.5Reconfiguration failure (83)5.3.5.6T304 expiry (handover failure) (83)5.3.5.7Void (84)5.3.5.7a T307 expiry (SCG change failure) (84)5.3.5.8Radio Configuration involving full configuration option (84)5.3.6Counter check (86)5.3.6.1General (86)5.3.6.2Initiation (86)5.3.6.3Reception of the CounterCheck message by the UE (86)5.3.7RRC connection re-establishment (87)5.3.7.1General (87)5.3.7.2Initiation (87)5.3.7.3Actions following cell selection while T311 is running (88)5.3.7.4Actions related to transmission of RRCConnectionReestablishmentRequest message (89)5.3.7.5Reception of the RRCConnectionReestablishment by the UE (89)5.3.7.6T311 expiry (91)5.3.7.7T301 expiry or selected cell no longer suitable (91)5.3.7.8Reception of RRCConnectionReestablishmentReject by the UE (91)5.3.8RRC connection release (92)5.3.8.1General (92)5.3.8.2Initiation (92)5.3.8.3Reception of the RRCConnectionRelease by the UE (92)5.3.8.4T320 expiry (93)5.3.9RRC connection release requested by upper layers (93)5.3.9.1General (93)5.3.9.2Initiation (93)5.3.10Radio resource configuration (93)5.3.10.0General (93)5.3.10.1SRB addition/ modification (94)5.3.10.2DRB release (95)5.3.10.3DRB addition/ modification (95)5.3.10.3a1DC specific DRB addition or reconfiguration (96)5.3.10.3a2LWA specific DRB addition or reconfiguration (98)5.3.10.3a3LWIP specific DRB addition or reconfiguration (98)5.3.10.3a SCell release (99)5.3.10.3b SCell addition/ modification (99)5.3.10.3c PSCell addition or modification (99)5.3.10.4MAC main reconfiguration (99)5.3.10.5Semi-persistent scheduling reconfiguration (100)5.3.10.6Physical channel reconfiguration (100)5.3.10.7Radio Link Failure Timers and Constants reconfiguration (101)5.3.10.8Time domain measurement resource restriction for serving cell (101)5.3.10.9Other configuration (102)5.3.10.10SCG reconfiguration (103)5.3.10.11SCG dedicated resource configuration (104)5.3.10.12Reconfiguration SCG or split DRB by drb-ToAddModList (105)5.3.10.13Neighbour cell information reconfiguration (105)5.3.10.14Void (105)5.3.10.15Sidelink dedicated configuration (105)5.3.10.16T370 expiry (106)5.3.11Radio link failure related actions (107)5.3.11.1Detection of physical layer problems in RRC_CONNECTED (107)5.3.11.2Recovery of physical layer problems (107)5.3.11.3Detection of radio link failure (107)5.3.12UE actions upon leaving RRC_CONNECTED (109)5.3.13UE actions upon PUCCH/ SRS release request (110)5.3.14Proximity indication (110)5.3.14.1General (110)5.3.14.2Initiation (111)5.3.14.3Actions related to transmission of ProximityIndication message (111)5.3.15Void (111)5.4Inter-RAT mobility (111)5.4.1Introduction (111)5.4.2Handover to E-UTRA (112)5.4.2.1General (112)5.4.2.2Initiation (112)5.4.2.3Reception of the RRCConnectionReconfiguration by the UE (112)5.4.2.4Reconfiguration failure (114)5.4.2.5T304 expiry (handover to E-UTRA failure) (114)5.4.3Mobility from E-UTRA (114)5.4.3.1General (114)5.4.3.2Initiation (115)5.4.3.3Reception of the MobilityFromEUTRACommand by the UE (115)5.4.3.4Successful completion of the mobility from E-UTRA (116)5.4.3.5Mobility from E-UTRA failure (117)5.4.4Handover from E-UTRA preparation request (CDMA2000) (117)5.4.4.1General (117)5.4.4.2Initiation (118)5.4.4.3Reception of the HandoverFromEUTRAPreparationRequest by the UE (118)5.4.5UL handover preparation transfer (CDMA2000) (118)5.4.5.1General (118)5.4.5.2Initiation (118)5.4.5.3Actions related to transmission of the ULHandoverPreparationTransfer message (119)5.4.5.4Failure to deliver the ULHandoverPreparationTransfer message (119)5.4.6Inter-RAT cell change order to E-UTRAN (119)5.4.6.1General (119)5.4.6.2Initiation (119)5.4.6.3UE fails to complete an inter-RAT cell change order (119)5.5Measurements (120)5.5.1Introduction (120)5.5.2Measurement configuration (121)5.5.2.1General (121)5.5.2.2Measurement identity removal (122)5.5.2.2a Measurement identity autonomous removal (122)5.5.2.3Measurement identity addition/ modification (123)5.5.2.4Measurement object removal (124)5.5.2.5Measurement object addition/ modification (124)5.5.2.6Reporting configuration removal (126)5.5.2.7Reporting configuration addition/ modification (127)5.5.2.8Quantity configuration (127)5.5.2.9Measurement gap configuration (127)5.5.2.10Discovery signals measurement timing configuration (128)5.5.2.11RSSI measurement timing configuration (128)5.5.3Performing measurements (128)5.5.3.1General (128)5.5.3.2Layer 3 filtering (131)5.5.4Measurement report triggering (131)5.5.4.1General (131)5.5.4.2Event A1 (Serving becomes better than threshold) (135)5.5.4.3Event A2 (Serving becomes worse than threshold) (136)5.5.4.4Event A3 (Neighbour becomes offset better than PCell/ PSCell) (136)5.5.4.5Event A4 (Neighbour becomes better than threshold) (137)5.5.4.6Event A5 (PCell/ PSCell becomes worse than threshold1 and neighbour becomes better thanthreshold2) (138)5.5.4.6a Event A6 (Neighbour becomes offset better than SCell) (139)5.5.4.7Event B1 (Inter RAT neighbour becomes better than threshold) (139)5.5.4.8Event B2 (PCell becomes worse than threshold1 and inter RAT neighbour becomes better thanthreshold2) (140)5.5.4.9Event C1 (CSI-RS resource becomes better than threshold) (141)5.5.4.10Event C2 (CSI-RS resource becomes offset better than reference CSI-RS resource) (141)5.5.4.11Event W1 (WLAN becomes better than a threshold) (142)5.5.4.12Event W2 (All WLAN inside WLAN mobility set becomes worse than threshold1 and a WLANoutside WLAN mobility set becomes better than threshold2) (142)5.5.4.13Event W3 (All WLAN inside WLAN mobility set becomes worse than a threshold) (143)5.5.5Measurement reporting (144)5.5.6Measurement related actions (148)5.5.6.1Actions upon handover and re-establishment (148)5.5.6.2Speed dependant scaling of measurement related parameters (149)5.5.7Inter-frequency RSTD measurement indication (149)5.5.7.1General (149)5.5.7.2Initiation (150)5.5.7.3Actions related to transmission of InterFreqRSTDMeasurementIndication message (150)5.6Other (150)5.6.0General (150)5.6.1DL information transfer (151)5.6.1.1General (151)5.6.1.2Initiation (151)5.6.1.3Reception of the DLInformationTransfer by the UE (151)5.6.2UL information transfer (151)5.6.2.1General (151)5.6.2.2Initiation (151)5.6.2.3Actions related to transmission of ULInformationTransfer message (152)5.6.2.4Failure to deliver ULInformationTransfer message (152)5.6.3UE capability transfer (152)5.6.3.1General (152)5.6.3.2Initiation (153)5.6.3.3Reception of the UECapabilityEnquiry by the UE (153)5.6.4CSFB to 1x Parameter transfer (157)5.6.4.1General (157)5.6.4.2Initiation (157)5.6.4.3Actions related to transmission of CSFBParametersRequestCDMA2000 message (157)5.6.4.4Reception of the CSFBParametersResponseCDMA2000 message (157)5.6.5UE Information (158)5.6.5.1General (158)5.6.5.2Initiation (158)5.6.5.3Reception of the UEInformationRequest message (158)5.6.6 Logged Measurement Configuration (159)5.6.6.1General (159)5.6.6.2Initiation (160)5.6.6.3Reception of the LoggedMeasurementConfiguration by the UE (160)5.6.6.4T330 expiry (160)5.6.7 Release of Logged Measurement Configuration (160)5.6.7.1General (160)5.6.7.2Initiation (160)5.6.8 Measurements logging (161)5.6.8.1General (161)5.6.8.2Initiation (161)5.6.9In-device coexistence indication (163)5.6.9.1General (163)5.6.9.2Initiation (164)5.6.9.3Actions related to transmission of InDeviceCoexIndication message (164)5.6.10UE Assistance Information (165)5.6.10.1General (165)5.6.10.2Initiation (166)5.6.10.3Actions related to transmission of UEAssistanceInformation message (166)5.6.11 Mobility history information (166)5.6.11.1General (166)5.6.11.2Initiation (166)5.6.12RAN-assisted WLAN interworking (167)5.6.12.1General (167)5.6.12.2Dedicated WLAN offload configuration (167)5.6.12.3WLAN offload RAN evaluation (167)5.6.12.4T350 expiry or stop (167)5.6.12.5Cell selection/ re-selection while T350 is running (168)5.6.13SCG failure information (168)5.6.13.1General (168)5.6.13.2Initiation (168)5.6.13.3Actions related to transmission of SCGFailureInformation message (168)5.6.14LTE-WLAN Aggregation (169)5.6.14.1Introduction (169)5.6.14.2Reception of LWA configuration (169)5.6.14.3Release of LWA configuration (170)5.6.15WLAN connection management (170)5.6.15.1Introduction (170)5.6.15.2WLAN connection status reporting (170)5.6.15.2.1General (170)5.6.15.2.2Initiation (171)5.6.15.2.3Actions related to transmission of WLANConnectionStatusReport message (171)5.6.15.3T351 Expiry (WLAN connection attempt timeout) (171)5.6.15.4WLAN status monitoring (171)5.6.16RAN controlled LTE-WLAN interworking (172)5.6.16.1General (172)5.6.16.2WLAN traffic steering command (172)5.6.17LTE-WLAN aggregation with IPsec tunnel (173)5.6.17.1General (173)5.7Generic error handling (174)5.7.1General (174)5.7.2ASN.1 violation or encoding error (174)5.7.3Field set to a not comprehended value (174)5.7.4Mandatory field missing (174)5.7.5Not comprehended field (176)5.8MBMS (176)5.8.1Introduction (176)5.8.1.1General (176)5.8.1.2Scheduling (176)5.8.1.3MCCH information validity and notification of changes (176)5.8.2MCCH information acquisition (178)5.8.2.1General (178)5.8.2.2Initiation (178)5.8.2.3MCCH information acquisition by the UE (178)5.8.2.4Actions upon reception of the MBSFNAreaConfiguration message (178)5.8.2.5Actions upon reception of the MBMSCountingRequest message (179)5.8.3MBMS PTM radio bearer configuration (179)5.8.3.1General (179)5.8.3.2Initiation (179)5.8.3.3MRB establishment (179)5.8.3.4MRB release (179)5.8.4MBMS Counting Procedure (179)5.8.4.1General (179)5.8.4.2Initiation (180)5.8.4.3Reception of the MBMSCountingRequest message by the UE (180)5.8.5MBMS interest indication (181)5.8.5.1General (181)5.8.5.2Initiation (181)5.8.5.3Determine MBMS frequencies of interest (182)5.8.5.4Actions related to transmission of MBMSInterestIndication message (183)5.8a SC-PTM (183)5.8a.1Introduction (183)5.8a.1.1General (183)5.8a.1.2SC-MCCH scheduling (183)5.8a.1.3SC-MCCH information validity and notification of changes (183)5.8a.1.4Procedures (184)5.8a.2SC-MCCH information acquisition (184)5.8a.2.1General (184)5.8a.2.2Initiation (184)5.8a.2.3SC-MCCH information acquisition by the UE (184)5.8a.2.4Actions upon reception of the SCPTMConfiguration message (185)5.8a.3SC-PTM radio bearer configuration (185)5.8a.3.1General (185)5.8a.3.2Initiation (185)5.8a.3.3SC-MRB establishment (185)5.8a.3.4SC-MRB release (185)5.9RN procedures (186)5.9.1RN reconfiguration (186)5.9.1.1General (186)5.9.1.2Initiation (186)5.9.1.3Reception of the RNReconfiguration by the RN (186)5.10Sidelink (186)5.10.1Introduction (186)5.10.1a Conditions for sidelink communication operation (187)5.10.2Sidelink UE information (188)5.10.2.1General (188)5.10.2.2Initiation (189)5.10.2.3Actions related to transmission of SidelinkUEInformation message (193)5.10.3Sidelink communication monitoring (195)5.10.6Sidelink discovery announcement (198)5.10.6a Sidelink discovery announcement pool selection (201)5.10.6b Sidelink discovery announcement reference carrier selection (201)5.10.7Sidelink synchronisation information transmission (202)5.10.7.1General (202)5.10.7.2Initiation (203)5.10.7.3Transmission of SLSS (204)5.10.7.4Transmission of MasterInformationBlock-SL message (205)5.10.7.5Void (206)5.10.8Sidelink synchronisation reference (206)5.10.8.1General (206)5.10.8.2Selection and reselection of synchronisation reference UE (SyncRef UE) (206)5.10.9Sidelink common control information (207)5.10.9.1General (207)5.10.9.2Actions related to reception of MasterInformationBlock-SL message (207)5.10.10Sidelink relay UE operation (207)5.10.10.1General (207)5.10.10.2AS-conditions for relay related sidelink communication transmission by sidelink relay UE (207)5.10.10.3AS-conditions for relay PS related sidelink discovery transmission by sidelink relay UE (208)5.10.10.4Sidelink relay UE threshold conditions (208)5.10.11Sidelink remote UE operation (208)5.10.11.1General (208)5.10.11.2AS-conditions for relay related sidelink communication transmission by sidelink remote UE (208)5.10.11.3AS-conditions for relay PS related sidelink discovery transmission by sidelink remote UE (209)5.10.11.4Selection and reselection of sidelink relay UE (209)5.10.11.5Sidelink remote UE threshold conditions (210)6Protocol data units, formats and parameters (tabular & ASN.1) (210)6.1General (210)6.2RRC messages (212)6.2.1General message structure (212)–EUTRA-RRC-Definitions (212)–BCCH-BCH-Message (212)–BCCH-DL-SCH-Message (212)–BCCH-DL-SCH-Message-BR (213)–MCCH-Message (213)–PCCH-Message (213)–DL-CCCH-Message (214)–DL-DCCH-Message (214)–UL-CCCH-Message (214)–UL-DCCH-Message (215)–SC-MCCH-Message (215)6.2.2Message definitions (216)–CounterCheck (216)–CounterCheckResponse (217)–CSFBParametersRequestCDMA2000 (217)–CSFBParametersResponseCDMA2000 (218)–DLInformationTransfer (218)–HandoverFromEUTRAPreparationRequest (CDMA2000) (219)–InDeviceCoexIndication (220)–InterFreqRSTDMeasurementIndication (222)–LoggedMeasurementConfiguration (223)–MasterInformationBlock (225)–MBMSCountingRequest (226)–MBMSCountingResponse (226)–MBMSInterestIndication (227)–MBSFNAreaConfiguration (228)–MeasurementReport (228)–MobilityFromEUTRACommand (229)–Paging (232)–ProximityIndication (233)–RNReconfiguration (234)–RNReconfigurationComplete (234)–RRCConnectionReconfiguration (235)–RRCConnectionReconfigurationComplete (240)–RRCConnectionReestablishment (241)–RRCConnectionReestablishmentComplete (241)–RRCConnectionReestablishmentReject (242)–RRCConnectionReestablishmentRequest (243)–RRCConnectionReject (243)–RRCConnectionRelease (244)–RRCConnectionResume (248)–RRCConnectionResumeComplete (249)–RRCConnectionResumeRequest (250)–RRCConnectionRequest (250)–RRCConnectionSetup (251)–RRCConnectionSetupComplete (252)–SCGFailureInformation (253)–SCPTMConfiguration (254)–SecurityModeCommand (255)–SecurityModeComplete (255)–SecurityModeFailure (256)–SidelinkUEInformation (256)–SystemInformation (258)–SystemInformationBlockType1 (259)–UEAssistanceInformation (264)–UECapabilityEnquiry (265)–UECapabilityInformation (266)–UEInformationRequest (267)–UEInformationResponse (267)–ULHandoverPreparationTransfer (CDMA2000) (273)–ULInformationTransfer (274)–WLANConnectionStatusReport (274)6.3RRC information elements (275)6.3.1System information blocks (275)–SystemInformationBlockType2 (275)–SystemInformationBlockType3 (279)–SystemInformationBlockType4 (282)–SystemInformationBlockType5 (283)–SystemInformationBlockType6 (287)–SystemInformationBlockType7 (289)–SystemInformationBlockType8 (290)–SystemInformationBlockType9 (295)–SystemInformationBlockType10 (295)–SystemInformationBlockType11 (296)–SystemInformationBlockType12 (297)–SystemInformationBlockType13 (297)–SystemInformationBlockType14 (298)–SystemInformationBlockType15 (298)–SystemInformationBlockType16 (299)–SystemInformationBlockType17 (300)–SystemInformationBlockType18 (301)–SystemInformationBlockType19 (301)–SystemInformationBlockType20 (304)6.3.2Radio resource control information elements (304)–AntennaInfo (304)–AntennaInfoUL (306)–CQI-ReportConfig (307)–CQI-ReportPeriodicProcExtId (314)–CrossCarrierSchedulingConfig (314)–CSI-IM-Config (315)–CSI-IM-ConfigId (315)–CSI-RS-Config (317)–CSI-RS-ConfigEMIMO (318)–CSI-RS-ConfigNZP (319)–CSI-RS-ConfigNZPId (320)–CSI-RS-ConfigZP (321)–CSI-RS-ConfigZPId (321)–DMRS-Config (321)–DRB-Identity (322)–EPDCCH-Config (322)–EIMTA-MainConfig (324)–LogicalChannelConfig (325)–LWA-Configuration (326)–LWIP-Configuration (326)–RCLWI-Configuration (327)–MAC-MainConfig (327)–P-C-AndCBSR (332)–PDCCH-ConfigSCell (333)–PDCP-Config (334)–PDSCH-Config (337)–PDSCH-RE-MappingQCL-ConfigId (339)–PHICH-Config (339)–PhysicalConfigDedicated (339)–P-Max (344)–PRACH-Config (344)–PresenceAntennaPort1 (346)–PUCCH-Config (347)–PUSCH-Config (351)–RACH-ConfigCommon (355)–RACH-ConfigDedicated (357)–RadioResourceConfigCommon (358)–RadioResourceConfigDedicated (362)–RLC-Config (367)–RLF-TimersAndConstants (369)–RN-SubframeConfig (370)–SchedulingRequestConfig (371)–SoundingRS-UL-Config (372)–SPS-Config (375)–TDD-Config (376)–TimeAlignmentTimer (377)–TPC-PDCCH-Config (377)–TunnelConfigLWIP (378)–UplinkPowerControl (379)–WLAN-Id-List (382)–WLAN-MobilityConfig (382)6.3.3Security control information elements (382)–NextHopChainingCount (382)–SecurityAlgorithmConfig (383)–ShortMAC-I (383)6.3.4Mobility control information elements (383)–AdditionalSpectrumEmission (383)–ARFCN-ValueCDMA2000 (383)–ARFCN-ValueEUTRA (384)–ARFCN-ValueGERAN (384)–ARFCN-ValueUTRA (384)–BandclassCDMA2000 (384)–BandIndicatorGERAN (385)–CarrierFreqCDMA2000 (385)–CarrierFreqGERAN (385)–CellIndexList (387)–CellReselectionPriority (387)–CellSelectionInfoCE (387)–CellReselectionSubPriority (388)–CSFB-RegistrationParam1XRTT (388)–CellGlobalIdEUTRA (389)–CellGlobalIdUTRA (389)–CellGlobalIdGERAN (390)–CellGlobalIdCDMA2000 (390)–CellSelectionInfoNFreq (391)–CSG-Identity (391)–FreqBandIndicator (391)–MobilityControlInfo (391)–MobilityParametersCDMA2000 (1xRTT) (393)–MobilityStateParameters (394)–MultiBandInfoList (394)–NS-PmaxList (394)–PhysCellId (395)–PhysCellIdRange (395)–PhysCellIdRangeUTRA-FDDList (395)–PhysCellIdCDMA2000 (396)–PhysCellIdGERAN (396)–PhysCellIdUTRA-FDD (396)–PhysCellIdUTRA-TDD (396)–PLMN-Identity (397)–PLMN-IdentityList3 (397)–PreRegistrationInfoHRPD (397)–Q-QualMin (398)–Q-RxLevMin (398)–Q-OffsetRange (398)–Q-OffsetRangeInterRAT (399)–ReselectionThreshold (399)–ReselectionThresholdQ (399)–SCellIndex (399)–ServCellIndex (400)–SpeedStateScaleFactors (400)–SystemInfoListGERAN (400)–SystemTimeInfoCDMA2000 (401)–TrackingAreaCode (401)–T-Reselection (402)–T-ReselectionEUTRA-CE (402)6.3.5Measurement information elements (402)–AllowedMeasBandwidth (402)–CSI-RSRP-Range (402)–Hysteresis (402)–LocationInfo (403)–MBSFN-RSRQ-Range (403)–MeasConfig (404)–MeasDS-Config (405)–MeasGapConfig (406)–MeasId (407)–MeasIdToAddModList (407)–MeasObjectCDMA2000 (408)–MeasObjectEUTRA (408)–MeasObjectGERAN (412)–MeasObjectId (412)–MeasObjectToAddModList (412)–MeasObjectUTRA (413)–ReportConfigEUTRA (422)–ReportConfigId (425)–ReportConfigInterRAT (425)–ReportConfigToAddModList (428)–ReportInterval (429)–RSRP-Range (429)–RSRQ-Range (430)–RSRQ-Type (430)–RS-SINR-Range (430)–RSSI-Range-r13 (431)–TimeToTrigger (431)–UL-DelayConfig (431)–WLAN-CarrierInfo (431)–WLAN-RSSI-Range (432)–WLAN-Status (432)6.3.6Other information elements (433)–AbsoluteTimeInfo (433)–AreaConfiguration (433)–C-RNTI (433)–DedicatedInfoCDMA2000 (434)–DedicatedInfoNAS (434)–FilterCoefficient (434)–LoggingDuration (434)–LoggingInterval (435)–MeasSubframePattern (435)–MMEC (435)–NeighCellConfig (435)–OtherConfig (436)–RAND-CDMA2000 (1xRTT) (437)–RAT-Type (437)–ResumeIdentity (437)–RRC-TransactionIdentifier (438)–S-TMSI (438)–TraceReference (438)–UE-CapabilityRAT-ContainerList (438)–UE-EUTRA-Capability (439)–UE-RadioPagingInfo (469)–UE-TimersAndConstants (469)–VisitedCellInfoList (470)–WLAN-OffloadConfig (470)6.3.7MBMS information elements (472)–MBMS-NotificationConfig (472)–MBMS-ServiceList (473)–MBSFN-AreaId (473)–MBSFN-AreaInfoList (473)–MBSFN-SubframeConfig (474)–PMCH-InfoList (475)6.3.7a SC-PTM information elements (476)–SC-MTCH-InfoList (476)–SCPTM-NeighbourCellList (478)6.3.8Sidelink information elements (478)–SL-CommConfig (478)–SL-CommResourcePool (479)–SL-CP-Len (480)–SL-DiscConfig (481)–SL-DiscResourcePool (483)–SL-DiscTxPowerInfo (485)–SL-GapConfig (485)。
真核生物mRNA选择性剪接发生的相关因素
真核生物mRNA选择性剪接发生的相关因素摘要:在真核生物细胞中,选择性剪接扮演着非常重要的角色,如蛋白质多样性、细胞代谢、疾病的发生等。
据报道可知,选择性剪接的发生与很多因素相关如剪接因子、剪接相关的保守序列、染色质结构等,其具体机制一直随着科学工作者的不断努力而完善。
由于pre-mRNA选择性剪接在真核生物中具有的独特作用,使得选择性剪接发生的相关因素也成为人们研究的热点课题。
本文就真核生物mRNA选择性剪接发生的相关因素做简要介绍。
关键词:选择性剪接;mRNA;真核生物;剪接相关Motif;染色质结构0前言1978年Gilbert[1]首次提出选择性剪接这一概念后,选择性剪接开始广泛成为人们研究的目标。
人类基因组计划公布的初步研究结果中人类基因数是3.5万个左右,而不是原先预计的8万至10万个。
由此可知一个基因不是只编码一个蛋白质,而是可能编码一个或多个蛋白质。
近期报道显示,在人类含多个外显子的pre-mRNA中,能发生选择性剪接的约占92-94%[2]。
同时选择性剪接与疾病的发生之间有着密切联系,如炎症路径和癌症发生等[25][26]。
这使得选择性剪接成为近年来研究的热点课题。
1选择性剪接的概念与模式pre-mRNA的选择性剪接(Alternative splicing,AS),即一个基因能产生多种mRNA,这极大地丰富了蛋白质组的多样性和基因表达调控的灵活性[7]。
近年来,在不同的真核生物物种中都有选择性剪接事件被报道,如酵母和人类等[3][4]。
选择性剪接发生模式主要包括以下5种[5]:可变的5’剪接位点(alternative 5’splice site):与内含子保守5’剪接位点相竞争,且能与该内含子的3’剪接位点相互作用发生选择性剪接的5’剪接位点;可变的3’剪接位点(alternative 3’splice site):与内含子保守3’剪接位点相竞争,且能与该内含子的5’剪接位点相互作用发生选择性剪接的3’剪接位点;选择性保留某些内含子(intron retention):在剪接过程中选择性保留整个内含子或部分内含子序列,使其成为成熟mRNA的一部分;外显子跳跃(exon skipping)和互斥外显子(mutually exclusive exons):都是表现在剪接过程中外显子被选择性拼接。
paddledetection 三段码-概述说明以及解释
paddledetection 三段码-概述说明以及解释1.引言1.1 概述概述部分的内容可以从以下方面进行描述:本文将介绍paddledetection三段码的相关内容。
paddledetection 是一个开源的目标检测框架,采用PaddlePaddle作为底层框架,具有高效、灵活、易用的特点。
三段码是该框架的核心组成部分之一,用于实现目标检测任务中的目标识别和定位。
在目标检测任务中,传统的方法主要依赖于手工设计的特征和模型。
然而,这些方法的性能往往受限于特征表示和模型的选择。
而深度学习的发展使得使用神经网络进行目标检测成为一种有效的方法。
paddledetection框架就是基于深度学习的目标检测方法之一。
paddledetection框架的一个重要特点是三段码。
其基本思想是将目标检测任务分为目标识别和目标定位两个阶段,分别采用不同的策略和模型来完成。
在目标识别阶段,三段码利用卷积神经网络来提取图像的特征,并根据这些特征对图像中的目标进行分类。
在目标定位阶段,三段码通过回归模型来预测目标在图像中的位置。
三段码的设计考虑了目标检测任务的特点和需求。
通过将目标识别和目标定位分离,可以充分发挥不同模型的优势,提高目标检测的准确性和效率。
此外,三段码还允许使用不同的模型进行组合,以适应不同的目标检测场景和要求。
总之,paddledetection框架中的三段码是一种有效的目标检测方法,通过分离目标识别和目标定位,可以提高检测的准确性和效率。
本文将对三段码的原理、实现和应用进行详细介绍,旨在帮助读者更好地理解和应用这一方法。
1.2 文章结构文章结构部分主要介绍了整篇文章的组织结构和各个部分的内容概要。
下面是对文章结构部分的内容描述:在本文中,将围绕"paddledetection 三段码"这一主题展开讨论。
本篇文章主要分为三个部分:引言、正文和结论。
引言部分将给读者一个简要的概述,包括对paddledetection三段码的背景和定义进行说明。
Endomembrane+system
Figure 12-37. Free and membrane-bound ribosomes. A common pool of ribosomes is used to synthesize the proteins that stay in the cytosol and those that are transported into the ER. The ER signal sequence on a newly formed polypeptide chain directs the engaged ribosome to the ER membrane. The mRNA molecule remains permanently bound to the ER as part of a polyribosome, while the ribosomes that move along it are recycled; at the end of each round of protein synthesis, the ribosomal subunits are released and rejoin the common pool in the cytosol.
The structure and functions of The endoplasmic reticulum(ER)
A. A netlike labyrinth of branching tubules and flattened sacs extending throughout the cytosol
Signal Sequences and Signal Patches Direct Proteins to the Correct Cellular Address
细胞生物学名词英汉对照翟中和
细胞生物学名词英汉对照1. 细胞cell2. 细胞质cell plasma3. 原生质protoplasm4. 原生质体potoplast5. 细胞生物学cell biology6. 细胞学说cell theory7. 原生质理论protoplasm theory8. 细胞遗传学cytogenetics9. 细胞生理学cytophysiology10.细胞化学cytochemistry11. 分子生物学molecular biology12. 分子细胞生物学molecular biology of the cell13. 支原体mycoplasma14. 结构域domain∶15. 模板组装template assembly16. 酶效应组装enzymatic assembly17. 自体组装self assembly18. 引发体primosome19. 剪接体splicesome20 原核细胞prokaryotic cell21. 古细菌archaebacteria22. 真细菌Bacteria, eubacteria23. 中膜体mesosome24. 真核细胞eucaryotic cell25. 生物膜结构体系biomembrane system26. 遗传信息表达结构系统genetic expression system27. 细胞骨架系统cytoskeletonic system28. 细胞社会学cell sociology细胞质膜与跨膜运输1. 膜membrane2. 细胞膜cell membrane3. 胞质膜cytoplasmic membrane4. 细胞质膜plasma membrane5. 生物膜biomembrane,or biological membrane6. 膜骨架membrane skeleton7. 血影蛋白spectrin8. 血型糖蛋白glycophorin9. 带3蛋白band 3 protein10. 锚定蛋白ankyrin 11. 带4.1蛋白band 4.1 protein12. 内收蛋白adducin13. 磷脂phospholipids14. 胆固醇cholesterol15. 脂质体liposome16. 整合蛋白integral protein17. 外周蛋白peripheral protein18. 脂锚定蛋白lipid-anchored19. 片层结构模型Lamella structure model20. 单位膜模型unit membrane model21. 流动镶嵌模型fluid mosaic model22. 孔蛋白porin23. 冰冻断裂freeze fracture24. 膜蛋白放射性标记法radioactive labeling procedure25. 相变phase transition26. 侧向扩散lateral diffusion27. 翻转扩散transverse diffusion28. 细胞融合cell fusion29. 成斑patching、成帽capping反应30. 光脱色荧光恢复技术fluorescence recovery after photobleaching FRAP31. 电子自旋共振谱技术electron spin-resonance spectroscopy,ESR32. 细胞运输cellular transport33. 胞内运输intracellular transport34. 转细胞运输transcellular transport35. 膜运输蛋白membrane transport protein36. 离子载体ionophore37. 短杆菌肽Agramicidin A38. 缬氨霉素valinomycin39. 扩散diffusion40.渗透osmosis41. 简单扩散simple diffusion42. 促进扩散facilitated diffusion43. 通道蛋白channel protein44. 电位-门控通道voltage-gated channels45. 配体-门控通道ligand gated channel46. 胁迫门控通道stretch-gated channel47. 载体蛋白carrier protein48. 水通道蛋白aquaporin49. 运输ATPasetransport ATPase50. 协同运输cotransport51. 磷酸化运输phosphorylating transport细胞通讯1. 细胞通讯cell communication2. 信号传导cell signalling3. 信号转导signal transduction4. 信号分子signaling molecules5. 激素hormone6. 内分泌信号endocrine signaling;7. 局部介质local mediators8. 旁分泌信号paracrine signaling9. 自分泌信号autocrine signaling10. 神经递质neurotransmitters11. 受体receptor12. 表面受体surface receptor13. 细胞内受体intracellular receptor14. 离子通道偶联受体ino-channel linked receptor15. G-蛋白偶联受体G-protein linked receptor16. 酶联受体enzyme linked receptor17. 表面受体超家族surface receptor superfamilies18. 受体交叉receptor crossover19. 亲和标记affinity labeling20. 信号级联放大signaling cascade21. 第二信使second messengers22. GTP结合蛋白GTP binding protein, G蛋白23. PKA系统protein kinase A system, PKA24. 效应物effector25. 腺苷酸环化酶adenylate cyclase, AC26. 蛋白激酶A protein kinase A,PKA27. PKC系统protein kinase C system,PKC system28. IP3受体IP3 receptor29. 蛋白激酶Cprotein kinase C,PKC30. 钙调蛋白calmodulin31. 受体酪氨酸激酶receptor tyrosine kinase, RTKs32. 胰岛素受体insulin receptor33. 胰岛素受体底物insulin receptor substrate,IRSs34. SH结构域SH domain35. 表皮生长因子epidermal growth factor,EGF36. EGF受体EGF receptor37. Ras蛋白Ras protein38. Grb2蛋白growth factor receptor-bound protein 239. Sos蛋白Sos protein40. 信号趋异divergence41. 窜扰crosstalk42. 受体钝化receptor desensitization43. 受体减量调节receptor down-regulation 线粒体与过氧化物酶体1. 线粒体mitochondrion2. 外膜outer membrane3. 内膜inner membrane4. 线粒体膜间隙intermembrane space5. 线粒体基质matrix6. 嵴cristae7. 蛋白质寻靶protein targeting8. 翻译后转运post-translational translocation9. 蛋白质分选protein sorting10. 共翻译转运co-translational translocation11. 游离核糖体free ribosomes12. 膜结合核糖体membrane-bound ribosomes13. 导肽leading peptide14. 氧化oxidation15. 糖酵解glycolysis16..三羧酸循环citric acid cycle17. 电子载体electron carriers18. 黄素蛋白flavoproteins19. 细胞色素cytochromes20. 铁硫蛋白iron-sulfur proteins, Fe/S protein21. 醌uniquinone UQ或辅酶Qcoenzyme Q22. 氧还电位oxidation-reduction potentials, redox potentials23. 呼吸链respiratory chain24. 复合物I complex I25. 复合物Ⅱcomplex Ⅱ26. 复合物Ⅲcomplex Ⅲ27. 复合物Ⅳcomplex Ⅳ28. 电化学梯度electrochemical gradient29. 电化学梯度electrochemical gradient30. ATP合酶ATP synthase31. 氧化磷酸化oxidative phosphorylation32. 化学渗透假说chemiosmotic coupling hypothesis33. 内共生学说endosymbiont hypothesis34. 非内共生学说35. 过氧化物酶体peroxisome36. 氧化酶oxidase37. 过氧化氢酶catalase线粒体与过氧化物酶体1. 线粒体mitochondrion2. 外膜outer membrane3. 内膜inner membrane4. 线粒体膜间隙intermembrane space5. 线粒体基质matrix6. 嵴cristae7. 蛋白质寻靶protein targeting8. 翻译后转运post-translational translocation9. 蛋白质分选protein sorting10. 共翻译转运co-translational translocation11. 游离核糖体free ribosomes12. 膜结合核糖体membrane-bound ribosomes13. 导肽leading peptide14. 氧化oxidation15. 糖酵解glycolysis16..三羧酸循环citric acid cycle17. 电子载体electron carriers18. 黄素蛋白flavoproteins19. 细胞色素cytochromes20. 铁硫蛋白iron-sulfur proteins, Fe/S protein21. 醌uniquinone UQ或辅酶Qcoenzyme Q22. 氧还电位oxidation-reduction potentials, redox potentials23. 呼吸链respiratory chain24. 复合物I complex I25. 复合物Ⅱcomplex Ⅱ26. 复合物Ⅲcomplex Ⅲ27. 复合物Ⅳcomplex Ⅳ28. 电化学梯度electrochemical gradient 29. 电化学梯度electrochemical gradient30. ATP合酶ATP synthase31. 氧化磷酸化oxidative phosphorylation32. 化学渗透假说chemiosmotic coupling hypothesis33. 内共生学说endosymbiont hypothesis34. 非内共生学说35. 过氧化物酶体peroxisome36. 氧化酶oxidase37. 过氧化氢酶catalase内膜系统与膜运输1. 膜结合细胞器membrane-bound organelles或膜结合区室membrane-bound compartments2. 细胞质膜系统cytoplasmic membrane system3. 内膜系统endomembrane systems4. 核孔运输transport through nuclear pore5. 跨膜运输across membrane transport6. 小泡运输transport by vesicles7. 微粒体microsomes8. 内质网endoplasmic reticulum, ER9. 粗面内质网rough endoplasmic reticulum, RER10. 光面内质网smooth endoplasmic reticulum, SER11. 肌质网sarcoplasmic reticulum12. 胞质溶胶cytosol13. 翻转酶flippase14. 磷脂交换蛋白phospholipid exchang proteins, PEP15. 细胞色素P-450 cytochrome P-45016. 信号识别颗粒signal recognition partical, SRP,17. 停靠蛋白docking protein, DP18. 起始转移信号start-transfer signal19. 内含信号序列internal signal sequence20. 停止转移肽stop-transfer peptide21. 重链结合蛋白heavy-chain binding protein, Bip22. N-连接糖基化N-linked glycosylation23. 高尔基复合体Golgi complex24. 内质网滞留信号ER retention signal25. O-连接的糖基化O-linked glycosylation26. 溶酶体lysosome27. 圆球体spherosome28. 液泡vacuoles29. 初级溶酶体primary lysosome30. 次级溶酶体secondary lysosome31. 自噬性溶酶体autolysosome32. 异噬性溶酶体heterolysosome33. 吞噬作用phagocytosis34. 自噬作用autophagy35. 自溶作用autolysis36. 信号斑signal patch37. M6P受体蛋白M6P receptor protein38. 内体endosome39. 矽肺silicosis40. Ⅱ型糖原贮积症glycogen storage disease type Ⅱ41. 休克shock42. 细胞分泌cell secretion43. 组成型分泌途径constitutive secretory pathway44. 调节型分泌途径regulated secretory pathway45. 胞吐作用exocytosis46. 融合蛋白fusion protein47. 吞噬作用phagocytosis48. 吞饮作用pinocytosis49. 受体介导的内吞作用receptor-mediated endocytosis50. 配体ligand51. 低密度的脂蛋白low-density lipoprotein, LDL52. 转铁蛋白transferrin53. 转胞吞作用transcytosis54. 披网格蛋白小泡clathrin-coated vesicle55. COPⅡ被膜小泡COPⅡcoated vesicle56. COPⅠ被膜小泡COPⅠcoated vesicle,57. 网格蛋白clathrin58. 衔接蛋白adaptin, AP59. 发动蛋白dynamin60. 被膜小窝clathrin-coated pit61. 小GTP结合蛋白small GTP binding protein62. 装配反应因子assembly reaction factor, ARF 63. 外被体蛋白质Ⅰcoatmer proteinⅠ, COPⅠ。
核内体
内体是膜包裹的囊泡结构,有初级内体(early endosome)和次级内体(late endosome)之分, 初级内体通常位于细胞质的外侧,次级内体常位于细胞质的内侧,靠近细胞核。
内体的主要特征是酸性的、不含溶酶体酶的小囊泡, 其内的受体与配体是分开的。
一般认为初级内体是由于细胞的内吞作用而形成的含有内吞物质的膜结合的细胞器, 通常是管状和小泡状的网络结构集合体。
次级内体中的pH呈酸性, 且具有分拣作用,能够分选与配体结合的受体,让它们再循环到细胞质膜表面或高尔基体反面网络,次级内体中的受体和配体不再偶联在一起,所以次级内体又被称为CURL(compartment of uncoupling of receptor and ligand),意思是受体与配体非偶联的区室。
有学者将与溶酶体酶运输小泡融合的次级内体称为前溶酶体, 因为此时的次级内体中有前体酶的存在。
内体膜上具有A TPase-H+质子泵,利用H+质子的浓度,保证了内部pH的酸性。
初级内体和次级内体是可以区别的,因为它们的密度、pH和酶的含量不相同。
但是次级内体是如何产生的还不太清楚。
(即内吞的小泡,与溶酶体结合之前)In biology, an endosome is a membrane-bound compartment inside cells, roughly 300-400 nm in diameter when fully mature[1]. Many endocytotic vesicles derived from the plasma membrane are transported to an endosome and fuse with it. Some endocytosed material passes through endosomes on its way to lysosomes. Endosomes are in part responsible for the sorting of endocytosed material before transport to lysosomes. This allows some material to be returned to the plasma membrane.Many endocytic vesicles originate at the cell surface as clathrin-coated pits. As clathrin assembles under a patch of plasma membrane the clathrin-coated pit soon (about a minute) pinches off from the surface and forms a clathrin-coated endocytotic vesicle. Soon after forming, the clathrin coated vesicles release their associated clathrin and become competent to fuse with early endosomes. Extracellular materials trapped in the endocytic vesicles can either be passed into the endosomal compartment or returned to the surface.Some materials are specifically endocytosed by receptor-mediated endocytosis. Some extracellular molecules bind to transmembrane receptor proteins that efficiently accumulate in coated pits. One physiologically important example of receptor-mediated endocytosis is the main mechanism by which cholesterol is taken up by cells, particularly liver cells.In some people the cholesterol receptor is defective, uptake of cholesterol from the blood into liver cells is slow and cholesterol accumulates in the blood. This is thought to be the cause of damage to blood vessel walls as increased cholesterol levels have also observed in cases of atherosclerosis. As the arterial damage may have caused the cholesterol damage, rather than vice versa, it is unlikely to cause this until further evidence is shown. This receptor defect, if it did lead to blood vessel damage, would lead to observations of strokes and heart attacks at a young age.One great risk with very high LDL levels is that LDL is vulnerable to free radical damage and that damaged LDL molecules could clump together and form arterial blockages, especially if encountering the sticky platelets of already-damaged blood vessel walls.Short signal peptides have been identified that target certain transmembrane proteins into clathrin-coated pits. A set of proteins called adaptins bind the signal peptides. The signal for the cholesterol receptor is the tetrapeptide Asn-Pro-Val-Tyr.Microscopy indicates that in some cells the endosomal compartments is a network of membranous tubes and vesicles extending all the way to the cell nucleus. The deep end of the endosomalcompartment is called the late endosome compartment. It may take 5-15 minutes for materials to be transported from the cell surface through early endosome compartments and on to the late endosome. The endosomal compartment is usually acidic due to the action of a proton-pumping ATPase of the endosomal membrane. Many receptors involved in endocytosis of extracellular substances change their conformation at low pH and release their bound substance. The empty receptor proteins can then be sorted back to the cell surface.Some materials that reach the late endosomes are degraded in lysosomes. Parts of the late endosomal compartment may become lysosomes or temporarily fuse with lysosomes in order to transfer endoctosed materials into the lysosomes. In epithelial cells a special process called transcytosis allows some materials to enter one side of a cell and exit from the opposite side. For example, the GI tract of babies can take protective antibody proteins from breast milk and via transcytosis, transport the antibodies into the blood stream.A cell surface transferrin receptor binds the iron transport protein transferrin in another example of receptor-mediated endocytosis. In the acidic endosome, the iron is released from transferrin and then the iron-free transferrin (still bound the transferrin receptor) returns from the early endosome to the cell surface.。
细胞生物学期末考试题含答案2套
细胞生物学期末考试题一、简要回答下列名词或短语对的生物学意义(每小题3分, 共15分):1.【原癌基因与肿瘤抑制基因(Proto-oncogenes / tumor suppressor genes)】原癌基因编码产物在正常情况下具有促进细胞增殖的功能,突变后将改变细胞活性并有可能导致细胞癌变;肿瘤抑制基因编码产物在正常情况下具有抑制细胞增殖的作用,突变后其抑制功能丧失,并有可能导致细胞癌变。
2.【细胞分化与细胞全能性(Cell differentiation / cell totipotency)】细胞分化是未分化的细胞形成能够执行复杂和特异功能的细胞的过程;细胞全能性是具有分化发育形成一个个体的潜能的特性。
3.【G蛋白偶连受体与酶偶连受体(G protein-linked receptors / Enzyme-linked receptors)】G蛋白偶连受体和酶偶连受体都是细胞接受信号的受体,前者通过G蛋白偶连实现信号在胞内的转换和传递,后者受体本身就具有酶的活性,对细胞增殖生长的信号传递具有意义。
4.【微管组织者中心与核仁组织者区域(MTOC / NOR)】微管组织者中心有gamma-tubulin,具有组织微管装配的作用;核仁组织者区域是rRNA基因所在部位,具有形成rRNA的功能。
5.【有丝分裂与减数分裂(Mitosis / Meiosis)】有丝分裂形成具有相同遗传物质的细胞,是个体生长发育的基础;减数分裂通过遗传物质重组并减半形成配子,是生物体世代延续的保证,更是遗传与变异的来源,是生物进化的一个动力。
二、填空题(每空1分,共20分):1.真核细胞三大结构体系是_____________________、______________________和___________________。
2.动物细胞一般靠钠钾泵工作产生的跨膜Na+电化学梯度摄取营养物,而植物细胞、真菌和细菌等细胞主要靠______________电化学梯度摄取营养物。
paddledetection 推理修改阈值
paddledetection 推理修改阈值
要修改PaddleDetection推理的阈值,可以按照以下步骤进行:
1. 打开PaddleDetection的配置文件,通常是
`configs/xxx.yml`,其中`xxx`表示不同的模型。
2. 在配置文件中找到`TestReader`部分,这是用于推理时读取
测试数据的配置。
3. 在`TestReader`部分下面,找到`PostProcess`部分,这是
用于后处理的配置。
4. 在`PostProcess`部分中,可以找到不同的后处理方法,比
如`BBoxPostProcess`用于边界框后处理,`MaskPostProcess`用于
掩码后处理等。
5. 在具体的后处理方法下,可以找到`score_threshold`参数,这是用于过滤低置信度预测结果的阈值。
可以根据需要修改该参数
的值,一般情况下,增大该值可以过滤掉一些不太可信的预测结果,减小该值可以保留更多的预测结果。
6. 保存配置文件并重新运行推理程序,修改的阈值将会生效。
需要注意的是,不同的模型可能有不同的配置文件结构和后处
理方法,具体的修改步骤可能会有所不同。
因此,在修改阈值之前,建议先仔细阅读PaddleDetection的文档,了解具体模型的配置文
件结构和后处理方法的使用方式。
onnxruntime 文本分类 词汇表
onnxruntime 文本分类词汇表
在使用ONNX Runtime进行文本分类任务时,词汇表是用来将文本转换为词向量的工具。
以下是一种可能的词汇表表示形式:
1. 词汇表的大小:确定了词汇表中包含的独立词的数量。
2. 词汇表索引:每个独立词都有一个索引,用于标识该词在词汇表中的位置。
3. 词向量:为每个词汇表中的词分配一个向量表示。
这些向量可以是预训练的词向量(如Word2Vec、GloVe等)或通过模型训练得到。
4. 未知词标记:如果文本中包含词汇表中不存在的词,则使用该标记进行表示。
5. 填充词标记:用于填充文本序列的标记,在输入序列长度不一致时使用。
在进行文本分类任务中,可以使用词汇表将文本转换为向量表示,并输入到ONNX Runtime的模型中进行推理。
例如,可以将文本序列单词依次转换为对应的词汇表索引,然后使用词向量将其转换为向量表示。
之后,将这些向量作为输入传递给ONNX Runtime模型进行分类预测。
PSCK9在动脉粥样硬化中的作用
㊃综述㊃通信作者:钱正瑶,E m a i l :t o m a t o s e s a m e ya o @163.c o m P S C K 9在动脉粥样硬化中的作用钱正瑶1,2,李广平1(1.天津医科大学第二医院心脏科,天津市心血管病离子与分子机能重点实验室,天津心脏病学研究所,天津300211;2.天津医院心内科,天津300211) 摘 要:前蛋白转化酶枯草溶菌素9(P C S K 9)是一个与常染色体显性高胆固醇血症相关的新基因,其可通过介导降解肝细胞表面的低密度脂蛋白受体,间接影响血浆低密度脂蛋白的水平,从而在动脉粥样硬化的发生发展中起着重要作用㊂因此,阐明P C S K 9在动脉粥样硬化的作用及机制,将会给人们治疗脂质代谢性疾病带来新的启迪和突破㊂关键词:动脉粥样硬化;前蛋白转化酶类;脂蛋白类,L D L ;枯草溶菌素9中图分类号:R 543.5 文献标识码:A 文章编号:1004-583X (2016)01-0108-04d o i :10.3969/j.i s s n .1004-583X.2016.01.028 动脉粥样硬化(a t h e r o s c l e r o s i s ,A s )是危害人类健康的常见病,是目前公认的一种累及动脉管壁的慢性炎症性疾病,A s 病变中不仅含有大量脂质,而且有大量炎症细胞浸润,并以单核/巨噬细胞和淋巴细胞的集聚为特征㊂氧化应激是指机体或细胞内氧自由基的产生与清除失衡,导致活性氧在体内或细胞内蓄积而引起的氧化损伤过程㊂氧化应激是炎症反应的一个显著特征,是A s 发生发展的重要环节㊂血液中的低密度脂蛋白(l o w d e n s i t y l i p o pr o t e i n ,L D L )进入内皮下被氧化修饰成毒性很强的氧化型低密度脂蛋白(o x i d i z e d l o wd e n s i t y l i p o p r o t e i n ,o x -L D L ),o x -L D L 是A s 的重要致病因素,是A s 发生发展过程中最主要的促炎症因素,也是A s 病变局部强烈的凋亡诱导因子,可通过多种途径诱导巨噬细胞凋亡㊂o x -L D L 可通过多种途径启动和促进A s 的发生发展,并最终导致粥样斑块破裂,引发恶性心脑血管事件㊂o x -L D L 致A s 主要表现在以下几个方面:①是泡沫细胞形成的关键;②促进细胞黏附于内皮并向内皮下趋化;③促进巨噬细胞增殖退化;④诱导内皮细胞增生和平滑肌增生㊁移行;⑤促进血小板黏附㊁聚集㊁血栓形成;⑥促进血管收缩;⑦损伤内皮细胞;⑧加剧A s 的炎性反应;⑨激活转录因子κB ㊂目前研究发现,前蛋白转化酶枯草溶菌素9(p r o p r o t e i n c o n v e r t a s e s u b t i l i s i n /k e x i n t y pe 9,P C S K 9)主要的生物学功能是在蛋白水平降解低密度脂蛋白受体(l o w d e n s i t y l i p o p r o t e i nr e c e pt o r ,L D L R ),而不影响L D L R m R N A 水平[1-2]㊂其功能获得型和功能缺失型突变与遗传性家族性高胆固醇血症和低胆固醇血症的发生有关[3]㊂家族性高胆固醇血症(f a m i l i a lh y pe r c h o l e s t e r o l e m i a ,F H )是一种严重的常染色体单基因显性遗传性疾病,其临床特点是高胆固醇血症㊁特征性黄色瘤㊁早发心血管疾病和典型家族史㊂研究证实,L D L R 发生基因突变可影响细胞摄取脂蛋白,其代谢过程与F H1型相关㊂L D L R 的配体B -100可发生基因突变导致功能缺陷,使脂蛋白与细胞表面的受体无法正常结合,从而影响脂蛋白的内吞摄取作用,与F H 2型相关[4]㊂P C S K 9是2003年S e i d a h 等[5]发现的一个与常染色体显性高胆固醇血症相关的新基因,该基因属于前蛋白转化酶家族,编码神经细胞凋亡调节转化酶-1(n e u r a la p o p t o s i s -r e gu l a t e d c o n v e r t a s e1,N A R C -1)蛋白,可促进神经细胞分化再生,研究表明其可通过介导降解肝细胞表面的L D L R ,间接影响血浆L D L 的水平,引起F H3型[6-8]㊂除此之外,P C S K 9通过其他多种途径参与A s 发生发展的过程,因此,对于P C S K 9的全面认识为我们治疗A s 提供了新的方向㊂1 P C S K 9的结构及功能1.1 P C S K 9的结构 P C S K 9属于前蛋白转化酶家族中蛋白酶K 亚家族的成员,共编码692个氨基酸,包含一个信号序列(氨基酸1~30),一个前导序列(氨基酸31~152),一个催化结构域(氨基酸153~425),一个羧基末端结构域(氨基酸426~694)[9]㊂人类P C S K 9基因位于1号染色体的短臂上(1p32.3)㊂P C S K 9在肝㊁肾㊁脾㊁脑㊁空回肠等很多组织中都有表达,其中在肝和空回肠中表达最高㊂1.2 P C S K 9的功能 P C S K 9是一种肝源性分泌蛋白[10-11],它与L D L R 的胞外区结合,然而,P C S K 9对L D L R 降解作用是胞内的[12]㊂P C S K 9并不需要激酶的催化活性来影响L D L R 的转化,激酶的催化活㊃801㊃‘临床荟萃“ 2016年1月5日第31卷第1期 C l i n i c a l F o c u s ,J a n u a r y 5,2016,V o l 31,N o .1Copyright ©博看网. All Rights Reserved.性不能引导带受体的复合体到复合体降解的溶酶体中或是抑制复合体的循环㊂P C S K9作为一种神经细胞凋亡调节转化酶[13],不但参与肝脏再生,调节神经细胞凋亡,还能通过降低肝细胞上L D L R的数量[14],影响L D L内化,使血液中L D L不能清除,从而导致高胆固醇血症㊂研究表明,P C S K9水平与胆固醇㊁o x-L D L㊁甘油三酯显著相关[15-17]㊂P C S K9作为一种丝氨酸蛋白酶,除了能够降解L D L R,升高血L D L水平之外,还有其他多种生物学功能,例如,参与神经系统发育[18]㊁神经细胞的凋亡[19]和调节钠通道㊁胰岛细胞功能[20]等㊂P C S K9的产生过程是首先在内质网中合成P C S K9酶原,其在内质网或者高尔基体内发生自我催化反应[21],裂解释放出前肽,形成成熟的蛋白酶,并立即分泌入血,通过调节L D L R维持血浆脂质的稳态,其不仅能影响血浆胆固醇的水平,调节神经细胞的凋亡,还与炎症反应有一定的相关性[22]㊂2P C S K9表达的影响因素已知可上调P C S K9表达的有S R E B P21a㊁S R E B P21c㊁S R E B P22㊁胰岛素㊁L X R激动剂㊁他汀类降脂药;下调P C S K9表达的有贝特类降脂药㊁黄连素㊁核受体F X R或P P A R a激活剂等㊂3P C S K9在A S中的作用3.1 P C S K9与细胞凋亡研究发现,N A R C-1在人单核细胞株T H P-1细胞源性巨噬细胞中有表达,o x-L D L能促使巨噬细胞泡沫化,过量的脂质蓄积使得细胞凋亡㊂然而,使用P C S K9s i R N A干扰巨噬细胞对P C S K9的表达后,再给予o x-L D L处理,与对照组相比,P C S K9s i R N A干扰组凋亡现象明显被抑制,提示P C S K9可促使T H P-1源性巨噬细胞凋亡㊂研究还发现,P C S K9s i R N A也能在o x-L D L诱导的人脐静脉内皮细胞凋亡信号传导通路中,下调促凋亡蛋白B a x和上调抗凋亡蛋白B c l-2的表达,并且抑制下游c a s p a s e3,c a s p a s e9的活性,进而达到经作用于c a s p a s e9信号通路发挥抗凋亡的作用[23]㊂3.2 P C S K9与胆固醇代谢 P C S K9在人体内主要是通过结合固醇类调节因子来改变血脂水平,L D L R 基因受S R E B P2调控㊂当细胞内固醇类物质减少时,P C S K9基因受到S R E B P2调控刺激进而表达增加,通过靶向作用L D L R溶酶体降解途径,在蛋白水平降解L D L R,减少其与低密度脂蛋白胆固醇(L D L-C)的结合作用,引起L D L-C水平上升[24-25]㊂S R E B P 就是通过与L D L R的S R E结合来调控L D L R的转录,从而维持细胞内外L D L的平衡㊂近几年发现,除L D L R外,极低密度脂蛋白受体(V L D L R)和载脂蛋白E受体2(A p o E R2)也是P C S K9的底物㊂P C S K9基因敲除小鼠模型中,体内肝脏的L D L R摄取L D L-C能力下降,血浆胆固醇水平显著下降[26]㊂P C S K9基因失活的小鼠模型中,动脉粥样硬化的发生率显著下降,患心脑血管疾病的风险亦有所减低[27]㊂P C S K9基因不同部位碱基突变会导致两种截然不同的生物学效应㊂一种是功能获得型突变,此类突变会增强降解肝细胞L D L R的能力,从而使血液中L D L-C清除减少,导致高胆固醇血症的发生,增加心脑血管疾病的易感性;另一种是功能缺失型突变,此类突变可破坏P C S K9的正常功能,导致肝细胞表面L D L R增多,血液中L D L-C被摄取降解增加,进而引起低胆固醇血症的发生㊂3.3 P C S K9与炎症反应高脂血症可诱导全身性和局部炎症反应发生,P C S K9降解肝细胞表面的L D L R,导致血脂不能及时清除而水平升高,将间接地导致炎症反应的发生㊂F e i n g o l d等[28]将内毒素注射入小鼠体内,刺激炎症反应的发生,发现L D L R水平下降,但L D L R m R N A水平却未见减少㊂进一步检测表明,随着注射时间的延长,P C S K9m R N A的表达逐渐增加㊂除了内毒素,其他引起炎症的物质(如酵母聚糖㊁松节油等)均能刺激肝P C S K9的表达㊂L a n等[29]通过基因微阵列分析研究证实,细胞内胆固醇缺乏时P C S K9可诱导胆固醇合成的基因上调,此外,还证实一些新的途径可能受P C S K9的调节,它们独立影响胆固醇的吸收,这些途径包括蛋白泛素化㊁异生代谢㊁细胞周期㊁炎症和应激反应,结果表明在H e p G2中P C S K9除了影响胆固醇代谢之外还影响其他的代谢途径,一些与炎症相关的基因表达如白细胞介素(I L)-17B㊁L C K㊁T N F RS u p e r f a m i l y M e m b e r3及MK K6等处于P C S K9基因的下游调控之列㊂功能获得型突变D374Y-P C S K9基因分析也表明,P C S K9调节L D L时出现某些特殊炎症反应,可能与p38MA P K信号通路有关[30]㊂研究发现P C S K9 s i R N A能够抑制o x-L D L诱导的T H P-1源性巨噬细胞炎症因子I L-1α㊁I L-6和肿瘤坏死因子α(T N F-α)表达,其机制与P C S K9表达沉没后,通过减少p-I k Bα的降解,抑制N F-κB表达,降低炎症因子的合成与分泌,进而抑制了炎症反应有关[31]㊂H a m p t o n等[32]通过晶体学研究发现,P C S K9羧基末端和抵抗素羧基末端结构高度相似,于是提出P C S K9和抵抗素可能分享或竞争同一个受体㊂由于抵抗素与炎症关系密切,抵抗素可以通过激活N F-㊃901㊃‘临床荟萃“2016年1月5日第31卷第1期 C l i n i c a l F o c u s,J a n u a r y5,2016,V o l31,N o.1Copyright©博看网. All Rights Reserved.κB途径促进巨噬细胞表达炎症因子,而且炎症因子还可以参与抵抗素表达的调控[33-34]㊂T a r k o w s k i 等[35]研究发现抵抗素与细胞膜表面受体T L R4结合,通过M y D88依赖性信号转导通路,发挥其促炎作用㊂由于P C S K9与抵抗素具有高度相似的羧基末端,我们推测P C S K9具有的促炎作用也由T L R4介导,依赖M y D88的N F-κB和MA P K信号转导通路可能是P C S K9激活靶细胞启动炎症反应的重要途径[36]㊂4P C S K9-新的治疗靶点P C S K9是L D L R的抑制剂,主要是促进溶酶体中受体的降解㊂因此P C S K9功能的衰减会减缓L D L R的降解㊂除了他汀类药物治疗,P C S K9抑制剂是另一个把L D L-C降低到所需范围的方法,并且为那些难以容忍大剂量他汀类药物治疗的患者提供了选择㊂近年来,无论是采用反义技术还是单克隆抗体,在P C S K9的降解方法上有很大进展㊂近年来以P C S K9为代表的新的降脂靶点受到越来越多的关注[37-38],P C S K9已经成为治疗高胆固醇血症的新的药物的靶点蛋白[39]㊂在研的P C S K9抑制剂研究也取得了令人瞩目的进展[40-41],在治疗高胆固醇血症方面已进入临床3期㊂例如:①单克隆抗体: E v o l o c u m a b(AMG-145)[42-46]㊁A l i r o c u m a b (R G E N727,S A R236553)[47]㊁b o c o c i z u m a b(R N316/ P F-04950615)㊁L Y-3015014㊁R G7652;②反义寡核苷酸:I S I S-394814㊁S P C5001㊁S P C4061;③干扰小核糖核酸(s i R N A):A L N-P C S[48];④模拟抗体蛋白药: A d n e c t i n s;⑤小分子抑制剂:S X-P C K9㊂未来对P C S K9作用机制的进一步研究将会给人们治疗脂质代谢性疾病带来新的启迪和突破㊂参考文献:[1] P o i r i e r S,M a y e r G,B e n j a n n e t S,e t a l.T h e p r o p r o t e i nc o n v e r t a s e P C S K9i nd u ce s t h e d e g r a d a t i o n o fl o w d e n s i t yl i p o p r o t e i nr e c e p t o r(L D L R)a n di t sc l o s e s tf a m i l y m e m b e r sV L D L Ra n dA p o E R2[J].JB i o lC h e m,2008,283(4):2363-2372.[2] G r e f h o r s tA,M c n u t t M C,L a g a c e T A,e ta l.P l a s m a P C S K9p r e f e r e n t i a l l y r e d u c e s l i v e rL D Lr e c e p t o r s i n m i c e[J].JL i p i dR e s,2008,49(6):1303-1311.[3] B e n j a n n e t S,H a m e l i nJ,C h r e t i e n M,e ta l.L o s s-a n d g a i n-o f-f u n c t i o n P C S K9v a r i a n t s:c l e a v ag e s p e c i f i c i t y,d o m i n a n tn e g a t i v e e f f e c t s,a n dl o w d e n s i t y l i p o p r o t e i nr e c e p t o r(L D L R)d e g r a d a t i o n[J].JB i oC h e m,2012,287(40):33745-33755.[4]李文龙,裴卫东.人类枯草溶菌素转化酶9基因影响胆固醇代谢的研究进展[J].基础医学与临床,2008,28(6):629-632.[5]S e i d a h N G,B e n j a n n e t S,W i c k h a m L,e ta l.T h e s e c r e t o r yp r o p r o t e i nc o n v e r t a s en e u r a l a p o p t o s i s-r e g u l a t e dc o n v e r t a s e1(N A R C-1):l i v e r r e g e n e r a t i o na n dn e u r o n a l d i f f e r e n t i a t i o n[J].P r o cN a t lA c a dS c iU S A,2003,100(3):928-933.[6] A b i f a d e lM,G u e r i n M,B e n j a n n e tS,e ta l.I d e n t i f i c a t i o na n dc h a r a c t e r i z a t i o n o f n e w g a i n-o f-f u n c t i o n m u t a t i o n s i n t h eP C S K9g e n e r e s p o n s i b l e f o r a u t o s o m a l d o m i n a n th y p e r c h o l e s t e r o l e m i a[J].A t h e r o s c l e r o s i s,2012,223(2):394-400.[7] K o s e n k o T,G o l d e r M,L e b l o n d G,e t a l.L o w d e n s i t yl i p o p r o t e i n b i n d s t o p r o p r o t e i n c o n v e r t a s e s u b t i l i s i n/k e x i n t y p e-9(P C S K9)i nh u m a n p l a s m a a n d i n h i b i t sP C S K9-m e d i a t e d l o wd e n s i t y l i p o p r o t e i n r e c e p t o r d e g r a d a t i o n[J].JB i o lC h e m, 2013,288(12):8279-8288.[8] L e r e n T P.S o r t i n g a n L D L r e c e p t o r w i t h b o u n d P C S K9t oi n t r a c e l l u l a r d e g r a d a t i o n[J].A t h e r o s c l e r o s i s,2014,237(1):76-81.[9] C a r i o uB,L eM a y C,C o s t e tP.C l i n i c a l a s p e c t s o f P C S K9[J].A t h e r o s c l e r o s i s,2011,216(2):258-265.[10] Z h a n g Y,L i uJ,L iS,e ta l.I m p a c to fc u r r e n t l yp r e s c r i b e dl i p i d-l o w e r i n g d r u g s o n p l a s m aP C S K9c o n c e n t r a t i o n:s i n g l eo ri n c o m b i n a t i o n s t u d y i nr a t s[J].L i p i d sH e a l t hD i s,2014,13:35-46.[11] X u R X,L iS,Z h a n g Y,e ta l.R e l a t i o no f p l a s m aP C S K9l e v e l s t o l i p o p r o t e i n s u b f r a c t i o n s i n p a t i e n t s w i t h s t a b l ec o r o n a r y a r t e r yd i se a s e[J].L i p i d sH e a l t hD i s,2014,13:188-204.[12] G e t z G S.P C S K9i n S o u t h A f r i c a n v a r i a n t s o f f a m i l i a lh y p e r c h o l e s t e r o l e m i a[J].JA m C o l lC a r d i o l,2014,63(22):2374-2375.[13] P i a oM X,B a i J W,Z h a n g P F,e t a l.P C S K9r e g u l a t e s a p o p t o s i si nh u m a nn e u r o g l i o m au251c e l l sv i a m i t o c h o n d r i a ls i g n a l i n gp a t h w a y s[J].I n t JC l i nE x p P a t h o l,2015,8(3):2787-2794.[14] L e r e n T P.S o r t i n g a n L D L r e c e p t o r w i t h b o u n d P C S K9t oi n t r a c e l l u l a r d e g r a d a t i o n[J].A t h e r o s c l e r o s i s,2014,237(1):76-81.[15] A r a k i S,S u g aS,M i y a k eF,e t a l.C i r c u l a t i n g P C S K9l e v e l sc o r r e l a t ew i t ht h es e r u m L D L c h o l e s t e r o ll e v e li n n e w b o r ni n f a n t s[J].E a r l y H u m D e v,2014,90(10):607-611.[16] K w a k e r n a a kA J,L a m b e r tG,D u l l a a r tR P.P l a s m a p r o p r o t e i nc o n v e r t a s e s u b t i l i s i n-k e x i nt y p e9i s p r ed o m i n a n t l y re l a t e dt oi n t e r m e d i a t e d e n s i t y l i p o p r o t e i n s[J].C l i nB i o c h e m,2014,47(7-8):679-682.[17] W e r n e rC,H o f f m a n n MM,W i n k l e rK,e ta l.R i s k p r e d i c t i o nw i t h p r o p r o t e i n c o n v e r t a s e s u b t i l i s i n/k e x i n t y p e9(P C S K9)i np a t i e n t sw i t h s t a b l e c o r o n a r y d i s e a s eo ns t a t i nt r e a t m e n t[J].V a s cP h a r m a c o l,2014,62(2):94-102.[18]S e i d a h N G,B e n j a n n e t S,W i c k h a m L,e ta l.T h e s e c r e t o r yp r o p r o t e i nc o n v e r t a s en e u r a l a p o p t o s i s-r e g u l a t e dc o n v e r t a s e1(N A R C-1):l i v e rr e g e n e r a t i o na n d n e u r o n a ld i f f e r e n t i a t i o n[J].P r o cN a t lA c a dS c iUSA,2003,100(3):928-933.[19] W uQ,T a n g Z H,P e n g J,e t a l.T h e d u a l b e h a v i o r o fP C S K9i nt h e r e g u l a t i o no fa p o p t o s i si sc r u c i a l i n A l z h e i m e r'sd i s e a s ep r o g r e s s i o n(R e v i e w)[J].B i o m e dR e p,2014,2(2):167-171.[20] M b i k a y M,S i r o i s F,M a y n eJ,e ta l.P C S K9-d e f i c i e n t m i c e㊃011㊃‘临床荟萃“2016年1月5日第31卷第1期 C l i n i c a l F o c u s,J a n u a r y5,2016,V o l31,N o.1Copyright©博看网. All Rights Reserved.e x h i b i t i m p a i r e d g l u c o s e t o l e r a n c e a n d p a n c r e a t i c i s l e ta b n o r m a l i t i e s[J].F E B SL e t t,2010,584(4):701-706.[21] L a g a c e T A.P C S K9a n d L D L R d e g r a d a t i o n:r e g u l a t o r ym e c h a n i s m s i nc i r c u l a t i o na n d i nc e l l s[J].C u r rO p i nL i p i d o l, 2014,25(5):387-393.[22]李风梅,刘忠民.人前蛋白转化酶枯草溶菌素9基因的研究进展[J].临床检验杂志,2014,32(3):219-221.[23]江璐,龚慧琴,刘录山.前蛋白转化酶枯草溶菌素9的生物学功能[J].中国生物化学与分子生物学报,2010,26(12):1085-1089.[24]S a a v e d r a Y G,Z h a n g J,S e i d a h N G.P C S K9p r o s e g m e n tc h i m e r aa sn o v e l i n h i b i t i o r so fL D L Rde g r a d a t i o n[J].P L o SO n e,2013,8(8):e72113.[25]J o y T R.N o v e lt h e r a p e u t i ca g e n t sf o rl o w e r i n g l o w d e n s i t yl i p o p r o t e i n c h o l e s t e r o l[J].P h a r m a c o lT h e r,2012,135(1):31-43.[26] F a t t o n E,C a p p e l l e t t i M,L o S u r d o P,e t a l.I mm u n i z a t i o na g a i n s t p r o p r o t e i n c o n v e r t a s e s ub t i l i s i n-l i k e/k e x i n t y p e9l o w e r s p l a s m aL D L-c h o l e s t e r o l l e v e l s i nm i c e[J].JL i p i dR e s, 2012,53(8):1654-1661.[27]S h e n L,P e n g H C,N e e s S N,e t a l.P r o p r o e i n c o n v e r t a s es u b t i l i s i n/k e x i n t y p e9p o t e n t i a l l y i n f l u e n c e s c h o l e s t e r o l u p t a k ei n m a c r o p h a g e sa n dr e v e r s ec h o l e s t e r o lt r a n s p o r t[J].F E B SL e t t,2013,587(9):1271-1274.[28] F e i n g o l d K R,M o s e r A H,S h i g e n a g aJ K,e ta l.I n f l a mm a t i o ns t i m u l a t e s t h e e x p r e s s i o no fP C S K9[J].B i o c h e m B i o p h y sR e sC o mm u n,2008,374(2):341-344.[29] L a n H,P a n g L,S m i t h MM,e t a l.P r o p r o t e i n c o n v e r t a s es u b t i l i s i n/k e x i n t y p e9(P C S K9)a f f e c t s g e n e e x p r e s s i o np a t h w a y sb e y o n dc h o l e s t e r o l m e t a b o l i s m i nl i v e rc e l l s[J].JC e l l P h y s i o l,2010,224(1):273-281.[30] R a n h e i m T,M a t t i n g s d a l M,L i n d v a l lJ M,e ta l.G e n o m e-w i d ee x p r e s s i o na n a l y s i s of c e l l s e x p r e s s i n gg a i no f f u n c t i o n m u t a n tD374Y-P C S K9[J].JC e l l P h y s i o l,2008,217(2):459-467.[31] T a n g Z,J i a n g L,P e n g J,e ta l.P C S K9s i R N As u p p r e s s e st h ei n f l a mm a t o r y r e s p o n s e i n d u c e d b y o x L D L t h r o u g h i n h i b i t i o n o fN F-κBa c t i v a t i o n i nT H P-1-d e r i v e dm a c r o p h a g e s[J].I n t JM o lM e d,2012,30(4):931-938.[32] H a m p t o n E N,K n u t h MW,L iJ,e t a l.T h e s e l f-i n h i b i t e ds t r u c t u r eo ff u l l-l e n g t h P C S K9a t1.9A r e v e a l ss t r u c t u r a lh o m o l o g y w i t h r e s i s t i nw i t h i n t h eC-t e r m i n a l d o m a i n[J].P r o cN a t lA c a dS c iUSA,2007,104(37):14604-14609.[33] L e h r k eM,R e i l l y M P,M i l l i n g t o nS C,e ta l.A ni n f l a mm a t o r yc a s c ade l e a d i n g t o h y p e r r e s i s t i n e m i a i n h u m a n s[J].P L o SM e d,2004,1(2):e45.[34] A x e l s s o nJ,B e r g s t e n A,Q u r e s h iA R,e ta l.E l e v a t e dr e s i s t i nl e v e l s i nc h r o n i ck i d n e y d i s e a s ea r ea s s o c i a t e d w i t hd e c r e a s e dg l o m e r u l a rf i l t r a t i o n r a t e a n d i n f l a mm a t i o n,b u t n o t w i t hi n s u l i n r e s i s a n c e[J].K i d n e y I n t,2006,69(3):596-604.[35] T a r k o w s k iA,B j e r s i n g J,S h e s t a k o vA,e t a l.R e s i s t i n c o m p e t e sw i t h l i p o p o l y s a c c h a r i d e f o r b i n d i n g t o t o l l-l i k e r e c e p t o r4[J].JC e l lM o lM e d,2010,14(6B):1419-1431.[36]江璐.P C S K9s i R N A抑制o x-L D L诱导的T H P-1源性巨噬细胞炎症因子表达与分泌[D].衡阳:南华大学,2011. [37] H o o p e r A J,B u r n e t t J R.A n t i-P C S K9t h e r a p i e s f o r t h et r e a t m e n t o f h y p e r c h o l e s t e r o l e m i a[J].E x p e r tO p i nB i o l T h e r, 2013,13(3):429-435.[38] C a r i o uB,L eM a y C,C o s t e t P.C l i n i c a l a s p e c t s o f P C S K9[J].A t h e r o s c l e r o s i s,2011,216(2):258-265.[39]范丽娟,李仲.L D L受体介导的血浆低密度脂蛋白胆固醇的内吞[J].生命的化学,2014,34(3):329-336.[40] M u l l a r dA.C h o l e s t e r o l-l o w e r i n g b l o c k b u s t e r c a n d i d a t e s s p e e di n t o p h a s eⅢt r i a l s[J].N a tR e vD r u g D i s c o v,2012,11(11):817-819.[41] C r u n k h o r n S.T r i a l w a t c h:P C S K9a n t i b o d y r e d u c e s L D Lc h o l e s t e r o l[J].N a tR e vD r u g D i s c o v,2012,11(1):11.[42] K o r e n M J,L u n d q v i s t P,B o l o g n e s e M,e t a l.A n t i-P C S K9m o n o t h e r a p f o r h y p e r c h o l e s t e r o l e m i a:t h e M E N D E L-2r a n d o m i z e d,c o n t r o l l e d p h a s eⅢc l i n i c a lt r i a lo fe v o l o c u m a b[J].JA m C o l l C a r d i o l,2014,63(23):2531-2540. [43] B l o m D J,H a l a T,B o l o g n e s e M,e t a l.A52-w e e kp l a c e b o c o n t r o l l e d t r a i l o f e v o l o c u m a bi nh y p e r l i p i d e m i a[J].NE n g l JM e d,2014,370(19):1809-1819.[44]刘兴兰,谷文,雷寒,等.E v o l o c u m a b降低低密度脂蛋白胆固醇有效性与安全性的M e t a分析[J].临床荟萃,2015,30(5): 481-485.[45] K o r e n M J,L u n d q v i s t P,B o l o g n e s e M,e t a l.A n t i-P C S K9m o n o t h e r a p y f o r h y p e r c h o l e s t e r o l e m i a:t h e M E N D E L-2r a n d o m i z e d,c o n t r o l l e d p h a s eI I Ic l i n i c a l t r i a lo fe v o l o c u m a b[J].JA m C o l l C a r d i o l,2014,63(23):2531-2540.[46] H i r a y a m a A,H o n a r p o u r N,Y o s h i d a M,e t a l.E f f e c t s o fe v o l o c u m a b(AM G145),a m o n o c l o n a la n t i b o d y t oP C S K9,i nh y p e r c h o l e s t e r o l e m i c,s t a t i n-t r e a t e dJ a p a n e s e p a t i e n t sa th i g hC a r d i o v a s c u l a r r i s k[J].C i r c J,2014,78(5):1073-1082.[47]S c h w a r t z G G,B e s s a c L,B e r d a n L G,e t a l.E f f e c t o fa l i r o c u m a b,a m o n o c l o n a la n t ib o d y t o P C S K9,o nl o n g-t e r mc a rd i o v a s c u l a r o u t c o me sf o l l o w i ng a c u t ec o r o n a r y s y n d r o m e s:R a t i o n a l e a n dd e s i g no f t h eO D Y S S E Y O u t c o m e s t r i a l[J].A mH e a r t J,2014,168(5):682-689.[48] F i t z g e r a l dK,F r a n k-K a m e n e t s k y M,S h u l g a-M o r s k a y a S,e t a l.E f f e c to f a n R N A i n t e r f e r e n c e d r u g o n t h e s y n t h e s i s o fp r o p r o t e i n c o n v e r t a s e s u b t i l i s i n/k e x i nt y p e9(P C S K9)a n dt h ec o n c e n t r a t i o no f s e r u m L D Lc h o l e s t e r o l i nh e a l t h y v o l u n t e e r s:a r a n d o m i s e d,s i n g l e-b l i n d,p l ac e b o-c o n t r o l l e d,p h a s e1t r i a l[J].L a n c e t,2014,383(9911):60-68.收稿日期:2015-10-22编辑:张卫国㊃111㊃‘临床荟萃“2016年1月5日第31卷第1期 C l i n i c a l F o c u s,J a n u a r y5,2016,V o l31,N o.1Copyright©博看网. All Rights Reserved.。
qt使用paddleocr的实例 -回复
qt使用paddleocr的实例-回复如何使用Qt集成PaddleOCR实现文本识别在当今信息时代,海量的文字信息存在于各种图像和视频中。
为了从这些非结构化的数据中提取有用的文本信息,光学字符识别(OCR)技术应运而生。
PaddleOCR作为一款基于深度学习的OCR框架,在准确性和鲁棒性方面表现出色。
而Qt作为一款跨平台应用开发框架,拥有强大的图形界面设计和用户交互功能。
本文将介绍如何使用Qt集成PaddleOCR,实现图像中文本的识别。
一、安装和配置PaddleOCR首先,我们需要安装PaddlePaddle深度学习框架和PaddleOCR库。
PaddleOCR支持Python2.7和Python3.5+,可以通过pip命令进行安装。
在终端中输入以下命令:pip install paddlepaddle paddleocr安装完成后,我们需要下载预训练模型。
PaddleOCR提供了多个模型,覆盖了通用文字识别、id识别、银行卡识别等场景。
你可以根据自己的需求选择相应的模型,下载至本地。
二、创建一个Qt项目打开Qt Creator,点击“新建项目”,选择“Qt Widgets应用程序”,填写项目名称和路径,点击“下一步”。
在下一步中,选择一个合适的编译套件,点击“下一步”。
然后,在“类名”框中输入主窗口类的名称,点击“下一步”。
最后,在“项目设置”页面,保留默认设置,点击“完成”即可。
三、进行Qt项目的布局设计在设计师界面中,我们可以通过拖拽和编辑控件来设计Qt应用程序的布局。
首先,从左侧的控件面板中拖入一个标签(QLabel)和一个按钮(QPushButton),并调整它们的位置和大小。
其次,我们需要添加一个用于显示图像的标签。
在控件面板中选择“QLabel”,并将其拖拽到主窗口中。
接下来,我们将按钮和标签组合到一个布局管理器中,这将使得它们能够在窗口大小变化时自动调整位置和大小。
点击窗口右侧的“对象浏览器”选项卡,在左侧找到我们添加的按钮和标签控件。
paddle的回调函数
paddle的回调函数PaddlePaddle是中国开发的深度学习框架,为了更好地使用PaddlePaddle来训练神经网络,我们需要熟悉回调函数的概念和使用方法。
回调函数是在训练神经网络时,根据特定条件或在特定时间点触发的函数。
回调函数主要用于对训练过程进行控制,让训练过程更加高效。
在PaddlePaddle的训练过程中,回调函数可以通过自定义Python的类来实现。
PaddlePaddle提供了一些内置的回调函数,可以直接使用,也可以继承它们并添加一个或多个自己定义的函数。
下面介绍一些常用的PaddlePaddle内置回调函数。
1.1 损失函数回调函数损失函数回调函数被用于在每个epoch的结束时打印训练和验证集的损失函数值。
示例代码如下:```import paddle.callbacks as pc在创建损失函数回调函数实例后,可以将其传递给模型的fit方法,如下所示:```class LrCallback(pc.Callback):def on_epoch_end(self, epoch, logs=None):lr = self.model.optimizer.get_lr()new_lr = lr * 0.1self.model.optimizer.set_lr(new_lr)print('新的学习率:%s' % new_lr)```1.3 模型保存回调函数模型保存回调函数用于在每个epoch的结束时保存模型,以便在中途退出或意外终止后恢复训练。
示例代码如下:模型加载回调函数用于在开始训练前加载已保存的模型。
示例代码如下:2. 总结PaddlePaddle的回调函数是一个非常有用的工具,它可以用于控制训练过程,提高模型的性能。
不仅仅是内置的回调函数,我们还可以根据自己的需要定义回调函数。
希望文章中的内容可以帮助大家更加深入地理解回调函数的概念和使用方法,在使用PaddlePaddle训练神经网络时更加得心应手。
华为 P40 手机用户指南说明书
Mobile USBSpinpoint M8U250GB 320GB 500GB 640GB 750GB 1TBModel HN-M250ABB HN-M320ABB HN-M500ABB HN-M640ABBHN-M750ABBHN-M101ABB Samsung Models FEATURES• Max. 500GB formatted capacity per disk • SilentSeek™ • TuMR/PMR head with FOD technology • NoiseGuard™• USB 3.0 Interface Support• Load/Unload Head Technology Capacity 1 250 ~ 750GB, 1TBTemperature InterfaceUSB 3.0 Operating 5 ~ 55 °C Buffer DRAM Size 28 MBNon-operating -40 ~ 70°C Rotational Speed5,400 RPM ClassHumidity (non-condensing) Operating 5-90 % Non-operating 5-95 %Average Seek time (typical)12 ms Linear Shock (1/2 sine pulse)Average Latency 5.6 ms Operating, 2ms 325 G Data Transfer RateNon-operating, 2ms 750 G Media to/from Bu er (Max.)145 MB/s Vibration (swept sine, 1/4 octave per minute) Bu er to/from Host (Max.)400 MB/sOperating 0.9 Grms Drive Ready Time (typical)34 secAltitude (relative to sea level) Operating -300 to 3000 m Non-operating -400 to 15000 mNon-recoverable Read Error 1 sector in 1014bitsControlled Ramp Load/Unload 600,000Height 9.5 mm Idle2.4 Bel Width 69.85 mm Performance Seek 2.6 BelLength104 mm Weight (max.)107 gVoltage+5V±5%* Note : Design and speci cations are subject to change without prior notice.Spin-up Current (Max.) 750 mA 1 1MB = 1,000,000 Bytes, 1GB = 1,000,000,000 BytesSeek (AVG)43.0 W Accessible capacity may vary as some OS uses binary numbering system Read/Write (AVG)3.2 W for reported capacityLow Power Idle (AVG) 1.8 W 2 A small portion of the 8MB bu er memory is reserved for rmware use Standby (AVG) 1.4 W 3 Power-On to Drive Ready Sleep (AVG)1.4 W4 30% duty cycle, random seek2.5" HDD product speci cation Rev2.1Match with product manual Rev2POWER REQUIREMENTS ACOUSTICS Capacity DRIVE CONFIGURATION ENVIRONMENTAL SPECIFICATIONS PERFORMANCE SPECIFICATIONS RELIABILITY SPECIFICATIONS PHYSICAL DIMENSIONModel8 MB8 MB ST 250LM003ST320LM005ST500LM014ST640LM019 ST750LM023ST1000LM025 Seagate Models。
yolo成语点选训练
yolo成语点选训练
在训练YOLO(You Only Look Once)模型时,需要进行一系列的步骤,包括数据预处理、模型构建、训练和验证。
以下是一个基本的训练过程:
数据准备:首先,你需要一个标注的数据集,其中包含你想要检测的对象的图像,以及每个图像中对象的边界框和类别。
数据预处理:为了提高模型的泛化能力,你可能需要对数据进行一些预处理,例如随机裁剪、翻转等。
模型构建:YOLO有多种版本,从YOLOv1到YOLOv5。
在训练时,你可以选择其中一个版本作为起点,然后根据需要进行修改。
基本的YOLO模型包括卷积层、池化层和全连接层。
训练:在模型构建完成后,你需要定义损失函数,然后使用训练数据对模型进行训练。
损失函数用于测量模型的预测与实际标签之间的差异。
常用的损失函数包括交叉熵损失和Smooth L1损失。
验证:在模型训练过程中,你还需要使用验证数据集来评估模型的性能。
这有助于你在模型过拟合之前发现并纠正任何问题。
调优:根据验证结果,你可能需要对模型进行调优,例如调整学习率、增加或减少层数等。
测试:最后,使用测试数据集对训练完成的模型进行测试,以评估其在未见过的数据上的性能。
在训练过程中,还有很多技巧可以帮助提高模型的性能,例如使用早停、权重衰减、动量等优化方法。
此外,还可以尝试使用不同的数据增强技术来增加模型的泛化能力。
请注意,这是一个高级主题,需要对深度学习和计算机视觉有深入的了解才能有效地进行训练。
如果你是初学者,建议先学习相关的知识和技能,然后再尝试训练自己的YOLO模型。
第6章 蛋白质分选与膜泡运输 [兼容模式]
通过出芽,转运,驻泊及最后与靶膜融合运输蛋白、脂质; 在膜泡的外围组装包被蛋白; (网格蛋白、COPII包被蛋白、 COPI包被蛋白等); 只有正确折叠、组装的蛋白才能被运输; 在运输中被运输蛋白、脂质的方向不会改变。
胞质蛋白运转: 与细胞骨架密切相关,但机制不清
6.1.3 蛋白质向线粒体、叶绿体和过氧化物酶体的分选
12
2013-10-23
不仅蛋白质进入内质网需要信号引导,蛋白在内膜系统间运输也需要信号, 如内质网驻留蛋白的KDEL(HDEL)信号和KKXX信号(膜蛋白)、质膜整 合蛋白由内质网进入高尔基体的双酸分选信号、溶酶体蛋白由高尔基体进入 溶酶体的甘露糖-6-磷酸信号等。 水疱性口炎病毒的分选信 号是存在于细胞质基质一 号是存在于细胞质基质 侧的双酸分选信号,这种 信号也存在于其他膜蛋白 上。 双酸分选信号指导膜蛋白 从内质网向高尔基体运输。 Asp-X-Gln
4
2013-10-23
ER 信号肽(ER signal sequence) :由多肽N端 16-26 氨基酸组成。具有三个 区域,带正电荷的N端区,中间的疏水区和极性的与成熟肽链连接的剪切区, 新生分泌蛋白的信号肽使肽链定向运输到内质网,随后被切除。 信号识别颗粒(Signal-recognition particle, SRP ): 由6种不同的多肽和一条 7SRNA (300bp左右)组成的核糖核蛋白复合体。 信号识别颗粒受体(SRP receptor):内质网停泊蛋白 (GTP binding protein protein, DP: docking protein)。 易位子(Translocator):由3-4个Sec61蛋白构成的通道,每个Sec61由3条肽链 组成。 停止转移序列:与内质网膜的亲合力很高,阻止肽链继续进入网腔,成为 跨膜蛋白。
深度可分离卷积顺序
深度可分离卷积顺序
深度可分离卷积(Depthwise Separable Convolution)是一种常用的卷积神经网络中的卷积操作,它可以有效地减少模型的参数量和计算量,并且在一定程度上提高模型的性能。
深度可分离卷积由两个步骤组成:深度卷积(Depthwise Convolution)和逐点卷积(Pointwise Convolution)。
深度可分离卷积的顺序如下:
1. 深度卷积(Depthwise Convolution):首先对输入数据的每个通道分别进行卷积操作。
这里的深度卷积使用的是一个小尺寸的卷积核(比如3x3),但是通道数与输入数据相同。
这样可以获得每个通道上的特征图。
2. 逐点卷积(Pointwise Convolution):接着,对深度卷积的结果进行逐点卷积操作。
逐点卷积使用的是一个1x1的卷积核,它可以将每个通道上的特征图进行线性组合,生成最终的输出特征图。
总结起来,深度可分离卷积的顺序是先进行深度卷积,再进行逐点卷积。
这种顺序可以有效地降低计算量,同时保持模型的表达能力。
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ReviewSorting an LDL receptor with bound PCSK9to intracellular degradation Trond P.Leren*Unit for Cardiac and Cardiovascular Genetics,Department of Medical Genetics,Oslo University Hospital,Oslo,Norwaya r t i c l e i n f o Article history:Received18June2014Received in revised form28July2014Accepted19August2014 Available online2September2014Keywords:DegradationCathepsinEndosomeLDL receptorPCSK9a b s t r a c tObjective:This article reviews the mechanism by which the low density lipoprotein receptor(LDLR)that has bound proprotein convertase subtilisin/kexin type9(PCSK9),is rerouted to intracellular degradation instead of being recycled.Methods:A search of relevant published literature has been conducted.Results:PCSK9binds to the LDLR at the cell surface.It is the catalytic domain of PCSK9that binds to the epidermal growth factor repeat A of the LDLR.The LDLR:PCSK9complex is internalized through clathrin-mediated endocytosis.Due to an additional electrostatic interaction at acidic pH between the C-terminal domain of PCSK9and the ligand-binding domain of the LDLR,PCSK9remains bound to the LDLR in the sorting endosome.As a consequence,the LDLR fails to adopt a closed conformation and is degraded instead of being recycled.The mechanism for the failure of the LDLR to recycle appears to involve ectodomain cleavage of the extended LDLR by a cysteine cathepsin in the sorting endosome.The cleaved LDLR ectodomain will be confined to the vesicular part of the sorting endosome for degradation in the endosomal/lysosomal tract.Conclusion:Ectodomain cleavage of an LDLR with bound PCSK9in the sorting endosome disrupts the normal recycling of the LDLR.©2014Elsevier Ireland Ltd.All rights reserved.Contents1.LDL receptor-mediated endocytosis (76)2.Proprotein convertase subtilisin/kexin type9 (77)3.PCSK9-mediated degradation of the LDLR (77)4.Role of the cytoplasmic domain of the LDLR (77)5.Role of the ectodomain of the LDLR (78)6.Role of the C-terminal domain of PCSK9 (78)7.Ectodomain cleavage (79)Conflict of interest (80)References (80)1.LDL receptor-mediated endocytosisApproximately70%of plasma cholesterol is carried in low density lipoprotein(LDL)[1],and high levels of LDL cholesterol are a major risk factor for coronary heart disease.LDL is cleared from plasma by binding to the cell-surface LDL receptor(LDLR)and is internalized by LDLR-mediated endocytosis[2](Fig.1).The importance of the LDLR in cholesterol metabolism is illustrated by the severe hypercholesterolaemia in subjects who lack LDLRs[2].The LDLR is a Type1transmembrane protein and hasfive do-mains[3e5](Fig.1).The amino terminal ligand-binding domain consists of seven repeats of approximately40amino acids each.The epidermal growth factor(EGF)precursor homology domain of approximately400amino acids consists of two40amino acid re-peats,EGF-A and EGF-B,a280amino acid b-propeller and a third40 amino acid repeat,EGF-C.The O-linked sugar domain consists of58*Unit for Cardiac and Cardiovascular Genetics,Department of Medical Genetics, Oslo University Hospital,P.O.Box4956Nydalen,NO-0424Oslo,Norway.Tel.:þ47 23026389;fax:þ4722118699.E-mail addresses:trond.leren@rikshospitalet.no,TrondPaul.Leren@ rikshospitalet.no.Contents lists available at ScienceDirectAtherosclerosisjo urn al homepag e:/locate/at herosclerosis/10.1016/j.atherosclerosis.2014.08.0380021-9150/©2014Elsevier Ireland Ltd.All rights reserved.Atherosclerosis237(2014)76e81amino acids.The transmembrane domain has 22amino acids and the cytoplasmic domain which contains the motifs required for concentrating the LDLR in clathrin-coated pits,has 50amino acids.LDL which binds to the ligand-binding domain at the cell sur-face,is released from the LDLR at the acidic pH of the sorting en-dosome [6](Fig.1).Released LDL is con fined to the vesicular part of the sorting endosome which matures to become a late endosome [6].LDL is finally degraded in the lysosome.Concomitant with the release of LDL in the sorting endosome,the LDLR folds back on itself to obtain a closed conformation whereby ligand-binding repeats 4and 5interact with the b -propeller [7](Fig.1).The LDLR then re-cycles back to the cell surface.2.Proprotein convertase subtilisin/kexin type 9Proprotein convertase subtilisin/kexin type 9(PCSK9)has been shown to play a major role in regulating plasma LDL cholesterol levels through its ability to mediate intracellular degradation of the LDLR [8e 10].PCSK9is a zymogen consisting of 692amino acids of which residues 1e 30constitute the signal peptide [8].The remainder of the protein is divided into three domains.The prodomain consists of residues 31e 152,the catalytic domain consists of residues 153e 454and the cysteine-and histidine-rich C-terminal domain consists of residues 455e 692[11,12].After intramolecular auto-catalytic cleavage in the endoplasmic reticulum,the cleaved pro-domain is non-covalently bound to the catalytic domain of the mature PCSK9to block enzymatic activity and to act as a chaperone to promote proper folding and exit out of the endoplasmic reticu-lum [8].In contrast to other proprotein convertases,PCSK9does not undergo a second cleavage to release the prodomain [8].PCSK9is therefore secreted as an enzymatic inactive protein.3.PCSK9-mediated degradation of the LDLRAt the cell surface,the catalytic domain of PCSK9binds to the EGF-A repeat of the LDLR [9,13](Fig.2).The residues of the LDLR and PCSK9involved in this interaction have been well characterized[9,13,14].Following binding of PCSK9to the LDLR at the cell surface,the LDLR:PCSK9complex is internalized through clathrin-coated pits [9,15].Whereas,LDL is released from the LDLR at the acidic milieu of the sorting endosome,the af finity of PCSK9to bind to the LDLR increases 120e 150fold at acidic pH [11,12,16,17].This makes PCSK9remain bound to the LDLR in the sorting endosome and prevents the LDLR from adopting a closed conformation at acidic pH [18](Fig.2).There is a 1:1stoichiometry between the LDLR and PCSK9.Thus,PCSK9does not exhibit a general effect on the LDLRs within a clathrin-coated pit or within a sorting endosome,but rather acts as a tag to promote degradation of an individual LDLR.The question then is how an LDLR with bound PCSK9is identi fied in the sorting endosome and rerouted to intracellular degradation.4.Role of the cytoplasmic domain of the LDLRFor several receptors that are rerouted to intracellular degra-dation after having bound their ligands,such as the EGF receptor,ligand-binding introduces a conformational change of the cyto-plasmic domain which leads to ubiquitination and activation of the endosomal sorting complex required for traf ficking (ESCRT)ma-chinery [19].This machinery translocates these receptors to the vesicular part of the sorting endosome for transport down the endosomal/lysosomal tract.However,because an LDLR lacking the cytoplasmic domain also undergoes PCSK9-mediated degradation [20],modi fications of the cytoplasmic domain or an interaction between the cytoplasmic domain and ubiquitin or adaptor proteins,are not involved in rerouting the LDLR with bound PCSK9to intracellular degradation.An alternative mechanism for intracellular degradation could involve an interaction within the endosomal lumen between a co-receptor on one hand and PCSK9or the LDLR:PCSK9complex on the other hand.This could lead to ubiquitination of the cytoplasmic domain of the co-receptor and activation of the ESCRT machinery.However,data from Wang et al.[15]showing that PCSK9is able to degrade the LDLR when ubiquitination is inhibited or the ESCRT machinery is inactivated,exclude such a mechanism.Wang et al.[15]have also shown that the LDLR is degraded when proteasomal activity is inhibited or when the autophagocytic pathway is inac-tivated.Thus,PCSK9-mediated degradation of the LDLR doesnotFig.1.The normal function of the LDLR.The ligand-binding domain of the LDLR with its seven ligand-binding repeats,is shown in yellow.The EGF-A,EGF-B and EGF-C repeats of the EGF precursor homology domain are shown in blue and the b -propel-ler is shown in red.The O-linked sugar domain,the transmembrane domain and the cytoplasmic domain are indicated by a solid black line.The cell membrane is shown as a horizontal structure.At the cell surface the ectodomain of the LDLR is extended from the cell membrane and the LDLR binds LDL through its ligand-binding domain (left).At the acidic pH of the sorting endosome,LDL is released from the LDLR and the LDLR adopts a closed conformation whereby ligand-binding repeats 4and 5interact with the b -propeller (right).The figure is not drawn toscale.Fig.2.PCSK9prevents the LDLR from adopting a closed conformation in the sorting endosome.PCSK9consisting of a prodomain (P),a catalytic domain (CAT)and a C-terminal domain (CTD)binds to the EGF-A repeat of the LDLR at the cell surface through its catalytic domain.At the acidic milieu of the sorting endosome,the C-ter-minal domain of PCSK9obtains an increased positive charge and electrostatically at-tracts the negatively charged ligand-binding domain of the LDLR.This prevents the LDLR from adopting a closed conformation at acidic pH.The figure is not drawn to scale.T.P.Leren /Atherosclerosis 237(2014)76e 8177involve commonly used pathways for lysosomal or proteasomal degradation.5.Role of the ectodomain of the LDLRBecause the cytoplasmic domain of the LDLR is not involved in the intracellular degradation[20],it is possible that elements of the ectodomain are involved in targeting an LDLR with bound PCSK9to intracellular degradation.Regarding the ligand-binding domain of the LDLR,it is not required for the LDLR to bind and internalize PCSK9[16,18,21],although an LDLR lacking the ligand-binding domain appears to internalize PCSK9less efficiently than the full-length LDLR[21].However,the ligand-binding domain plays a critical role in rerouting the LDLR to intracellular degradation.From a series of deletion experiments,Zhang et al.[18]have shown that at least three of the seven ligand-binding repeats are required for an LDLR to undergo intracellular degradation.From their data it appears that the more ligand-binding repeats that are present,the more efficiently is the LDLR degraded.Moreover,no single ligand-binding repeat is required[18].Rather,it is the number of repeats that is important.Thesefindings make it unlikely that specific residues of the ligand-binding domain are engaged in a key and lock interaction with another protein such as an endosomal co-receptor or PCSK9.Rather,there may be some general features of the ligand-binding repeats or the length of the ligand-binding domain,that are important.A common feature of the ligand-binding repeats is their negative charge due to clusters of acidic residues which coordinate one calcium ion[5].Studies of cells expressing a mutant LDLR lacking the ligand-binding domain have shown that this mutant LDLR is able to internalize substantial amounts of PCSK9[18,21].Together with the observation that an LDLR lacking the ligand-binding domain is not degraded,but instead recycles back to the cell membrane[18,21], indicate that internalized PCSK9is released from an LDLR lacking the ligand-binding domain in the sorting endosomes.Thus,the ligand-binding domain could be required for PCSK9to remain bound to the LDLR at the acidic milieu and low calcium concen-tration of the sorting endosome.To study this,Tveten et al.[21]performed studies to determine the ability of LDLRs with varying number of ligand-binding repeats to bind PCSK9at acidic conditions.CHO T-REx cells stably trans-fected with the various plasmids were incubated with the gain-of-function mutant D374Y-PCSK9at4 C to study the amount of PCSK9 bound to the cells as a function of pH of the culture medium. Whereas,PCSK9remained stably bound to the wild-type LDLR when pH was raised from5.3to pH6.9,PCSK9was released from an LDLR lacking the ligand-binding domain within few minutes at pH 6.1or higher[21].Moreover,an LDLR with three ligand-binding repeats bound less PCSK9than the wild-type LDLR at acidic con-ditions,but bound more PCSK9than an LDLR with two ligand-binding repeats,particularly at pH 6.5and below.These data indicate that the negatively charged ligand-binding domain of the LDLR is required for PCSK9to remain bound to the LDLR during the early phase of endosomal acidification when pH gradually de-creases from pH7.4to pH~6.1.The effect of varying number of ligand-binding repeats on the amount of PCSK9bound at these mildly acidic conditions,are in agreement with the data of Zhang et al.[18]regarding the requirement for a certain number of ligand-binding repeats for PCSK9to promote intracellular degradation of the LDLR.6.Role of the C-terminal domain of PCSK9The C-terminal domain of PCSK9consists of three modules where each module is built from six b-strands connected with three disulfide bridges[11,12].Even though the C-terminal domain of PCSK9is not required for PCSK9to bind and be internalized by the LDLR,the C-terminal domain is required for PCSK9to disrupt recycling of the LDLR[11,18,22,23].Whereas,some studies have failed to observe an interaction between the C-terminal domain and the extracellular part of the LDLR at pH7.4or at pH6.0[11,18,22],Yamamoto et al.[24]have shown that the C-terminal domain of PCSK9does bind to the ligand-binding domain of the LDLR,particularly at low pH.In that study,Yamamoto et al.[24]attached a soluble LDLR to an affinity chromatography column and studied the amount of wild-type or mutant PCSK9bound to the column at pH7.3or pH5.4.One of their findings was that when the C-terminal domain was passed over the column,significant amounts bound to the LDLR at pH5.4,but only small amounts bound at pH7.3.Further experiments showed that it was the ligand-binding domain of the LDLR that bound the C-ter-minal domain of PCSK9at acidic pH[24].The C-terminal domain of PCSK9is less evolutionary conserved than the catalytic domain[14].Apart from the18cysteines involved in forming disulfide bonds,only12of the remaining residues are highly conserved.In the study of Holla et al.[23]a total of14 conserved residues of the C-terminal domain of PCSK9were mutated to study the activity of these mutant PCSK9s towards the LDLR.Flow cytometric measurements of the amount of LDL inter-nalized in transiently transfected HepG2cells were used as a measure of the number of LDLRs in these experiments.Of the nine PCSK9mutants that were secreted,all had an activity towards the LDLR similar to that of wild-type PCSK9[23].Thus,thisfinding makes it unlikely that residues of the C-terminal domain are engaged in specific protein e protein interactions with residues of the LDLR or within other proteins.Another characteristics of the C-terminal domain is the large number of histidines which have been proposed to contribute to PCSK9's increased affinity to bind to the LDLR at low pH[11,12]. Changing the pH from pH7.4to pH5.4,makes these histidines obtain a net increased positive charge of8e10units[23].Seven of the14histidines in the C-terminal domain of PCSK9are surface-exposed.To study the role of these histidines on the activity of PCSK9towards the LDLR,Holla et al.[23]transfected HepG2cells with PCSK9plasmids where these seven histidines had been mutated to neutral alanines(7H>A-PCSK9),positively charged ly-sines(7H>K-PCSK9)or negatively charged glutamic acid(7H>E-PCSK9).From studies where the amount of LDL internalized by the transfected cells was used as a measure of the number of LDLRs, they showed that the relative activities of the mutant PCSK9s to-wards the LDLR,was:7H>K-PCSK9>wild-type PCSK9>7H>A-PCSK9>7H>E-PCSK9[23].Thus,the activity of the mutant PCSK9s correlated with the net charge of their C-terminal domains.The more positively charged the C-terminal domain,the more potent was the activity towards the LDLR.Holla et al.[23]also showed that replacement of the C-terminal domain of PCSK9with a similarly sized,but unrelated protein containing seven histidines,made the chimeric PCSK9maintain an activity towards the LDLR similarly to that of wild-type PCSK9.Thesefindings indicate that the role of the C-terminal domain of PCSK9for degradation of the LDLR,is medi-ated by its size and its positive charge at acidic pH,and not through specific protein e protein interactions.The notion that the C-terminal domain of PCSK9interacts with the negatively charged ligand-binding domain of PCSK9,was sup-ported by studies by Tveten et al.[21].They showed that that a mutant PCSK9lacking the C-terminal domain,was released from the LDLR at mildly acidic conditions in a fashion similar to the release of wild-type PCSK9from an LDLR lacking the ligand-binding domain.However,when the mutant PCSK9lacking the C-terminal domain was fused to the unrelated protein containingT.P.Leren/Atherosclerosis237(2014)76e81 78seven histidines mentioned above,the binding of the chimeric PCSK9to the LDLR at acidic pH was similar to that of wild-type PCSK9[21].Together,these data indicate that the absence of the ligand-binding domain of the LDLR or the absence of the C-terminal domain of PCSK9,make PCSK9unable to remain bound to the LDLR at the mildly acidic conditions of the sorting endosome.These findings explain why PCSK9in both instances is unable to reroute the LDLR to intracellular degradation.The notion that the ligand-binding domain of the LDLR must interact with the C-terminal domain of PCSK9for the LDLR to un-dergo intracellular degradation,is consistent with thefindings of Ni et al.[22].They found that an antigen-binding fragment against the C-terminal domain reduced the activity of PCSK9towards the LDLR by50%,whereas mutating the six residues recognized by the antigen-binding fragment,had little effect on the activity of PCSK9 [22].A likely explanation for these observations is that the binding of the antigen-binding fragment prevented the interaction be-tween the C-terminal domain of PCSK9and the ligand-binding domain of the LDLR.Also a monoclonal antibody against Module 1of the C-terminal domain of PCSK9,has been shown to interfere with the activity of PCSK9towards the LDLR,without affecting the interaction between PCSK9and the EGF-A repeat of the LDLR[25]. In a study where one or two of the three repeat modules of the C-terminal domain were deleted,Saavedra et al.[26]showed that Module2of the C-terminal domain was required for PCSK9to be active,and that increased basicity of an exposed loop within this module,increased the activity towards the LDLR.In a situation where individual residues of the ligand-binding domain of the LDLR or the C-terminal domain of PCSK9are not involved in the interaction between the two proteins,it is likely that the negatively charged ligand-binding domain of the LDLR is electrostatically attracted to the C-terminal of PCSK9at acidic pH.It is assumed that this interaction is the mechanism by which an LDLR with bound PCSK9fails to adopt a closed conformation at acidic pH [18](Fig.2).Regarding the role of other elements of the ectodomain of the LDLR for intracellular degradation,Zhang et al.[18]have shown that EGF-B of the EGF precursor homology domain and the O-linked sugar domain are not required for the LDLR to be degraded. However,PCSK9fails to promote degradation of an LDLR lacking the b-propeller of the EGF precursor homology domain.The reason for this is not clear,but a crystallographic study has shown that there is a minor interface between of the prodomain of PCSK9and the b-propeller of the LDLR at neutral pH[16].7.Ectodomain cleavageIn a situation where commonly used mechanisms for intracel-lular degradation of receptors such as ubiquitination have been excluded,Tveten et al.[27]explored the possibility that there could be an LDLR-specific mechanism for rerouting the LDLR with bound PCSK9to intracellular degradation.Such a mechanism could then also be responsible for rerouting Class5mutant LDLRs that have bound LDL,to intracellular degradation.Class5mutant LDLRs are typically caused by mutations in the EGF precursor homology domain and these mutant LDLRs fail to release LDL in the sorting endosome[4].As a consequence,Class5mutant LDLRs fail to obtain a closed conformation at acidic pH[4].Similarly to an LDLR un-dergoing PCSK9-mediated degradation,the cytoplasmic domain is not required for rerouting Class5LDLRs to intracellular degradation [28].It was therefore hypothesized that the failure to adopt a closed conformation in these instances,could make the ectodomain vulnerable for cleavage in the sorting endosome.Such a cleavage would release the ectodomain of the LDLR into the lumen of the sorting endosome where it predominantly would be confined to the vesicular part of the sorting endosome for further transport down the endosomal/lysosomal tract.From studies of regulated intramembrane proteolysis,ectodo-main cleavage which occurs within thefirst30residues of the ectodomain,will activate g-secretase cleavage within the trans-membrane domain[29].Following g-secretase cleavage,the released cytoplasmic domain is rapidly degraded which makes it difficult to detect by methods such as Western blot analysis[29,30]. However,when g-secretase cleavage is inhibited by the g-secretase inhibitor N-(N-(3,5-difluorophenacetyl)-L-alanyl)-S-phenylglycine t-butyl ester(DAPT),these cytoplasmic domains remain membrane-bound and become more stable and easier to detect.The mainfinding was that when purified PCSK9was added to HepG2cells in the presence of DAPT,a17kDa C-terminal fragment of the LDLR was detected by Western blot analysis[27].Because the predicted molecular weight of the72amino acids cytoplasmic and transmembrane domains of the LDLR is only~8kDa,cleavage of the LDLR to generate the17kDa C-terminal fragment must have occurred within the ectodomain.This notion is also supported by the observation that the17kDa C-terminal fragment was only observed when g-secretase cleavage within the transmembrane domain was inhibited by DAPT.Moreover,as the amount of the160kDa mature LDLR decreased with time in the presence of PCSK9,the amount of the17kDa C-terminal fragment increased in a proportionate fashion[27].The 17kDa C-terminal fragment was not generated when PCSK9was added to cells expressing mutant LDLRs that do not undergo PCSK9-mediated degradation.Furthermore,the17kDa C-terminal fragment was not generated in the presence of chemical reagents such as ammonium chloride or the cysteine cathepsin inhibitor E64d,which prevent PCSK9-mediated degradation of the LDLR [27].Thus,the17kDa C-terminal fragment of the LDLR was generated in an acidic intracellular compartment from an LDLR undergoing PCSK9-mediated degradation(Fig.3).After g-secretase cleavage of17kDa C-terminal fragment,the cytoplasmic domain will be released into cytosol.Whether,the released cytoplasmic domain has any signalling functions,remains to be determined.Such an ectodomain cleavage of the160kDa mature LDLR must have generated a complementary143kDa N-terminal fragment. However,no143kDa N-terminal fragment has been detected by Western blot analysis using antibodies against the N-terminal domain of the LDLR[27].A likely explanation for this failure is that the cleaved143kDa ectodomain released into the endosomal lumen,is rapidly acted upon by endosomal proteases.As a conse-quence,the ectodomain may be rapidly degraded or the antigenic epitopes may be destroyed.One factor that could contribute to rapid endosomal proteolytic degradation,is unfolding of the ligand-binding repeats at the low calcium concentration and acidic milieu of the sorting endosome[31,32].However,further studies should be performed to try to identify the143kDa N-terminal fragment within the endosomal lumen.Generation of the17kDa C-terminal fragment could have been caused by a metalloproteinase or a disintegrin and metal-loproteinase(ADAM)which are commonly involved in shedding of ectodomains of transmembrane proteins[33],or by endosomal proteases[34].However,a panel of metalloproteinase inhibitors did not prevent generation of the17kDa C-terminal fragment[27]. Thefinding that the irreversible cysteine cathepsin inhibitor E64d which prevents PCSK9-mediated degradation of the LDLR[15,27], also prevented generation of the17kDa C-terminal fragment,in-dicates that ectodomain cleavage was caused by an endosomal cysteine cathepsin which predominantly act as endopeptidases [34].Even though most cathepsins in the endosomal/lysosomal tract become more active as the pH decreases,many cathepsins areT.P.Leren/Atherosclerosis237(2014)76e8179active at a pH of ~6.1[35].Moreover,it has been shown that rapid proteolysis of internalized receptors may take place in pre-lysosomal compartments of the endosomal/lysosomal tract [36e 39].In contrast to the ectodomain of the LDLR which seems to escape immunological detection early in the endosomal/lysosomal tract,PCSK9is clearly detectable intracellularly.It is therefore assumed that PCSK9is degraded further down the endosomal/lysosomal tract such as in late endosomes or in lysosomes.The 17kDa C-terminal fragment generated during intracellular degradation of an LDLR that has bound PCSK9,was also generated from a Class 5mutant LDLR that has bound LDL [27].Thus,this finding supports the notion that the failure of an LDLR to fold back on itself to adopt a closed conformation at acidic pH [4,18],makes structures of the LDLR close to the membrane accessible to pro-teolytic cleavage.Further support for this model,comes from data (Tveten K &Leren TP,unpublished data)showing that the 17kDa C-terminal fragment is also generated when cells are incubated with polyvalent,polyclonal anti-LDLR antibodies which cause intracel-lular degradation of the LDLR [40].It is assumed that these poly-clonal antibodies which cause aggregation of the LDLRs [40]prevent the LDLR from adopting a closed conformation at acidic pH.A similar need to adopt a pH-induced conformational change at acidic pH,has been shown for the EGF receptor and asialoglyco-protein receptor to be resistant to proteolysis by the cysteine peptidase papain [41].The notion that the cleaved ectodomain escapes detection because it is rapidly degraded,is apparently in con flict with studies where LDLRs subjected to PCSK9-mediated degradation have been found to co-localize with markers of late endosomes and lysosomes by confocal laser-scanning microscopy or subcel-lular fractionation [9,15,42e 44].However,data from such co-localization experiments should be interpreted with caution because markers such as cathepsin D and mannose-6-phosphate receptor which were used as markers for lysosomes and late endosomes,respectively,are not speci fic for these organelles.Rather,after their transport from the trans-Golgi network to the endosomal/lysosomal tract,they are found in various amounts also in organelles early in endosomal/lysosomal tract such as in early endosomes [34,45e 47].The data presented in this review indicate that an LDLR that fails to adopt a closed conformation at endosomal pH,is rapidly cleaved by an endosomal cysteine cathepsin to release the ectodomain into the endosomal lumen.Targeting intracellular cleavage of an LDLR that fails to adopt a closed conformation in the sorting endosome,could therefore be a novel strategy to lower plasma LDL cholesterol levels.However,unless this protease is speci fic for the LDLR,tar-geting the protease would likely cause major side effects.Con flict of interest None.References[1]Herbert PN,Assmann G,Gotto AM,Fredrickson DS.Familial lipoprotein de fi-ciency:abetalipoproteinemia,hypolipoproteinemia and Tangier disease.In:Stanbury JB,Wyngaarden JB,Fredrickson DS,Goldstein JL,Brown MS,editors.The metabolic basis of inherited disease.McGraw-Hill;1983.p.589e 621.[2]Goldstein JL,Hobbs HH,Brown MS.Familial hypercholesterolemia.In:Scriver CR,Beaudet AL,Sly WS,Valle D,editors.The metabolic &molecular basis of inherited disease.McGraw-Hill;2001.p.2863e 914.[3]Südhof TC,Goldstein JL,Brown MS,Russell DW.The LDL receptor gene:amosaic of exons shared with different proteins.Science 1985;228:815e 22.[4]Hobbs HH,Russell DW,Brown MS,Goldstein JL.The LDL receptor locus infamilial hypercholesterolemia:mutational analysis of a membrane protein.Annu Rev Genet 1990;24:133e 70.[5]Yamamoto T,Davis CG,Brown MS,Schneider WJ,Casey ML,Goldstein JL,et al.The human LDL receptor:a cysteine-rich protein with multiple Alu sequences in its mRNA.Cell 1984;39:27e 38.[6]Brown MS,Anderson RG,Goldstein JL.Recycling receptors:the round-tripitinerary of migrant membrane proteins.Cell 1983;32:663e 7.[7]Rudenko G,Henry L,Henderson K,Ichtchenko K,Brown MS,Goldstein JL,et al.Structure of the LDL receptor extracellular domain at endosomal pH.Science 2002;298:2353e 8.[8]Seidah NG,Benjannet S,Wickham L,Marcinkiewicz J,Jasmin SB,Stifani S,et al.The secretory proprotein convertase neural apoptosis-regulated convertase 1(NARC-1):liver regeneration and neuronal differentiation.Proc Natl Acad Sci U S A 2003;100:928e 33.[9]Zhang DW,Lagace TA,Garuti R,Zhao Z,McDonald M,Horton JD,et al.Bindingof proprotein convertase subtilisin/kexin type 9to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recy-cling and increases degradation.J Biol Chem 2007;282:18602e 12.[10]Mousavi SA,Berge KE,Leren TP.The unique role of proprotein convertasesubtilisin/kexin 9in cholesterol homeostasis.J Intern Med 2009;266:507e 19.Fig.3.Ectodomain cleavage of an LDLR with bound PCSK9in the sorting endosome.An LDLR with bound PCSK9fails to adopt a closed conformation in the sorting endosome and undergoes ectodomain cleavage by a cysteine cathepsin.As a consequence,the 143kDa ectodomain is released into the lumen of the vesicular part of the sorting endosome,which matures down the endosomal/lysosomal tract to become a late endosome for subsequent fusion with a lysosome.The remaining 17kDa C-terminal fragment is subjected to g -secretase cleavage within the transmembrane domain to release the cytoplasmic domain into cytosol.The figure is not drawn to scale.T.P.Leren /Atherosclerosis 237(2014)76e 8180。