线段和(差)最值问题
一次函数综合—线段和差、存在性问题
一次函数的应用—线段和差、存在性问题一、一次函数线段和差最值问题【知识点】1. 最短路径原理【原理1】作法作图原理在直线l 上求一点P,使PA+PB 值最小。
连AB,与l 交点即为P.两点之间线段最短.PA+PB 最小值为AB.【原理2】作法作图原理在直线l 上求一点P,使PA+PB 值最小.作 B 关于l 的对称点B'连A B',与l 交点即为P.两点之间线段最短.PA+PB 最小值为A B'.【原理3】作法作图原理在直线l 上求一点P,使作直线AB,与直线l的交点即为P.三角形任意两边之差小于第三边.≤AB .PBPA-(1)求线段和最小时动点坐标或直线解析式;(2)求三角形周长最小值;(3)求线段差最大时点的坐标或直线解析式。
3. 口诀:“和小异,差大同”(一)一次函数线段和最小值问题【例题讲解】★★☆例题1.在平面直角坐标系xOy中,y轴上有一点P,它到点(4,3)A,(3,1)B 的距离之和最小,则点P的坐标是()A.(0,0)B.4(0,)7C.5(0,)7D.4(0,)5的值最大 .【原理4】作法作图原理在直线l 上求一点P,使的值最大 .作B 关于l 的对称点B'作直线A B',与l交点即为P.三角形任意两边之差小于第三边.≤A B' .PB PA-PB PA-PB PA-★★☆练习1.如图,在平面直角坐标系中,已知点(2,3)B-,在x轴上存在点P到A,B两点的A,点(2,1)距离之和最小,则P点的坐标是.★★☆练习2.如图,直线34120+-=与x轴、y轴分别交于点B、A两点,以线段AB为边在第一象限x y内作正方形ABCD.若点P为x轴上的一个动点,求当PC PD+的长最小时点P的坐标.★★☆例题2.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,3∆的周长最小时,求点E OB=,D为边OB的中点,若E为x轴上的一个动点,当CDEOA=,4的坐标()A .(3,0)-B .(1,0)C .(0,0)D .(3,0)★★☆练习1.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,连接AC 、BC ,当ABC ∆的周长最小值时,ABC ∆的面积为 .★★☆练习2.如图,在平面直角坐标系中,直线122y x =+与x 轴、y 轴分别交于A 、B 两点,以AB 为边 在第二象限内作正方形ABCD .(1)求点A 、B 的坐标,并求边AB 的长;(2)求点C 和点D 的坐标;(3)在x 轴上找一点M ,使MDB ∆的周长最小,请求出M 点的坐标,并直接写出MDB ∆的周长最小值.(二)一次函数线段差最大值问题【例题讲解】★★☆例题1.已知,如图点(1,1)A,(2,3)B-,点P为x轴上一点,当||PA PB-最大时,点P 的坐标为()A.1(,0)2B.5(,0)4C.1(,0)2-D.(1,0)★★☆练习1.平面直角坐标系中,已知(4,3)A、(2,1)B,x轴上有一点P,要使PA PB-最大,则P点坐标为★★☆练习2.如图,在平面直角坐标系中,点A的坐标为(0,4),点B的坐标为(6,0),点P在一次函数1322y x =+的图象上运动,则PB PA -的最大值为( )A .2B .233C .4D .143【题型知识点总结】一次函数最短路径问题注意事项:1. 根据“和小异,差大同”判断是否需要作对称;2. 作对称时注意要选取动点运动的直线为对称轴作某一定点的对称点。
初中几何中线段和差的最大值与最小值典型分析(最全)
初中几何中线段和差的最大值与最小值典型分析(最全)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初中几何中线段和(差)的最值问题一、两条线段和的最小值。
基本图形解析:(对称轴为:动点所在的直线上)一)、已知两个定点:1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧:(2)点A 、B 在直线同侧:A 、A ’ 是关于直线m 的对称点。
2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。
(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧: (3)两个点都在内侧:mm A Bm B mA Bmnmnnmn(4)、台球两次碰壁模型变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短.填空:最短周长=________________变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短.二)、一个动点,一个定点: (一)动点在直线上运动:n点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧:2、两点在直线同侧:(二)动点在圆上运动点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B )1、点与圆在直线两侧:2、点与圆在直线同侧:m nmnmnmmm三)、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。
(原理用平移知识解)(1)点A 、B 在直线m 两侧:过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。
(完整版)初中几何中线段和与差最值问题
三、其它非基本图形类线段和差最值问题
1、求线段的最大值与最小值需要将该条线段转化到一个三角形中,在该三角形中,其他两边是已知的,则所求线段的最大值为其他两线段之和,最小值为其他两线段之差。
点B在直线n上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)
1、两点在直线两侧:
2、两点在直线同侧:
(二)动点在圆上运动
点B在⊙O上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)
1、点与圆在直线两侧:
2、点与圆在直线同侧:
三)、已知A、B是两个定点,P、Q是直线m上的两个动点,P在Q的左侧,且PQ间长度恒定,在直线m上要求P、Q两点,使得PA+PQ+QB的值最小。(原理用平移知识解)
压轴题
1、如图,正比例函数 的图象与反比例函数 (k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知三角形OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.
2、如图,一元二次方程 的二根 , ( < )是抛物线 与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).
(1)求点D的坐标;
(2)过O,C,D三点作抛物线,在抛物线的对称轴上是否存在一点P,使线段PO与PD之差的值最大?
若存在,请求出这个最大值和点P的坐标.若不存在,请说明理由.
初中几何中线段和差的最大值与最小值典型分析(最全)
初中几何中线段和(差)的最值问题一、两条线段和的最小值。
基本图形解析:(对称轴为:动点所在的直线上)一)、已知两个定点:1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧:(2)点A 、B 在直线同侧:A 、A ’ 是关于直线m 的对称点。
2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。
(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧:m m mmABmn m nnmn(3)两个点都在内侧:(4)、台球两次碰壁模型变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短.填空:最短周长=________________变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短.二)、一个动点,一个定点: (一)动点在直线上运动:点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧:nnm Bnn2、两点在直线同侧:(二)动点在圆上运动点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧:2、点与圆在直线同侧:三)、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。
(原理用平移知识解) (1)点A 、B 在直线m 两侧:mnmmmmm过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。
(2)点A 、B 在直线m 同侧: 练习题1.如图,∠AOB =45°,P 是∠AOB 内一点,PO =10,Q 、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值为 .2、 如图1,在锐角三角形ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值为 . 3、如图,在锐角三角形ABC 中 ,AB=52,∠BAC=45,BAC 的平分线交BC 于D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是多少mABB'EQ PmABQPQ4、如图4所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为.5、如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB 上一个动点,当PC+PD的和最小时,PB的长为__________.6、如图4,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF直线上的一点,则PA+PB的最小值为.7、如图5菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为.8、如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是9、如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm.10、如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为11、如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.则PB+PE的最小值是12、如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为.13、如图,正方形ABCD的边长是2,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为.14、如图7,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为cm.(结果不取近似值).15、如图,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是.16、如图8,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为( )(A)2 (B) (C)1 (D)2解答题1、如图9,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A 点,过A点作x轴的垂线,垂足为M,已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.2、如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c 与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与AC相交于点Q,求点P和点Q的坐标;(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.3、如图10,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小若存在,求出点C的坐标;若不存在,请说明理由;4.如图,抛物线y =35x 2-185x +3和y 轴的交点为A ,M 为OA 的中点,若有一动点P ,自M点处出发,沿直线运动到x 轴上的某点(设为点E ),再沿直线运动到该抛物线对称轴上的某点(设为点F ),最后又沿直线运动到点A ,求使点P 运动的总路程最短的点E ,点F 的坐标,并求出这个最短路程的长.5.如图,已知在平面直角坐标系xOy 中,直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =AB =2,OC =3,过点B 作BD ⊥BC ,交OA 于点D .将∠DBC 绕点B 按顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于点E 和F . (1)求经过A 、B 、C 三点的抛物线的解析式; (2)当BE 经过(1)中抛物线的顶点时,求CF 的长;(3)在抛物线的对称轴上取两点P 、Q (点Q 在点P 的上方),且PQ =1,要使四边形BCPQ 的周长最小,求出P 、Q 两点的坐标.6.如图,已知平面直角坐标系,A,B两点的坐标分别为A(2,-3),B(4,-1)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a为何值时,四边形ABDC的周长最短.7、如图11,在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在x 轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.v1.0 可编辑可修改二、求两线段差的最大值问题 (运用三角形两边之差小于第三边) 基本图形解析:1、在一条直线m 上,求一点P ,使PA 与PB 的差最大; (1)点A 、B 在直线m 同侧:解析:延长AB 交直线m 于点P ,根据三角形两边之差小于第三边,P ’A —P ’B <AB ,而PA —PB=AB 此时最大,因此点P 为所求的点。
线段和差的最值问题解题策略课件
高阶练习题
总结词
挑战综合应用
详细描述
高阶练习题难度较高,需要综合运用线段和 差最值问题的多种解题策略,挑战解题者的 思维深度和广度,培养综合应用能力。
06 问题拓展与思考
相关问题链接
线段和差与面积关系
探讨线段和差与面积的最值问题,如何通过线段和差来求解面积 的最值。
线段和差与其他几何量关系
研究线段和差与周长、体积等其他几何量的最值问题之间的联系。
生产制造中的应用
探讨线段和差最值问题在生产制造、工艺设计和 优化中的实际应用,如何提高生产效率和降低成 本。
THANKS
02 解题策略
代数法
通过代数运算,将问题转化为函数最值问题,利用求导或不 等式性质求解。
代数法是解决线段和差最值问题的基本方法之一。首先,将 问题中的线段长度表示为变量,然后通过代数运算,将问题 转化为一个函数最值问题。接下来,利用求导或不等式性质 ,找到函数的最值点,从而得到线段和差的最值。
几何法
详细描述
解决这类问题需要理解线段的性质和 几何定理,如勾股定理、三角形的三 边关系等。通过这些定理可以推导出 线段和差的最值条件,从而找到解决 问题的关键点。
三角形中的线段和差问题
总结词
三角形中的线段和差问题涉及到三角 形的边长和角度,需要结合三角形的 性质进行求解。
详细描述
解决这类问题需要掌握三角形的边角 关系,如正弦定理、余弦定理等。通 过这些定理可以推导出线段和差与角 度之间的关系,从而找到最值条件。
将参数方程转换为普通方程,便 于计算和比较线段长度。
05 练习题与解析
基础练习题
总结词
掌握基础概念
详细描述
基础练习题主要涉及线段和差最值问题的基本概念和简单应用,适合初学者通过练习理解和掌握基本 解题方法。
线段和差最值问题解题技巧
线段和差最值问题解题技巧
1. 嘿,你知道吗?平移线段有时就像变魔术一样神奇!比如在这个问题里,把这两条线段平移到一起,你看,是不是一下子就找到答案啦!
2. 哇塞,利用对称性质来解决线段和差最值问题,那可真是绝了呀!就像给问题找到了一把万能钥匙。
比如这个图形,通过对称,一下子就柳暗花明了呢!
3. 哎呀呀,有时候转换思维超重要的啦!别死磕一种方法呀,就像走不通的路咱就换一条呗。
像这个例子,转换一下思考角度,答案不就出来啦!
4. 嘿,当遇到难题不要慌,想想三角形三边关系呀!这就好比给你指了一条明路。
比如看到这样的条件,马上想起三边关系,难题迎刃而解咯!
5. 哇哦,构造辅助线简直就是秘密武器呀!就如同给问题搭了一座桥。
像这个情况,构造出合适的辅助线,一下子就突破难关啦!
6. 哈哈,把复杂问题简单化,不就轻松多了吗?就像把一大团乱麻理清楚。
看这个例子,简单化之后,答案显而易见呀!
7. 哟呵,关注特殊点和特殊位置呀,这可是关键呢!如同发现了宝藏的线索。
像这个情况,抓住特殊点,难题瞬间攻克啦!
8. 嘿呀,寻找等量关系也很重要呀,就像在迷宫里找到了正确的路线。
看看这个例子,一旦找到等量关系,答案就水到渠成啦!
9. 最后我想说,掌握了这些解题技巧,遇到线段和差最值问题根本不用怕呀!它们就是我们的得力助手,能让我们在数学的海洋里畅游无阻呀!。
中考数学中的二次函数的线段和差以及最值问题
二次函数与线段和差问题例题精讲:如图抛物线与x轴交于A,B(1,0),与y 轴交于点C,直线经过点A,C.抛物线的顶点为D,对称轴为直线l, (1)求抛物线解析式。
(2)求顶点D的坐标与对称轴l.(3)设点E为x轴上一点,且AE=CE,求点E的坐标。
(4)设点G是y轴上的一点,是否存在点G,使得GD+GB的值最小,若存在,求出G点坐标,若不存在,说明理由。
(5)在直线l上是否存在一点F,使得△BCF的周长最小,若存在,求出点F 的坐标及△BCF周长的最小值,若不存在,说明理由。
(6)在y轴上是否存在一点S,使得SD-SB的值最大,若存在,求出S点坐标,若不存在,说明理由。
(7)若点H是抛物线上位于AC上方的一点,过点H作y轴的平行线,交AC 于点K,设点H的横坐标为h,线段HK=d①求d关于h的函数关系式②求d的最大值及此时H点的坐标(8)设点P是直线AC上方抛物线上一点,当P点与直线AC距离最大值时,求P点的坐标,并求出最大距离是多少?1.如图,矩形的边OA在轴上,边OC在轴上,点的坐标为(10,8),沿直线OD折叠矩形,使点正好落在上的处,E点坐标为(6,8),抛物线经过、、三点。
(1)求此抛物线的解析式。
(2)求AD的长。
(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标。
2.如图,在平面直角坐标系中,抛物线412+=x y 与轴相交于点A ,点B 与点O 关于点A 对称。
(1)填空:点B 的坐标是 。
(2)过点的直线(其中)与轴相交于点C ,过点C 作直线平行于轴,P 是直线上一点,且PB=PC ,求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由。
(3)在(2)的条件下,若点C 关于直线BP 的对称点恰好落在该抛物线的对称轴上,求此时点P 的坐标。
3.如图,抛物线与x轴交于A,B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,.(1)写出抛物线对应的函数解析式:△AOD的面积是(2)连结CB交EF于M,再连结AM交OC于R,求△ACR的周长.(3)设G(4,-5)在该抛物线上,P是y轴上一动点,过点P作PH垂直于直线EF并交于H,连接AP,GH,问AP+PH+HG是否有最小值?如果有,求点P的坐标;如果没有,请说明理由.4.在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标.5.四边形ABCD 是直角梯形,BC ∥AD ,∠BAD =90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A ( 1 0-,),B ( 1 2-,),D (3,0).连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使得PA =PC ,若存在,求出点P 的坐标;若不存在,请说明理由;(3)设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE -QC |最大?并求出最大值.6.已知,如图,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线:3l y x =+ (1)求A 、B 两点坐标,并证明点A 在直线l 上;(2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.7.如图,已知点A (-4,8)和点B (2,n )在抛物线2=y ax 上.(1)求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;(2)平移抛物线2=y ax ,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.8.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.9.在Rt △ABC 中,∠A=90°,AC=AB=4, D ,E 分别是AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 ,线段CE 1的长等于 ;(直接填写结果)(2)如图2,当α=135°时,求证:BD 1= CE 1,且BD 1⊥CE 1;(3)①设BC 的中点为M ,则线段PM 的长为 ;②点P 到AB 所在直线的距离的最大值为 .(直接填写结果)E 1B C E D (D 1)A PE 1BCED D 1A。
线段差的最大值与线段和的最小值问题
线段差的最大值与线段和的最小值问题有关线段差的最大值与线段和的最小值问题的主要应用原理是:1、两点这间线段最短。
2、三角形的任意两边之和大于第三边(找和的最小值)。
3、三角形的任意两边之差小于第三边(找差的最大值)。
作图找点的关键:充分利用轴对称,找出对称点,然后,使三点在一条直线上。
即利用线段的垂直平分线定理可以把两条线段、三条线段、四条线段搬在同一条直线上。
证明此类问题,可任意另找一点,利用以上原理来证明。
一两条线段差的最大值:(1)两点同侧:如图,点P在直线L上运动,画出一点P,使︱PA-PB︱取最大值。
作法:连结AB并延长AB交直线L于点P。
点P即为所求。
︱PA-PB︱=AB证明:在直线L上任意取一点P。
,连结PA、PB,︱PA-PB︱<ABp'(2两点异侧:如图,如图,点P在直线L上运动,画出一点P,使︱PA-PB︱取最大值。
作法:1、作B关于直线L的对称点B。
B2、连结AB并延长AB交直线L于点P。
点P即为所求。
︱PA-PB︱=AB证明:在直线L上任意取一点P。
,连结PA、PB、PB。
︱PA-PB︱=︱PA-PB︱<AB(三角形任意两边之差小于第三边)二、两条线段和的最小值问题:(1))两点同侧:如图,点P在直线L上运动,画出一点P使P A+PB取最小值。
(三角形的任意两边之和大于第三边(找和的最小值),P A+PB=AB(2)两点异侧:如图,点P在直线L上运动,画出一点P使P A+PB取最小值。
(两点之间线段最短)三、中考考点:08年林金钟老师的最后一题:如图,在矩形ABCO中,B(3,2),E(3,1),F(1,2)在X轴与Y轴上是否分别存在点M、N,使得四边形EFNM的周长最小?若存在,请求出周长的最小值,若不存在,请说明理由。
提示:EF长不变。
即求F N+NM+MF的最小值。
利用E关于X轴的对称点E,F的对称点F,把这三条线段搬到同一条直线上。
一、以正方形为载体,求线段和的最小值例1. 如图1,四边形ABCD 是正方形,边长是4,E 是BC 上一点,且CE =1,P 是对角线BD 上任一点,则PE +PC 的最小值是_____________。
线段和差最值问题论文
线段的和差最值问题探究线段的和差最值问题是最近几年中考的一个热点,承担着区分学生能力差异、分层选拔人才的功能,而最值问题因其问法多样化、条件隐含化、解法多元化,学生往往不易发现问题的本质,难以找到有效的解题方法,故教师在教学时,应注重分析条件与结论的联系,渗透解题思想的类比,解题方法的迁移,从而启发学生的思维,让他们解题时总有”似曾相识”之感,快速准确地找到解法。
模型一.已知直线上的一个动点p,和直线同侧的两个定点a和b,求pa+pb的最小值。
分析:这个模型在课本上的原创题是:在一条笔直的公路(用直线1表示)的同一旁有两个村庄(用a、b表示),现要在公路边建一个自来水厂,为了使自来水厂向两个村庄铺设的水管道总长最短,则水厂应建在什么位置处?要解决这个问题,找出点a关于直线l的对称点,连结交直线于点p,则点p就是到a、b两村庄的距离之和最短的点的位置。
根据三角形两边之和大于第三边的结论很容易证明这其中的道理。
这是轴对称问题中一个典型的题目。
在此基础上衍变出许多与之相关的问题,我们只需要透过外表看到问题的本质,即找到这些问题的数学模型,就可顺利解决问题,现将有关的应用举例如下:(1)把此模型隐藏在正方形中:正方形abcd的面积为28,△abe 是等边三角形,点e在正方形abcd内,在对角线ac上有一动点p,求pd+pe的最小值。
解:在正方形abcd中,点d关于直线ac的对称点是点b,连接be,交ac与点p,则pd=pb,pd+pe=pb+pe=be,∵正方形的面积为28,∴边长为2√7 ∵△abe是等边三角形,∴be=ab=2√7 ∴pd+pe最小值是2√7(2)此模型在圆柱形中的应用:已知蚂蚁从圆柱形的桶外壁a 点爬到桶内壁的b点去寻找食物,a点到桶口的最短距离ac为12cm,b点桶口的最短距离bd为8cm,弧cd的长为15cm,则蚂蚁爬行的最短距离是多少?分析:首先把立体图形转化为平面图形。
把圆柱的侧面展开为一个长方形。
线段和差最值问题(新)
专题一.线段和(差)的最值问题【知识依据】1.线段公理——两点之间,线段最短;2.对称的性质——①关于一条直线对称的两个图形全等;②对称轴是两个对称图形对应点连线的垂直平分线; 3.三角形两边之和大于第三边; 4.三角形两边之差小于第三边; 5、垂直线段最短。
一、已知两个定点:1、在一条直线m 上,求一点P ,使PA+PB 最小;(1)点A 、B 在直线m 两侧:(2)点A 、B 在直线同侧:A 、A ’ 是关于直线m 的对称点。
2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。
(1)两个点都在直线外侧:mm ABm ABm n mn(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:(4)、台球两次碰壁模型变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短.变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短.n mnnnmm二、一个动点,一个定点:(一)动点在直线上运动: 点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B )1、两点在直线两侧:2、两点在直线同侧:(二)动点在圆上运动:点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B )1、点与圆在直线两侧:2、点与圆在直线同侧:m n Am nm nmmmmA m三、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。
(原理用平移知识解)(1)点A 、B 在直线m 两侧:过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左移动PQ 长,即为P 点,此时P 、Q 即为所求的点。
初中几何中线段和差的最大值与最小值模型解析
初中几何中线段和差的最大值与最小值模型解析
(一)动点在直线上运动:
点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧:
2、两点在直线同侧:
(二)动点在圆上运动
点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B )
m n
m
n
m
n
m
1、点与圆在直线两侧:
2、点与圆在直线同侧:
(三)已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。
(原理用平移知识解)
(1)点A 、B 在直线m 两侧:
m
m
m
m
Q
过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。
(2)点A 、B 在直
线m 同侧:
二、求两线段差的最大值问题 (运用三角形两边之差小于第三边) 基本图形解析:
1、在一条直线m 上,求一点P ,使PA 与PB 的差最大; (1)点A 、B 在直线m 同侧:
Q
P
B
解析:延长AB 交直线m 于点P ,根
据三角形两边之差小于第三边,P ’A —P ’B <AB ,而PA —PB=AB 此时最大,因此点P 为所
求的点。
(2)点A 、B 在直线m 异侧:
解析:过B 作关于直线m 的对称点B ’,连接AB ’交点直线m 于P,此时PB=PB ’,PA-PB 最大值为AB ’
m。
中学数学线段和差之最值那些事
中学数学“线段和差之最值”那些事罗外初中实验部段建华近几年全国各地数学中考中,关于求线段和、差的最小值、最大值等问题时有出现,这类问题背景复杂,种类繁多,动静结合,花样翻新,往往使许多学生束手无策。
因此,有必要对这类问题进行成因分析,归纳整理,寻求解决此类问题的一般方法,以供学生学习,教师教学参考。
一、知识储备线段和、差之最小值、最大值的相关问题,属于初中平面几何基础知识的应用。
涉及的知识点主要有以下几点:①两点之间,线段最短;②点到直线上所有点的连线中,垂线段最短;③三角形三边之间的关系:任意两边之和大于第三边;任意两边之差小于第三边;④平行线之间的距离处处相等;⑤平移、旋转、对称的性质,等等。
此外,还需具备娴熟的作图能力和精准的计算能力。
二、基本模型和原理(一)利用“两点之间,线段最短”或“三角形任意两边之和大于第三边”解决线段和最小的问题。
问题:如图1,A、B两点在直线l的异侧,点P是直线l上一个动点,问点P在何位置时,AP+BP的值最小。
做法:连接AB交直线l于点P,则此时AP+BP的值最小。
原理:因为此时A、P、B三点共线,所以PA+PB=AB。
当我们在直线l上取一点不与P点重合的点P1时,P1\、A、B三点构成△P1AB,显然P1A+P1B>AB。
即三角形任意两边之和大于第三边,因此,当点P与A、B共线时,AP+BP的值最小。
拓展一:如图2,A、B两点在直线l的同侧,点P是直线l点,问点P 在何位置时,AP+BP的值最小。
做法:作点A关于直线l的对称点A1,连接A1B交直线l于点P此时AP+BP的值最小。
原理:因为点A、A1关于直线l对称,所以直线l垂直平分线段AA1,由线段垂直平分线上的点到线段的两端点距离相等的性质可知,PA=PA1。
因此,图2 A1PA+PB=PA 1+PB=A 1B ,得到AP+BP 的值最小。
当我们在直线l 上取一点不与P 点重合的点P 1时,P 1\、A 1、B 三点构成△P 1AB ,原理同图1。
线段和或差的最值问题
解析几何中的线段和或差的最值问题
此主题相关图片如下:
此主题相关图片如下:
此主题相关图片如下:
分析过程:该题中A和B分布在直线两侧,所以我们可以通过对称点的性质转化成和例3一样的模型,过B做关于直线L的对称点B1,由于对称点的性质(即直线L上的P点到B和B1点的距离相等),可得|PA|-|PB|= |PA|-|PB1|,所以问题转化成了例3的模型, 可以知道|PA|-|PB1|的最大值为|AB1|的长,且当P运动到直线L与线段AB1的交点O时取到.问题解决.
可能会有人提出为什么不应用在三角形APB中|PA|-|PB|<|AB|来做呢,这样|PA|-| PB|的最大值就是|AB|了.这里需要大家清楚,如果这么做的话是取不到|PA|+|PB|的最小值的,因为我们发现P在直线L上时, |PA|-|PB|永远比|AB|要小.(不共线时三角形两边之差小于第三边,共线的情况下,则更有|PA|-|PB|比|AB|要小)。
抛物线与线段和差最值问题(含答案)
抛物线与线段和差最值问题(含答案)线段和差最值问题是数学中常见的优化问题,需要运用一些基本的数学知识和技巧来解决。
下面分别给出四道相关的例题。
一、如图,抛物线$y=\frac{1}{2}x+bx-2$与$x$轴交于$A$、$B$两点,与$y$轴交于点$C$,且$A(-1,\frac{1}{2})$。
1)求抛物线的解析式以及顶点$D$的坐标;2)判断$\triangle ABC$的形状,证明你的结论;3)点$M(m,0)$是$x$轴上的一个动点,当$MC+MD$的值最小时,求$m$的值。
二、如图,在平面直角坐标系中,抛物线$y=ax^2+bx+c$经过$A(-2,-4)$、$B(2,0)$、$O(0,0)$三点。
1)求抛物线$y=ax^2+bx+c$的解析式;2)若点$M$是该抛物线对称轴上的一点,求$AM+OM$的最小值。
三、如图,已知直线$y=\frac{1}{12}x+1$与$y$轴交于点$A$,与$x$轴交于点$D$,抛物线$y=x+bx+c$与直线交于$A$、$E$两点,与$x$轴交于$B$、$C$两点,且$B$点坐标为$(1,0)$。
1)求该抛物线的解析式;2)在抛物线的对称轴上找一点$M$,使$|AM-MC|$的值最大,求出点$M$的坐标。
四、已知抛物线$y=\frac{1}{2}x+bx$经过点$A(4,\frac{5}{2})$,设点$C(1,-3)$,请在抛物线的对称轴上确定一点$D$,使得$AD-CD$的值最大,则$D$点的坐标为。
解题思路:1、对于第一题,先求出抛物线的解析式,再通过求导得到顶点的坐标,最后利用勾股定理求出最小值点的坐标。
2、对于第二题,先利用三点求解得到抛物线的解析式,再通过对称性求出对称轴,最后利用距离公式求解最小值。
3、对于第三题,先求解抛物线的解析式,再通过求导得到对称轴和顶点的坐标,最后利用距离公式求解最大值点的坐标。
4、对于第四题,先求解抛物线的解析式,再通过对称性求出对称轴和顶点的坐标,最后利用距离公式求解最大值点的坐标。
初中复习方略数学微专题四 二次函数中几何图形线段、周长、面积的最值
抛物线对称轴为直线 x=- 2
=1,
2×(-1)
3k+c=0
设直线 AC 的解析式为 y=kx+c,将 A(3,0),C(0,3)代入,得:
,
c=3
k=-1
解得:
,
c=3
∴直线 AC 的解析式为 y=-x+3,∴P(1,2);
(3)存在.设 P(1,t),①以 AC 为边时,如图 2,∵四边形 ACPQ 是菱形, ∴CP=CA, ∴12+(3-t)2=32+32,解得:t=3± 17 , ∴P1(1,3- 17 ),P2(1,3+ 17 ), ∴Q1(4,- 17 ),Q2(4, 17 ),
1.(2021·天津中考)已知抛物线 y=ax2-2ax+c(a,c 为常数,a≠0)经过点 C(0,- 1),顶点为 D. (1)当 a=1 时,求该抛物线的顶点坐标; (2)当 a>0 时,点 E(0,1+a),若 DE=2 2 DC,求该抛物线的解析式; (3)当 a<-1 时,点 F(0,1-a),过点 C 作直线 l 平行于 x 轴,M(m,0)是 x 轴上 的动点,N(m+3,-1)是直线 l 上的动点.当 a 为何值时,FM+DN 的最小值为 2 10 ,并求此时点 M,N 的坐标.
(2021·常德中考)如图,在平面直角坐标系 xOy 中,平行四边形 ABCD 的 AB 边与 y 轴交于 E 点,F 是 AD 的中点,B、C、D 的坐标分别为(-2,0),(8,0),(13, 10). (1)求过 B、E、C 三点的抛物线的解析式; (2)试判断抛物线的顶点是否在直线 EF 上; (3)设过 F 作与 AB 平行的直线交 y 轴于 Q,M 是线段 EQ 之间的动点,射线 BM 与抛物线交于另一点 P,当△PBQ 的面积最大时,求 P 的坐标.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考热点:线段和(差)最值问题
专题精讲:
最值问题是一类综合性较强的问题,而线段和(差)问题,要归于几何模型:
(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.
(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.
一.求两线段和的最小值问题(运用三角形两边之和大于第
三边,也可归入“两点之间的连线中,线段最短”)
几何模型:如图,A、B是直线l同旁的两个定点.在
直线l上确定一点P,使PA+PB的值最小.
模型应用:
1.如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.则PB+PE的最小值是.
2.如图,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是.
3.如图,在锐角△ABC中,AB=2,∠BAC=45°,∠BAC的平分线交BC于点D,M、N 分别是AD和AB上的动点,则BM+MN的最小值是.
4.如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.
5.已知:如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).(1)求抛物线的解析式;(2)设抛物线交y轴于点C,
问该抛物线对称轴上是否存在点M,使得△MAC的周长最小?
若存在,求出点M的坐标;若不存在,请说明理由.
第1题第2题第3题第4题
二.求两线段差的最大值问题(运用三角形两边之差小于第三边) 几何模型:在一条直线m 上,求一点P ,使PA -PB 的差最大;
(1)点A 、B 在直线m 同侧: (2)点A 、B 在直线m 异侧:
模型应用:
1. 如图,抛物线y =-14
x
2
-x +2的顶点为A ,与y 轴交于点B . (1)求点A 、点B 的坐标;
(2)若点P 是x 轴上任意一点,当PA -PB 最大时,求点P 的坐标.
2. 如图,直线y =
21x +1与y 轴交于点A ,与x 轴交于点D ,抛物线y =2
1x
2
+bx +c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0). (1)求该抛物线的解析式; (2)在抛物线的对称轴上找一点M ,使|AM -MC |的值最大,求出点M 的坐标.。