1.5 有理数的乘除法 第3课时
2022秋七年级数学上册第1章有理数1.4有理数的乘除法第3课时有理数的除法习题课件新人教版
1.4 有理数的乘除法 第3课时 有理数的除法
提示:点击 进入习题
1 倒数;1b;≠0
6C
7D
答案显示
2 见习题 3 C 4 C 5 A 8 除法 9 不变 10 C
11 D
12 见习题 13 B
14 A
15 见习题
16 见习题 17 见习题 18 见习题 19 见习题 20 见习题
【点拨】A.3+(-2)=1,故A不符合题意; B.3-(-2)=3+2=5,故B不符合题意; C.3×(-2)=-6,故C符合题意; D.(-3)÷(-2)=1.5,故D不符合题意.
【答案】C
*7.(2019·广东)有理数 a,b 在数轴上的对应点的位置如图所示, 下列式子成立的是( )
A.a>b C.a+b>0
A.-ba=-ab=-ab
B.--ba=- -ab=ab
C.--ab=ab
D.若 a>b,ab<0,则 a<0
12.有理数的除法可以转换为乘法,所以有理数的乘除混合 运算可以统一成乘法运算,其步骤为:
(1)__将__所__有__除__数__转__化__为__其__倒__数__,__将__除__法__转__化__为__乘__法________; (2)__运__用__乘__法__法__则__计__算__,__能__简__算__的__运__用__运__算__律__简__化__运__算____.
3.(教材 P34 例 5 变式)(2020·山西)计算(-6)÷-13的结果是( C )
A.-18
B.2
C.18
D.-2
4.下列把除法转换为乘法的过程中,正确的是( C ) A.13÷(-4)=-13×4 B.(-3)÷(-6)=3×-16 C.1÷(-4)=1×-14 D.(-3)÷4=3×14
有理数的乘除运算第3课时有理数除法法则课件 2024-2025学年北师大版七年级数学上册
贰 新知初探
贰 新知初探
探究一:有理数除法法则
问题:观察下面的算式及计算结果,你有什么发现?
-3
商的绝对值与被除数和除数的 符号及绝对值之间有何关系?从中归纳猜想出一般规律,并用自己的语 言叙述规律.
贰 新知初探
两个有理数相除, 同号得_正___, 异号得__负___,并把绝 对值__相__除___. 0除以任何一个不等于0的数都得__0___.
叁 当堂达标
叁 当堂达标
1.如果两个有理数在数轴上对应的点分别在原点的两侧,则这两个数相 除所得的商是( A )
A.一定是负数; B.一定是正数; C.等于0; D.以上都不是
2.一个数的 2 是- 16 ,这个数是 -8 55
3.用“<”、“>”或“=”填空
(1)(- 1 )÷(- 1 )÷(- 1 ) < 0
1 3
(2)(—12)÷(- 2 )
3
(2)(-12)÷(-2)
3
;
=(-12)×(-3)
2
=18
(3)(-23)÷(-3)× 1 ;
3
(3)(-23)÷(-3)×1
3
=(-23)×(-1)×1
3
3
=23
9
叁 当堂达标
5.一天,小张和小李利用温度差测量山的高度,小张在山顶测得的温度是- 1℃,小李在山脚下测得的温度是5℃,已知该地区高度每上升100m,气温下 降约0.8℃,请你帮他们算算,这座山的高度大约是多少?
贰 新知初探
除以一个不等于0的数,等于乘这个数的倒数。
除数变为倒数作因数
也可以表示成:
1
a ÷ b = a · b (b≠0)
除号变乘号
人教版七年级数学上册1.5.1乘方第3课时有理数的混合运算说课稿
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:以一个与学生生活密切相关的问题为背景,如购物找零、温度变化等,引发学生对有理数混合运算的思考,激发他们的学习兴趣。
2.中体验运算的乐趣,为新课的学习营造轻松愉快的氛围。
2.情境教学:将生活实际问题引入课堂,创设情境,让学生在具体情境中感受数学知识的应用。这种教学方法符合认知灵活性理论,有助于学生将知识应用于不同情境,提高解决问题的能力。
3.小组合作学习:这种方法鼓励学生之间的交流与合作,有利于培养学生的团队精神和沟通能力。社会建构主义理论认为,学习是一个社会互动过程,学生在互动中能够相互启发、共同进步。
(1)激发学生学习数学的兴趣,增强自信心;
(2)培养学生勇于探索、克服困难的意志品质;
(3)使学生认识到数学知识在实际生活中的重要性,提高学习数学的积极性。
(三)教学重难点
根据对学生的了解和教学内容的分析,本节课的教学重点是有理数混合运算的法则和运算顺序。通过实例讲解和练习,使学生掌握混合运算的方法,提高运算速度和准确性。
3.提高学习兴趣方面,我将尝试更多有趣的数学游戏和活动,激发学生学习兴趣。
课后评估教学效果:
1.检查学生作业完成情况,了解学生对知识点的掌握程度;
2.通过课后访谈、问卷调查等方式,了解学生的课堂体验和学习需求;
3.反思本次教学中的优点和不足,及时调整教学策略。
反思和改进措施:
1.针对学生的反馈,调整教学方法和教学内容,提高课堂趣味性;
4.对学生的点滴进步给予表扬和鼓励,增强他们的自信心,激发学习潜能;
5.组织小组合作学习,让学生在交流互动中共同进步,提高学习效果。
1.5有理数的乘除法例题与讲解
1.5 有理数的乘除法【学习目标】1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算;2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力;【学习重点】有理数乘法法则【学习难点】能利用有理数乘法的法则进行计算课前思考:甲水库的水位每天升高3厘米,乙水库的水位每天下降3厘米,4天后甲,乙水库的水位的总变化量各是多少?1.有理数的乘法法则(1)乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,积仍为0.①两个有理数相乘,积的符号是由两个因数的符号确定:同号(+,+或-,-)得正,异号(+,-或-,+)得负;②0与任何数相乘,积都是0;③1乘任何数得原数,-1乘任何数得原数的相反数.(2)两个有理数相乘的步骤①先确定积的符号;②再求出积的绝对值.(3)多个有理数的乘法①几个不等于0的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个有理数相乘,有一个因数为0,结果就是0;反之,若几个数的积为0,则至少有一个因数为0.释疑点 有理数相乘的方法①几个有理数相乘,先确定积的符号,再把绝对值相乘;②当几个因数中有一个为0时,不用再判断符号,直接得0.【新知巩固1】 计算:(1)(+4)×(-5); (2)(-0.75)×(-1.2);(3)⎝⎛⎭⎫-29×0.3; (4)0×⎝⎛⎭⎫-17; (5)⎝⎛⎭⎫-112×113×⎝⎛⎭⎫-114×⎝⎛⎭⎫-115×116.2.倒数如果两个有理数的乘积为1,那么称其中的一个数是另一个数的倒数,也称这两个数互为倒数.若a ≠0,则a 的倒数是1a.谈重点 对倒数的理解①0没有倒数;②互为倒数的两个数的符号相同,即正数的倒数是正数,负数的倒数是负数;③若两个数互为倒数,则它们的乘积为1;④倒数等于它本身的数是1和-1.【新知巩固2】填空:(1)-76的倒数是__________;0.2的倒数是__________;(2)倒数是4的数是__________. (3)倒数是本身的数是__________.3.有理数的乘法运算律(1)乘法交换律:两个数相乘,交换因数的位置,积不变. 用字母表示为:a ×b =b ×a .(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变. 用字母表示为:(a ×b )×c =a ×(b ×c ).(3)乘法对加法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用字母表示为:a ×(b +c )=a ×b +a ×c . 谈重点 乘法运算律的运用方法①交换因数的位置时,要连同符号一起交换;②公式中的字母a ,b ,c 可以是正数,也可以是负数和0;③乘法的交换律和结合律对多个因数的乘法也适用;④为了能简便运算,也可以逆用乘法对加法的分配律,即a ×b +a ×c =a ×(b +c ). 4.与绝对值、相反数、倒数有关的混合运算根据已知的与绝对值、相反数、倒数有关的条件,进行有关的综合计算,其步骤是: (1)利用条件,先求出有关字母的数值或有关式子的数值;(2)将所求的式子变形,使其符合上述条件;(3)将条件代入变形后的式子,按照规定的运算进行计算.【新知巩固4】已知a与b互为倒数,c与d互为相反数,m的绝对值是4,求m×(c+d)+a×b-3×m 的值.5.运用有理数乘法运算律进行简便运算有理数的乘法中的简便运算主要是运用乘法的交换律、乘法的结合律和乘法对加法的分配律进行运算.(1)乘法交换律和结合律的运用运用乘法交换律、结合律的情况:①一般将互为倒数的先结合;②将容易约分的先结合.(2)乘法对加法的分配律的运用运用乘法对加法的分配律时注意以下几点:①要把括号外面的因数连同符号与括号内的每一项相乘,它是以后要学的去括号的理论依据.②乘法对加法的分配律可以逆用,即a×b+a×c=a×(b+c).③乘法对加法的分配律可以推广为:a×(b+c+d+e)=a×b+a×c+a×d+a×e,各字母为任意有理数.运用乘法对加法的分配律时,可以先确定符号,再进行计算,或者先利用分配律,再确定符号.有时可逆用乘法分配律:a×b+a×c=a×(b+c),使计算简便.【新知巩固5】用简便方法计算:-3.14×35.2+6.28×(-23.3)-1.57×36.4.6.有理数的乘法运算的实际应用有理数的乘法运算的应用,主要是利用有理数的乘法解决生活中的实际问题.其步骤是:①分析题意;②列出算式;③运用有理数的乘法法则或运算律进行计算; ④写出答案.【新知巩固6】 一天,小刚和小明利用温差测量山峰的高度,小明在山顶测得的温度是-2 ℃,小刚在山脚测得的温度是4 ℃.已知该地区的高度每增加100 m ,气温大约下降0.6 ℃,求这个山峰的高度大约是多少.7.有理数的除法法则(1)除法法则1:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何不为0的数都得0.①注意:0不能作除数;②除法法则1与有理数的乘法法则相类似,都是先确定运算结果的符号,再确定绝对值.(2)两个有理数相除的步骤①先确定商的符号;②求出商的绝对值.【新知巩固7-1】 下面的计算中,正确的有( ). ①(-800)÷(-20)=-(800÷20)=-40; ②0÷(-2 013)=0;③(+18)÷(-6)=+(18÷6)=3; ④(-0.72)÷0.9=-(0.72÷0.9)=-0.8. A .①②③B .①③④C .①②④D .②④除法法则2:除以一个数等于乘这个数的倒数,即a ÷b =a ×1b(b ≠0).谈重点①除法变乘法,除数变倒数是关键;②本法则是将除法转化为乘法,与有理数的减法类似,体现了转化的数学思想;③本法则适合不能整除或除数是分数的情况.对于有理数的除法运算,怎样选择法则呢?在进行有理数除法时,应合理选择法则,在能整除的情况下,应选用法则1.在不能整除或除数是分数(包括小数)时,应选用法则2. 【新知巩固7-2】 计算:(1) ⎝⎛⎭⎫-2829÷⎝⎛⎭⎫-1129 (2)(-1)÷(-2.25).8.除法与绝对值的综合应用根据条件进行含有绝对值的除法计算或化简,是这类题目的常见形式. 方法与步骤:①根据条件确定有关的字母或含有字母的式子的值或取值范围; ②根据条件化简绝对值; ③按照运算的顺序进行计算.【新知巩固8】 若有理数x ,y 满足xy ≠0,则m =x |x |+|y |y的最大值是__________.【例题点拨】【例1】 计算:(2007“五羊杯”)86.66.68686.06284.3114.3⨯+⨯+⨯【例2】、2004321,,,a a a a ⋅⋅⋅都是正数,如果,()()200432200321a a a a a a M +⋅⋅⋅++⨯+⋅⋅⋅++=,()()200332200421a a a a a a N +⋅⋅⋅++⨯+⋅⋅⋅++=那么N M ,的大小关系是( )A .N M >B .N M =C .N M <D .不确定【例3】 计算下列各题:-4.035×12+7.535×12-36×(9-618+)()00000164.0570006.019.000036.07.5⨯-⨯-⨯237970.71 6.6 2.20.7 3.31173118⨯-⨯-÷+⨯+÷【例4】古希腊著名的毕达哥拉斯学派把1、3、6、10 …这样的数称为“三角形数”,而把1、4、9、16 …这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是①13=3+10;②25=9+16;③36=15+21;④49=18+31.【基础过关】1.已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。
《第3课时乘、除混合运算》示范教学方案
第一章 正数和负数1.5有理数的乘除第3课时 乘、除混合运算一、教学目标1. 能熟练地运用有理数的运算法则进行有理数的加、减、乘、除混合运算.2. 能运用有理数的运算律简化运算.3. 能利用有理数的加、减、乘、除混合运算解决简单的实际问题二、教学重点及难点重点:按有理数的运算顺序,正确而合理地进行有理数混合运算及掌握有理数乘法的运算律. 难点:灵活运用运算律及符号的确定.三、教学用具多媒体课件.四、相关资料无.五、教学过程【情景引入】1. 在小学我们已经学习过加、减、乘、除四则运算,其运算顺序是先算________,再算________,如果有括号,先算__________的.那么引入负数以后的有理数加、减、乘、除四则运算呢?他们的运算先后顺序是什么?让我们带着这个疑问进入今天的学习。
设计意图:创设问题情境,激发学生的认知兴趣。
【探究新知】简便计算,并回答根据什么?1.(1)125×0.05×8×40(小学数学乘法的交换律和结合律.) (2)361276595321⨯⎪⎭⎫⎝⎛++++(小学数学的分配律)2.上题变为(1)(-0.125)×(-0.05)×8×(-40)(2)()361276595321-⨯⎪⎭⎫⎝⎛-+--能否简便计算?也就是小学数学的乘法交换律和结合律、分配律在有理数范围内能否使用? 计算下列各题:(1)(-5)×2;(2)2×(-5);(3)[2×(-3)]×(-4);(4)2×[(-3)×(-4)] (5)()⎪⎭⎫ ⎝⎛+⨯-3123;(6)()()31323⨯-+⨯- 分别比较的计算结果比较的结果.:(1)与(2);(3)与(4);(5)与(6)的计算结果一样. 计算结果一样,说明了什么?说明算式相等.即:(1)(-5)×2=2×(-5); (2)[2×(-3)]×(-4)=2×[(-3)×(-4)]; (3)()⎪⎭⎫ ⎝⎛+⨯-3123=()()31323⨯-+⨯- 由(1),我们可以得到乘法交换律;由(2),可以得到乘法结合律;由(3),可以得到分配律. 结论:乘法的运算律在有理数范围内成立. 乘法的交换律:a×b=b×a . 乘法的结合律:(a×b)×c=a×(b×c) 分配律:a×(b+c)=a×b+a×c观察式子3×(2+1)÷⎝⎛⎭⎫5-12,里面有哪几种运算,应该按什么运算顺序来计算? 结论:运算顺序规定如下(由学生归纳): 1)先算乘除,再算加减;2)同级运算,按照从左至右的顺序进行; 3)如果有括号,就先算括号里的已知海拔高度每升高1000m ,气温下降6℃.某人乘热气球旅行,在地面时测得温度是8℃,当热气球升空后,测得高空温度是-1℃,热气球的高度为________m .答案:[8-(-1)]×(1000÷6)=1500(m )设计意图:通过多个例题的设置可让学生更深刻的理解有理数的乘除法混合运算。
人教版七年级数学上册《有理数的乘除法(第3课时)》示范教学设计
有理数的乘除法(第3课时)教学目标1.初步掌握有理数除法法则,能利用有理数除法法则进行简单的运算和分数的化简.2.经历探索有理数除法法则的过程,体会转化思想,进一步提高学生观察、归纳、验证等能力.教学重点正确运用有理数除法法则进行有理数除法运算.教学难点有理数除法法则的灵活运用.教学过程 知识回顾1.计算:(1)3×(-9); (2)-5×(-11);(3)9322⎛⎫⨯- ⎪⎝⎭; (4)-6×0. 【答案】解:(1)3×(-9)=-27; (2)-5×(-11)=55;(3)=32932⎛⎫⨯- ⎪⎝⎭-;(4)-6×0=0. 2.说一说有理数的乘法法则.两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.【归纳】运算过程中应先判断积的符号(1)几个不等于0的数相乘,积的符号由负因数的个数决定:①当负因数有奇数个时,积为负;②当负因数有偶数个时,积为正.(2)几个数相乘,有一个因数为0,积就为0.【师生活动】学生自主解答所给问题,然后教师继续讲解课程.【设计意图】通过复习有理数的乘法法则,为引出本节课的内容作铺垫.新知探究一、探究新知【问题】怎样计算8÷(-4)呢?【思考】(1)小学里学过的除法的意义是什么?(2)它与乘法有什么关系?结论:根据除法是乘法的逆运算,就是要求一个数,使它与-4相乘得8.【分析】(-2)×(-4)=8,8÷(-4)=-2.①另一方面,我们有8×14⎛⎫- ⎪⎝⎭=-2.②于是有8÷(-4)=8×14⎛⎫-⎪⎝⎭.③③式表明,一个数除以-4可以转化为乘14-来进行,即一个数除以-4,等于乘-4的倒数1 4 -.【问题】换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘1a?【思考】仿照上面的方法,我们再来看如何计算(-15)÷(-3).【分析】因为5×(-3)=-15,所以(-15)÷(-3)=5.【思考】13 15=⎛⎫-⨯- ⎪⎝⎭()?【答案】13 15⎛⎫-⨯- ⎪⎝⎭()=5.结论:(-15)÷(-3)=13 15⎛⎫-⨯- ⎪⎝⎭().该式表明,一个数除以-3可以转化为乘13-来进行,即一个数除以-3,等于乘-3的倒数13 -.【师生活动】学生回答,教师给出答案,然后提出思考问题,学生尝试总结,教师给予帮助.【设计意图】通过知识回顾“除法是乘法的逆运算”,经历探索有理数的除法法则的过程,体会转化思想,进一步发展学生观察、归纳、验证等能力.【新知】有理数除法法则:1.除以一个不等于0的数,等于乘这个数的倒数.即10a b a b b÷=⋅≠().2.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.注意:0不能作为除数.【归纳】对比记忆.有理数的减法法则:减去一个数,等于加这个数的相反数.有理数的除法法则:除以一个不等于0的数,等于乘这个数的倒数.【师生活动】学生回忆、独立思考、回答,教师再总结补充.【设计意图】通过对比学习,加深学生对有理数除法法则的理解和记忆. 二、典例精讲【例1】计算:(1)(-36)÷9; (2)122535⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭. 【答案】解:(1)(-36)÷9=-(36÷9)=-4;(2)12122525354535⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【师生活动】学生独立完成,全班交流,教师讲解.【设计意图】通过例题讲解,让学生掌握在进行有理数除法运算时,能整除、不能整除及除数为分数时,如何合理选择法则进行解答.【例2】化简下列分数:(1)123-; (2)4512--. 【答案】解:(1)1212334=--÷=-(); (2)4515=4512=4512=124--÷-÷-()().【新知】分数化简的方法:(1)把分数转化为除法,利用有理数的除法法则进行化简;(2)利用分数的基本性质“分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变”进行化简.【师生活动】学生独立完成,全班交流,教师讲解.【设计意图】通过例题学习,让学生尝试归纳出分数化简的方法,提高学生归纳总结的能力.【例3】计算:(1)551257⎛⎫-÷ ⎪⎝⎭-(); (2)512.5.84⎛⎫-÷⨯- ⎪⎝⎭ 【答案】解:(1)512575⎛⎫-÷ ⎪⎝⎭-() =51125+75⎛⎫⨯ ⎪⎝⎭ =151125+575⨯⨯=1257+ =1257; (2)512.584⎛⎫-÷⨯-⎪⎝⎭ =581254⨯⨯ =1.【新知】乘除混合运算:(1)乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算);(2)有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.【师生活动】教师引导学生共同完成例题的分析和总结.【设计意图】学生不仅要掌握直接利用有理数除法法则解决有理数除法问题,还要学会通过“除法是乘法的逆运算”来解决乘除混合运算题目.课堂小结板书设计一、有理数除法法则二、有理数除法运算课后任务完成教材P36上面练习1~2题.。
七年级数学上册1、4有理数的乘除法1有理数的乘法第3课时有理数乘法的运算律习题课件新版新
易错点 利用分配律计算时,漏乘或弄错符号
9.计算:|-12|×
1 3
1
3 4
1 12
1
6
.
1
解:原式=12×3
3
+12×(-1)+12×4
+12×
1 12
1
+12×6
=4-12+9-1+2
=2.
10.下列计算(-55)×99+(-44)×99-99正确的是( C ) A.原式=99×(-55-44)=-9801 B.原式=99×(-55-44+1)=-9702 C.原式=99×(-55-44-1)=-9900 D.原式=99×(-55-44-99)=-19 602
解:原式=6.868×(-5-12+17)
=0.
知识点二 有理数乘法运算律的应用 8.建设某场馆时需烧制半径分别为0.24 m,0.37 m,0.39 m的三个圆形钢 筋环,问需要多少钢筋?(π取3.14) 解:需要钢筋2π×0.24+2π×0.37+2π×0.39=2π×(0.24+0.37+0.39)=2π= 6.28(m). 答:需要6.28 m钢筋.
7.用简便方法计算:
(1)
7
6
15
6
71 5; Nhomakorabea解:原式=
7
6
6
7
15
1 5
=1×(-3)
=-3.
(2)
1
3 8
2
1 3
0.75
×(-24);
解:原式= 11 24 7 24 3 24
8
3
4
=-33+56-18
=5.
(3)6.868×(-5)+6.868×(-12)+17×6.868.
人教版七年级数学上册教案 1.5 有理数的乘方(3课时)
1.5有理数的乘方1.5.1乘方(第1课时)一、基本目标【知识与技能】1.理解有理数乘方的意义,能正确区分幂的底数与指数.2.能进行有理数的乘方运算,并能进行有理数的混合运算.【情感态度与价值观】培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.二、重难点目标【教学重点】乘方的意义,利用乘方运算法则进行有理数乘方运算.【教学难点】理解一个负数的奇次幂和偶次幂的符号,有理数混合运算的顺序.环节1自学提纲,生成问题【5 min阅读】阅读教材P41~P44的内容,完成下面练习.【3 min反馈】(一)乘方1.求n个相同因数的积的运算叫乘方,乘方的结果叫做幂.2.在式子a n(n为正整数)中,a叫底数,n叫指数,a n叫幂.读作a的n次方或a的n 次幂.3.在94中,底数是9,指数是4,读作9的4次方,或9的4次幂.一个数可以看作这个数本身的一次方,例如5就是5的一次方.指数1通常省略不写.4.负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.5.计算:(1)(-3)4;(2)-34;(3)⎝⎛⎭⎫-233; (5)(-1)2018. 解:(1)原式=81. (2)原式=-81. (3)原式=-827. (4)原式=1. (二)有理数的混合运算做有理数的混合运算时,先乘方,再乘除,最后加减;同级运算,从左到右进行;如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)(-2)100+(-2)101;(2)(-0.25)2017×42018.【互动探索】(引发学生思考)观察算式的特点,利用乘方的意义进行简算.【解答】(1)原式=(-2)100+(-2)×(-2)100=(1-2)×(-2)100=(-1)×2100=-2100.(2)原式=(-0.25)2017×4×42018=(-0.25×4)2017×4=(-1)2017×4=(-1)×4=-4.【互动总结】(学生总结,老师点评)灵活运用乘方的定义的逆应用,把底数相同的幂转化成指数也相同后,再逆应用运算律解答问题.【例2】计算:(1)-14+|3-5|-16÷(-2)×12; (2)6×⎝⎛⎭⎫13-12-32÷(-12). 【互动探索】(引发学生思考)利用有理数的混合运算顺序进行计算.【解答】(1)原式=-1+2-16×⎝⎛⎭⎫-12×12=-1+2+4=5.(2)原式=6×13-6×12-9×⎝⎛⎭⎫-112 =2-3+34=-14. 【互动总结】(学生总结,老师点评)计算有理数的混合运算,正确掌握运算法则是解题关键.活动2 巩固练习(学生独学)1.一根长1 m 的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为( C )A.⎝⎛⎭⎫123 mB .⎝⎛⎭⎫125 m C.⎝⎛⎭⎫126 mD .⎝⎛⎭⎫1212 m2.计算:(1)⎝⎛⎭⎫-172; (2)-1.52;(3)8+(-3)2×(-2);(4)-14-16×[2-(-3)2]; (5)-33+(-1)2018÷16+(-5)2; (6)(-0.125)2016×82018.解:(1)原式=149. (2)原式=-2.25. (3)原式=-10. (4)原式=16. (5)原式=4. (6)原式=64.活动3 拓展延伸(学生对学)【例3】阅读下列材料:求1+2+22+23+...+22017的值,可令S =1+2+22+23+...+22017,则2S =2+22+23+24+ (22018)所以2S -S =22018-1,故S =22018-1.仿照以上推理,求1+5+52+53+…+52017的值.【互动探索】根据题目提供的信息,设S =1+5+52+53+…+52017,用5S -S 整理即可得解.【解答】设S =1+5+52+53+ (52017)则5S =5+52+53+54+ (52018)所以5S -S =52018-1,故S =52018-14. 【互动总结】(学生总结,老师点评)本题考查了乘方,读懂题目提供的信息,是解题的关键,注意整体思想的利用.环节3 课堂小结,当堂达标(学生总结,老师点评)有理数的乘方⎩⎪⎨⎪⎧ 乘方的定义负数的奇、偶次幂有理数的混合运算请完成本课时对应练习!1.5.2 科学记数法(第2课时)一、基本目标【知识与技能】理解科学记数法的意义和特征,能够用科学记数法表示大数.【过程与方法】通过收集一些大数,让学生感受大数的普遍存在以及数学与现实的联系,同时增强活动性和趣味性.【情感态度与价值观】正确使用科学记数法表示数,表现出一丝不苟的精神.二、重难点目标【教学重点】会用科学记数法表示大数.【教学难点】掌握10n的特征以及科学记数法中n与数位的关系.环节1自学提纲,生成问题【5 min阅读】阅读教材P44~P45的内容,完成下面练习.【3 min反馈】1.把下面各数写成幂的形式.(1)100=102;(2)1000=103;(3)10000=104;(4)100000=105.2.一个大于10的数都可以表示成a×10n的形式,其中a的取值范围是大于等于1且小于10的数,n是正整数,用这种方法表示数叫做科学记数法.3.用科学记数法表示数时,整数的位数与10的指数的关系是整数位数-1=指数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】用科学记数法表示下列各数:(1)24 800 000;(2)-5 764.3;(3)361万.【互动探索】(引发学生思考)科学记数法中的n怎样确定?【解答】(1)24 800 000=2.48×107.(2)-5 764.3=-5.7643×103.(3)361万=3 610 000=3.61×106.【互动总结】(学生总结,老师点评)对于一个绝对值大于10的有理数,用科学记数法表示时,a是原数的小数点向左移动后的结果,n是比原数整数位数少1的正整数.【例2】将下列用科学记数法表示的数还原成原数.(1)1.2×105;(2)2.3×107;(3)3.6×108;(4)-4.2×106.【互动探索】(引发学生思考)将用科学记数法表示的数还原成原数怎样确定位数?【解答】(1)1.2×105=120 000.(2)2.3×107=23 000 000.(3)3.6×108=360 000 000.(4)-4.2×106=-4 200 000.【互动总结】(学生总结,老师点评)把用科学记数法表示的绝对值大于10的有理数化成原数时,只需把小数点向右移动n位即可,不足的用零补充.活动2巩固练习(学生独学)1.2017年,山西省接待入境游客95.71万人次,实现海外旅游创汇3.5亿美元,同比增长分别为6.38%、10.32%;累计接待国内游客5.6亿人次,实现国内旅游收入5338.61亿元,同比增长分别为26.49%、26.27%.实现旅游总收入约5360亿元,同比增长26.21%.数据5360亿元用科学记数法可表示为(B)A.0.536×1012元B.5.36×1011元C.53.6×1010元D.536×109元2.用科学记数法表示出下列各数.(1)30 060;(2)15 400 000;(3)123 000.解:(1)3.006×104.(2)1.54×107.(3)1.23×105.3.已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104;(2)6.070×105;(3)-3×103.解:(1)20 100.(2)607 000.(3)-3000.活动3拓展延伸(学生对学)【例3】比较下列两个数的大小.(1)-3.65×105与-1.02×106;(2)1.45×102017与9.8×102018.【互动探索】根据有理数的大小比较方法对比比较用科学记数法表示的数的方法.【解答】(1)|-3.65×105|=3.65×105,|-1.02×106|=1.02×106.因为1.02×106>3.65×105,所以-3.65×105>-1.02×106.(2)因为9.8×102018=98×102017,98>1.45,所以1.45×102017<9.8×102018.【互动总结】(学生总结,老师点评)比较用科学记数法表示的数时,利用乘方的意义,把10的指数转化成相同的,然后比较a 的大小,若a 大,则原数就大;若a 小,则原数就小.环节3 课堂小结,当堂达标(学生总结,老师点评)科学记数法⎩⎪⎨⎪⎧ 用科学记数法表示数还原用科学记数法表示的数比较用科学记数法表示的数请完成本课时对应练习!1.5.3 近似数(第3课时)一、基本目标【知识与技能】了解近似数的概念,能按要求取近似数.【过程与方法】在认识、理解近似数的过程中感受大数目近似数的使用价值,增强学生的应用意识,提高应用能力.二、重难点目标【教学重点】近似数、精确度和有效数字的意义.【教学难点】由给出的近似数求其精确度及有效数字,按给定的精确度或有效数求一个数的近似数.环节1自学提纲,生成问题【5 min阅读】阅读教材P45~P46的内容,完成下面练习.【3 min反馈】1.在现实生活与生产实践中,能准确地表示一些量的数,称为准确数;近似数是与实际的准确数非常接近的数.2.下列各个数据中,哪些数是准确数?哪些数是近似数?(1)小琳称得体重为38千克;(2)现在的气温是-2 ℃;(3)1 m等于100 cm;(4)教窒里有50张课桌;(5)由于我国人口众多,人均森林面积只有0.128公顷.解:(1)小琳称得体重为38千克,是近似数.(2)现在的气温是-2 ℃,是近似数.(3)1 m等于100 cm,是准确数.(4)教室里有50张课桌,是准确数.(5)由于我国人口众多,人均森林面积只有0.128公顷,是近似数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按照括号内的要求,用四舍五入法对下列各数取近似数:(1)0.0238(精确到0.001);(2)2.605(精确到0.1);(3)20 543(精确到百位).【互动探索】(引发学生思考)什么是精确度?怎样求一个数的近似数?【解答】(1)0.0238(精确到0.001)≈0.024.(2)2.605(精确到0.1)≈2.6.(3)20 543(精确到百位)≈2.05×104.【互动总结】(学生总结,老师点评)近似数一般是由四舍五入得到的,当用四舍五入法取近似值时,近似数的末位数字0不能省略.活动2 巩固练习(学生独学)1.下列说法正确的是( C )A .近似数32与32.0的精确度相同B .近似数5万与近似数5000的精确度相同C .近似数0.0108有3个有效数字2.近似数1.02×105精确到了千位.3.把489 960按四舍五入法保留三个有效数字是4.90×105.4.用四舍五入法,对下列各数按括号中的要求取近似数:(1)0.6328(精确到0.01);(2)7.9122(精确到个位);(3)130.96(精确到十分位);(4)46 021(精确到百位).解:(1)0.63. (2)8.(3)131.0. (4)4.60×104.活动3 拓展延伸(学生对学)【例2】已知有理数x 的近似值是5.40,则x 的取值范围是________.【互动探索】如果近似值5.40是“四舍”得到的,那么原数x 最大是5.4+0.004=5.404;如果近似值5.40是“五入”得到的,那么原数x 最小是5.40-0.005=5.395.原数x 的取值范围是5.395<x <5.404.【答案】5.395<x <5.404【互动总结】(学生总结,老师点评)本题考查了准确值的取值范围,如果近似值是“四舍”得到的,那么原数最大;如果近似值是“五入”得到的,那么原数最小.环节3 课堂小结,当堂达标(学生总结,老师点评)近似数⎩⎪⎨⎪⎧ 求一个数的近似数精确度、有效数已知近似数求原数请完成本课时对应练习!。
有理数的乘除第三课时
完成课本第33页的练习题1和 2。
THANKS FOR WATCHING
感谢您的观看
有理数的乘除第三课时
contents
目录
• 复习导入 • 有理数的乘法规则 • 有理数的除法规则 • 乘除混合运算 • 课堂练习与答疑 • 总结与作业布置
01 复习导入
回顾前两课时的内容
回顾有理数的乘法法 则和除法法则。
回顾如何利用乘法公 式简化计算。
回顾如何处理有理数 的乘除混合运算。
引出本课时的学习目标
06 总结与作业布置
本课时内容的总结
01
02
03
04
掌握有理数的乘法法则 和除法法则。
理解有理数乘除法在解 决实际问题中的应用。
掌握乘法分配律和除法 分配律。
掌握有理数乘除法的运 算顺序。
下课时作业布置
01
02
03
04
完成课本第30页的练习题1和 2。
完成课本第31页的练习题1和 2。
完成课本第32页的练习题1和 2。
在得到结果后,应进行化 简,以得到最简形式。
避免运算错误
在计算过程中,应仔细核 对每一步的计算,避免因 粗心而导致的错误。
03 有理数的除法规则
除法法则的回顾
除法定义
除法是乘法的逆运算,即 b÷a=b×(1/a)。
除法性质
当两个有理数相除时,同 号得正,异号得负,并把 绝对值相除。
除法运算顺序
先乘除后加减,有括号的 先算括号里面的。
第一季度
第二季度
第三季度
第四季度
学生疑问1
如何确定两数相乘的符 号?
解答
根据有理数乘法法则, 正数乘以正数得到正数 ,负数乘以负数也得到 正数,其他情况下得到 负数。因此,通过判断 两数的符号可以确定乘
1.5 有理数的乘除(第3课时 有理数的除法)(课件)七年级数学上册(沪科版2024)
||
综上,当 a ≠0时,
的值为1或-1.
||
(3)不妨设 a >0,则 b <0,所以
+
= +
||
−
=1+(-1)=0.
9. [新考法
÷
−
新定义法]规定 a ※ b = ÷
−
,例如:2※3=
=- ,求[2※(-5)]※4的值.
【解】由题意,得2※(-5)= ÷
0×(-6)=____,
0
0÷(-6)=____,
观察右侧算式, 你能发现两个有理数相除时:
商的符号如何确定?
商的绝对值如何确定?
8
72÷9=____,
3
(-12)÷(-4)=____,
同号两数相除得正,
并把绝对值相除
-3
(-6) ÷2=____,
异号两数相除得负,
-3
12÷(-4)=____,
并把绝对值相除
※4=5÷
−
−
−
=- .故原式=- .
= ,
10. 小明有5张写着不同数字的卡片,请按要求抽出卡片,完成下列问题:
(1)从中抽取2张卡片,使这2张卡片上数字的乘积最大,应如何抽取?
最大值是多少?
【解】抽取写有-7和-5的卡片,最大值是-7×(-5)=35.
(2)从中抽取2张卡片,使这2张卡片上数字相除的商最小,应如何抽
0
0÷(-6)=____,
有理数的除法第3课时有理数的加减乘除混合运算课件人教版七年级数学上册
解:原式=35 - (-6) =35+6 =41
先算乘除法 再将减法统一成加法计算
(3)4-(-6)÷3×10
解:原式= 4 -(-2)×10 = 4 -(-20) =4+20
先算乘除法 再将减法统一成加法计算
=24
(4)3×(-4)+ (-28)÷7
解:原式= - 12+(- 4) 先算乘除法 = -(12+4) 再按照加法法则进项计算 =-16
B.(-3)-(-3)
C.(-3)×(-3) D.(-3)÷(-3)
2.计算3-2×(-1)=( A )
A C
540
归纳总结
有理数加减乘除混合运算顺序:
1.先算乘除,再算加减; 2.同级运算从左往右依次计算; 3.如有括号,先算括号内的; 4.能用运算律的,应利用运算律.
作业设计
教材P38 习题1.4 第 8 题。
1.4.2 有理数的除法 第3课时 加减乘除运算
汇报人:郭项敏
学习目标 01 进一步掌握有理数的运算法则和运算律. 02 熟练地按有理数运算顺序进行混合运算. (重点、
难点).
复习旧知
你还记得怎么计算么? 计算:18-35+17-12 解:原式=18+(-35)+17+(-12)
=[18+17+(-35)]+(-12) =+(-12) =-12
课堂练习
例题精讲
例2、计算:
(1)[12 – 4(3-10)]÷4
解:原式= [12-4×(-7)]÷4
= [12 – (-28)]÷4
=40÷4 =10
归纳:有理数加减乘除混合运算,先
1.5有理数的乘除例题与讲解(2013-2014年沪科版七年级上)
1.5 有理数的乘除1.有理数的乘法(1)有理数的乘法法则①两数相乘,同号得正,异号得负,并把绝对值相乘.如:-3×(-2)=+(3×2)=6,(-2)×3=-(2×3)=-6.②任何数与零相乘仍得零.如:(-5)×0=0.(2)有理数乘法的步骤第一步:确定积的符号;第二步:计算各因数的绝对值;第三步:计算绝对值的积.由于绝对值总是正数或0,因此绝对值相乘就是小学中的算术乘法.由此可见,有理数乘法实质上就是通过符号法则,归结为算术的乘法完成的.解技巧 有理数的乘法运算技巧(1)两个有理数相乘时,先确定积的符号,再把绝对值相乘,带分数相乘时,要先把带分数化为假分数,分数与小数相乘时,一般统一写成分数.(2)一个数同零相乘,仍得零,同1相乘,仍得原数,同-1相乘得原数的相反数.(3)两数相乘,若把一个因数换成它的相反数,则所得的积是原来积的相反数.【例1】 计算:(1)45×0.2; (2)13×(-4);(3)(-1.3)×(-5); (4)221133⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭; (5)1106⎛⎫-⨯ ⎪⎝⎭. 分析:利用乘法法则进行计算.这里(1)中是正数和正数相乘,因而得正;(2)中是正数和负数相乘,因而得负;(3)中是负数与负数相乘,因而得正;(4)中是负数和负数相乘,因而得正;(5)中是负数和零相乘,因而得零.小数和带分数一般化为分数或假分数.解:(1)原式=45×15=425; (2)原式=-(13×4)=-52;(3)原式=+(1.3×5)=6.5;(4)原式=5735326⎛⎫+⨯=⎪⎝⎭; (5)原式=0.2.倒数(1)倒数的概念 如果两个有理数的乘积为1,我们称这两个有理数互为倒数,如2与12,⎝⎛⎭⎫-32与⎝⎛⎭⎫-23分别互为倒数.用字母表示:若ab =1,则a ,b 互为倒数,反之,若a ,b 互为倒数,则ab =1.(2)倒数的求法若a ≠0,则a 的倒数是1a ,正数的倒数是正数,负数的倒数是负数,0无倒数.为了方便,一般采用如下方法:①非零整数——直接写成这个数分之一.如:4的倒数是14,-6的倒数是-16. ②分数的倒数——把分子、分母颠倒写即可;带分数要化为假分数,小数要化为分数后再把分子、分母颠倒位置写.如:-34的倒数是-43;-0.25的倒数是-4,-123的倒数是-35. ③倒数等于本身的数是±1,零没有倒数.辨误区 倒数与相反数的区别 一定要注意倒数的概念和相反数的概念的区分,互为相反数的两数之和为零,互为倒数的两数之积为1,同时正数的倒数仍为正数,负数的倒数仍为负数.【例2】 求下列各数的倒数.(1)-3;(2)45;(3)-0.2;(4)323. 分析:求一个整数的倒数直接写成这个数分之一即可;求一个分数的倒数,就是把这个分数的分子、分母颠倒位置即可;求一个小数的倒数,先把这个小数化成分数,再求其倒数;求一个带分数的倒数,要先化为假分数再求.解:(1)-3的倒数为-13;(2)45的倒数为54;(3)由于-0.2=-15,所以-0.2的倒数为-5;(4)由于323=113,所以323的倒数为311. 3.有理数乘法法则的推广(1)几个数相乘,有一个因数为零,积为零.如:1×2×(-5)×0×6=0.(2)几个不为零的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.(3)由上面的法则可以知道:几个不等于零的数相乘,首先确定积的符号,然后,再把每个因数的绝对值相乘.这就是多个因数求积的常用方法.解技巧 多个有理数相乘的技巧多个有理数相乘时,先观察因数中有没有0.如果有0,积就是0;如果没有0,一般按从左向右的顺序计算绝对值的积作为积的绝对值.【例3】 计算:(1)1172137732222⎛⎫⎛⎫+⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭; (2)(+5.9)×(-1 992)×(+1 993)×(-2 000)×0;(3)(-5)×8×(-7)×(-0.25).分析:(1)四个因数只有一个是负数,所以结果是负数,再把带分数化为假分数,约分之后得出结果;(2)因为乘式中含有一个因数0,故积为零;(3)式子中的负数有3个,所以结果是负数.多个有理数进行运算时,应一次确定结果的符号,再计算各因数绝对值的积,这样既简捷又不易出错.解:(1)1172137732222⎛⎫⎛⎫+⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =-227×223×722×2122=-7.(2)(+5.9)×(-1 992)×(+1 993)×(-2 000)×0=0.(3)(-5)×8×(-7)×(-0.25)=-(5×8×7×0.25)=-70.4.有理数的除法(1)有理数除法的意义在有理数运算中,除法的意义依然是乘法的逆运算,即已知两个因数的积和其中一个因数,求另一个因数的运算.除法可以转化为乘法来进行.(2)有理数的除法法则①有理数的除法法则一(直接相除的法则):Ⅰ.两数相除,同号得正,异号得负,并把绝对值相除.Ⅱ.零除以一个不为零的数,仍得零.零不能作除数.用字母表示:Ⅰ.若a >0,b >0,则a b =|a ||b |;若a <0,b <0,则a b =|a ||b |; 若a <0,b >0,则a b =-|a ||b |;若a >0,b <0,则a b =-|a ||b |. Ⅱ.若a ≠0,则0a=0. ②有理数的除法法则二(化除为乘的法则):除以一个不为零的数,等于乘以这个数的倒数.用字母表示:a ÷b =a ×1b(b ≠0). 析规律 两个除法法则的区别对于除法的两个法则,在计算时根据具体情况,灵活运用,一般在不能整除的情况下应用法则二,在能整除的情况下,应用法则一比较简便.【例4】 计算:(1)(-16)÷(-4); (2)3324⎛⎫-÷ ⎪⎝⎭; (3)57168⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (4)0÷(-20).分析:在做除法时,选择哪一个除法法则,应从运算是否方便考虑,和乘法一样,做除法时,先要把带分数化为假分数.解:(1)(-16)÷(-4)=16÷4=4; (2)333422423⎛⎫-÷=-⨯=- ⎪⎝⎭; (3)57168⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=116×87=4421; (4)0÷(-20)=0.5.有理数的乘、除混合运算(1)有理数的乘、除混合运算①形式a ÷b ÷c ;a ×b ÷c ;a ÷b ×c ,这些都是有理数的乘、除混合运算.②方法有理数的乘、除混合运算,先将除法转化为乘法,然后按照乘法法则确定积的符号,最后求出结果.如,计算:(-81)÷214×49÷(-15). ③运算顺序对于连除或乘除混合运算问题,我们可以按从左到右的顺序依次进行计算,也可以直接把除法转化为乘法来计算.(2)有理数的四则混合运算对于含有加、减、乘、除的有理数的混合运算,运算顺序是:如没有括号,应先做乘除运算,后做加减运算;如有括号,应先做括号里的运算,再做其他运算.【例5-1】 计算:(1)(-35)×(-312)÷(-114)÷3; (2)-214÷1.125×(-8). 分析:乘除混合运算要按从左到右顺序进行.对于有理数的乘除法混合运算,应将它们统一为有理数的乘法运算.先由负因数的个数确定结果的符号,再把带分数化为假分数,同时把小数也化为分数,最后考虑约分.解:(1)(-35)×(-312)÷(-114)÷3 =(-35)×(-72)×(-45)×13=-35×72×45×13=-1425; (2)-214÷1.125×(-8) =94÷98×8 =94×89×8=16. 【例5-2】 计算:(15-13)×(14+15)÷(-120)÷(-13). 分析:本题是有理数的加减乘除混合运算,可按四则混合运算的顺序进行计算,有括号的要先算括号里面的.解:(15-13)×(14+15)÷(-120)÷(-13) =-215×920×(-20)×(-3) =-(215×920×20×3)=-185. 6.有理数的乘法的运算律(1)乘法交换律 两个数相乘,交换因数的位置,积不变.即ab =ba .(2)乘法结合律三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变.即(ab )c =a (bc ).(3)分配律一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即a (b +c )=ab +ac .分配律在有理数的运算以及今后的有关代数式运算及变形中运用非常广泛,它的正向运用(即从左到右)与逆向运用(即从右到左)对于不同形式的计算与变形都起着简化的作用,应注意灵活运用.如,计算:(134-78-712)×(-117),考虑前一个括号里面的各个因数的分子都是7,而后面括号里面的因数的分母是7,可以直接利用乘法的分配律简化运算.【例6】 用简便方法计算:(1) (-12+16-38+512)×(-24); (2)-13×23-0.34×27+13×(-13)-57×0.34. 分析:第(1)题中有(-24)是括号中各分母的公倍数,所以应利用分配律变形;第(2)题把-0.34×27与13×(-13)交换位置,然后利用结合律将前两项结合、后两项结合,即分成两组,再分别在每组中逆用分配律即可.解:(1)原式=⎝⎛⎭⎫-12×(-24)+16×(-24)+38×24+512×(-24) =12-4+9-10=7.(2)原式=-13×23+13×(-13)-0.34×27-57×0.34=⎣⎡⎦⎤(-13)×23+13×(-13)+⎣⎡⎦⎤0.34×⎝⎛⎭⎫-27-57×0.34 =2125(13)0.343377⎡⎤⎡⎤⎛⎫⎛⎫-⨯++⨯-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=(-13)×1+0.34×(-1)=-13-0.34=-13.34.7.有理数混合运算的技巧进行有理数的乘除运算,除了注意运算顺序和运算法则之外,还要注意一些运算技巧,力求使运算简便.解答有理数除法运算有关的问题时,我们应注意利用有理数的除法法则,将有理数的除法运算转化为有理数的乘法运算.如果被除数或除数中有小数应先化为分数,有带分数应先化为假分数,便于约分,简化运算.辨误区 除法没有分配律除法没有分配律,如在有理数的除法运算中,如果按a ÷(b +c )=a ÷b +a ÷c 进行分配就错了.除法是没有分配律的,从而不能运用分配律.像6÷3×13有时会习惯性地将3和分母中的3约分,这是错误的,应严格按运算顺序进行计算,并经过一定练习才能灵活进行有理数的混合运算.有理数的乘、除混合运算的性质有:①a ÷b ÷c =a ÷(b ×c )=a ÷c ÷b .即一个数除以另一个数所得的商再除以第三个数,等于第一个数除以第二、三两数的积;也等于第一个数除以第三个数所得的商再除以第二个数.如:740÷(37×4)=740÷37÷4=20÷4=5.②a ×b ÷c =a ×(b ÷c )=(a ÷c )×b .即两个数的积除以第三个数,等于其中任意一个乘数除以第三个数,再与另一个乘数相乘.如:136×73÷68=2×73=146.③a ÷b ×c =a ÷(b ÷c ).即第一个数除以第二个数所得的商再乘以第三个数,等于先求出第二个数除以第三个数的商,再用第一个数除以这个商.如:480 000÷144×12=480 000÷(144÷12)=480 000÷12=40 000.以上三个公式中,添括号或去括号都有规律.添括号时,如果一个数的前面是乘号,那么这个数前面添上括号后,括到括号里面的运算符号不变;如果一个数的前面是除号,那么在这个数前面添上括号后,括到括号里面的运算符号要改变,乘号变除号,除号变乘号.【例7-1】 计算:(1)⎝⎛⎭⎫14-15+13÷160;(2)160÷111453⎛⎫-+ ⎪⎝⎭. 分析:(1)先将除法转化为乘法,运用了分配律后使运算简便;第(2)题属于易错题,因为除法没有分配律,只有乘法才有分配律,而一些学生往往因不看清题目而错误地运用运算律.解:(1)方法一:⎝⎛⎭⎫14-15+13÷160=⎝⎛⎭⎫1560-1260+2060×60=2360×60=23. 方法二:⎝⎛⎭⎫14-15+13÷160=(14-15+13)×60 =14×60-15×60+13×60=23. (2)方法一:160÷(14-15+13) =160÷(1560-1260+2060)=160÷2360=123. 方法二:∵⎝⎛⎭⎫14-15+13÷160=(14-15+13)×60=14×60-15×60+13×60=23, ∴根据倒数的定义有160÷(14-15+13)=123. 【例7-2】 计算:(-48)×⎝⎛⎭⎫-23+34+112. 分析:在有理数的计算中,如果能够准确地确定运算结果的符号,则可省去一些不必要的括号,运算步骤的简明与流畅可以提高运算的正确率.解:(-48)×⎝⎛⎭⎫-23+34+112 =48×23-48×34-48×112=32-36-4=-8.【例7-3】 计算:-3.5×35.2+(-7)×32.4.分析:仔细观察算式的特点,可以发现3.5和7存在倍数关系,不妨将7写成3.5×2,然后逆用分配律来简化计算.解:-3.5×35.2+(-7)×32.4=-3.5×35.2+(-3.5)×2×32.4=-3.5×(35.2+2×32.4)=-3.5×100=-350.【例7-4】 计算:0.25÷168×(-1517). 分析:本题如果先计算0.25÷168的结果再乘以⎝⎛⎭⎫-1517,运算过程就很繁杂,而且容易出错.仔细观察每一个数的特点,考虑0.25×4=1,可将68分解成4×17., 去括号时,如果括号的前面是乘号,那么去掉括号后,括号里面的运算符号不变;如果括号的前面是除号,那么去掉括号后,括号里面的运算符号要改变,乘号变除号,除号变乘号.解:0.25÷168×(-1517)=0.25×68×(-1517) =0.25×4×17×(-1517)=(0.25×4)×151717⎡⎤⎛⎫⨯- ⎪⎢⎥⎝⎭⎣⎦=1×(-15)=-15. 8.计算器的使用计算器是一种方便实用的计算工具,计算速度快,计算准确,操作方便.使用时要特别注意以下几点:(1)按下数字键后,应看清显示器上的显示是否正确;(2)用计算器进行有理数的加减运算时,按式子的顺序从左向右按;(3)用计算器进行有理数的乘除运算时,特别是有负数出现时,先应按(-),再输入其绝对值;(4)对于加减乘除混合运算,只要按算式的书写顺序输入,计算器会按要求求出结果.【例8】 用计算器计算:-15.13+4.85+(-7.69)-(-13.88).分析:不同的计算器用法不一样,要注意,使用计算器能进行一些较为复杂的运算.解:用带符号键(-)的计算器计算.按键顺序: (-)15·13+4·85+(-)7·69-(-)13·88=. 得到-4.09.9.有理数的混合运算在实际问题中的应用有理数的混合运算在现实生活中有着广泛的应用,是解决其他数学问题的基础,也是解应用题的基础,多以实际应用、规律探究型问题的形式出现.尤其是运算律在现实生活中的应用更加广泛.在现实生活中我们经常会遇到一些较大的或者较复杂的数的混合运算,这时就要利用运算律进行转化,使运算简化.解决实际问题的关键是根据问题情境找出数量关系,将实际问题转化为所学的数学问题.有理数的混合运算可以解决一些实际应用题,如:银行利息计算、话费计算等.解决这类问题的关键是将实际问题抽象成数学问题,用运算符号正确表达出关系式,注意单位和解题格式.【例9-1】 某校体育器材室共有60个篮球.一天课外活动,有3个班级分别计划借篮球总数的12、13和14.请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个?分析:本题可以转化为:求一个数的几分之几是多少的数学模型,所以用乘法来解答. 解:60×1111234⎛⎫--- ⎪⎝⎭=60×1-60×12-60×13-60×14=60-30-20-15=-5(个).答:不够借,还缺5个篮球.【例9-2】 根据实验测定,高度每增加1 km ,气温大约下降6 ℃,小王是一位登山运动员,他在攀登山峰的途中发回信息,报告他所在的位置的气温是-15 ℃,如果当时地面的气温是3 ℃,则小王所在的位置离地面的高度是多少?分析:地面的温度是3 ℃,小王所在的位置是-15 ℃,我们可以根据温度差与高度每增加1 km 气温大约下降6 ℃之间的关系,通过计算得到小王所在位置的高度.解:[3-(-15)]÷6×1=3(km).所以小王所在的位置离地面的高度为3 km.。
《有理数的乘除法》的教案
《有理数的乘除法》的教案有理数的乘除法一、教学目标知识与技能:①使学生在了解乘法的基础上,掌握有理数乘法法则并初步掌握有理数乘法法则的合理性。
②会进行有理数乘法运算。
③了解有理数的倒数定义,会求一个数的倒数。
过程与方法:①经历探索有理数乘法法则,发展,观察,归纳,猜想,验证的能力以及培养学生的语言表达能力。
②提高学生的运算能力情感与态度:通过合作学习调动学生学习的积极性,激发学生学习数学的兴趣,提高学生认识世界的水平。
二、教学重点和难点重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;难点:有理数乘法中的符号法则.三、教学过程(一) 创设问题情景,激发学生的求知欲望,复习旧知,导入新课前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:甲水库的水位每天升高3㎝,乙水库的水位每天下降3㎝。
4天后,甲、乙水库各自水位的总变化量是多少?如果用正号表示水位的上升、用负号表示水位的下降。
那么,4天后,甲水库水位的总变化量是:3+3+3=34=12㎝乙水库水位的总变化量是:(-3)+(-3)+(-3)+(-3)=(-3)4=-12㎝引出课题:有理数的乘法(二)学生探索新知,归纳法则学生分为四个小组活动,进行乘法法则的探索设蜗牛现在的位置为点O,若它一直都是沿直线爬行,而且每分钟爬行2cm,问:(1)向右爬行,3分钟后的位置?(2)向左爬行,3分钟后的位置?(3)向右爬行,3分钟前的位置?(4)向左爬行,3分钟前的位置?(学生思考后回答) 要确定蜗牛的位置需要知道:距离和方向。
为了区分方向:我们规定向右为正,向左为负;为区分时间:我们规定现在的时间前为负,现在的时间后为正。
(1) 情形一:蜗牛在现在位置的右边6㎝处。
式子表示为:(+2)(+3)=+6数轴表示如右:(2)情形二:蜗牛在现在位置的左边6㎝处。
式子表示为: (-2)3=-6数轴表示如右:(3)情形三:蜗牛在现在位置的左边6㎝处。
1.5有理数的乘法和除法1.5.3 有理数的乘除七年级上册数学湘教版
新知探究 知识点 有理数的乘除混合运算
例1 计算: (1) (-5)×6÷(-3) ; (2) (-56) ÷(-2)÷(-8) . 解:(1) (-5)×6÷(-3) =(-30) ÷(-3) =10 .
(2) (-56) ÷(-2)÷(-8)=28÷(-8) =-72 . 按照从左到右的顺序依次计算
议一议
下面是小楠同学做的一道计算题,他的计算是否正确? 如果不正确,说说他错在哪里.
(4)(8) 14 (4)(2) 2
不正确,应该依次计算
(4)(8)
1 4
(4)(
18)
1 4
12
1 4
18
随堂练习
【课本P40 练习 第1题】
1. 计算:
(1)24÷(-3)÷(-4) ;
(2)(-6)÷(-2)÷3;
2.计算:
【课本P40 练习 第2题】
(1)
1 2
1 3
3 4
;
(2)
7 2
1 8
1 7
;
(3)
24
1 6
1 3
;
(4)
5 6
7 12
1 3
7 8
.
. 解:(1)
1 2
1 3
3= 4
1 2
3
3 4
=9 8
. (2)
4
7 2
1 8
1 7
=
(3)2÷(-7)×(-4);
(4) 18÷6×(-2).
解:(1)24÷(-3)÷(-4)= -8 ÷(-4)= 2 .
(2)(-6)÷(-2)÷3 = 3÷3 = 1 .
(3)2÷(-7)×(-4) =
−
最新人教版七年级数学上册精品课件1.4有理数的乘除法(第3课时)
• 第四级 • 第五级
用字母表示为 a b a 1 (b 0) b
2019/8/30
7
单击此处编母版标题样式
•
单利击用此上处面编的辑除母法版法文则本计样算式下列各题:
(• 1第)二-5级4 (-9);(2)-27 3;
(3)• 0第•三(第级四-级7); (4)-24 (-6).
值相除. • 第五级
0除以任何一个不等于0的数,都得0
二、有理数除法化为有理数乘法以后,可以利
用有理数乘法的运算律简化运算
单击此处编母版标题样式
• 单击三此、处乘编除辑混母合版运文算本往样往式先将除法化为乘法, 然后• 第确•二定第级三积级的符号,最后求出结果(乘除混合运 算按从左•到第右四• 级第的五级顺序进行计算)
(2)
• 第三级7
2.5 5 ( 1) 84
• 第四级
解:(1)原式• 第五1级25
5
5
7
(2)原式 5 8 1
254
(125 5 ) 1
1
75
125 1 5 1 5 75
25 1 25 1
7
7
单击此处编母版标题样式
方法归纳
• 第五级
思考:从上面我们能发现商的符号有什么规律?
2019/8/30
8
单击此处编母版标题样式
有理数除法法则(二) • 单击此处编辑母版文本样式 两数•相第除二,级 同号得正,异号得负,并把绝对值相除. 0除以任• 何第•三一第级四个级不等于0的数,都得0
• 第五级
单击此处编母版标题样式
思考: • 单击到此现处在编为辑止母我版们文有本了样两式个除法法则,那么两 个法• 第则二是级不是都可以用于解决两数相除呢?
第03讲 有理数的乘除法(5大考点)(原卷版)
第03讲有理数的乘除法(5大考点)一、有理数的乘法1.有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.要点:(1) 不为0的两数相乘,先确定符号,再把绝对值相乘.(2)当因数中有负号时,必须用括号括起来,如-2与-3的乘积,应列为(-2)×(-3),不应该写成-2×-3.2. 有理数的乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正;(2)几个数相乘,如果有一个因数为0,那么积就等于0.要点:(1)在有理数的乘法中,每一个乘数都叫做一个因数.(2)几个不等于0的有理数相乘,先根据负因数的个数确定积的符号,然后把各因数的绝对值相乘.(3)几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么至少有一个因数为0.3. 有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.要点:(1)在交换因数的位置时,要连同符号一起交换.(2)乘法运算律可推广为:三个以上的有理数相乘,可以任意交换因数的位置,或者把其中的几个因数相乘.如abcd=d(ac)b.一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.如a(b+c+d)=ab+ac+ad.(3)运用运算律的目的是“简化运算”,有时,根据需要可以把运算律“顺用”,也可以把运算律“逆用”.二、有理数的除法1.倒数的意义:乘积是1的两个数互为倒数.要点:(1)“互为倒数”的两个数是互相依存的.如-2的倒数是12-,-2和12-是互相依存的;考点考向(2)0和任何数相乘都不等于1,因此0没有倒数;(3)倒数的结果必须化成最简形式,使分母中不含小数和分数;(4)互为倒数的两个数必定同号(同为正数或同为负数).2. 有理数除法法则:法则一:除以一个不等于0的数,等于乘这个数的倒数,即1(0)a b a bb÷=≠.法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.要点:(1)一般在不能整除的情况下应用法则一,在能整除时应用法则二方便些.(2)因为0没有倒数,所以0不能当除数.(3)法则二与有理数乘法法则相似,两数相除时先确定商的符号,再确定商的绝对值.三、有理数的乘除混合运算由于乘除是同一级运算,应按从左往右的顺序计算,一般先将除法化成乘法,然后确定积的符号,最后算出结果.四、有理数的加减乘除混合运算有理数的加减乘除混合运算,如无括号,则按照“先乘除,后加减”的顺序进行,如有括号,则先算括号里面的.考点一:有理数的乘法运算1.计算:(1)54(3)1(0.25)65⎛⎫-⨯⨯-⨯-⎪⎝⎭; (2)(1-2)(2-3)(3-4)…(19-20);(3)(-5)×(-8.1)×3.14×0.2.运用简便方法计算:25×﹣(﹣25)×+25×.3.用简便方法计算:(1)2215130.34(13)0.34 3737-⨯-⨯+⨯--⨯;考点精讲(2) 3.1435.2 6.28(23.3) 1.5736.4-⨯+⨯--⨯.考点二:有理数的除法运算1.计算:17 (49)2(3)33⎛⎫-÷-÷÷-⎪⎝⎭2.计算:111 (3)(2)(1)335 -÷-÷-考点三:有理数的乘除混合运算1.计算:9481(16)49-÷⨯÷-2.计算:14410(2) 893-÷⨯÷-考点四:有理数的加减乘除混合运算1. 计算:121123031065⎛⎫⎛⎫-÷-+-⎪ ⎪⎝⎭⎝⎭2.观察下列等式(式子中的“!”是一种数学运算符号)1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,那么计算:= .考点五:含绝对值的化简1. 已知a、b、c为不等于零的有理数,你能求出||||||a b ca b c++的值吗?2.计算a ba b+的取值.一、单选题1.(2021·全国七年级专题练习)计算8÷(﹣2)的结果是()A.﹣4 B.﹣16 C.﹣6 D.10 巩固提升2.(2021·广东七年级期末)计算:﹣17×□=1,则□内应填的数是( ) A .﹣7 B .﹣1 C .17 D .73.(2021·陕西西安·交大附中分校七年级期末)23-的倒数是( ) A .32- B .32 C .23 D .23- 4.(2021·内蒙古七年级期末)《庄子·天下篇》讲到:“一尺之棰,日取其半,万世不竭”,意思是说一尺长的木棍,每天截去它的一半,千秋万代也截不完,一天之后“一尺之捶”剩12尺,两天之后剩14尺,那么3天之后,这个“一尺之棰”还剩( )A .12尺B .14尺C .18尺D .116尺 5.(2021·全国七年级课前预习)下列把除法转换为乘法的过程中正确的是( )A .()114433⎛⎫÷-=-⨯ ⎪⎝⎭B .()()()13663⎛⎫-÷-=-⨯- ⎪⎝⎭C .()11414⎛⎫÷-=⨯- ⎪⎝⎭D .()13434⎛⎫-÷=⨯ ⎪⎝⎭6.(2021·湖南七年级期末)若“!”是一种数学运算符号,并且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则2021!2020!的值等于( ) A .2021 B .2020 C .2021! D .2020!7.(2020·浙江杭州·)若0a b +>,且0ab <,则( )A .0,0a b >>B .a ,b 异号且其中负数的绝对值较大C .0,0a b <<D .a ,b 异号且其中正数的绝对值较大8.(2021·全国七年级专题练习)下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C .91819×16=(10﹣119)×16=160﹣1619 D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)]二、填空题9.(2021·全国七年级专题练习)计算:3×(12-)=____. 10.(2021·全国七年级课前预习)计算:6×(-9)= __________(-6)×0=____________2 3×94-=________(13-)×14=_________(-2)×54×910⎛⎫-⎪⎝⎭×23⎛⎫-⎪⎝⎭=_____(-6)×5×76⎛⎫-⎪⎝⎭×27=_______11.(2020·浙江杭州·七年级期末)在数5-,1,3-,5,2-中任两个数相乘除,其中最大的积是_________,最小的商是_______.12.(2021·浙江七年级期中)在2021□□□的“□”内分别填入“+”,“-”,“⨯”三个运算符号(每个符号只能填1次),最大的运算结果=________.13.(2021·全国七年级专题练习)计算:−2÷12×2=______.14.(2021·陕西七年级期中)已知a、b都不为0,则||||||a b aba b ab++的值为___________.15.(2018·山东七年级期中)定义一种新的运算:x*y=2x yx+,如:3*1=3213+⨯=53,则2*3=__________.16.(2021·全国七年级课前预习)根据“除法是乘法的逆运算”探究:正数除以负数:8÷(-4)=8×(______)负数除以负数:(-8)÷(-4)=(-8)×(______)零除以负数:0÷(-4)=0×(______)可知,除以一个不等于0的数,等于乘以这个数的_____17.(2021·全国七年级课前预习)探究:规定一楼地面的高度为0,从一楼向上的方向为正,从一楼向下的方向为负.小亮测量学校楼梯每一级台阶都是15 cm.如果小亮从1楼向上走1、2、3级台阶时,他所在的高度分别是多少?如何用算式表示呢?15×1 =____15×2 =____15×3 =____小亮测量学校楼梯每一级台阶都是15cm.如果小亮从1楼向下走1、2、3级台阶时,他所在的高度分别是多少?如何用算式表示呢?(-15)×1 =____(-15)×2 =____(-15)×3 =_____观察上面的式子,根据你对有理数乘法的思考,填空:正数乘以正数积为_____数负数乘以正数积为______数正数乘以负数积为______数负数乘以负数积为______数乘积的绝对值等于各乘数绝对值的_______三、解答题18.(2021·全国七年级专题练习)计算:(1)(﹣4120)×1.25×(﹣8);(2)56⨯(﹣2.4)35⨯;(3)(﹣14)×(﹣100)×(﹣6)×0.01;(4)91819⨯15.19.(2021·全国七年级专题练习)计算下列各题:(1)112136⎛⎫÷-⎪⎝⎭;(2)151124364⎛⎫⎛⎫⨯-÷-⎪ ⎪⎝⎭⎝⎭;(3)1152(10)3236⎛⎫-÷-⨯÷- ⎪⎝⎭.20.(2021·全国七年级课前预习)计算:(1)()()74491647-÷⨯÷- (2)()41452⎡⎤⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦21.(2021·江苏南京一中七年级月考)定义运算“*”为:*()a b a b a b =⨯-+,求2*5,(3)*(8)--.22.(2021·福建七年级期末)已知一些两位数相乘的算式:62×11,18×22,34×11,15×55,63×39,54×11.(1)观察上述算式,选出具有共同特征的3个算式,并说出它们的共同特征;(2)分别计算你选出的算式.观察计算的结果,你能发现不经过乘法运算就可以快速、 直接地写出积的规律吗?请用文字描述这个规律;(3)在已知算式中,其他算式可以用上面的规律进行简便运算吗?如何能,写出你的变形过程并直接写出最后结果.23.(2021·西安市铁一中学七年级月考)已知x ,y 为有理数,现规定一种新运算“*”,满足x *y =xy ﹣5 例如:1*2=1×2﹣5=﹣3(1)请仿照上面的例题计算下列各题:①2*(﹣3);②(4*5)*(﹣16); (2)任意选择两个有理数,分别填入下列□和〇中,并比较它们的运算结果;多次重复以上过程,你发现:□*〇 〇*□(用“>”“<”或“=”填空).24.(2021·重庆七年级期末)一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做顺次数,例如四位正整数1369:因为1369<<<,所以1369叫做顺次数.(1)四位正整数中,最大的“顺次数”是__________,最小的“顺次数”是__________;(2)已知一个四位正整数的百位、个位上的数字分别是2、7,且这个四位正整数是“顺次数”,同时,这个四位正整数能被7整除,求这个四位正整数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三课时 有理数加减乘除混合运算
教学目标:
1.能按照有理数的运算顺序,正确熟练地进行有理数的加、减、乘、除的混合运算. 2.培养学生的观察能力和运算能力.
3.培养学生在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,最后要验
算的好的习惯.
教学重、难点:
重点:如何按有理数的运算顺序,正确而合理地进行有理数混合运算.
难点:灵活运用运算律及符号的确定.
教学程序设计:
一、复习回顾
1.我们学习了哪些运算?
2.有理数的加法法则是什么?减法法则是什么?它们的结果各叫什么?
3.有理数的乘法法则是什么?除法法则是什么?它们的结果各叫什么 ?
4.有理数的运算律有哪些?用式子如何表示?
5.在小学我们学过四则运算,那么四则运算的顺序是什么?
二、创设情景 引入新课
试一试:指出下列各题的运算顺序: 1.236⨯÷
2.()()342817-⨯+-÷-;
3.9
11325.0321÷⎪⎭⎫ ⎝⎛
-⨯-; 运算顺序规定如下(由学生归纳):
1)先算乘除,再算加减;
2)同级运算,按照从左至右的顺序进行;
3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。
(加法和减法叫做第一级运算;乘法和除法叫做第二级运算;)
三、例题讲解
例1 计算:(1))2()5()25(-⨯-÷-;(2)(-6)÷(-4)÷(-
65) 解:(1)原式=)2()51()25(-⨯-⨯-=-1;(2)原式=(-6)×(-
41)×(-56)=-59 例2 计算10
14112131÷÷⎪⎭⎫ ⎝⎛- 105
461⨯⨯-=)(解:原式 =3
4- 让学生分析计算顺序,然后教师板演计算过程并强调注意事项.
注
意: ①小括号先算; ②进行分数的乘除运算,一般要把带分数化为假分数,把除法转化为乘法; ③同级运算,按从左往右的顺序进行,这一点十分重要.
教师在例2的基础上引导学生分析并进行计算,然后教师对混合运算的书写格式进行纠正和
规范. 例3 (1))4
5(52)54(5175.0-⨯--÷+ (2)⎥⎦⎤⎢⎣⎡-÷⨯-+---)2()352.01(53
先让学生独立思考,把题目中计算有错误的改正过来.然后,老师根据学生完成的情况进行讲评.
变式练习:
计算:(1)()()8056--⨯-;
(2) 41311+-
; (3)()()153432+-⨯--⨯
(4)9
1321321÷⎪⎭⎫ ⎝⎛-⨯-; (5)()[]4103412÷-⨯-; (6)5213225.0-⨯⎪⎭
⎫ ⎝⎛-÷-. 四、总结反思
让学生谈出自己的体会与收获,教师进一步总结、补充.
1.本节主要学习了有理数加、减、乘、除的混合运算,进行有理数的混合运算的关键是熟练掌握其混合运算的运算法则、运算律及运算顺序.
2.几种运算法则要点:同号加,异号减;一、定符号,二相乘;除法减法要转化.
3. 在计算时,要注意选→定→算→查→改
五、作业 课本37页习题1.5第6题.。