探索勾股定理

合集下载

探索勾股定理(公开课课件)

探索勾股定理(公开课课件)

数学领域中的应用
三角函数
勾股定理与三角函数密切相关, 它可以用于求解三角函数的值, 以及推导三角函数的性质和公式。
解析几何
在解析几何中,勾股定理可以用于 求解直线、圆和曲线的方程,以及 解决几何问题。
数论
勾股定理在数论中也有应用,例如 在证明一些数学定理和猜想时,勾 股定理可以提供重要的思路和方法。
公式表示
勾股定理的公式可以表示为 a² + b² = c²,其中a和b是直角三角形的两条直角 边,c是斜边。
勾股定理的重要性
01
几何学基础
勾股定理是几何学中的一个基础定理,它为解决与直角三角形相关的问
题提供了重要的工具。
02 03
实际应用
勾股定理在现实生活中有着广泛的应用,例如建筑、航海、航空等领域。 通过应用勾股定理,我们可以解决与直角三角形相关的问题,从而更好 地理解和设计各种实际结构。
数学发展史
勾股定理在数学发展史上具有重要地位。它的证明和推广对于数学的发 展起到了重要的推动作用,也激发了人们对数学研究的兴趣和热情。
02 勾股定理的起源与历史
CHAPTER
毕达哥拉斯学派
毕达哥拉斯学派是古希腊时期的一个重要哲学和数学学派, 他们发现了音乐、政治、宇宙和数学之间的联系,并提出了 “万物皆数”的哲学思想。
CHAPTER
勾股定理的逆定理
勾股定理的逆定理
如果一个三角形的三边满足勾股定理 ,则这个三角形是直角三角形。
逆定理的证明
假设三角形ABC的三边满足勾股定理, 即$a^2 + b^2 = c^2$,根据余弦定 理,有$cos C = frac{a^2 + b^2 c^2}{2ab} = 0$,因此角C是直角。

探索勾股定理(19张PPT)数学八年级上册

探索勾股定理(19张PPT)数学八年级上册
在公元前300年左右,著名的数学家希腊的欧几里得提出了一套简洁而准确的几何方法,以求证在给定直角三角形中已知两直角边与斜边,斜边与另外两条边的平方和的关系。
1637年,路易十四命令巴黎学院组织了一场盛大的比赛,将法国的贵族们集结起来解决了这道难题,当时获胜的人可以得到很丰厚的奖品。
有关于勾股定理的趣味历史
勾股定理的介绍
目录
什么是勾股定理
有关于勾股定理的趣味历史
用勾股定理解决实际问题
勾股定理的跨学科
勾股定理的验证推导
什么是勾股定理
什么是勾股定理
有关于勾股定理的趣味历史
有关于勾股定理的趣味历史
据说在古埃及文明中,他们建造金字塔时使用了“几何法则”来确定石块之间的距离和角度。这个神秘的几何法则据说与古代建筑物的外形有关系,可能就是指勾股定理。
折叠毕达哥拉斯定律
勾股定理的验证推导
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。
在语文课堂上的应用
在科学实验中的应用
用勾股定理解决实际问题
物理学中的应用
勾股定理在物理学中被广泛运用,可以用于建筑结构分析、机械设计以及其他类似问题的解决,同时也是桥梁设计的重要理论基础之一。
有不少现代的编程语言内置了计算器功能,提供了简便易用的库支持。而且在算法领域也能看到它的踪影,如分治算法、动态规划算法等

《探索勾股定理》教案设计有趣的勾股定理数学游戏

《探索勾股定理》教案设计有趣的勾股定理数学游戏

【前言】勾股定理是我们学习数学时最基础的知识之一。

作为一名优秀的数学老师,如何让学生在轻松愉快的氛围中掌握勾股定理呢?经过反复研究,我给大家带来了一个有趣的勾股定理数学游戏——《探索勾股定理》教案设计。

【教案设计】一、活动目的1.掌握勾股定理的基本概念和运用方法。

2.培养学生的逻辑思维和数学分析能力。

3.通过实践提高学生的空间想象能力。

二、活动准备1.游戏道具:带刻度的正方形模型和带刻度的平行四边形模型;固定长度的木棒。

2.活动环境:宽敞明亮的活动场地,大屏幕电视。

三、活动过程1.引导学生分工合作,每个小组从模型材料中制作出三角形。

2.学生在制作三角形之后,按照勾股定理的要求,测量并填写三角形每个角度及边长,同时对三角形面积进行计算。

3.根据已知数据(两个边长和一角度),学生利用勾股定理计算三角形第三边的长度。

4.通过比较计算结果和测量结果,验证勾股定理的正确性。

5.游戏深入:每个小组在制作好的三角形上,用木棒连成等腰直角三角形,并在最长的一边上刻度,计算出每个直角边的长度。

6.游戏拓展:将学生为每个直角边涂上颜色,并在屏幕上显示每个小组制作的三角形成品,让学生自己观察,看看是不是每组画出的直角三角形边长总和相等。

四、活动收获1.游戏过程中,学生通过制作三角形、计算量角器的角度、测量三角形的边长和面积,以及应用勾股定理和弦正切公式,增进了对勾股定理的理解。

2.在游戏深入环节中,学生动手制作、参与计算,强化了对勾股定理的记忆和运用能力。

3.在游戏拓展环节中,学生通过观察屏幕上的成品图形,巩固了对勾股定理的理解,并加强了对图形的空间想象力。

【总结】通过这个游戏,学生不仅能够更深刻地理解勾股定理,而且在游戏的实践中提高了自己的数学能力。

教师也可以通过观察学生的实践表现,及时发现和纠正学生的错误思考方式,减少学生的盲点和误区。

让我们一起来探索勾股定理,让数学就在有趣的游戏中学起来!。

探索勾股定理ppt课件

探索勾股定理ppt课件
A的面积 B的面积 C的面积
左图 4
9
A a cC b
B
C
A ac b
B
右图 16
9
25
(1)正方形A、B、C的面积间 有什么关系?
SA+SB=SC. a2+b2=c2
(2)正方形A、B、C与中间的 直角三角形有什么关系?
结论2 以直角三角形两直角 边为边长的小正方形的面积 的和,等于以斜边为边长的 正方形的面积.
自主探究 任务一:探索勾股定理的内容
(指向目标一)
1.观察右图:(时间2分钟)
填表(每个小正方形的面积为单位1)
A的面积 B的面积 C的面积
左图 9
9
18
右图 4
4
8
(1)正方形A、B、C的面积间 有什么关系?
SA+SB=SC.
(2)正方形A、B、C与中间的 等腰直角三角形有什么关系?
SA+SB=SC.
当高AD在△ABC外部时,如图②. 同理可得 BD=16,CD=9. ∴BC=BD-CD=7, ∴△ABC的周长为7+20+15=42. 综上所述,△ABC的周长为42或60.
方法总结 题中未给出图形,作高构造直角三角形时, 易漏掉钝角三角形的情况.如在本例题中,易只考虑 高AD在△ABC内的情形,忽视高AD在△ABC外的情形.
弦 勾

我国古代把直角三角形中 的直角边称为 , 的直角 边称为 , 称为 ,“勾股 定理”因此而得名.
巩固训练(2分钟)
1.钢索的长度?

10m
8m
6m
评价标准:独立完成为优秀,同桌互助为及格。
评价标准:2题全对为优秀,1题全对为及格
合作促学 任务二:熟练运用勾股定理进

八年级数学探索勾股定理

八年级数学探索勾股定理

100%
解决物理问题
勾股定理在解决物理问题中也有 着广泛的应用,如求物体的速度 、加速度等。
80%
建立物理模型
勾股定理可以用来建立物理模型 ,如建立质点运动模型、弹性碰 撞模型等。
在日常生活中的应用
建筑测量
在建筑测量中,勾股定理可以 用来确定建筑物的角度和长度 ,以确保建筑物的稳定性和安 全性。
航海定位
八年级数学探索勾股定理

CONTENCT

• 引言 • 勾股定理的证明 • 勾股定理的应用 • 勾股定理的扩展 • 勾股定理的探索与发现
01
引言
勾股定理的背景
勾股定理是数学中一个基本而重要的定理,它揭示 了直角三角形三边之间的数量关系。这个定理在古 代文明中就已经被发现和应用,如古希腊、古中国 和古巴比伦等。
勾股定理的推广在几何学中有着广泛的应用,它可以用来判 断一个三角形是否为直角三角形,也可以用来证明一些与三 角形相关的定理和性质。
勾股定理在复数域中的应用
勾股定理在复数域中的应用是指将勾股定理应用到复数领域 中。在复数域中,勾股定理仍然成立,即对于任意两个复数a 和b,有a^2 + b^2 = c^2,其中c是a和b的模长。
在西方,勾股定理最早可以追溯到公元前6世纪,古 希腊数学家毕达哥拉斯学派发现了直角三角形三边 之间的数量关系,并给出了证明。
在中国,勾股定理也被称为商高定理,最早的记载 可以追溯到周朝时期的《周髀算经》。
勾股定理的重要性
勾股定理是几何学中的基石之 一,它不仅在数学领域有着广 泛的应用,而且在物理学、工 程学、天文学等领域也有着重 要的应用。
勾股定理在三角函数、解析几 何、微积分等数学分支中也有 着广泛的应用,是数学学习中 不可或缺的一部分。

2023探索《勾股定理》说课稿范文(精选5篇)

2023探索《勾股定理》说课稿范文(精选5篇)

2023探索《勾股定理》说课稿范文(精选5篇)2023探索《勾股定理》说课稿范文(精选5篇)1一、教材分析:(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。

其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。

二、教学与学法分析教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。

"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。

首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。

让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。

第二步追溯历史解密真相勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

从上面低起点的问题入手,有利于学生参与探索。

学生很容易发现,在等腰三角形中存在如下关系。

1.1.2探索勾股定理(教案)

1.1.2探索勾股定理(教案)
”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的形状?”比如,我们常见到的墙角、桌面上的三角板等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
(二)新课讲授(用时10分钟)
在学生小组讨论环节,我尽量让自己成为一个引导者和协助者,让学生们充分发表自己的观点。从讨论成果来看,学生们对于勾股定理在实际生活中的应用有了更深入的认识。但同时,我也发现有些学生在讨论中较为沉默,可能是因为缺乏自信或者不敢表达自己的看法。针对这个问题,我打算在以后的教学中多关注这部分学生,鼓励他们积极参与讨论。
(3)学会运用勾股定理解决实际问题,例如计算直角三角形的斜边长度或已知斜边长度求直角边的长度。
举例:在讲解勾股定理时,可以引用教材中的例子,如一个直角三角形,两直角边分别为3和4,求斜边长度。通过计算3²+4²=9+16=25,然后开方得到斜边长度为5,使学生理解并掌握勾股定理的应用。
2.教学难点
(1)理解并证明勾股定理:对于部分学生来说,理解直角三角形两条直角边与斜边之间的数量关系可能存在困难。因此,教师需要采用生动形象的方法,如实物操作、动画演示等,帮助学生突破这一难点。
本节课的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力,通过探索勾股定理的过程,让学生理解数学结论的严谨性,提高他们的逻辑思维水平;
2.培养学生的空间想象力和几何直观,通过观察和分析直角三角形的性质,发展学生对图形的认识和处理能力;
3.培养学生的数学建模素养,使学生能够运用勾股定理解决实际问题,建立数学模型,感受数学与现实生活的紧密联系;
1.1 .2探索勾股定理(教案)

探索勾股定理

探索勾股定理

探索勾股定理1教材所处的地位勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系,将形与数密切联系起来,它在数学的发展中起过重要的作用,在现实世界中也有着广泛的作用.学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解.教学目标:1、能说出勾股定理的内容,并能应用勾股定理解决简单的问题.2、在经历探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证-应用”的数学思想,发展合理的推理能力,并体会数形结合和特殊到一般的思想方法.3、经历用多种方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理的思考与表达能力,感受勾股定理的文化价值和数学美,激发学生的学习热情和爱国情感.教学重点:勾股定理的探讨.教学难点:用割补法验证勾股定理.教法与学法分析:教法分析:数学《课程标准》提出,“本学段(7-9)年级的教学应结合具体的数学内容,采用‘问题情景---建立模型----解释、应用与拓展’的模式展开,应加强数学与学生的生活经验相联系.”针对八年级学生的知识结构和心理特征,本节课选择引导探索法,由浅入深,从学生熟知、感兴趣的生活事例出发,以生活实践为依托,将生活经验数学化,由特殊到一般地提出问题.引导学生自主探索,合作交流,促进学生的主动参与,让学生经历数学知识的形成与应用过程,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,焕发出数学课堂的活力.学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体.课本的知识是有限的,而五彩缤纷的生活所提供的教育资源却是无限的.在课改中本着促进学生发展的宗旨,让学生在生活中观察、猜测,在自主探索与合作交流中,创造出自己的数学——生活中的数学,时时感受到:“无处不在的数学”与数学美,进一步体会数学的地位与作用.教学过程情景创设1南京市暑期初中数学教师培训教案、说课评比一等奖2008.10用课件展示1955年希腊发行的一枚纪念邮票.师:请同学们观察这枚邮票小方格的个数,你有哪些发现?邮票上的图案是根据一个著名的数学定理设计的.生:我发现邮票上面左边的正方形有16个小方格,右边的正方形有9个小方格,最大的正方形有25个小方格.生:我也有这样的发现,我还发现最大的正方形中的方格数等于两个较小的正方形中的方格数.师:说得好,这张邮票是希腊1955年纪念毕达哥拉斯生平的一张邮票,画面上以32+42=52形象地表明这一我们本课要学的勾股定理的内容.师:某楼房三楼失火,消防队员赶来救火,了解到每层楼高h=3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离x=2.5米,请问消防队员能否进入三楼灭火?让学生思考1~2分钟,小组讨论,各小组保留结果代用,期待共同解决.师:这个问题有挑战性,待会儿看看我们用什么方法来解决.(问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?” 的问题.学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了.这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活.)1、探索活动(1) 猜想右图中以AB 为边的正方形的面积是多少?说说你是如何猜想的.学生在观察屏幕上的图形后,举手请求回答问题.生:我通过数数,完整的小方格一共有13个,还有不完整的图形我把它们合并成12个小方格,它们一共有25个,所以正方形的面积是25.师:很好,还有别的方法吗?生:老师,利用邮票上的方格数比较方法,我猜是25,它的面积是以BC 为边和AC 为边的两个正方形的面积的和,不知对不对?师:同学们,他的猜想有道理吗?两个小正方形的面积的和等于大正方形的面积吗? C BA(通过猜想促使学生积极思考,自发的由邮票上的方格数转换到图2-1的联想,承前起后.)通过屏幕显示以下两图.师:你能计算出以AB 为边的正方形的面积吗?观察小方格的数量与正方形的面积,正方形的面积与正方形的边长,正方形的边长与三角形的形状之间的联系.(教学中要让学生主动建立由形到数,由数到形的联想,从中使学生不断积累数学活动的经验.)师:现在你能说明你的猜想是正确的吗?请先在小组与同学进行交流.师:从以AB为边的正方形的面积的计算中你发现了什么?生:老师,求正方形的面积有时候不一定要知道边的长度.师:那你怎么办?生:就像图上显示的,我把这个正方形分成4个小三角形和一个小正方形,一个小三角形的面积是6,小正方形是1,总共是25.生:我们还可以把它放到一个边长为7的大正方形中,然后拿去4个面积为6的小三角形,以AB为边的正方形的面积也是25.师:你计算以AB为边的正方形的面积的方法和他们的计算方法一样吗?从他们的计算方法中你得到什么启发吗?.(让同学再次回味、思考、交流.)师:现在你可得出什么结论?生:以AB为边的正方形的面积等于以BC为边的正方形的面积与以AC为边的正方形的面积的和.师:从以AB为边的正方形的面积的计算中,我们发现:以AB为边的正方形的面积等于以BC为边的正方形的面积与以AC为边的正方形的面积的和,在其它的直角三角形中,还有这种关系吗?请你在方格纸上做实验,并与四人小组的同学进行交流.(把图形进行“割”和“补”,两种方法体现的是同一种思想-----化归思想,即把不能利用网格线直接计算面积的图形化成可以利用网格线直接计算面积的图形)2、 实验操作(探索-猜想):实验1 在方格纸上,任意画一个顶点都在格点上的直角三角形;并分别以这个直角三角形的各边为一边向三角形外作正方形,仿照上面的方法计算以斜边为一边的正方形的面积.师:现在屏幕显示出一个表,让同学们填表,通过学生操作、实验,请学生将正方形的面积与三角形的边长联系找出来.(教师在教室巡视,和同学共同参与演算,作为他们某 个小组的一份子,听取他们的意见和看法,并进行个别指导.)师:请几位同学介绍自己的实验结果,并将数据填入表格.实验2 教师用计算机演示(利用几何画板): 1.在△ABC 中,∠A ,∠B ,∠C 所对边分别为a ,b 和 c , ∠ACB = 90°,使△ABC 运动起来,但始终保持∠ACB =90°,如拖动 A 点或B 点改变a ,b 的长度来拖动AB 边绕任一点旋转△ACB 等.2.在以上过程中,始终测算a 2,b 2,c 2,各取以上典型运动的某一两个状态的测算值(约3~5个)列成表格,让学生观察三个数之间有何数量关系.b c C a B A(通过学生操作、实验和课件的演示,从而为归纳提供基础,使学生体验归纳的思想.)师:从我们实验的大量数据中,你现在对直角三角形三边之间的数量关系有什么猜想?生:直角三角形两直角边的平方和等于斜边的平方.师:这就是我们今天要学习的勾股定理(板书课题).师:引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本技能. 接着教师向学生介绍“勾,股,弦”的含义.∵Rt △ABC 中,∠C = 90°∴AB 2=AC 2+BC 2或a 2+b 2=c 2(通过实验验证定理的正确性,加深学生的印象,同时感受数学奇异美)3.应用举例,巩固定理师:我们刚才学习了勾股定理.勾股定理有什么用吗?怎样用? 生:知道直角三角形两边可以求第三边.生:知道两直角边,应用公式可以求斜边.生:知道一直角边和斜边,应用公式可以求另一直角边.师:请同学们每人任作两直角三角形,量出其中一个直角三角形两直角边,求出其斜边;量出另一个直角三角形一直角边和斜边,求另一直角边.运算完之后,再量出所求线段的长,看计算是否正确,图是否画准.(投影)请小组里的同学互相检验.(通过此题,可以锻炼学生灵活运用的能力)4.巩固练习:1、课本P54练习(投影).2、让学生解决开头的实际问题,再问消防队员能否进入三楼灭火.请同学们观察当三边长度改变后,a 2+b 2的值与c 2的值有什么关系?a 2+b 2 = 32.30 厘米2b 2 = 6.45 厘米2c 2 = 32.30 厘米2a 2 = 25.85 厘米2b = 2.54 厘米c = 5.68 厘米a = 5.08 厘米ba 探索勾股定理C A2、小米妈妈买了一部29英寸(74厘米)的电视机.小米量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?(让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦,再做生活中的实例,进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的.)5.介绍勾股定理的史料我国称这个结论为“勾股定理”,西方称它为“毕达哥拉斯定理”,为什么呢?(1)介绍《周髀算经》中西周的商高(公元一千多年前)发现了勾三股四弦五这个规律;(2)介绍西方毕达哥拉斯于公元前582~493时期发现了勾股定理;(3)康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创;(4)目前世界上可以查到的证明勾股定理的方法有几百种,连美国第20届总统加菲尔德于1881年也提供了面积证法,而我国古代数学家利用割补、拼接图形计算面积的思路提供了很多种证明方法.(引导学生对知识要点进行总结,梳理学习思路,掌握定理内容及初步应用)6、说说你的收获与体会(1)请你说说勾股定理;(2)勾股定理揭示了“形”与“数”的内在联系,你还能举例说明这种联系吗?(3)两种探索转化方法:“割”与“补”.7、布置作业.课后反思一、本节课根据学生的知识结构,我采用的是“观察—猜想—归纳—验证-应用”的教学方法,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想.本节课我力求做到了以下几点:1.“新”.利用学生熟知的邮票图案,引入新课,创设问题情景.引入消防队员能否进入三楼灭火的问题,由它激发学生强烈地求知欲望,从而调动学生学习数学的积极性,在生活情境中感受数学美.2.“活”.创设愉悦和谐的乐学气氛,引导学生自主探索与合作交流.通过设置问题,引导学生开展小组讨论,学生通过实验操作进行自主探索,用不同的学习方式来理解直角三角形的三边关系,为学生提供了参与活动与交流的空间,在交流实践中创造美.3.“实”.加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动.通过几个练习,让学生理解并会应用勾股定理来解决问题,把所学知识和运用知识结合起来,培养了学生的创新意识和实践能力.这节课运用现代信息技术,做成课件进行演示,取得了较好的教学效果,在应用中感受数学的奇异美.二.探索定理采用了“割补法”,引导学生利用实验进行由特殊到一般直角三角形三边关系的研究,得出结论.“因为快乐,所以学习”,在教学中,我们就是要让学生积极主动的参与,充分调动学生的学习积极性,在学生得到“勾股定理”的结论后,又让学生画图检验其正确性,让学生感到自己的发现的定理是正确的,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用.三.本课从内容、应用、数学思想方法、获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用数学知识解决实际问题的意识是有很大的促进作用的.在教学中,我们老师不要把数学教育单纯地理解成知识的传授和技能的训练,要把探究作为课堂教学的主旋律,做为创新教学方式的一种.真正实施民主的开放式教学,创设平等、民主、宽松的教学氛围,使师生完全处于平等的地位,学生才能敞开思想,积极参与教学活动,从而最大限度的调动学生的积极性,激发他们的学习兴趣,引导他们多角度、多方位、多层次地思考问题,使他们有足够的机会显示灵性,展现个性,在课堂活动中经历、感悟知识的生成、发展与变化过程,其中体现的合作交流,勇于探索的品质,从而感受数学美给学生带来的快乐,把“做数学”的过程还给学生.。

八年级数学上册教学课件《探索勾股定理(第1课时)》

八年级数学上册教学课件《探索勾股定理(第1课时)》
图1
分割成若干个直角边为整数的三角形 S正方形C = 4×12×3×3 =18(单位面积)
(图中每个小方格代表一个单位面积)
探究新知
1.1 探索勾股定理
练一练 通过对图1的学习,
求出图2正方形A,B,C中面积
各是多少?
C A
解:正方形A的面积是4个 单位面积,正方形B的面积 是4个单位面积,正方形C 的面积是8个单位面积.
知识点 勾股定理的探索
做一做
在纸上画若干个直角边为整数的直角三角形,
分别测量它们的三条边长,并填入下表.看看三边长
的平方之间有怎样的关系?与同伴进行交流.
a
b
c
a2,b2,c2之间关系
探究新知
1.1 探索勾股定理
问题1 你能发现下图中三个正方形面积之间有怎样的关系?
C A
B
图1
(图中每个小方格代表一个单位面积)
课堂检测
基础巩固题
1.1 探索勾股定理
4.求出图中直角三角形第三边的长度.
12 x
解:由勾股定理得: 152+x2=172 , 所以x2=64 , 所以x=8 .
43 解:由勾股定理得:
x2= 32 +42+152 ,
所以x2=169 , 所以x=13 .
课堂检测
基础巩固题
1.1 探索勾股定理
5.已知∠ACB=90°,CD⊥AB,AC=3,BC=4. 求CD的长.
探究新知
1.1 探索勾股定理
2.求非直角三角形的面积
例3 如图,在△ABC中,AB=AC=13,BC=10,求△ABC的面积.
解:作AD⊥BC于D,
在等腰△ABC中,因为AB=AC=13,BC=10,

探索勾股定理

探索勾股定理
D
0.5 2 B
C
A
例2、 如图所示是一个长方形零件的 平面图,尺寸如图所示, 求两孔中心A, B 之间的距离.(单位:毫米)
40 A
90
C
160
B 40
例1:已知ΔABC中,∠C= 90,BC=a,
AC=b,AB=c。 (1)若a=3, b=2, 求c; (2)若a=3,c=5,求b;
试一试 1、在△ABC中,∠C= 90 .
(1)若a=5,b=12,则c= .
(2)若c=4,b= 6 ,则a=
.
2、已知△ABC的三边分别是a,b,c,
若∠B= 90 ,则有关系式( )
a cc b
c c
a
b
• 美国第二十任总统伽菲尔德的证法在数学史上被传为佳 话人们为了纪念他对勾股定理直观、简捷、易懂、明了 的证明,就把这一证法称为“总统”证法。
你会算吗?
印度数学家什迦逻(1141年-1225年?) 曾提出过“荷花问题”:
“平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅?”
勾股
勾股世界
两千两多千多年年前前,,古古希希腊有腊个有哥拉个毕达哥拉斯 学斯学派派,,他他们们首发先发现现了了勾勾股股定定理,理因,此 因此在国外 在人国们外通人们常通称常勾称勾股股定定理理为为毕毕达哥达拉哥斯 拉斯定理。 定为理了。纪为了念纪毕念达毕达哥哥拉拉斯斯学学派派,1,9515955年希腊 年曾希经腊发曾经行发了行了一一枚枚纪纪念念票邮。票.
国我家国之是一。最早早在三了千解多勾年前股,定理的 国国家家之之一。一早。在早三千在多三年前千,多年前,周 朝国家数之学一。家早商在高三千就多提年前出,,将一根直 尺国家折之成一。一早个在直三千角多,年前如,果勾等于三, 股国家等之于一。四早,在那三千么多弦年前就,等于五,即 “国家勾之三一。、早股在四三千、多弦年前五,”,它被记 载国家于之我一。国早古在代三千著多名年前的,数学著作 《国家周之髀一。算早经在》三千中多.年前

探索勾股定理 【完整版】

探索勾股定理 【完整版】

§探索勾股定理(一)教学目标:1、经历用数格子的办法探索勾股定理的过程,了解并掌握勾股定理的内容。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生在探索过程中发现问题、总结规律的意识和能力。

重点难点:重点:勾股定理的内容及探究。

难点:勾股定理的发现教学方法:讲练结合、合作交流。

教学过程一、创设问题的情境,激发学生的学习热情,导入课题出示投影1 章前的图文)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影第一节首电线杆拉线问题,出示课题。

二、做一做1、各学习小组在纸上画若干个直角三角形,分别测量它们的三条边的长,看看三边长的平方之间又怎样的关系小组内进行交流。

教师强调所画三角形尽量是任意三角形。

2、出示P2 书中的P2 图1—2)并回答:(1)观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

(2)你是怎样得出上面的结果的在学生交流回答的基础上教师直接发问:(3)图1—2中,A,B,C之间的面积之间有什么关系学生交流后形成共识,教师板书:A+B=C。

3、出示(书中P2图1—3)提问:(1)图1—3中,A,B,C之间有什么关系(2)从图1—2,1—3,中你发现什么学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

4、学生讨论:(1)图1—2、1—3中,你能用三角形的边长表示正方形的面积吗(2)你能发现直角三角形三边长度之间的关系吗在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。

这就是著名的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c,a2+b2=c2,我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

探索勾股定理ppt课件

探索勾股定理ppt课件
星人联系的信号.
欣赏下面一幅美丽的图案,仔细观察,你能发现这 幅图中的奥秘吗?带着疑问我们来一步认识
做一做 观察正方形瓷砖铺成的地面. (1)正方形P的面积是 1 平方厘米; (2)正方形Q的面积是 1 平方厘米;
AR P
CQ B
(3)正方形R的面积是 2 平方厘米.
左图 4
9
13
右图 16
9
25
分析表中数据,你发现了什么?
A的面积
左图
4
右图 16
B的面积 9 9
C的面积 13 25
结论 以直角三角形两直角边为边长的小 正方形的面积的和,等于以斜边为边长 的正方形的面积.
总结归纳
勾股定理
直角三角形两直角边的平方和等于斜边的 平方.
几何语言 ∵在Rt△ABC中 ,∠C=90°, ∴.AC2+BC2=AB2 (勾股定理)
五、分层作业 课后思考
基础训练:1、小明的妈妈买了一部29in的电 视机。小明量了电视机的屏幕后,发现屏幕只 有58cm长和46cm宽,他觉得一定是销售员搞错 了。你同意他的想法吗?你能解释这是为什么 吗?
2、求下列图中未知数x,y的值
提高训练:1.今有池方一丈,葭生其中央,出水一 尺.引葭赴岸,适与岸齐.问水深、葭长各几何?译: 有一个一丈大小的池子,中央长有芦苇,高出水面 一尺长.把芦苇拽向岸边,刚好与到岸.请问水有多 深,芦苇有多高?
小男孩又问道:“如果两条直角边分别为5和7,那么这个直角 三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“ 那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道 :“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无 法解释了,心理很不是滋味。于是伽菲尔德不再散步,立即回 家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演 算,终于弄清楚了其中的道理,并给出了简洁的证明方法。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了 他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十 任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、 明了的证明,就把这一证法称为“总统。”证法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《探索勾股定理》第一课时教学设计
德州市第九中学詹红霞
一、教材分析
(一)教材地位与作用
勾股定理是在学生已经掌握了直角三角形有关性质的基础上进行学习的。

在教材中起到承上启下的作用,为下面学习勾股定理的逆定理作了铺垫,为以后学习“四边形”和“解直角三角形”奠定基础。

勾股定理的探索和证明蕴含着丰富的数学思想和科学研究方法,是培养学生具有良好思维品质的载体。

它在数学的发展过程中起着重要的作用。

勾股定理是一坛陈年佳酿,品之芬芳,余味无穷,它以其简洁优美的形式,丰富深刻的内涵刻画了自然界和谐统一关系,是数与形结合的优美典范。

(二)教学目标
知识技能
了解勾股定理的文化背景,体验勾股定理的探索过程。

数学思考
在勾股定理的探索过程中,体会数形结合思想,发展合情推理能力。

解决问题
1.通过拼图活动,体验数学思维的严谨性,发展形象思维。

2.在探究活动中,学会与人合作,并在与他人交流中获取探究结果。

情感态度
1.通过对勾股定理历史的了解,感受数学文化,激发学习热情。

2.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。

(三)教学重点及难点
重点:经历探索及验证勾股定理的过程。

难点:用拼图的方法证明勾股定理。

(四)教学媒体准备
教学媒体:多媒体课件。

学具准备:方格纸(老师准备)、4个全等的直角三角形(学生四人一组,分组准备)。

二、教法与学法分析
教法分析:八年级学生经过一年半的几何学习,几何图形的观察、几何证明的理性思维能力已初步形成。

因此在教学中要力求实现以教师为主导,以学生为主体,以知识为载体,以培养学生的“思维能力,动手能力,探究能力”为重点的教学思想。

尽量为学生创设“做数学、玩数学”的情境,让学生从“学会”到“会学”,使学生真正成为学习的主人。

学法分析:八年级学生生活经验积累较少,缺乏严谨的逻辑推理能力。

所以在探索勾股定理时,主要通过直观的,乐于接受的拼图法去验证勾股定理。

“操作+思考”的方式符合八年级学生认知水平,适应其思维发展规律及心理特征。

让学生感悟到:学习任何知识的最
好方法就是自己去探索,在探索中领悟、在领悟中理解,让他们“学会学习”。

三、教学过程
新课标指出,数学教学过程是教师引导学生进行学习的过程,是教师和学生互动共同发展的过程。

为有序、有效地进行教学,本节课我主要安排以下教学环节:
教学过程
问题与情景
设计意图
课前探究知识储备
请各个学习小组从网络或书籍上,尽可能多的寻找和了解验证勾股定理的方法,并填写探究报告。

《勾股定理证明方法探究报告》 方法种类及历史背景 验证定理的具体过程 知识运用及思想方法
查有关勾股定理的资料,这样可使学生在上这节课前就对勾股定理历史背景有一定的了解。

同时培养学生的自学能力及归类总结能力。

有了课前充足的知识储备,学生充满自信地迎接新知识的挑战。

设置悬念引出课题 请同学们观看视频和图片。

提问:为什么我国科学家向太空发射勾股图试图与外星人沟通?
为什么把这个图案作为2002年在北京召开第24届国际数学家大会会徽?——引出课题《勾股定
理》 “问题是思维的起点”,用一段生动有趣的动画,点燃学生的求知欲,以景激情,以情激思,引领学生进入学习情境,使学生带着疑问进行教学。

同时为探索勾股定理提供背景材料,进而引出课题。

画图实践大胆猜想
沿着先人的足迹,开始勾股定理的探索之旅。

活动一:毕达哥拉斯是古希腊著名的数学家。

相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。

(1)同学们,请你也来观察下图中的地面,看看能发现些什么?
出示毕达哥拉斯做客故事,提出问题。

学生独立思考隐藏的规律,提出猜想。

我配合演示,使问题更形象、具体,学生容易得出等腰直角三角形三边满足关系。

教学活动从“数小方格”开始,起点低、趣味性浓,照顾了各个知识层面的学生,有利于实现“每一个学生的发展”。

这样的设计能让学生在轻松的伟人故事中积极参与对数学问题的讨论和探索。

看似平淡无奇的现象有时却隐藏着深刻的道理。

激励学生用心观察,带领学生情绪激昂的继续探索。

、,斜边为,请同学们动手拼一拼。

)请从你拼的图形中验证
,斜边长为,那么
四、教学说明
(一)时间安排
1.设置悬念引出课题———————————3分钟2.画图实践大胆猜想———————————12分钟3.动手拼图定理证明———————————16分钟4.探古博今感知勾股———————————5分钟5.学以致用体会美境———————————5分钟6.总结升华完善报告———————————4分钟(二)板书设计
18.1勾股定理(一)
一、图形奥秘
二、毕达哥拉斯故事
图形探究→猜想→命题三、验证方法
动手拼图证法
探究报告展示
“学生展示区”四、勾股定理
如果直角三角形两直角边长分别是,斜边是,那么
五、勾股定理的历史背景及应用
六、练习
七、小结及作业。

相关文档
最新文档