双水相萃取分离
双水相萃取的原理及应用 (2)
双水相萃取的原理及应用1. 引言双水相萃取是一种常用的分离和提取技术,它利用两种不相溶的溶剂,即水相和有机相,在液-液界面上进行分相和萃取。
该技术具有高效、简便、环保等特点,被广泛应用于化学、生物、环境等领域。
本文将介绍双水相萃取的原理和一些常见的应用。
2. 双水相萃取的原理双水相萃取的原理基于不同溶剂之间的亲疏水性差异,以及化合物在两种溶剂中的分配系数。
在水相和有机相的界面上,亲水性较强的化合物会向水相转移,而亲水性较弱的化合物则会向有机相转移。
这样,在两相之间可实现化合物的分离和富集。
3. 双水相萃取的步骤双水相萃取通常包括以下几个步骤:•第一步:选择合适的水相和有机相溶剂。
一般情况下,水相为水,有机相为有机溶剂如乙醚、丙酮等;•第二步:将待提取物溶解在适量的水相溶液中,并加入适量的有机相溶液;•第三步:进行充分摇匀和混合,使两相形成均匀混合体;•第四步:静置一段时间,使两相分离,从而形成上下两层液相;•第五步:将两相分离,分别收集上下相中的物质。
4. 双水相萃取的应用4.1. 生物化学•蛋白质分离纯化:双水相萃取可用于蛋白质的富集和纯化,对于分子量较大的蛋白质特别有效;•酶的富集:通过双水相萃取,可以有效地从复杂的酶混合物中富集目标酶,提高其活性和纯度;•生物活性物质的提取:双水相萃取可用于提取天然产物中的生物活性物质,如草药提取液中的有效成分。
4.2. 环境科学•水样前处理:对于含有大量有机物的水样,双水相萃取能够有效地去除有机物,净化水质;•环境污染物的富集:通过双水相萃取,可以将水中微量的有机污染物富集到有机相中,方便进一步分析和检测。
4.3. 化学合成•有机合成中的分离提取:在化学合成过程中,双水相萃取可用于分离和富集目标化合物,提高产率和纯度。
5. 结论双水相萃取是一种高效、简便、环保的分离和提取技术,适用于多个领域。
它的原理基于不同溶剂之间的亲疏水性差异,通过分配系数的差异实现化合物的分离和富集。
萃取技术—双水相萃取技术(药物分离纯化课件)
内侧流 外侧 分配 萃取物
体 流体 系数
细胞色素 C 磷酸盐 PEG 0.18 肌红蛋白 磷酸盐 PEG 0.009 过氧化氢酶 磷酸盐 PEG 0.12 尿激酶 磷酸盐 PEG 0.65
内侧流 速,cm/s
16.3 4.0 16.3 16.3
外侧流 传质系 速,cm/s 数,cm/s
6.6 5.5?0 -6 5.0 7.5?0 -7 5.0 2.8?0 -5 5.0 2.0?0 -4
双水相萃取的应用--双水相萃取技术(萃取技术)
1.双水相萃取的应用
双水相分离条件 (1) 目的分子与细胞应分配在不同的相 (2) 分配系数应足够大 (3) 离心机容易分离
双水相萃取的应用
分离物质
举例
体系
NaDS-硫酸葡聚糖
酶 核酸 生长素 病毒 干扰素
细胞组织
过氧化氢酶的分离 分离有活性核酸DNA 人生长激素的纯化 脊髓病毒和线病毒纯化 分离β-干扰素
双水相萃取的应用--双水相萃取技术(萃取技术)
2.双水相萃取分离技术的发展方向 (1)廉价双水相体系的开发
优点: (1)蛋白质溶解度大。蛋白质在PPT浓度到15%以前没有沉淀,但在PEG浓度大于
5%时,溶解度显著地减小,在盐溶液中的溶解度更小。 (2)粘度小。PPT的粘度是粗dextran的1/2,传质好。 ⑶价格便宜。PPT几十$/kg,粗dex几百$/kg
系线
TMB:系线连接双节线上两点的 直线。
在临界点处,分配系数为1
临界点
药物分离与纯化技术课程
3.双水相相图
系线反映的信息:
(1)系线长度:衡量两相间相对差别的尺度。越长则两相间性质差 别越大,反之则越小;趋向于零时,(双节线上的点,临界点), 两相差别消失,成为均一相。
双水相萃取的原理及应用
双水相萃取的原理及应用1. 前言双水相萃取是一种常用的物质分离方法,广泛应用于化学、生物、医药等领域。
本文将介绍双水相萃取的原理及其在不同领域中的应用。
2. 原理双水相萃取是利用两种不相溶的溶剂(通常为水和有机溶剂)之间的相互作用,以实现物质的分离和提取。
其原理基于分子之间的相互作用力,包括疏水性、极性和亲合力等。
2.1 水相与有机相的选择在进行双水相萃取实验时,选择合适的水相和有机相是十分重要的。
常用的水相溶剂有水、盐水等,而有机相溶剂则包括乙酸乙酯、正己烷等。
选择水相和有机相时需要考虑样品的性质、溶解度以及分离的目的。
2.2 萃取剂的选择萃取剂是进行双水相萃取的关键因素之一。
常用的萃取剂包括酸、碱、络合剂等。
通过选择不同的萃取剂,可以实现对不同种类物质的萃取和分离。
2.3 萃取过程双水相萃取的过程包括三个主要步骤:混合、均相化和相分离。
首先,将水相溶液、有机相溶液和适量的萃取剂混合,形成两相体系。
随后,通过剧烈搅拌等方法,使两相充分混合,进一步提高物质的分离效果。
最后,待两相达到平衡后,通过离心等方法使两相分离,获得所需的物质。
3. 应用双水相萃取在许多领域中具有广泛的应用。
以下列举了一些常见的应用领域。
3.1 化学分析双水相萃取可用于化学分析中的样品预处理。
通过选择合适的萃取剂和萃取条件,可以实现对样品中目标物质的浓缩和提取。
在质谱分析、气相色谱等分析方法中,双水相萃取常被用于样品前处理,提高分析的准确度和灵敏度。
3.2 生物制药在生物制药过程中,双水相萃取被广泛应用于蛋白质分离和纯化。
通过调节水相和有机相的条件,可以实现对蛋白质的特异性提取和纯化。
此外,双水相萃取还可以用于细胞培养液中目标物质的富集,提高生物药物产量。
3.3 环境监测双水相萃取可用于环境监测中对水体和土壤中的有害物质进行提取和分析。
通过调节萃取剂的种类和浓度,可以有效地提取出目标物质,实现对环境中的污染物的定性和定量分析。
双水相萃取名词解释
双水相萃取名词解释双水相萃取是一种分离和提取物质的物理化学方法,它基于物质在两种不相溶的水相中的分配差异来实现。
其中,一相为有机溶剂相,另一相为水相。
双水相萃取能够实现目标物质从混合物中的分离纯化,常用于生物化学、制药、环境监测等领域。
与传统的单相溶剂萃取相比,双水相萃取具有高选择度、高灵敏度、快速分离和减少环境污染等优点,在实际应用中具有广泛的应用前景。
双水相萃取的核心原理是不同物质在两相之间的分配差异。
混合物溶解在有机溶剂相中后,目标物质会因其在两相中的溶解度不同而分配到两相中。
根据目标物质在两相中的分配系数,可以通过调整两相的物理化学性质,例如溶剂种类、pH值和离子强度等,来控制目标物质的转移和分离。
在双水相萃取中,通常使用的有机溶剂相为水不溶性有机溶剂,例如丁醚、乙醚、正己烷等。
水相通常为含有盐或酸碱调节剂的水溶液。
混合物溶解在有机溶剂相中后,通过搅拌、超声波处理等方法,使混合物中的目标物质与两相中的溶剂发生混溶,然后静置使两相分层。
最后,可以通过分液、离心等方式分离出两相,从而得到纯净的目标物质。
双水相萃取在实际应用中,常常与其他分离和纯化技术相结合,例如薄层色谱、气相色谱、高效液相色谱等,以实现更精确、高效的分离和纯化。
该技术不仅适用于分离化学品、天然产物、有机合成产物等有机化学领域,也可用于生物分子、生物体内代谢产物等在生物化学、制药等领域中的应用。
总之,双水相萃取是一种基于物质在两种不相溶的溶剂相中分配差异来实现目标物质的分离和纯化的物理化学方法。
它具有许多优点,广泛应用于化学、生物化学、制药和环境监测等领域,并与其他分离和纯化技术相结合,促进了科学研究和工业生产的发展。
蛋白分离纯化技术之双水相萃取技术
蛋白分离纯化技术之双水相萃取技术双水相萃取是一项蛋白分离和蛋白纯化技术,是利用物质在两相间的选择分配差异而进行分离提纯的,目前已经被广泛应用与医药化学、细胞生物学、生物化工和食品工业等领域。
双水相萃取技术用于提取蛋白质等生物活性物质时,具有操作简单、体系含水量高,在萃取过程中可以保持物质的构象稳定、蛋白不易失活并获得高的萃取率的特点。
1、双水相萃取技术可分离和纯化蛋白双水相萃取技术可以用于蛋白分离和蛋白纯化,包含在一些蛋白分离公司提供的服务。
早期,如在20世纪60年代,有研究者全面进行了生物大分子在双水相系统中的分配行为的研究,得到了蛋白质、酶、核酸、病毒、抗体抗原复合物以及细胞等的分配数据。
双水相系统具有温和的操作条件,对于在极性条件下易造成变性失活的蛋白质和酶的提取中表现出了很大的优势。
双水相萃取法进行蛋白分离和蛋白纯化的原理是:聚合物与聚合物之间或聚合物与盐之间由于分子空间阻碍作用形成了双水相。
当待分离物质进入体系后,由于各组分表面性质、电荷作用和各种力的作用和溶液环境的影响,使其在上、下相中的分配系数不同,通过调节体系参数使被分离物质在两相间选择性分配,从而实现目标组分的分离纯化。
双水相萃取技术进行蛋白分离和蛋白纯化具有以下优点:(1)易于放大,各种参数可以按照比例放大而不降低产物收率[1];(2)双水相系统传质和平衡过程速度快,回收效率高、能耗较小;(3)易于进行连续化操作、设备简单,且可以直接与后续提纯工序相连接,无需进行特殊处理;(4)相分离条件温和,双水相体系的张力很小,有利于保持生物分子的活性,可以直接用在发酵液中;(5)影响双水相体系的因素比较复杂,可调参数多,便于改变操作条件提高纯化效果。
美迪西提供蛋白质分离纯化技术服务,可以根据客户要求,提供从小试到规模生产全程的蛋白分离纯化服务,并根据工艺的要求结合产品特点给客户定制适用的工艺和系统。
2、双水相萃取技术分离和纯化物质的研究α-淀粉酶是一类用途十分广泛的酶,在粮食、食品加工,以及医药行业等都经常使用,由于α-淀粉酶是具有重要应用价值的工业酶,周内外很多课题组对它进行了研究。
双水相萃取技术在药物分离和提取中的应用
双水相萃取技术在药物分离和提取中的应用
双水相萃取技术是一种基于液液相分离原理的分离和提取方法,它可以将混合物中的目标化合物从溶液中转移到两个不相溶的水相中,以实现分离和提取的目的。
在药物分离和提取中,双水相萃取技术具有广泛的应用。
以下是一些常见的应用领域:
1. 天然药物的提取:双水相萃取技术可以有效地提取植物中的活性成分,如生物碱、黄酮类化合物、萜类化合物等。
这种方法具有选择性强、操作简单等优点。
2. 药物代谢物的分离:药物在体内会发生代谢反应,生成一系列的代谢产物。
双水相萃取技术可以将药物代谢物从复杂的生物样品中分离出来,以便进行结构鉴定和生物活性研究。
3. 药物残留的提取:双水相萃取技术可以用于农产品中药物残留的提取。
通过调整水相的组成和浓度,可以实现对不同药物的高效提取,以保证食品中的药物残留达到合理的安全标准。
4. 药物纯化:双水相萃取技术也可以用于药物的纯化。
通过调整双水相体系中的成分和条件,可以实现对目标化合物的高效富集和纯化。
总之,双水相萃取技术在药物分离和提取中具有重要的应用价值,可以有效地实现药物的富集、提取和纯化,为药物研发和分析提供了一种有效的方法。
新型分离技术-第四章 双水相萃取
在聚合物-盐或聚合物-聚合物系统混合物时,会出出
现两个不相混的水相,典型的例子如在水溶液的聚乙
二醇(PEG)和葡聚糖(Dextran),当各种溶质均
在低浓度时,可以得到单项均质液体,但是,当溶质 的浓度增加时,溶液会变得混浊,在静止的条件下, 会形成两个液层,实际上是两个不相混溶的液相达到 平衡,在这种系统中,上层富集了PEG,而下层富集
双水相萃取法与传统的分离方法(如盐析或有机溶
剂沉淀等)比较也有很大的优势(如表);
处理量相同时,双水相萃取法比传统的分离方法, 设备需用量要少3~10倍; 乙醇脱氢酶的分离已达到几十千克湿细胞规模;
用聚乙二醇(PEG Mr为6000)/磷酸钾系统从大肠
杆菌匀浆中提取β -半乳糖苷酶,β -半乳糖苷酶的
双水相系统由两种聚合物或一种
聚合物与无机盐水溶液组成,由
于聚合物之间或聚合物与盐之间
的不相容性,当聚合物或无机盐
浓度达到一定值时,就会分成不
互溶的两个水相,两相中水分所 占比例在85~95%范围,被萃 取物在两个水相之间分配。
双水相系统中两相密度和折射率差别较小、 相界面张力小、 相易分散,活性生物物质或 细胞不易失活。
第四章:新型萃取技术 Novel extraction techniques
第三部分 :双水相萃取
Two-aqueous phase extraction
双水相萃取技术(aqueous-two phase extraction,ATPS),又称水溶液两相分配技 术(Partion of two aqueous phase extraction) 。 两相为互不相溶的两水相, 组分在两相中溶解度不同而分离。
β-干扰素(β-IFN)的提取
双水相的萃取原理及应用
双水相的萃取原理及应用双水相萃取是一种常用的分离纯化技术,其原理是将两种互不相溶的溶剂(一般是水和有机溶剂)在适当的条件下混合形成两个相,通过溶质在两相间的分配系数差异,使溶质转移到另一相中来实现分离纯化。
双水相萃取技术在生物医药、食品工业、环境监测等领域有广泛的应用。
双水相萃取的原理可以通过亲水基团和疏水基团之间的相互作用来解释。
当有机溶剂向水中注入时,溶剂分子中的疏水基团与水中的活泼基团(如羟基和胺基)发生作用,形成一层水合包裹层。
这种水合包裹层使有机溶剂和水发生互溶性差异,从而使两种溶剂形成不相容的两个相。
双水相萃取的应用可以归纳为以下几个方面:1. 生物活性物质分离纯化:双水相萃取广泛应用于生物活性物质分离纯化领域,例如从植物提取出天然产物(如植物提取物中的生物碱、黄酮、甾醇等);从微生物培养液中提取酶、蛋白质等生物活性物质;海洋生物样品的提取等。
双水相萃取可以有效地分离目标物质并去除一些干扰性物质,提高目标物质的纯度和产率。
2. 蛋白质的分离纯化:双水相萃取可以用于蛋白质的分离纯化。
由于蛋白质在不同的条件下会有不同的溶解度,通过调节溶剂的性质和条件,可以使目标蛋白质在双水相中的分配系数大于1,从而实现蛋白质的富集和分离纯化。
3. DNA/RNA的提取:双水相萃取也可用于DNA/RNA的提取。
DNA/RNA在某些条件下与有机溶剂形成复合物,可以通过双水相萃取的方法将DNA/RNA 从混合物中分离出来。
这是分子生物学研究中常用的一种DNA/RNA提取方法。
4. 药物研发:双水相萃取在药物研发中有着重要的应用。
药物研发中常常需要提取、分离纯化目标化合物,双水相萃取可以通过调节溶剂体系的性质和条件,实现对复杂混合物中目标化合物的分离纯化,从而提高化合物的纯度和产率,为药物研发提供了有效的手段。
除了上述应用外,双水相萃取还可以用于环境监测、食品工业等领域。
例如,在环境监测中,可以利用双水相萃取将有机污染物和水样分离,进而进行有机污染物的检测与分析。
双水相萃取技术在生物制药中的应用
经过近二十年的发展,双水相 萃取技术已形成两类基本模型: 一是利用热力学作用原理发展 出的晶格模型,通过聚合成相 作用研究蛋白质等物质的分离 提纯
2
双水相萃取分离特点
双水相萃取技术通过利用两相溶液的聚合,当两相水溶液浓度含量过高时自然分离效 果,实现有用物质的分离提纯。该项技术最早发现于18世纪90年代 在研究人员研究 明胶、可溶淀粉两种水溶液混合过 程,通过将上述两种溶液混合,得出一个浑浊不 透明液体,随后静置发生分离,形成两层液相溶液,也就是 双水相溶液。从双水相 溶液形成的特点来看,该体系 形成的主要原因是利用了高聚物之间的不相容效果,
双水相萃取技术在生物制药领域的应用
例如研究葛根素在 PEG/ (NH)SO₄ 双水相体系以及丙酮/K,HPO₂溶液 中的分 离特征,在前者体系中PEG1500 质量分数达到20%, (NH₄)SO₄ 质量分数达到16%,所得组分的分配系数 高达148.2,同时萃取回收率高达 99%以上
而在后者 丙酮萃取溶液中,丙酮与水的质量配比为8:2,K₂HPO 质量 1.5g, 最终所得萃取回收率达到了99.55%,因此 可以看出双水相萃取技 术在提纯天然组分中的应用 效果较好I1
显著
双水相萃取技术在生物制药领域的应用
利用 双水相萃取技术常温从枯草芽孢杆菌发酵液中分离 β-甘露聚糖酶,相比原发酵液 纯度可达2.76倍,同 时萃取回收率也接近99% 双水相萃取技术在分离抗生素中的应用 在20世纪90年代人们利用双水相系统分离生 物小分子时,包括抗生素、氨基酸以及天然 药物提纯 过程中,发现双水相萃取技术在能耗上要明显低于传 统萃取技术,同时在提 取效率上也有着显著优势。例 如利用PEG3350/K,HPO₄溶液萃取青霉素G 发酵液, 青霉素 G 的分配系数可达13~14.5,萃取率高达 97%,提纯纯青霉素溶液时,萃取率也能达到95%; 在
双水相萃取法的原理与应用
双水相萃取法的原理与应用1. 原理介绍双水相萃取法是一种分离提取化合物的方法,通过利用两种不相溶的溶剂构成两个水相层,达到从一个水相层向另一个水相层进行分配的目的。
双水相萃取法具有选择性强、操作简便、成本低廉等特点,已广泛应用于生物分离纯化、环境污染检测、食品安全等领域。
2. 原理步骤双水相萃取法的基本步骤如下:1.准备两种互不相溶的溶剂,一般常用的是极性和非极性的溶剂,如水和有机溶剂。
确保两种溶剂相分离的界面有尽可能大的接触面积。
2.将待提取物溶解在一个适宜的溶剂中,使其分布均匀。
3.加入两种溶剂,振荡或搅拌使两相充分混合并达到平衡分配。
4.待体系分层后,通过离心或重力沉淀将两相分离。
5.收集有机相或水相中的萃取物,进行进一步的分析或应用。
3. 应用领域双水相萃取法在以下领域有广泛的应用:•生物分离纯化:双水相萃取法可用于分离和纯化生物大分子,如蛋白质、酶等。
通过调节溶剂体系的性质,可以实现对不同生物大分子的选择性分离。
•环境污染检测:双水相萃取法在环境污染物的检测中有重要应用。
通过使用适当的溶剂和调节pH值,可以有效地富集和分离样品中的有机污染物,如农药、重金属等。
•食品安全:双水相萃取法被广泛应用于食品安全领域。
利用双水相萃取法可以快速、高效地提取食品中的有害物质,如农药残留、食品添加剂等,确保食品质量和安全性。
•药物研发:双水相萃取法在药物研发中起着重要作用。
通过双水相萃取法可以从复杂的生物样品中富集和分离药物分子,为药物研发提供重要的前处理步骤。
4. 优缺点双水相萃取法具有以下优点:•选择性强:通过调节溶剂体系的性质,可以实现对不同化合物的选择性分离。
•操作简便:双水相萃取法操作简单方便,不需要复杂的仪器设备。
•成本低廉:双水相萃取法所需的溶剂成本较低,适用于大规模应用。
然而,双水相萃取法也存在一些缺点:•萃取效率较低:双水相萃取法对于某些极性化合物的富集效果较差。
•溶剂耗量大:双水相萃取法需要大量的有机溶剂来保证分离效果。
双水相体系配制与萃取实验报告
双水相体系配制与萃取实验报告一、实验目的本实验旨在掌握双水相体系的配制方法及其在萃取中的应用,了解萃取原理,熟练掌握萃取方法。
二、实验原理1. 双水相体系双水相体系是指两种不相溶的水溶液混合后形成两个互不混合的层。
常见的双水相体系有三种:乙醇-盐酸、聚乙二醇-硫酸和磷酸盐-硫酸。
其中以乙醇-盐酸为例,当乙醇和盐酸混合时,由于两者极性不同,无法完全混合,形成两个不同密度的液相。
2. 萃取原理萃取是利用不同物质在溶剂中的溶解度差异而进行分离纯化的方法。
常用于分离提纯化学物质或生物物质。
在双水相体系中,可以利用两个不同密度的液相进行分离。
三、实验步骤1. 配制双水相体系将10mL浓盐酸加入50mL 95%乙醇中,搅拌均匀。
2. 萃取实验将10mL橙黄色染料加入双水相体系中,轻轻摇晃容器使其混合均匀。
观察到橙黄色染料被分配到乙醇相中。
3. 分离两相用滴管吸取乙醇相,移至干燥的试管中。
用水洗涤滴管后再吸取盐酸相,移至另一个干燥的试管中。
4. 检测分离后的物质在乙醇相中加入少量氢氧化钠溶液,观察到橙黄色染料变成了蓝色。
在盐酸相中加入苯胺溶液,观察到产生了沉淀。
四、实验结果通过本次实验,成功配制出了乙醇-盐酸的双水相体系,并利用该体系进行了萃取实验。
观察到橙黄色染料被分配到乙醇相中,并成功分离两个不同密度的液相。
最终,在乙醇相中检测到了蓝色染料,在盐酸相中检测到了沉淀。
五、实验思考1. 双水相体系的应用有哪些?双水相体系可以用于萃取、分离和纯化生物大分子,如蛋白质、DNA和RNA等。
此外,还可以用于制备纳米材料、催化剂和药物等。
2. 萃取实验中为什么要加入氢氧化钠溶液和苯胺溶液?氢氧化钠溶液可以使橙黄色染料变成蓝色,从而检测出乙醇相中的染料。
苯胺溶液可以与盐酸反应产生沉淀,从而检测出盐酸相中的物质。
3. 双水相体系如何选择?选择双水相体系应考虑所需分离物质的性质和目标纯度。
不同双水相体系对不同物质有不同的选择性,因此需要根据实际情况进行选择。
双水相萃取原理
双水相萃取原理
双水相萃取是一种将有机物从水溶液中分离出来的方法。
它基于水和有机溶剂不相溶的性质,通过两相之间的分配系数差异来实现目标物质的选择性提取。
双水相萃取的原理是利用两种互不相溶的溶剂(一般是水和有机溶剂),在某一条件下将目标物质在两相之间分配。
通常情况下,有机物更易溶于有机相,而无机物更易溶于水相。
具体的操作步骤如下:首先将水溶液和有机溶剂混合,形成两相体系。
然后经过搅拌或震荡,让目标物质在两相之间达到平衡分配。
接下来,待两相分离后将有机相和水相分开。
最后,可以通过蒸发或其他方法将目标物质从有机相中提取出来。
双水相萃取的选择性是基于目标物质在两相之间的分配系数差异。
分配系数是指物质在两相之间分配的比例,由物质的溶解度和两相的互溶性决定。
通常情况下,选择合适的有机溶剂和水相条件可以使目标物质在有机相中富集,而其他杂质则大部分留在水相中。
双水相萃取的优点是操作简单、成本低廉,适用于大量样品的初步分离和富集。
但是也存在一些局限性,例如只适用于水溶液中的有机物质,对目标物质的选择性有一定要求。
总之,双水相萃取是一种利用两相体系中的分配差异来实现目标物质提取的方法。
通过选择合适的有机相和水相条件,可以实现对目标物质的选择性富集,从而达到分离和纯化的目的。
双水相萃取
操作步骤
一、重点 双水相萃取放大容易:一般10ml离心管的实验结果可直接放大到工业规模。具体实验步骤: 1、配制一系列不同浓度、pH及离子强度的双水相,每个双水相改变一个参数。 2、加入料液,再加水使整个系统质量达到5~10g。离心管封口后充分混合。 3、1800-2000g下离心3-5min,使两相完全分离。 4、用吸管或移液管将上相和下相分别吸出,测定上、下相中目标产物的浓度或生物活性,计算分配系数。 5、上、下两相中目标产物的总量应与加入量对比,以检验是否存在沉淀或界面吸附现象,并可确认浓度或活 性测定中产生的系统误差。 6、分析目标产物的收率和纯化倍数,确定最佳双水相系统。 二、特点: 1、含水量高(70%~90%),适宜提取水溶性的蛋白质、酶等生物活性物质,且不易引起蛋白质的变性失活。 2、不存在有机溶剂残留问题。3、易于放大,各种参数可按比例放大而产物收率并不降低。
可形成双水相的双聚合物体系很多,如聚乙二醇(PEG)/葡聚糖(Dx),聚丙二醇/聚乙二醇,甲基纤维素/ 葡聚糖。双水相萃取中采用的双聚合物系统是PEG/Dx,该双水相的上相富含PEG,下相富含Dx。另外,聚合物与 无机盐的混合溶液也可以形成双水相,例如,PEG/磷酸钾(KPi)、PEG/磷酸铵、PEG/硫酸钠等常用于双水相萃 取。PEG/无机盐系统的上相富含PEG,下相富含无机盐。
原理
某些亲水性高分子聚合物的水溶液超过一定浓度后可以形成两相,并且在两相中水分均占很大比例,即形成 双水相系统(aqueous two-phase system,ATPS)。利用亲水性高分子聚合物的水溶液可形成双水相的性质, Albertsson于20世纪50年代后期开发了双水相萃取法(aqueous two-phase extraction),又称双水相分配法。 20世纪70年代,科学家又发展了双水相萃取在生物分离过程中的应用,为蛋白质特别是胞内蛋白质的分离和纯化 开辟了新的途径。
生物分离-双水相萃取实验指导
双水相萃取相图的绘制1.实验目的⑴掌握绘制双水相相图的方法⑵理解双水相形成条件和定量关系2.实验原理双水相是指某些高聚物之间或高聚物与无机盐之间在水中以一定的浓度混合而形成互不相容的两相,由于溶质在两相间的分配系数的差异而进行萃取的方法即为双水相萃取。
双水相形成条件和定量关系常用相图来表示(见图1)。
成相物质都能与水无限混合,当它们的组成位于曲线的上方时(用M点表示)体系就会分成两相,分别有不同的组成密度,轻相(或称上相)组成用T点表示,重相(或称下相)组成用B点表示,T、B点称为节点。
直线TMB称为系线,是相图的重要特征,关系到相的平衡组成。
所有组成在系线上的点,分成两相后,其上下相组成均分别为T、B,但是其体积比(V T/V B)不同。
相体积比可由相图上线段比(BM/MT)估算,即服从杠杆规则。
本实验绘制PEG/(NH4)2SO4体系双水相相图。
图1 双水相体系相图3.实验材料及仪器PEG1000原液(0.6g/mL,w/w=56.926%,密度1.054);PEG2000原液(0.4g/mL,密度1.02);硫酸铵原液(0.43g/mL,密度1.2)。
4.实验方法准确称取2.0mLPEG原液,加入25 mL具塞刻度试管中,然后逐滴加入硫酸铵原液,混合,直至试管中开始出现混浊为止,记录加入硫酸铵量,算出PEG和硫酸铵在系统中的质量百分浓度,再向试管中加入适量水(0.2~0.5~1.0 mL),使体系变澄清,记录加入水的量,并继续加入硫酸铵,使体系再次变混浊,如此反复操作二十几次,计算达到混浊时PEG 和硫酸铵在系统中的质量百分含量,得出不同相对分子量的PEG和硫酸铵的双节线相图节点。
以上述试验所得结点绘制出不同相对分子量的PEG/(NH4)2SO4体系双水相相图。
5.数据处理表1 相图节点数据序号PEG质量(g)体系中盐溶液(mL)盐质量(g)体系加水量(g)体系总质量(g)PEG质量分数(w/w)盐质量分数(w/w)1 02 0.33 0.5……………………n 1.5双水相萃取牛血清白蛋白1.实验目的⑴掌握PEG/无机盐体系双水相萃取蛋白质的方法⑵了解影响蛋白质在双水相体系中分配行为的主要参数2.实验原理双水相是指某些高聚物之间或高聚物与无机盐之间在水中以一定的浓度混合而形成互不相容的两相,由于溶质在两相间的分配系数的差异而进行萃取的方法即为双水相萃取。
双水相萃取名词解释
双水相萃取名词解释双水相萃取是一种分离技术,是通过在混合液体中将一种物质分离出来的过程。
该过程常用于将两种不同物质分离开来,如果它们具有相同的电荷和形状,它们就可以在混合液体中被有效分离。
双水相萃取基于一种叫作分配系数的概念。
分配系数是物质之间的电荷和形状的比率,它决定了物质在混合液体中的分布情况。
根据分配系数的不同,被萃取的物质将分布在两个不同的表面上。
在双水相萃取中,混合液体会被分为两个相分离部分,一部分富含物质A,而另一部分富含物质B。
在双水相萃取过程中,混合液体会被放入一容器中,然后以静态或动态的方式搅拌,使物质A和B之间的分配系数得到改变。
当混合液体中的物质A和B改变分布率时,它们就会被从中分离出来。
这种技术可以极大地提高物质分离的速度,从而使分离的效率极高,而且还可以分离出非常精细的物质,如大小不一的纳米粒子等。
双水相萃取技术在药物分离、石油分离、食品加工等领域具有广泛应用,可以帮助工程师们解决大量问题,提高产品质量与生产效率。
此外,双水相萃取还可以用于能源转换,可以将太阳能和风能有效转换为其它形式的能源,以满足人类的能源需求。
综上所述,双水相萃取是一种重要的技术,它可以解决大量混合液体中不同物质的分离问题,在药物分离、石油分离、食品加工等领域有着广泛应用,帮助工程师们极大地提高分离的速度和效率,并可以将能源有效转换。
虽然双水相萃取技术带来了诸多好处,但是它也有一定的局限性。
由于其基本原理是以分配系数为基础的,在进行双水相萃取时,受到混合液体种类的限制,只能用于水基混合液体。
此外,双水相萃取过程中所产生的废水也不能直接排放,必须经过处理才能安全排放。
因此,在进行双水相萃取之前,需要进行充分的技术评估,确保双水相萃取过程安全有效。
双水相萃取技术的发展越来越快,它不仅帮助我们解决了大量的分离问题,而且还能帮助满足人类能源需求。
未来,双水相萃取技术将会得到更深入的研究,希望有一天它能够应用到更加广泛的领域,为促进人类社会发展作出更多的贡献。
双水相萃取的原理
双水相萃取的原理
双水相萃取是一种新型的分离技术,它利用两种不相溶的溶剂相来实现目标物质的分离和提取。
在这种技术中,两种相分别是水相和有机相,它们之间通过特定的萃取剂实现了目标物质的转移和分离。
双水相萃取的原理主要包括相分离、目标物质的分配和平衡等过程。
首先,两种不相容的溶剂相在一定条件下会形成两个分离的相区,即水相和有机相。
这种分离是由于两种相之间的亲疏性差异所导致的。
在双水相萃取中,通常会选择水和醚类、酮类等有机溶剂作为两种相,它们之间的亲疏性差异使得它们能够在一定条件下形成两个分离的相区。
其次,目标物质在两种相中的分配和平衡是实现双水相萃取的关键。
当混合了目标物质的溶液与双水相接触时,目标物质会根据其在两种相中的亲疏性差异而在两种相中分配。
这种分配是达到平衡状态的,即在一定条件下,目标物质在两种相中的浓度达到一定的比例,这种比例是由溶剂相亲疏性和目标物质本身性质所决定的。
最后,通过加入特定的萃取剂,可以实现目标物质在两种相中的转移和分离。
这些萃取剂通常具有对目标物质的亲和性,能够促使目标物质从一种相转移到另一种相中。
在这个过程中,萃取剂在两种相中的分配和平衡也是非常重要的,它们能够调控目标物质在两种相中的分布,最终实现目标物质的分离和提取。
双水相萃取的原理简单而又复杂,它涉及了相分离、分配平衡和萃取剂的作用等多个方面。
通过合理的选择溶剂相和萃取剂,以及优化萃取条件,可以实现对目标物质的高效分离和提取。
因此,双水相萃取技术在化工、生物医药等领域具有广泛的应用前景,对于复杂混合物的分离和提取具有重要的意义。
双水相萃取的原理
双水相萃取的原理双水相萃取是一种常用的分离和提纯技术,广泛应用于化工、生物制药、环境保护等领域。
其原理是利用两种不相溶的溶剂相,在其界面上形成的萃取膜来实现目标组分的传质过程。
双水相萃取的原理基于目标物质在两种不同相溶剂中的分配系数不同,通过在两相之间的传质过程实现目标物质的分离和提纯。
在双水相萃取中,通常选择两种不相溶的有机溶剂和水相作为两相。
有机相通常选择具有较好的萃取性能和分配系数的有机溶剂,如乙酸乙酯、正庚烷等;水相则选择水或者含有盐类、酸碱等物质的溶液。
通过合理选择两种相溶剂,可以实现对目标物质的高效分离和提取。
在双水相萃取的过程中,首先将两相混合并充分搅拌,使目标物质在两相之间达到平衡分配。
然后,通过分离器将两相分离,得到含有目标物质的有机相和不含目标物质的水相。
接下来,可以通过再次萃取、结晶、蒸馏等方法对有机相进行进一步的提纯,最终得到纯净的目标物质。
双水相萃取的原理是基于目标物质在两种不同相溶剂中的分配系数不同,利用两相之间的传质过程实现目标物质的分离和提纯。
通过合理选择两种相溶剂,并通过混合、分离和进一步提纯等步骤,可以实现对目标物质的高效分离和提取。
双水相萃取技术具有操作简便、成本较低、分离效果好等优点,因此在工业生产和实验室研究中得到了广泛应用。
总的来说,双水相萃取技术是一种重要的分离和提纯技术,其原理简单而有效。
通过合理选择相溶剂和优化操作条件,可以实现对目标物质的高效分离和提取,为化工、生物制药、环境保护等领域提供了重要的技术支持。
希望通过本文的介绍,读者对双水相萃取的原理有了更深入的了解。
双水相萃取原理
双水相萃取原理双水相萃取是一种常用的分离和提取技术,广泛应用于化工、生物制药、环境保护等领域。
它是利用两种不相溶的溶剂(通常是水和有机溶剂)之间的相互作用,将目标物质从一种相中转移到另一种相中的过程。
在这个过程中,萃取剂的选择、相互作用机理、萃取条件等因素都对萃取效果有着重要的影响。
首先,我们来谈谈双水相萃取的基本原理。
在双水相系统中,两种相的界面上存在着大量的界面活性剂,这些界面活性剂能够形成胶束结构,使得两种相之间形成了一定的亲和力。
当目标物质存在于其中一种相中时,由于界面活性剂的存在,目标物质会在两种相的界面上分配,从而实现了目标物质的转移和分离。
其次,双水相萃取的原理还涉及到了萃取剂的选择。
通常情况下,我们会选择一种水相和一种有机相作为双水相系统的溶剂。
这两种溶剂的选择应该考虑到目标物质的亲和性,以及两种相之间的亲和性。
另外,萃取剂的选择还应该考虑到工艺操作的便捷性、回收利用的可行性等因素。
另外,双水相萃取的原理还受到了萃取条件的影响。
萃取条件包括温度、pH 值、搅拌速度等因素,这些条件会直接影响到目标物质在两种相中的分配情况。
通过合理地控制萃取条件,我们可以实现目标物质的高效分离和提取。
最后,双水相萃取的原理还涉及到了相互作用机理。
在双水相系统中,两种相之间的相互作用是通过界面活性剂来实现的。
界面活性剂的存在使得两种相之间形成了一定的亲和力,从而实现了目标物质的转移和分离。
同时,界面活性剂的种类和用量也会直接影响到双水相萃取的效果。
综上所述,双水相萃取是一种重要的分离和提取技术,其原理涉及到了萃取剂的选择、萃取条件的控制、相互作用机理等多个方面。
通过对这些因素的合理把握,我们可以实现对目标物质的高效分离和提取,为化工、生物制药、环境保护等领域的生产实践提供了重要的技术支持。
希望通过本文的介绍,读者能够对双水相萃取的原理有一个更加深入的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双水相萃取技术应用
摘要:双水相萃取技术作为一种新型的分离技术日益受到重视,它与传统的萃取方法相比有独特的优点。
本文总结了双水相萃取形成的原理,萃取过程的基本理论、萃取体系的特点,综述了双水相萃取技术在生化工业、分析检测、稀有金属分离等方面的应用,介绍了该技术的最新进展,指出了该技术工业化存在的问题,并对今后的发展作了展望。
关键词:双水相萃取分离应用
引言
双水相萃取技术(Aqueous two—phase extraction,简称ATPE)与传统的萃取分离技术不同,有其独特的优点,是一种新型的分离技术。
双水相萃取在诸多方面有着广泛的应用,具有良好的应用前景。
1、双水相萃取技术的基本原理
1.1双水相体系的形成
当一定浓度的某种有机物水溶液与其它有机物水溶液,或者有机物水溶液与无机盐水溶液以一定体积比混合时,能够自然分相并形成互不相溶的双水相或者多水相体系,这就是双水相体系。
从溶液理论来说,当2种有机物或者有机物与无机盐混合时,是分相还是混合成一相,取决于混合时的熵变和分子间的相互作用力。
由于双水相体系本身的复杂性,体系的熵很难准确计算,分子间的相互作用力也不清楚,所以双水相的形成机理很复杂。
对于高聚物/高聚物双水相体系,用传统的理论来解释,是由于界面张力等因素形成两相之间的不对称,使得在空间上产生阻隔效应,使两相之间无法相互渗透,不能形成均一相,从而具有分离倾向,一般这种分离倾向的大小和形成双水相的2种物质的疏水性成线性关系。
对于有无机盐存在的双水相体系,以及新开发的表面活性剂双水相体系,这种解释就无能为力了。
表1是各种双水相体系的成相原理。
由表1可知,不同的成相原理可以解释不同组成的双水相体系.但各种原理并不能普遍适用。
而且各种原理问的相互关
系也十分复杂。
因此双水相体系的成相原理以及溶液理论有待进一步据人研究。
1.2双水相萃取的基本原理
双水相萃取与一般的水.有机物萃取的原理相似,都是依据物质在两相间的选择性分配。
当萃取体系的性质不同,物质进入双水相体系后,由于分子问的范德华力、疏水作用、分子间的氢键、分子与分子之间电荷的作用,目标物质在上、下相中的浓度不同,从而达到分离的目的。
溶质(包括蛋白质等大分子物质、稀有金属以及贵金属的络合物、中草药成分等)在双水相体系中服从Nernst 分配定律:K=b t C C ,其中吼t C 、b C 分别代表溶质在上相、下相中的浓度。
系统固定时,分配系数为一常数,与溶质的浓度无关。
当目标物质进人双水相体系后,在上相和下相同进行选择性分配,这种分配关系与常规的萃取分配关系相比.表现出更大或更小的分配系数。
1.3影响物质分配平衡的因素
影响物质在双水相体系中分配的因素有很多,其中主要包括体系有机相组成(如有机物的类型、平均分子量等)、盐类(包括离子类型和浓度、电荷数、电解质强度、酸碱性等)、相比R(上下相的体积比)、溶质即目标物质的物理化学性质(包括分子量,等电点),以及体系的温度、压力等。
2、双水相萃取体系的特点
双水相萃取成为新兴生物技术产业研究的热点,主要是该技术对于生物物质的分离和纯化表现出特有的优点和独有的技术优势:
(1)、易于放大,各种参数可以按比例放大而产物收率并不降低。
分配系数
仅与分离体积有关,这是其他过程无法比拟的,这一点对于工业应用尤为有利。
(2)、双水相系统之间的传质和平衡过程速度快,回收效率高,相对于某些分离过程来说,能耗较小,速度快。
(3)、易于进行连续化操作,设备简单,且可直接与后续提纯工序相连接,无需进行特殊处理。
(4)、双水相体系的相间张力大大低于有机溶剂与水相之间的相间张力,相分离条件温和,因而会保持绝大部分生物分子的活性,而且可直接用在发酵液中。
(5)、影响双水相体系的因素比较复杂,从某种意义上说,可以采取多种手段来提高选择性或提高收率。
(6)、操作条件温和,整个操作过程在常温常压下进行。
(7)、不存在有机溶剂残留问题,高聚物一般是不挥发性物质,因而操作环境对人体无害。
3、双水相萃取的应用
(1)、生物工程技术中物质的提取与纯化
双水相萃取分离技术已应用于蛋白质、生物酶、菌体、细胞、细胞器和亲水性生物大分子以及氨基酸、抗生素等生物小分子物质的分离、纯化。
生物酶类在双水相的分离和纯化中,部分已经实现了工业化。
(2)、中草药有效成分的提取
中草药有效成分的确定和提取技术在国内发展一直比较缓慢,这限制了中药药理学的发展、深化以及中药现代化。
近几年来,有关双水相萃取技术提取中草药有效成分的开始发展,并且有良好的应用前景。
(3)、双水相萃取分析
常规的检测生物物质的技术既繁琐又费时,很难及时满足现代生化生产分析的要求,因而开发一种快速、方便、准确的生物活性物质的检测技术是必要的。
基于液—液体系或界面性质而开发的分析检测技术是一项潜在的有应用价值的生化检测分析技术。
这一技术已成功地应用于免疫分析、生物分子间相互作用力的测定和细胞数的测定。
(4)、稀有金属贵金属分离
传统的稀有金属贵金属溶剂萃取方法存在着溶剂污染环境,对人体有害,运行成本高,工艺复杂等缺点。
双水相技术萃取技术引入到该领域,无疑是金属分离的一种新技术。
4、双水相萃取技术的最新进展
(1)、廉价双水相体系的开发
多年来的双水相技术研究绝大多数集中在高聚物-高聚物双水相体系系列上。
然而该体系的成相聚合物价格昂贵,在工业化大规模生产时,从经济上丧失了该体系技术上的优势,因而寻找廉价的有机物双水相体系是双水相体系的一个重要的发展方向。
(2)、新的双水相体系探索
随着双水相技术研究的不断深入,新的双水相体系表面活性剂表面活性剂水体系、普通有机物无机盐水体系、双水相胶束体系等体系相继被发现。
这些双水相体系各有优势,表面活性剂双水相体系与高聚物双水相体系相比,有更高的含水量,因而条件更为温和,表面活性剂的增溶作用,不仅可以用于可溶性蛋白质分离,而且可用于水不溶性蛋白质的分离;普通有机物型双水相体系最大的优点是价格便宜,分离后续工作处理简单。
另外,一种新的体系是只有一种成相聚合物的双水相体系,上相几乎是水,聚合物绝大部分集中在下相,该体系不仅操作成本低,萃取效果好,还为生物物质提供了更温和的环境。
(3)、双水相萃取技术同其他技术集成化
过程集成化是指不同的分离技术上互相渗透,实现优势互补,从而达到整体优化的目的,具体表现在三个方面:1、与常规技术结合来解决双水相萃取本身的难点问题,如双水相电泳技术就是电泳技术与萃取技术交叉耦合形成的一种新型分离技术,该技术是在多液相状态,既可以克服对流(返混)的不利影响,又有利于被分离组分的移出;2、引进其他分离技术进行融合以提高分离效率,简化分离过程,使其工艺步骤少,提取效率高,能耗及生产费用低;3、为已有的技术提供新的思路,如根据非离子表面活性剂胶束系统温度在浊点以上自动分相的现象提出了双水相非离子表面活性剂胶束萃取的新概念;根据双水相的液液界面阻止热对流的假设,为开发双水相电泳分离技术开辟了一条新途径。
根据双
水相体系的分配特性与生物识别原理,提出了金属粒子亲和双水相萃取技术。
5、双水相萃取技术的未来展望
双水相萃取体系自身的一些特殊性质以及优点,使其在生物化工产品的萃取与提纯方面表现出不俗的优势。
但是体系自身也存在的一定的缺陷,如双聚合物体系价格较高,限制了其在工业中大规模的应用;体系的易乳化同题,导致萃取过程极不稳定,操作十分不方便,条件难以控制;某些高聚合物双水相体系分相时间较长,大大降低了生产效率;此外双水相萃取缺乏理论基础,目前的研究还停留在热力学模型的探索阶段。
因此未来双水相萃取技术的发展方向应该集中在:(1)对液—液相平衡热力学模型的探索,应该加快基础数据的收集,寻求一套完整的理论依据;(2)新型双水相体系的开发,寻找更加廉价高效的双水相体系;(3)新工艺的开发,为实现大规模工业化寻找新思路;(4)双水相萃取技术与相关技术的耦合,扩展双水相萃取的应用领域,减少双承相体系自身的一些缺点带来的影响;(5)废液的回收以及再利用问题。
在当今越来越重视人类生存环境的前提下.开发出环境友好、可循环利用的双水相体系是非常有意义的。
相信在将来双水相萃取分离技术的应用领域将进一步拓宽。