西城区九年级上《第21章二次根式》课堂练习题及答案
2021年新人教版北京市西城区第二十一章二次根式课堂练习题及答案
第二十一章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题 7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______;(5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xxx x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题。
九年级数学(上册)《第二十一章二次根式》单元检测题 (含答案)
九年级数学第二十一章二次根式检测题(本检测题满分:100分,时间:90分钟)班级:姓名: 成绩:一、选择题(每小题2分,共26分)1.下列二次根式中,的取值范围是3x ≥的是( )2.要使式子 有意义,则x 的取值范围是( )A .x >0B .x ≥-2C .x ≥2D .x ≤23.下列二次根式中,是最简二次根式的是( )A.xy 2B.2abC.214.12a =-,则( )A .<12B.≤12C.>12 D. ≥125.下列二次根式,不能与12合并的是( ) A.48 B.18 C.311 D.75-6. 能够合并,那么a 的值为( )A. 2B. 3C. 4D. 57.下列各式计算正确的是( ) A. B. C. D.8.下列运算正确的是( )A.235=-B.312914== D.()52522-=-9.n 的最小值是( ) A.4 B.5 C.6 D.213.二、填空题(每小题3分,共30分)10.化简:=320,0)x y >>=.11. 比较大小:103;. 12.已知:一个正数的两个平方根分别是22-a 和4-a ,则a 的值是.13.计算:________;.14.已知a 、b 为两个连续的整数,且a b <<,则a b +=.15.直角三角形的两条直角边长分别为、,则这个直角三角形的斜边长为________,面积为________.16.若实数y x ,2(0y -=,则xy 的值为.17.已知实数x ,y 满足|x -4|+ =0,则以x ,y 的值为两边长的等腰三角形的周长是.18.已知a b 、为有理数,m n 、分别表示5的整数部分和小数部分,且21amn bn +=,则2a b +=.三、解答题(共44分)19.(6分)计算:(1(2);(3)|-6|-–; (4)-20.(6分)先化简,后求值:((6)a a a a ---,其中12a =+.21.(6分)已知22x y ==+(1)222x xy y ++;(2)22x y -.22.(7分)一个三角形的三边长分别为54(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值.23.(7分)阅读下面问题:12)12)(12()12(1121-=-+-⨯=+; ();23)23)(23(231231-=-+-⨯=+ ()25)25)(25(251251-=-+-⨯=+. 试求:(1)671+的值;(2)n n ++11(n 为正整数)的值.(3⋅⋅⋅+的值.。
九年级数学上册 21.1 二次根式 同步训练习题(含答案)
第二十一章 二次根式21.1 二次根式5分钟训练(预习类训练,可用于课前)1.什么叫一个数a 的平方根?算术平方根?怎样表示?0的平方根是什么?负数有没有平方根?解:如果一个数的平方等于a ,那么这个数就叫做a 的平方根,用符号±a 表示(其中a≥0).a 的非负的平方根叫做a 的算术平方根,用符号a 表示;0的平方根和算术平方根都是0本身;负数没有平方根.2.下列各式中,哪些是二次根式?哪些不是二次根式?为什么?3,12+a ,51,1+x ,m,5-. 思路分析:是二次根式满足以下两点:(1)含有二次根号“”;(2)被开方数可以是数也可以是代数式,它们必须是非负的.否则无意义. 解:3,12+a ,51都是二次根式.m ,5-,1+x 不是二次根式,因为m 不含根号,-5在实数范围内无意义,1+x 中的被开方数不能确定是非负数,当x <-1时,1+x 无意义.3.计算:(1)(2.0)2; (2)2)8.0(-.思路分析:利用(a )2=a (a≥0)进行计算.解:(1)(2.0)2=0.2.(2) 2)8.0(-=28.0=0.8.10分钟训练(强化类训练,可用于课中)1.(北京海淀模拟)函数y=31-x 中,自变量x 的取值范围是__________. 思路解析:要使二次根式有意义,被开方数必须是非负数,且分母不为0,即3-x ≠0,x -3≥0,得x>3. 答案:x>32.计算:(75)2=___________. 思路解析:由二次根式的性质(a )2=a (a≥0)可知(75)2=75. 答案:75 3.若ab<0,要使b a 2有意义,则a___________0,b___________0.思路解析:由隐含条件知b>0,又∵ab<0,∴a<0.答案:< >4.实数a 、b 在数轴上的位置如图21-1-1所示,那么化简|a-b|-2a 的结果是( )图21-1-1A.2a-bB.bC.-bD.-2a+b思路解析:观察数轴确定a >0、b <0,再利用2a =a(a≥0)进行化简. |a-b|-2a =a-b-a =-b.答案:C5.如图21-1-2,在山坡上种树时,假设∠A=30°,AC=3米,则相邻两株树的坡面距离AB 等于( )A.6米B.3米C.23米D.22米图21-1-2 图21-1-3 思路解析:在Rt △ABC 中∠A=30°,AC=3可知AB=2BC,由勾股定理可求得AB=23,故选C. 答案:C6.(经典回放)图21-1-3是一个数值转换机,若输入的值a 为2,则输出的结果应为( )A.2B.-2C.1D.-1思路解析:理解输入图中计算程序[(2)2-4]×0.5=-1,程序与算术式的转换关系,计算要准确.答案:D快乐时光手的联想任教美术与设计课多年,我常鼓励学生发挥创意.初中有一个绘画习作,题为“手的联想”,交回来的习作中有一张黑画纸.我看了半天,两面都没画上什么,只在画纸其中一面隐约找到铅笔写上的姓名、班别以及命题“伸手不见五指”.30分钟训练(巩固类训练,可用于课后)1.下列各式中二次根式的个数有( )①-12+m ②38- ③1-x ④5 ⑤πA.1个B.2个C.3个D.4个 思路解析:-12+m 、5是二次根式,38-、1-x 、π不是二次根式.因为38-的根指数不是2.1-x 中被开方数不能确定是非负数,即当x <1时,1-x 无意义.π不含二次根号.答案:B2.已知x 、y 为实数,且1-x +3(y-2)2=0,则x-y 的值为( )A.3B.-3C.1D.-1 思路解析:∵1-x ≥0,(y -2)2≥0,1-x +3(y-2)2=0,∴x-1=0,y-2=0.∴x=1,y=2.∴x-y=1-2=-1.答案:D3.能使等式2-x x =2-x x 成立的x 的取值范围是___________. 思路解析:要使等式成立,既要使二次根式有意义,又要保证分母不能为零,即x≥0,且x-2>0,x >2,∴x >2.答案:x >24.计算:(2)2=__________. 思路解析:由二次根式的性质(a )2=a (a≥0)可知(2)2=2.答案:25.当a <2时,则2)2(-a =______________.思路解析:当a<2时,a-2<0,由二次根式的性质2a =|a|,可知2)2(-a =|a-2|=2-a.答案:2-a6.张老师自制了一个直角三角形的教具,若把直角三角形表示为Rt △ABC,量出斜边AB=13 cm,BC=12 cm.你能求出这个直角三角形的面积S 吗?思路分析:由勾股定理求出另一条直角边边长,再计算面积.解:在Rt △ABC 中,AC=22BC AB -=221213-=25=5,S=21AC·BC=21×5×12=30 cm 2. 7.对于题目“化简并求值:a 1+2122-+a a ,其中a=51”,甲、乙两人的解答不同.甲的解答是:a 1+2122-+a a =a 1+2)1(a a -=a 1+a 1-a=a 2-a=549. 乙的解答是:a 1+2122-+a a =a 1+2)1(a a -=a 1+a-a 1=a=51. 谁的解答错误?为什么? 思路分析:二次根式的性质有2a =|a|,这就意味着当a≥0时,2a =a ;而a<0时,2a =-a. 解:当a=51时,a 1-a=5-51=454>0,∴2)1(a a -=a 1-a 是正确的,即甲的解答正确.。
第21章 二次根式数学九年级上册-单元测试卷-华师大版(含答案)
第21章二次根式数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下列各式中不是二次根式的是()A. B. C. D.2、下列二次根式是最简二次根式的是( )A. B. C. D.3、已知最简根式与是同类二次根式,则满足条件的 a、b的值()A.不存在B.有一组C.有二组D.多于二组4、下列各式中,是最简二次根式的是( )A. B. C. D.5、下列各式运算正确的是()A. B. C. D.6、电视塔越高,从塔顶发射出的电磁波传播得越远,从而能收看到电视节目的区域就越广.电视塔高h(单位:km)与电视节目信号的传播半径r(单位:km)之间存在近似关系,其中R是地球半径.如果两个电视塔的高分别是,,那么它们的传播半径之比是,则式子化简为()A. B. C. D.7、下列计算正确的是()A. B. C. D.8、设a>0,b>0,则下列运算错误的是()A. =·B.( ) 2=aC. =+D.=9、下列函数中,自变量x的取值范围是x>2的函数是( )A. B. C. D.10、下列计算正确的是( )A. B. C. D.11、化简×结果是()A. B. C. D.12、下列运算错误的是 ( )A. B. C. D.13、在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0B.x≤2且x≠0C.x≠0D.x≤﹣214、计算的结果是A. B. C. D.15、已知实数满足,则以x、y的值为两边长的等腰三角形的周长是()A.8B.20C.16D.16或20二、填空题(共10题,共计30分)16、已知,为实数,其中,则________,________,的算术平方根是________.17、若在实数范围内有意义,则x的取值范围是________.18、当x=﹣2时,二次根式的值是________.19、计算:=________.20、如果整数x>﹣3,那么使函数y= 有意义的x的值是________(只填一个)21、的倒数是________.22、当时,二次根式的值为________。
北京市西城区第二十一章二次根式课堂练习题及答案
第二十一章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______.2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: 149=_______;22)7(_______; 32)7(-_______;42)7(--_______; 52)7.0(_______;622])7([- _______. 二、选择题5.下列计算正确的有 .①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是 . A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是 . A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是 .A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义 1;1x -2;2x -3;12+x 4⋅+-xx2110.计算下列各式:1;)23(2 2;)1(22+a3;)43(22-⨯-4.)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是 .A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是 . A .-7B .-5C .3D .7三、解答题17.计算下列各式:1;)π14.3(2- 2;)3(22--3;])32[(21-4.)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC的c 边的长.测试2 二次根式的乘除一学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:1=⨯12172_________;2=--)84)(213(__________; 3=⨯-03.027.02___________.3.化简:1=⨯3649______;2=⨯25.081.0 ______;3=-45______. 二、选择题4.下列计算正确的是 . A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么 .A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是 . A .±3 B .3 C .-3 D .9三、解答题7.计算:1;26⨯2);33(35-⨯- 3;8223⨯4;1252735⨯ 5;131aab ⋅6;5252ac c b b a ⋅⋅7;49)7(2⨯-8;51322-9 .7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“”的运算法则为:,4@+=xy y x 则266=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:123_____32;225______34;3-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是 .A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于 . A .11- B .11C .44-D .112三、解答题14.计算:1=⋅x xy 6335_______;2=+222927b a a _______;3=⋅⋅21132212_______; 4=+⋅)123(3_______.15.若x -y +22与2-+y x 互为相反数,求x +y x的值.拓广、探究、思考16.化简:1=-+1110)12()12(________;2=-⋅+)13()13(_________.测试3 二次根式的乘除二学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:1=12______;2=x 18______;3=3548y x ______;4=xy______;5=32______;6=214______;7=+243x x ______;8=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2132与______; 232与______;3a 3与______; 423a 与______; 533a 与______. 二、选择题 3.xxx x -=-11成立的条件是 . A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是 . A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为 . A .3232 B .32321C .281D .241 三、计算题 6.1;2516 2;9723;324 4;1252755÷-5;1525 6;3366÷7;211311÷8.125.02121÷ 综合、运用、诊断一、填空题7.化简二次根式:1=⨯62________2=81_________3=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: 1=51_______2=x 2_________3=322__________4=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.结果精确到0.001 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为 . A .a =b B .ab =1 C .a =-bD .ab =-111.下列各式中,最简二次根式是 .A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:1;3b a ab ab ⨯÷ 2;3212y xy ÷3⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.1=+2271_______;2=+10111_______;3=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减一学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:1=+31312________; 2=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是 .A .10B .12C .21 D .61 4.下列说法正确的是 .A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是 . A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,a +b a的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.填“正确”或“错误” 二、选择题14.在下列二次根式中,与a 是同类二次根式的是 .A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:1判断下列各式是否成立你认为成立的,在括号内画“√”,否则画“×”.①322322=+②833833=+③15441544=+ ④24552455=+2你判断完以上各题后,发现了什么规律请用含有n 的式子将规律表示出来,并写出n 的取值范围.3请你用所学的数学知识说明你在2题中所写式子的正确性.测试5 二次根式的加减二学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:1=-+)18(50________;2=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是 . A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是 . A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于 . A .7 B .223366-+- C .1D .22336-+三、计算题能简算的要简算 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.1规定运算:ab =|a -b |,其中a ,b 为实数,则=+7)3*7(_______.2设5=a ,且b 是a 的小数部分,则=-baa ________.二、选择题14.b a -与a b -的关系是 . A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是 .A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求1x 2-xy +y 2;2x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: 125与______; 2y x 2-与______; 3mn 与______; 432+与______; 5223+与______; 63223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.精确到答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.17; 27; 37; 4-7; 5; 649.5.C . 6.B . 7.D . 8.D .9.1x ≤1;2x =0;3x 是任意实数;4x ≤1且x ≠-2.10.118;2a 2+1;3;23- 46. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.1π-3.14;2-9;3;23 436. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.1;6 224;3-.3.142;2;3.53- 4.B . 5.B . 6.B .7.1;32 245; 324; 4;53 5;3b 6;52 749; 812; 9⋅y xy 263 8..cm 62 9..72 10.210.11.1>;2>;3<. 12.B . 13.D .14.1;245y x 2;332b a + 3 ;34 49. 15.1.16.1;12- 2.2测试31.1;32 2;23x 3;342xy y x 4;xxy 5 ;36 6;223 7;32+x x 8630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.,. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.1.)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.1都画“√”;21122-=-+n nn n nn n ≥2,且n 为整数;3证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.1;22 2 .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.13;2.55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4可以按整式乘法,也可以按因式分解法.20.19; 210. 21.4.22.12; 2y x 2-; 3mn ; 432-; 5223-; 63223+答案不唯一. 23.约.。
新人教版九年级数学第21章同步练习题及答案全套第二十一章 二次根式(复习课)
第21章 二次根式(复习课)◆随堂检测1、下列各式有意义的范围是x>3的为( ) A.3+x B.3-x C.31+x D.31-x2、计算的值是( )A .1B .2C .3D .43、mm m m m m 15462-+的值( ) A.是正数 B.是负数 C.是非负数 D.可为正也可为负4、已知y<0.5、比较大小: ◆典例分析观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=--1,32=-,同理可得从计算结果中找出规律,并利用这一规律计算:+的值. 分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.解:原式……×=(2009-1)(2009+1)=2009-1=2008.◆课下作业●拓展提高1、下列二次根式中,最简二次根式是( )2、下列化简中,正确的是( )3、计算:2008200923)(23)⋅=_________.4、化简3232-+点拨:利用(32)(32)1=,可将分母化为有理式.53131+-a ,小数部分为b ,求22a ab b ++的值. 注意:正确求出a 和b 是解好本题的关键.6、已知53,53a b b c -=-=222a b c ab bc ca ++---的值.提示:由已知可先求出a c -(或c a -)的值,再将222a b c ab bc ca ++---转化为2222221()()()2a b c ab bc ca a b b c c a ⎡⎤++---=-+-+-⎣⎦代入即可得解. ●体验中考1、(2021年,荆州)已知a 为实数,2284a a a +--.(提示:首先要依据二次根式有意义的条件判定a 的值,然后再进行二次根式的加减运算.)2、(2021年,烟台)已知2,2a b ==,的值为( )A .3B .4C .5D . 6(点拨:222()2a b a b ab +=+-,而a b +=2)1ab ==,即,a b 的和与积比较简单,容易计算.)参考答案:◆随堂检测1、1、D 综合考虑被开方数是非负数且分母不为零,故选D.2、A 利用平方差公式即可.3、B 由题意得:0m >,∴原式350=+=-<,故选B.4、23x y - ∵y<02323x y x y ===-.5、解:=====∵3314172<<,∴<< ◆课下作业●拓展提高1、B 只有B 符合最简二次根式的要求.2、D 选项A 中0a <时不成立;选项B 和C 中,等号两边的值不相等.只有选项D 正确,故选D.3原式2008⎡⎤=⎣⎦=2008(1)-⋅=4、解:原式=+=5、解:2=又∵324<,∴3,(231a b ==+-=.∴2222()(21)433)10a ab b a b ab ++=+-=+-=+-=6、解:∵a b b c -=-=∴()()a b b c -+-=+=a c -=∴2222221()()()2a b c ab bc ca a b b c c a ⎡⎤++---=-+-+-⎣⎦=22211((53)(53)201822⎡⎤⎡⎤++-=++-+=⎣⎦⎣⎦. ●体验中考1、解:∵20a +≥且840a -≥且20a -≥,∴0a =,∴原式==2、C ∵a b +=2)1ab ==,∴2222()22118a b a b ab +=+-=-⨯=,5==.故选C.。
九年级上册(人教版)数学练习题含答案
人教版九年级上册数学测试《第二十一章 二次根式》 练习题一、填空题(每小题2分,共20分)1.a 2a b 1x +21x +3中是二次根式的个数有______个. 2. 当x = 时,二次根式1+x 取最小值,其最小值为 。
3. 82的结果是_____________4. 23·= 5. 实数a 在数轴上的位置如图所示:化简:21(2)______a a --=.6. 已知三角形底边的边长是6cm,面积是12cm 2,则此边的高线长 .7.若()22340a b c ---=,则=+-c b a .8. 计算:20102010)23()23(+-= 9. 已知2310x x -+=,则2212x x+-= 10. 111233+=112344+=113455+=,……,请你将猜想到的规律用含自然数(1)n n ≥的代数式表示出来是 . 二、选择题(每小题3分,共24分) 11. 下列式子一定是二次根式的是( )A .2--xB .x C .22+x D .22-x12. 下列二次根式中,x 的取值范围是2≥x 的是( )线1-1 2aA .2-xB .x+2C .x -2D .1x -213. 实数a b c ,,在数轴上的对应点的位置如图所示,式子①0b c +>②a b a c +>+③bc ac >④ab ac >中正确的有( )A.1个 B.2个C.3个D.4个14. 下列根式中,是最简二次根式的是( ) A .0.2b B . 1212a b - C.22x y - D . 25ab15. 下列各式中,一定能成立的是( )A .22)5.2()5.2(=-B .22)(a a =C .1122-=+-x x xD .3392-•+=-x x x16.设42-a ,小数部分为b ,则1a b-的值为( ) A.212-2C.212+D.217. 把mm 1-根号外的因式移到根号内,得( ) A .m B .m -C .m --D .m -18. 22(2)(4)a a --2,则a 的取值范围是( )A.4a ≥ B.2a ≤ C.24a ≤≤ D.2a =或4a =三、解答题(76分) 19. (12分)计算: (1) 21418122-+- (2) 2)352(-2-1-123c ba(3) 14510811253 (4)284)23()21(01--+-⨯-20. (8分)先化简,再求值:11212222--÷+++-+x x x x x x x ,其中23-=x .21. (8分)已知:3x 22x y --+-=,求:4y x )(+的值。
九年级数学(上)第二十一章《二次根式》测试题及参考答案
九年级数学(上)《二次根式》测试题一、选择题(每小题3分,共30分)1、使式子1-x 2+x 有意义X 的取值范围是( )A 、X ≤1B 、X ≤1且X ≠-2C 、X ≠-2D X <1且X ≠-22、若代数式x x -+212有意义,则x 的取值范围是( )A 、21->x B 、4±≠x C 、0≥x D 、40≠≥x x 且 3、下列运算正确的是( ) A 、15.05.15.05.122=-=-B 、15.025.02=⨯= ≥C 、5)5(2-=-x xD 、x x x 22-=-4、下列根式中,最简二次根式是( )A 、a 25B 、22b a +C 、2aD 、5.05、已知:直角三角形的一条直角边为9,斜边长为10,则另一条直角边长为( )A 1B 19C 19D 296、若x=-3,则 ︳1-(1+X 2) ︳=( )A 1B -1C 3D -37、24n 是整数,则正整数n的最小值是( )A 4B 5C 6D 78、对于二次根式92+x ,以下说法不正确的是( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是39、下列说法错误是………………………………( ) A.962+-a a 是最简二次根式 B.4是二次根式 C.22b a +是一个非负数 D.162+x 的最小值是410、下列各式中与6是同类二次根式的是 ( ) A.36 B.12 C.32D.18二、填空题(每小题3分,共18分)11、使式子4-X 无意义的x取值是12、已知:X=2.5, 化简(X-2)2+ ︳X-4 ︳的结果是13、10xy .30yx (x>0,y>0)= 14、已知4322+-+-=x x y ,则,=xy . 15、三角形的三边长分别是20 ㎝ 45 ㎝ 40 ㎝,则这个三角形的周长为 16、观察下列各式:322322+=⨯;833833+=⨯;15441544+=⨯;……则依次第四个式子是 ;用)2(≥n n 的等式表达你所观察得到的规律应是 。
九年级数学第21章二次根式单元测试题及答案
二次根式单元检测题姓名: 班级: 得分:(本检测题满分:100分;时间:120分钟)一、选择题(每小题2分;共24分)1.(·若3x -在实数范围内有意义;则x 的取值范围是( )A.3x <B.3x ≤C.3x >D.3x ≥ 2.在下列二次根式中;x 的取值范围是x ≥3的是( )A.3x -B.62x +C.26x -D.13x - 3.如果2(21)12a a -=-;那么( )A.a <12 B.a ≤12 C.a >12 D.a ≥124.下列二次根式;不能与12合并的是( )A.48B.18C.113D.75-5. 如果最简二次根式38a -与172a -能够合并;那么a 的值为( ) A.2 B.3 C.46.(2011·四川凉山中考)已知25523y x x =-+--; 则2xy 的值为( )A.15-B.15C.152-D.152的是( )A.83236-=B.5352105=C.432286⨯=D.422222÷=2111x x x -⋅+=-成立的条件是( )A.1x >B.1x <-C.1x ≥D.1x -≤ 9.下列运算正确的是( )A.532-=B.114293= C.822-= D.()22525-=-24n 是整数;则正整数n 的最小值是( ) A.4 B.5 11.(·)如果代数式43x -有意义;那么x 的取值范围是( ) A.3x ≠ B.3x < C.3x > D.3x ≥ 12.(·湖南永州中考)下列说法正确的是( )A.ab a b =⋅B.32(0)a a a a -⋅=≠21x ->的解集为1x > 0x >时;反比例函数ky x=的函数值y 随自变量x 取值的增大而减小 二、填空题(每小题3分;共18分)23= ;2318(0,0)x y x y >> =_________. 14.比较大小:10 3;22π.15.(1123=________;(2)(·计算1482.a ,b 为两个连续的整数;且28a b ;则a b += .y x ,满足22(3)0x y -+-=;则xy 的值为 .18.(2011·四川凉山中考)已知,a b 为有理数;,m n 分别表示57-的整数部分和小数部 分; 且21amn bn +=;则2a b += . 三、解答题(共58分)19.(8分)计算:(1)127123-+; (2)1(4875)13-⨯ .20.(8分)(·四川巴中中考)先化简;再求值:2221121,1(1)(1)x x x x x x x ++⎛⎫-⋅ ⎪++--⎝⎭其中2x =.21.(8分)先化简;再求值:(3)(3)(6)a a a a +---;其中1122a =+.22.(8分)已知23,23x y =-=+;求下列代数式的值:(1)222x xy y ++ ;(2)22x y -.23.(10分)一个三角形的三边长分别为54(1)求它的周长(要求结果化简);(2)请你给出一个适当的x值;使它的周长为整数;并求出此时三角形周长的值.24.(8分)已知,a b为等腰三角形的两条边长;且,a b满足4b=;求此三角形的周长.25.(8分)阅读下面问题:1==;==2=.(1的值;(2+⋅⋅⋅+参考答案1.D 解析:由二次根式有意义的条件知30,x -≥即x ≥3.2.C 解析:对于选项A ;有30x -≥;即3x ≤;对于选项B ;有 620x +≥;即3x -≥; 对于选项C ;有260x -≥;即3x ≥;对于选项D ;有103x >-;即3x >.故选C. 3.B12a -;知120a -≥;即12a ≤.4.B=;-;.5.D是 同类二次根式;所以38172a a -=-;解得5a =. 6.A 解析:由题意;知250x -≥;520x -≥;所以52x =;3y =-;所以215xy =-. 7.C解析:因为;所以选项A不正确;因为式;不能合并;所以选项B 不正确;选项C正确;因为2;所以选项D 不 正确.8.C 解析:由题意;知210,10,10,x x x ⎧-⎪+⎨⎪-⎩≥≥≥所以1x ≥.9.C10.C=n 的最小值为6. 11.C 解析:由题意可知30x ->;即3x >.12.B 解析:对于选项A0,0)a b ≥≥;对于选项C ;解21x ->;得1x <; 对于选项D ;未指明k 的取值情况.3; 因为0,0x y >>3=14.>;< 解析:因为109>3>.因为2π>9;28=;所以2π8>;即π.15.(1解析:(1=(2)0=.16.11 知5,6a b ==;所以11a b +=.17.解析:由题意知20,0x y -=;所以2,x y ==;所以xy =.解析:因为23;所以52;小数部分是3所以2,3m n ==所以2(6(31a b -+=;即(6(161a b -+-=.整理;得6163)1a b a b +-+=.因为a ;b 为有理数;所以6161a b +=;30a b +=; 所以 1.5a =;0.5b =-;所以2 2.5a b +=.19.解:(1=.(2)2=- .20.解:原式=1(1)x x +当x 时;10x +>1,x =+故原式=1(1)1(1)44x x x x x x +⋅==+.21.解:((6)a a a a --223663a a a a =--+=-.当12a =12=+163332⎛=-=+= ⎝⎭22.解:(1)222222()(2(2416x xy y x y ⎡⎤++=+=+==⎣⎦.(2)22()()(2224(x y x y x y -=+-=-=⨯-=-23.解:(1)周长54==(2)当20x =时;周长25==.(答案不唯一;只要符合题意即可) 24.解:由题意可得30,260,a a -⎧⎨-⎩≥≥即,,a a ⎧⎨⎩≤3≥3所以3a =;4b =4=.当腰长为3时;三角形的三边长分别为3;3;4;周长为10; 当腰长为4时;三角形的三边长分别为4;4;3;周长为11.25.解:(1=(2=(3+⋅⋅⋅+1)(99=++++-+11109=--+=.26.解:(1)223,2a m n b mn =+= (2)21;12;3;2(答案不唯一) (3)由题意得223,42.a m n mn ⎧=+⎨=⎩因为42mn =且,m n 为正整数;所以2,1m n ==或1,2m n ==. 所以222317a =+⨯=或2213213a =+⨯=.。
新人教版九年级数学第二十一章二次根式测试题及答案(2套)范文
一、选择题(每小题2分,共20分) 1. 下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x2.若b b -=-3)3(2,则( )A .b>3B .b<3C .b ≥3D .b ≤3 3.若13-m 有意义,则m 能取的最小整数值是( ) A .m=0 B .m=1 C .m=2 D .m=34.若x<0,则xx x 2-的结果是( )A .0B .—2C .0或—2D .2 5.(2005·岳阳)下列二次根式中属于最简二次根式的是( ) A .14 B .48 C .baD .44+a 8.化简6151+的结果为( ) A .3011B .33030C .30330D .11309.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( ) A .43-=a B .34=a C .a=1 D .a= —1 10.(2005·江西)化简)22(28+-得( ) A .—2 B .22- C .2 D . 224- 二、填空题(每小题2分,共20分)11.①=-2)3.0( ;②=-2)52( 。
12.二次根式31-x 有意义的条件是 。
16.=∙y xy 82 ,=∙2712 。
17.计算3393aa a a-+= 。
18.23231+-与的关系是 。
19.若35-=x ,则562++x x 的值为 。
20.化简⎪⎪⎭⎫⎝⎛--+1083114515的结果是 。
11.若5-x 不是二次根式,则x 的取值范围是 。
12.已知a<2,=-2)2(a 。
13.当x= 时,二次根式1+x 取最小值,其最小值为 。
14.计算:=⨯÷182712 ;=÷-)32274483( 。
16.若433+-+-=x x y ,则=+y x 。
试求:(1)671+的值; (2)17231+的值;下列方程中是一元二次方程的是( ). A.xy +2=1 B. 09212=-+xx C. x 2=0 D.02=++c bx ax 1.配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=2.若1762+--x x x 的值等于零,则x 的值是( ) A 。
九年级数学(上)第21章二次根式练习题
a九年级数学(上)第21章二次根式练习题一、填空题1______个.2x 取值是 3.①=-2)3.0( ;②=-2)52( 。
4.已知a<2,=-2)2(a。
5.比较大小:)"","",""--= 填6.已知52x=4x -的结果是 .7.1112-=-∙+x x x 成立的条件是8. 20x y +-=,则_________x y -=。
9.当x= 时,二次根式1+x 取最小值,其最小值为。
10,则这个三角形的周长为 .二、选择题11.若ba 是二次根式,则a ,b 应满足的条件是( )A .a ,b 均为非负数B .a ,b 同号C .a ≥0,b>0D .0≥b a12.x ). A .x>1 B .x ≥1 C .x<1 D .x ≤113.已知实数a 、b).A .非负数B .正数C .负数D .以上答案均不对14) A .①② B .③④ C .①③ D .①④15.已知a<b ,化简二次根式b a 3-的正确结果是( ) A .ab a -- B .ab a - C .ab a D .ab a -16.把mm 1-根号外的因式移到根号内,得( )A .m B .m - C .m -- D .m - 17.下列各式中,一定能成立的是( )。
A .22)5.2()5.2(=-B .22)(a a =C .122+-x x =x-1D .3392+⋅-=-x xx18.一个直角三角形的两条直角边分别为,,那么这个直角三角形的面积是( ).A ...三、解答题:(76分)19.化简:(12分(1))169()144(-⨯- (2)22531-(3)5102421⨯- (4)n m 21821.计算(16分)(1)21418122-+- (2)3)154276485(÷+- (3))2161(32+÷(4)x x x x 3)1246(÷- (5)0)13(27132--+- (6))483814122(22-+(7)1)13(12322-++-- (8)b a b ab a a --- (9)b a b ab ab a ab ab --÷+-)(22.已知213,213-=+=y x ,求y x 11+的值。
第21章 二次根式单元测试题(一)及答案
第21章 二次根式单元测试(时间90分钟,满分100分)一、选择题(每小题2分,共20分) 1.下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x 2.若b b -=-3)3(2,则( )A .b>3B .b<3C .b ≥3D .b ≤3 3.下面计算正确的是( )A.3333+=B.2733÷=C.235= D.2(2)2-=-4.若x<0,则xx x 2-的结果是( )A .0B .—2C .0或—2D .2 5.下列二次根式中属于最简二次根式的是( ) A .14 B .48 C .baD .44+a 6. 已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D . 1527.小明的作业本上有以下四题:①24416a a =; ②a a a 25105=⨯; ③a aa a a =∙=112;④a a a =-23。
做错的题是( )A .①B .②C .③D .④ 8.化简6151+的结果为( )A .3011 B .33030 C .30330 D .1130 9.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( ) A .43-=a B .34=a C .a=1 D .a= —110. 计算221-631+8的结果是( ) A .32-23 B .5-2C .5-3D .22二、填空题(每小题2分,共20分)11.①=-2)3.0( ;②=-2)52( 。
12.二次根式31-x 有意义的条件是 。
13.若m<0,则332||m m m ++= 。
14.1112-=-∙+x x x 成立的条件是 。
15.比较大小:32 π。
16.=∙y xy 82 ,=∙2712 。
17.计算3393aa a a-+= 。
18.23231+-与的关系是 。
19.若35-=x ,则562++x x 的值为 。
九年级上第二十一章二次根式测试题参考答案.doc
学校班别座号姓名人教版九年级上册第二十一章二次根式测试数学试卷(时间120分满分120分)一、填空题(每小题2分,共20分)1.在a、2a b、1x+、21x+、3中是二次根式的个数有______个.2.当x= 时,二次根式1+x取最小值,其最小值为。
3.化简82-的结果是_____________4.计算:23·=5.实数a在数轴上的位置如图所示:化简:21(2)______a a-+-=.6.已知三角形底边的边长是6cm,面积是12cm2,则此边的高线长.7.若()22340a b c-+-+-=,则=+-cba.8.计算:20102010)23()23(+-=9.已知2310x x-+=,则2212xx+-=10.观察下列各式:111233+=,112344+=,113455+=,……,请你将猜想到的规律用含自然数(1)n n≥的代数式表示出来是.二、选择题(每小题3分,共24分)11.下列式子一定是二次根式的是()题号一二三总分19 20 21 22 23 24 25 26得分密线封1-012aA .2--xB .xC .22+xD .22-x12. 下列二次根式中,x 的取值范围是2≥x 的是( )A .2-xB .x+2C .x -2D .1x -213. 实数a b c,,在数轴上的对应点的位置如图所示,式子①0b c +>②a b a c +>+③bc ac >④ab ac >中正确的有( )A.1个 B.2个 C.3个 D.4个14. 下列根式中,是最简二次根式的是( ) A .0.2b B . 1212a b - C. 22x y - D . 25ab15. 下列各式中,一定能成立的是( )A .22)5.2()5.2(=- B .22)(a a = C .1122-=+-x x x D .3392-∙+=-x x x16.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A.212-B.2 C.212+D.2-17. 把mm 1-根号外的因式移到根号内,得( ) A .m B .m -C .m --D .m -18. 若代数式22(2)(4)a a -+-的值是常数2,则a 的取值范围是( ) A.4a ≥ B.2a ≤ C.24a ≤≤ D.2a =或4a =三、解答题(76分) 19. (12分)计算:(1) 21418122-+- (2) 2)352(-2- 1- 0 1 2 3 c b a(3) 14510811253++- (4)284)23()21(01--+-⨯-20. (8分)先化简,再求值:11212222--÷+++-+x x x x x x x ,其中23-=x .21. (8分)已知:3x 22x y --+-=,求:4y x )(+的值。
西城学探诊九上数学答案
答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x 14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D . 16.⋅-4117.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第二十二章 一元二次方程测试11.1,最高,ax 2+bx +c =0 (a ≠0).2.2x 2-6x -1=0,2,-6,-1. 3.k ≠-4.4.x 2-12x =0,1,-12,0.或-x 2+12x =0,-1, 12,0 5.-2. 6..32±=y 7.A . 8.A . 9.C . 10.C .11.y 1=2,y 2=-2. 12..23,2321--=+-=x x 13.x 1=-11,x 2=9. 14.x 1=0,x 2=-2. 15..12,03)12(22+=-++x x 16.(2-n )x 2+nx +1-3n =0,2-n ,n ,1-3n .(或(n -2)x 2-nx +3n -1=0,n -2,-n ,3n -1.) 17.1. 18.A . 19.C . 20.C . 21.D . 22.⋅±=3322.1x 23..14,5421-=-=x x 24.x 1=1,x 2=7. 25..,21m n x m n x +-=+=26.k =-1,x =2. 27.C .28.m =1不合题意,舍去,m =-1.29.∵3<k <7,k 为整数,∴k 可取4,5,6,当k =5时方程成立,∴三角形边长为2cm ,5cm ,5cm ,则周长为12cm .测试2 1.16,4. 2.⋅43,169 3.⋅2,42p p 4.⋅a b a b 2,4225.).04(2422≥--±-=ac b aac b b x 6.2, 10,-3. 7.C . 8.D . 9.B . 10.B . 11..21±=x 12..33±=y13..72,7221--=+-=x x 14..332,321-==x x 15.x 1=-1,x 2=-3. 16.⋅=-=51,121x x 17..33,321,1,033)321(2-+=-+++x x18.2,-4 19. D . 20. C . 21. B . 22.⋅-=+=3102,310221x x 23..,2221n m m x n m m x +--=++-=24.⋅--=+-=231,23121x x 25.⋅==3321x x26.⋅-=+=2222,222221x x 27.mx x -==12,121 28.(x -2)2+1,x =2时,最小值是1.测试31.(1)>(2)=(3)<. 2.-1. 3.≥0. 4.m =0或m =-1. 5.B . 6.C . 7.B . 8.D .9.(1)k <1且k ≠0; (2)k =1; (3)k >1.10.a =2或3. 11.∆=m 2+1>0,所以方程有两个不相等的实数根. 12.C . 13.D . 14.C . 15.B . 16.C . 17.⋅-===21,421x x m 18.提示:∆=-4(k 2+2)2 <0. 19.2. 20.∵m <0,∴∆=m 2+4-8m>0.21.设两个方程的判别式分别为∆1,∆ 2,则∆1=a 2-4c ,∆2=b 2-4d .∴∆1+∆ 2=a 2+b 2-2ab =(a -b )2≥0.从而∆1,∆ 2中至少有一个非负数,即两个方程中至少有一个方程有实数根.测试4 1.x =0,x 2=3. 2..2,2721-==x x 3.⋅==32,021x x4.x 1=x 2=-3. 5..6,021==x x 6..322,021-==x x 7.x =1,x 2=3. 8.x 1=x 2=2. 9. B . 10. D .11.⋅==32,221x x 12.⋅==33,021x x 13.x 1=7,x 2=-4. 14.x 1=2b ,x 2=-b .15.x 1=0,x 2=2. 16..3,2521=-=x x17.x 1=3,x 2=4.18..2,021==x x19.x 1=-1,x 2=-7.20.C . 21.D . 22.C . 23.x 1=0,x 2=-10. 24.⋅-=-=34,821x x25..2,221b a x b a x +=-=26.⋅==b a x a b x 21,27.(1)∆=(m 2-2)2.当m ≠0时,∆≥0;(2)(mx -2)(x -m )=0,m =±1或m =±2.测试5 1.⋅-=+=331,33121x x 2.x 1=1,x 2=-1.3..1,3221==x x4..102,10221-=+=x x5.B . 6.B . 7.B . 8.D .9.⋅-==21,3221x x10..32,3221-==x x 11.x 1=m +n ,x 2=m -n . 12.⋅==ax a x 2,2121 13.51,021==x x (因式分解法). 14.x 1=16,x 2=-14(配方法). 15.6191±=x (分式法). 16.3±=x (直接开平方法). 17.x 1=16,x 2=-1(因式分解法). 18.2121==x x (公式法). 19.2215±=x (公式法). 20.x =8.21.x =-a ±b . 22.B . 23.B . 24.x 1=2,x 2=-2.25..227±=y 26.⋅==22,221x x 27.k =0时,x =1;k ≠0时,.1,121==x k x28.0或⋅3529.∆=4[(a -b )-(b -c )]2=4(a -2b +c )2=0.30.3(x -1)(x +3). 31.⋅+---)21)(21(x x32.,,aca b - (1);25,23-- (2)-8,-6;(3);34,2 (4).2;94;372;916;1⑤④③②①-- 测试61.(1)工用时间工作总量 (2)速度×时间.2.1.1a ,1.21a ,3.31a . 3.a 81100元. 4.D . 5.D . 6.三个数7,9,11或-11,-9,-7. 7.三边长为.2,226,226+- 8.50%. 9.2cm . 10.1米. 11.3000(1+x )2=5000.12.10%. 13.(50+2x )(30+2x )=1800. 14.(1)1800;(2)2592.15.长28cm ,宽14cm . 16.10%. 17.10元或20元. 18.2分钟. 19.(1)水蚀和风蚀造成的水土流失面积分别为165万km 2和191万km 2;(2)平均每年增长的百分数为10%. 第二十三章 旋 转测试11.一点O ,一个角度,旋转中心,旋转角,旋转中心,旋转角. 2.对应点.3.O ,90°,A '点,A 'B ',∠B ',∠AO A '=90°.4.O点,∠DOA或∠FOC或∠EOB,DO,DE,∠DFE.5.120.6.180.7.270.8.距离,旋转角,全等.9.B.10.D.11.D.12.C.13.A.14.答案不唯一,如可看成正△ACE绕其中心旋转60°得到的.15.可看成四边形AFOJ绕O点每次旋转72°,共旋转了四次得到的.16.略.17.略.18.物体A向右平移,移动的距离是20 cm.19.△CBE可看成由△ABF按顺时针旋转90°得到的,所以△CBE≌△ABF,并且CE=AF,AF⊥CE.20.分两类:(1)A与C是对应点.(2)B与C是对应点,对(1)的作法:(1)连结AC,作线段AC的垂直平分线l1;(2)连结BD,作线段BD的垂直平分线l2,与l1交于O点,则O点为所求.同理可作出(2)的O′选点.21.提示:如图1,以C为旋转中心,将△APC绕C点逆时针旋转60°得到△BDC,易证△PCD为等边三角形,△PBD是以BP,AP(=BD),CP(=PD)为三边的三角形.∠PBD =53°,∠BPD=64°,∠PDB=63°.图1测试21.180°,重合,对称中心,对称点.2.(1)线段,对称中心,平分;(2)全等图形.3.180°,重合,对称中心.4.中心对称,它的中点.5.中心对称,它的两条对角线的交点.6.中心对称,它的圆心.7.AB=CD且AB∥CD或AB与CD共线.8.C点,点F,D点,EG,EG,C点,平分,△FGE.9.OF=OE,全等.10.D.11.B.12.C.13.C.14.略.15.作法:分别连结CG、BF,则它们的交点O为两四边形的对称中心.其理由是关于中心对称的两个图形,对称点所连线段都经过对称中心,而CG、BF两线段不共线,所以它们的交点即为对称中心. 16.略. 17.18.(1)A 1(1,-1)、B 1(3,-2)、C 1(4,1).(2)A 2(3,-5)、B 2(5,-6)、C 2(6,-3).19.(1)平移变换、轴对称变换、旋转变换.一个图形经过平移、轴对称、旋转变换,它的形状和大小都不会改变.即所得的图形与原图形全等.(2)a =5,b =2,c =5,(a +b +c )a +b -c =122=144. 20.l 1∶y =2x -3, l 2∶y =-2x -3, l 3∶y =-2x +1. 21.第2张,是中心对称图形.测试3 1.22. 2.⋅333.⋅-)3,1( 4..52 5.1 6.60.7.B . 8.B . 9.A . 10.A .11.提示:如图,以BC 为边向形外作等边△BCE ,连结AC ,AE .可证△BCD ≌△ECA ,AE =BD ,∠ABE =90°,在Rt △ABE 中,有AB 2+BE 2=AE 2,即AB 2+BC 2=BD 2.11题图12.提示:如图,延长EC 到M ,使CM =AF ,连结BM .易证△AFB ≌△CMB ,∠4=∠M .又AD ∥BC ,∴4=∠2+∠5=∠1+∠5=∠3+∠5. ∴∠M =∠EBM .∴BE =EM =AF +CE .12题图13.提示:延长FD 到H ,使DH =BE ,易证△ABE ≌△ADH .再证△AEF ≌△AHF .21=∠=∠∴FAH EAF .21BAD EAH ∠=∠ 14.提示:如图,(1)连结CD ,证△CDE ≌△BDF .CE =BF . ∵CA =CB , ∴ AE =CF .在Rt △CEF 中,CE 2+CF 2=EF 2,∴AE 2+BF 2=EF 2.(2)延长FD 到M ,使DM =DF ,连结AM 、EM ,先证△BFD ≌△AMD .∴AM =BF ,∠DAM =∠B ,再证EM =EF .14题图第二十四章 圆测试11.平面,旋转一周,图形,圆心,半径,⊙O ,圆O . 2.圆,一中同长也.3.(1)半径长,同一个圆上,定点,定长,点. (2)圆心的位置,半径的长短,圆心,半径长. 4.圆上的任意两点,线段,圆心,弦,最长. 5.任意两点间,弧,圆弧AB ,弧AB . 6.任意一条直径,一条弧.7.大于半圆的弧,小于半圆的弧. 8.等圆.9.(1)OA ,OB ,OC ;AB ,AC ,BC ,AC ;;及(2)40°,50°,90°.10.(1)提示:在△OAB 中,∵OA =OB ,∴∠A =∠B .同理可证∠OCD =∠ODC .又 ∵ ∠AOC =∠OCD -∠A ,∠BOD =∠ODC -∠B ,∴ ∠AOC =∠BOD . (2)提示:AC =BD .可作OE ⊥CD 于E ,进行证明. 11.提示:连结OD .不难得出∠C =36°,∠AOC =54°. 12.提示:可分别作线段AB 、BC 的垂直平分线.测试21.轴,经过圆心的任何一条直线,中心,该圆的圆心. 2.垂直于弦的直径平分弦,并且平分弦所对的两条弧. 3.弦,不是直径,垂直于,弦所对的两条弧.4.6. 5.8; 6..120,36o7.a 22,a 218.2. 9..13 10..13 11..24 12.提示:先将二等分(设分点为C ),再分别二等分和.13.提示:题目中的“问径几何”是求圆材的直径.答:材径二尺六寸.14.75°或15°. 15.22cm 或8cm .16.(1)作法:①作弦B B '⊥CD .②连结B A ',交CD 于P 点,连结PB .则P 点为所求,即使AP +PB 最短.(2)cm.32 17.可以顺利通过.测试31.顶点在圆心,角.2.⋅⨯nm360 3.它们所对应的其余各组量也分别相等 4.相等,这两条弦也相等. 5.提示:先证=.6.EF =GH .提示:分别作PM ⊥EF 于M ,PN ⊥GH 于N . 7.55°. 8.C .9.=3 .提示:设∠COD =α,则∠OPD =2α,∠AOD =3α=3∠BOC . 10.(1)作OH ⊥CD 于H ,利用梯形中位线.(2)四边形CDEF 的面积是定值,96221)(21⨯=⋅⋅⋅=⋅+=CD CH CD DE CF S =54.测试41.顶点,与圆相交. 2.该弧所对的,一半. 3.同弧或等弧,相等. 4.半圆(或直径),所对的弦. 5.72°,36°,72°,108°. 6.90°,30°,60°,120°. 7.60°,120°.8.C . 9.B . 10.A . 11.B . 12.A . 13.C . 14.提示:作⊙O 的直径A B ',连结C A '.不难得出A B '=cm.38 15.cm.3416.提示:连结AH ,可证得∠H =∠C =∠AFH . 17.提示:连结CE .不难得出cm .25=AC18.提示:延长AO 交⊙O 于N ,连结BN ,证∠BAN =∠DAC . 19.提示:连结MB ,证∠DMB =∠CMB .测试51.外,上,内. 2.以A 点为圆心,半径为R 的圆A 上.3.连结A ,B 两点的线段垂直平分线上. 4.不在同一直线上的三个点. 5.内接三角形,外接圆,外心,三边的垂直平分线. 6.内,外,它的斜边中点处. 7..4332R 8..3π2a 9.26cm . 10.20πcm . 11.略. 12.C . 13.D . 14.D . 15.B . 16.D . 17.A 点在⊙O 内,B 点在⊙O 外,C 点在⊙O 上. 18.)25,1(--,作图略. 测试61.D . 2.C . 3.C . 4.C . 5.D . 6.C . 7.72°.8.32°. 9.,cm 21045° 10.60°或120°. 11.提示:先证OD =OE . 12.4cm . 13.)0,32(A ,提示:连结AD . 14.略. 15.∠CAD =30°,.πcm 6)(π6122==AO S 提示:连结OC 、CD . 测试71.三,相离、相切、相交.2.有两个公共点,圆的割线;有一个公共点,圆的切线,切点;没有公共点. 3.d >r ;d =r ;d <r .4.圆的切线垂直于过切点的半径.5.经过半径的外端并且垂直于这条半径的直线是圆的切线. 6.过A 点且与直线l 垂直的直线上(A 点除外). 7.(1)当cm 13600<<R 时;(2)cm 1360=R ;(3)当cm 1360>R 时. 8.提示:作PF ⊥OB 于F 点.证明PF =PE .9.直线DE 与⊙O 相切.提示:连结OA ,延长AO 交⊙O 于F ,连结CF .10.提示:连结OE 、OD .设OE 交BC 于F ,则有OE ⊥BC .可利用∠FEM +∠FME =90°.证∠ODA =90°. 11.提示:连结OF ,FC .12.BC 与半圆O 相切.提示:作OH ⊥BC 于H .证明.21EF OH =13.提示:连结OE ,先证OE ∥AC .14.BC =AC .提示:连结OE ,证∠B =∠A .15.直线PB 与⊙O 相切.提示:连结OA ,证ΔP AO ≌ΔPBO . 16.8cm .提示:连结OA .测试81.这点和切点之间的线段的长.2.两,切线长,圆心的连线,两条切线的夹角. 3.这个三角形的三边的距离.4.与三角形各边都相切,三角形三条角平分线的交点,内心. 5.1∶2∶32. 6.116°. 7.提示:连线OC ,OE .8.略. 9.略. 10.(1)70°;(2)20cm . 11.(1)r =3cm ; (2)c b a abr ++=(或2c b a r -+=,因为2c b a c b a ab -+=++). 12.).(21c b a r S ++=13.提示:由BOC A ∠=+∠o9021,可得∠A =30°,从而BC =10cm ,cm 310=AC .测试91.B . 2.B . 3.A . 4.C . 5.D .6.15πcm 2. 7.(1)相切;(2)∠BCD =∠BAC . 8.70°. 9.(1)略; (2)连结OD ,证OD ∥AC ; (3).325=DE 10.(1)△DCE 是等腰三角形; (2)提示:可得3==BC CE .11.(1)略; (2)AO =2.测试101.公共点,外部,内部.2.只有一个公共点,切点,外部,内部. 3.有两个公共点,交点,公共弦.4.d >r 1+r 2; d =r 1+r 2; r 1-r 2<d <r 1+r 2; d =r 1-r 2; 0≤d <r 1-r 2; d =0.5.C . 6.C . 7.2或4 8.4.(d 在2<d <14的范围内均可) 9.提示:分别连结O 1A 、O 1B 、O 2A 、O 2B . 10.cm 62.提示:分别连结O 1B ,O 1O 2,O 2C . 11.提示:连结AB . 12.7cm 或1cm . 13..m )231(+14.提示:作⊙O 1的直径AC 1,连结AB .15.相切.提示:作⊙O 2的直径BF ,分别连结AB ,AF . 16.(1)当0≤t ≤5.5时,d =11-2t ;当t >5.5时,d =2t -11.(2)①第一次外切,t =3;②第一次内切,;311=t ③第二次内切,t =11;④第二次外切,t =13.测试111.相等,角. 2.内接正n 边形.3.外接圆的圆心,外接圆的半径,圆心角,距离.4.⋅︒︒︒⋅-n n nn 360,360,180)2( 5.⋅+=n n n n a nr a r R 21,412226.135°,45°. 7.23:1:1(或3:2:2). 8..3:22 9.略. 10.C . 11.B . 12.B .13.(1);231R A A = (2)222R (3).222R 14.AB ∶A ′B ′=1∶2,S 内∶S 外=1∶2. 15.AB ∶A ′B ′=3∶2,S 内∶S 外=3∶4.测试121.;180πRn 2.由组成圆心角的两条半径,圆心角所对的弧,.21,360π2lR R n 3.S △OAB ,S 扇形. 4..9157,π516o ' 5.120°,216°. 6.3πcm . 7.A . 8.D . 9.B . 10..)8π43(2a - 11..π3838- 12.的长等于的长.提示:连结O 2D .13.提示:设A O '=R ,∠AOB =n °,由,180π,180)(π21Rn l d R n l =+=可得R (l 1-l 2)=l 2d .而.)(21212121)(2121)(21211212121d l l d l d l d l l l R R l d R l S +=+=+-=-+=测试131.直角边,圆锥,顶点,底面圆周上任意一点,高. 2.扇形,l ,2πr ,πrl ,πrl +πr 2. 3.8πcm ,20πcm 2,288°. 4.8πcm ,4cm ,,cm 2848πc m 2. 5.C . 6.B . 7.D . 8.B . 9.D . 10.B . 11.16πcm 2.12..cm 53 提示:先求得圆锥的侧面展开图的圆心角等于180°,所以在侧面展开图上,.5363,902222o =+=+==∠AB PA PB PAB第二十五章 概率初步测试11.(3)、(9)、(10)、(11);(1)、(2)、(4)、(5)、(6)、(7)、(8)、(12);(5); (12).2.D . 3.D . 4.C . 5.C .6.可能发生.虽然这个事件发生的几率很小,但它仍然是可能发生的事件,是不确定事件.7.纸片埋在2号区域的可能性最大.因为2号区域的面积是整个区域面积的,21而1号、3号区域的面积都是整个区域面积的,41当随意投入纸片时,落在2号区域的可能性要大.8.这个游戏是公平的.因为黑白两色的直角三角形都全等,且个数也分别相等,所以黑白两色直角三角形面积的和也分别相等,又因为黑白两色弓形的弦长都是直角三角形的斜边,所以黑白两色弓形面积的和也分别相等,因此黑白两色区域面积各占圆面积的50%,即镖扎在黑白两色区域面积的概率均为50%.9.两个人的说法都不同意.两个转盘的面积大小不同,但是蓝色部分所占总面积的比例相同,都是,41因此预计成功的机会都是25%.10.(1)左图中,可能处于A 区域或B 区域,可能性最大的是处于B 区域.右图中,可能处于1,2,3,4,5,6区域,处于各区域的可能性相同. (2)左图中,投掷结果可能为1,2,3,4,5,6,可能性一样. 右图中,投掷结果可能为1或2,可能性一样. (3)投掷结果可能为正面或反面,可能性一样.测试21.频率,概率. 2.0.15.3.(1)4,80%;(2)5006,50.1%,4994,49.9%;(3)0.5.4.D . 5.A . 6.(1)0.75,0.8,0.75,0.78,0.75,0.7;(2)0.75. 7.①、③、④. 8..50000019.D . 10.D . 11.A .12.最后一位数可以是0~9这10个数字中的一个,故正好按对密码的概率是⋅101 1314.不同意.10次的实验次数太少,所得频率不能充分代表概率,所以应多做实验,如100次实验后,用摸到1的次数除以100,才能近似代表概率值.15.不对.三种情况中,出现“一正一反”的有两种可能,其概率应为⋅=⨯2124116.(1);53(2);52 (3)0; (4)1; (5)小.测试3 1.红. 2.(1);61 (2)⋅313.,41 糖果.4.(1);541 (2);272 (3);5413 (4);2713 (5)⋅27265.D . 6.C . 7.B . 8.P (摸到2的倍数的卡片) ;21105== P (摸到3的倍数的卡片);103=P (摸到5的倍数的卡片)⋅==51102 9.中间两位可能是00~99中的一种情况,故一次就可打开手机的概率是.100110.⋅52 11.⋅41 12.⋅35813.C . 14.D . 15.B . 16.A .17.(1)值班顺序共有6种排列方法;(2)甲在乙前的有3种;(3)概率为⋅=2163 18.可能结果有6种,而猜正确的只能是一种,故概率是.6119.两张牌面数字之和共有16种等可能的结果,其中等于5的有4种,故其概率为;41和等于2和8的概率最小.20.(1)设计12个红球,8个白球,4个黄球;(2)设计红球和黄球各9个,白球6个.测试41.D . 2.D .3.(1)画树形图来找出所有可能情况.甲摸得球的颜色:乙甲白 红 黑 白 白,白 红,白 黑,白 红 白,红 红,红 黑,红 黑白,黑红,黑黑,黑况,每种情况出现的机会均等,乙取胜的概率为⋅=3193 4.(1)每个小球被摸到的机会均等,故P (摸到蓝色小球)⋅=31 小李小王红 黄 蓝 红 红,红 红,黄 红,蓝 黄 黄,红 黄,黄 黄,蓝 蓝蓝,红蓝,黄蓝,蓝由上表可知小王和小李先后摸球的所有情况有9种,每种情况出现的可能性相同,其中小王赢的情况有3种,小李赢的情况有6种. ∴P (小王赢),3193==P (小李赢) ,3296== ,3231=/ ∴此游戏规则对双方是不公平的. 5.列表考虑所有可能情况:转盘A两个数字之积转盘B-1211 -1 02 1 -2 2 0 -4 -2 -11-2-1由列表可知,由两个转盘各转出一数字作积的所有可能情况有12种,每种情况出现的可能性相同,其中两个数字之积为非负数有7个,负数有5个,∴P (小力获胜),127=P (小明获胜).125=∴这个游戏对双方不公平.6.剪刀一A ,石头一B ,布一C ,画出树形图如下:由树形图可知,三人随机出拳的所有可能情况有27种,每种情况出现的可能性相同,其中,(1)不分胜负的有:AAA ,BBB ,CCC ,ABC ,共4个,P (三人不分胜负);274= (2)一人胜二人负的有:ACC ,AAB ,ABA ,BAA ,BBC ,CBB ,CAC ,CCA ,BCB ,共9个, P (一人胜二人负).31279== 7.画出树形图:由树形图可知,三辆车在十字路口随机选择的情况共有27种,每种情况出现的可能性大小相同,其中,(1)三辆车全部继续直行的结果只有一个,P (三辆车全部继续直行);271= (2)两辆车向右转,一辆车向左转的结果有3个, P (两辆车向右转,一辆车向左转);91273==(3)至少有两辆车向左转的结果有7个,P (至少有两辆车向左转).277=8.⋅61 9..43,41 10.⋅10000001 11.2. 12.B . 13.C .14.(1)黄球有654315=--÷(个);(2)任意摸出一个红球的概率是⋅15415..8116.(1)要求只有两个奇数即可;(2)要求必须有1,2,4,5,另外两个数只要大于6即可.因此可以选1,2,4,5,7,8.测试51.概率,频率. 2.8,12,4,26. 3.2. 4.200. 5.A . 6.B .7.(1)频率依次为0.90,0.92,0.91,0.89,0.90;(2)概率是0.9. 8.可估计三色球总数为100%2525=个,则黄球约为40个,红球约为100-40-25=35个.9.9. 10.⋅154;4111.可能性是;101可取3个白球和两个红球,用红球代表过了保质期的饮料,从这5个球中任取两个,这两个均为红球的概率即为所求. 12.(1)10010052000=⨯(支),估计箱子里有100支不合格产品; (2)0.5×(2000-100)-1×100=850(元),这箱笔芯能赚钱,赚了850元.13.(1)先求有标记数与总条数的比,67928得池塘鱼数242567928100=÷=条,估计可能不太准确,因为实验次数太少.(2)可以先捞出一定数目的鱼(比如30条),做上标记再放回,一天后,在池塘里随机捞取,每次捞50条,求带有标记和不带有标记鱼的数目比.重复实验100次,求出平均值,然后用30除以平均比值,即可估计池塘里的鱼数.14.从袋中随机摸取一球,记下颜色放回摇匀,摸20次为一次实验,若摸出n 个橙球,则摸到橙球的频率为;20n重复多次实验,用实验频率估计理论概率;用2030n ÷求出袋中球的总数,再用总数减去30个橙球数,就得出放进去的白球数.15.首先统计出联通用户数量m ,然后随机调查1000名手机用户,如果其中有n 名中国联通用户,则可估计对手的市场占有率为,10001n-对手用户数量为m nm -1000名. 16.方案一:从口袋中摸出10粒棋子做上标记,然后放回口袋.拌匀后从中摸出20粒棋子,求出标记的棋子与20的比值,不断重复上述过程30次,有标记的棋子与20的比值的平均数为,1m则估计袋中棋子有10m 粒. 方案二:另拿10粒黑色棋子放到袋中,拌匀后,重复方案一中的过程.黑棋子与20的比值平均数为,1n估计袋中原有白棋子(10n -10)粒.测试61.近似值,0. 2.1,30,6. 3.300. 4.⋅515.C . 6.B .7.(1)0.6;(2)0.6,0.4;(3)白球12,黑球8; (4)尝试自己设计出一种方案与同学交流. 8.能.设男教师人数为x ,则,200805050=+x 解得x =75,估计该校约有75位男教师. 9.,41略. 10.⋅2111.估计,127.015019==≈N n P 又.149.35.0127.01.022π,π2=⨯⨯=≈∴=Pa l a l P 12.随实验次数的增加,可以看出石子落在⊙O 内(含⊙O 上)的频率趋近0.5,有理由相信⊙O 面积会占封闭图形ABC 面积的一半,所以求出封闭图形ABC 的面积为2π. 13.如图,当所抛圆碟的圆心在图中边框内(宽为5cm)部分时,圆碟将与地砖间的间隙相交,因此所求概率等于一块正方形地砖内的边框部分和该正方形的面积比,结果为⋅16714.用计算器设定1~365(一年按365天计)共365个随机数,每组取10个随机数,有两个数相同的记为1,否则记为0,做10组实验,求出现两个数相同的频率,用此数据来估计概率. 15.由于间谍侦查到的班是随机的,设敌国有x 个班严重缺员,那么,2202220x=解得x =200,可见敌国有200个班严重缺员,仅有的20个班基本满员,又加上士气不振,可以说“敌国已基本上无战斗力了”.第二十一章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).第二十二章 一元二次方程全章测试1.x 1=x 2=1. 2.-2. 3.0. 4..,0a b x -±=≤5.4. 6.⋅-497.2. 8.3. 9.A. 10.A. 11.A. 12.D. 13.C. 14.(1)x 1=2,x 2=0; (2)x 1=2,x 2=4; (3);221==x x(4)x 1=-7,x 2=3; (5);231,23121-=+=x x (6)x 1=a ,x 2=a -b .15.变为2(x -1)2+4,证略. 16.(1)k <2;(2)k =-3.17.(1)7;(2)①;∆2-∆1=(k -4)2+4>0,若方程①、②只有一个有实数根,则∆ 2>0> ∆ 1;(3)k =5时,方程②的根为;2721==x x k =6时,方程②的根为x 1=⋅-=+278,2782x18.∆=4m (a 2+b 2-c 2)=0,∴a 2+b 2=c 2. 19.设出发后x 秒时,⋅=∆41MON S (1)当x <2时,点M 在线段AO 上,点N 在线段BO 上.⋅=--41)3)(24(21x x解得);s (225,2)s (225,21-=∴<±=x x x x (2)当2<x <3时,点M 在线段OC 上,点N 在线段BO 上,)3)(42(21x x --⋅=41解得);s (2521==x x (3)当x >3时,点M 在线段OC 上,点N 在线段OD 上,=--)3)(42(21x x ⋅41解得).s (225+=x 综上所述,出发后s,225+或s 25时,△MON 的面积为.m 412 第二十三章 旋转全章测试1.(1)左,.210 (2)C ,180°,中心,C 点.2.旋转中心,旋转角,形状、大小. 3.A 点,60°,正三角形.4.⋅415.45°. 6.-1, -5.7.C . 8.D . 9.A . 10.B . 11.(1)150°;(2)等腰三角形;(3)15°. 12.(1)A 1(1,2),B 1(0,3);(2)A 2(3,2),B 2(2,3),C (2,0);(3)A 3(-3,-2),B 2(-2,-3),D (-2,0).13.(1);6xy =(2)P 1(2,3),P 2(3,2),P 3(-2,-3),P 4(-3,-2).14.PC =3.提示:将△ABP 绕B 点顺时针旋转90°,这时A 点与C 点重合,P 点的对应点是P ',连结PP ′,则△ABP ≌△CBP ′,△PBP ′为等腰直角三角形,∠PP ′C =90°,.3)7()2(''2222=+=+=C P PP PC第二十四章 圆全章测试1.D . 2.A . 3.B . 4.C . 5.D . 6.C . 7.A . 8.C . 9.C . 10.B . 11.A .12.30°. 13.cm.3π14.cm.32 15.8πcm . 16.105°. 17.πcm.58418.五.19.提示:连结BP . 20.提示:连结BM .21.提示:延长CH 到E ,使CE =CD ,连结BE ,证:△ABH ≌△EBH . 22.cm 64或cm.3423.36πcm 2.提示:连结OC 、OA .第二十五章 概率初步全章测试1.C . 2.C . 3.B . 4.D . 5.B . 6.C . 7.D . 8.D . 9.D . 10.C .11.略. 12..0,6113.P (A )=0.375,P (B )=0.5,P (C )=0.125.14.0.4. 15..3116.⋅158 17.0.4. 18.1.19(2)读者对该杂志满意的概率约是0.998;(3)概率是通过大量重复试验中频率的稳定性得到的一个0~1的常数. 20.解:(1)⋅==2142)2(抽到P或画树状图: 第一次抽第二次抽从表(或树状图)中可以看出所有可能结果共有16种,符合条件的有10种, ∵P (两位数不超过32)=851610=. ∴游戏不公平.21.(1)0.6; (2)0.6; (3)16只黑球,24只白球.期末检测题1.a -2. 2..25 3..21,21-+4,.2,0 5.75. 6.⋅527.45°. 8.15.9.10. 10..2311.D . 12.C . 13.B . 14.A . 15.B . 16.D . 17.A . 18.B . 19.B . 20.D . 21..123-22.(1)∵方程有两个不相等的实数根,∴b 2-4ac =16 -4k >0, ∴k <4. (2)当k 取最大整数时,即k =3,这时方程为x 2 -4x +3=0, ∴x 1=1,x 2=3. 当相同根为x =1时,有1+m -1=0,m =0,当相同根为x =3时,有9+3m -1=0,,38-=m∴m 的值是0或⋅-3823.连结AD . ∵ CA =CD ,∴∠D =∠CAD .∵ ∠D =∠CF A , ∴ ∠CAD =∠CF A . ∵ ∠CF A =∠B +∠FCB ,∴ ∠CAF +∠F AD =∠B +∠FCB .∵ CA =CB , ∴∠CAF =∠B .∴∠F AD =∠FCB . ∵ ∠F AD =∠FCD ,∴∠FCB =∠FCD . ∴ CF 平分∠BCD .24.(1)乙甲A B C D(D ,A ) (D ,B ) (D ,C ) E (E ,A ) (E ,B ) (E ,C )有6种可能结果:(A ,D ),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E ).(2)因为选中A 型电脑有2种方案,即(A ,D ),(A ,E ),所以A 型电脑被选中的概率是⋅31(3)由(2)已知,当选用方案(A ,D )时,设购买A 型、D 型电脑分别为x ,y 台.根据题意⎩⎨⎧=+=+.10000050006000,36y x y x 解得⎩⎨⎧=-=.116,80y x 经检验不合题意舍去.当选方案(A ,E )时,设购买A 型号、E 型号电脑分别为x ,y 台.根据题意,得⎩⎨⎧=+=+.10000020006000,36y x y x 解得⎩⎨⎧==.29,7y x 所以希望中学购买了7台A 型号电脑.25.设新品种花生亩产量的增长率为x ,根据题意得.132)211%(50)1(200=+⨯+x x 解得x 1=0.2,x 2=-3.2(舍去).答:新品种花生亩产量的增长率为20%.26.(1)∵PC 是∠APB 的平分线,=.∴当PC 是圆的直径,即∠P AC =90°时,四边形P ACB 面积最大.在Rt △P AC 中,∠APC =30°,,3===AB PB AP∴PC =2..3212=⋅==∴∆AB PC S S ACP PACB 四边形 (2)①当∠P AC =120°时,四边形P ACB 是梯形.∵PC 是∠APB 的平分线,∴∠APB =∠BPC =∠CAB =30°.∴∠APB =60°,∴∠P AC +∠APB =180°.∴AC //PB ,且AP 与BC 不平行,∴四边形P ACB 是梯形.②当∠P AC =60°时,四边形P ACB 是梯形.∵=,∴AC =BC .∵∠BAC =30°,∴∠ACB =120°.∴∠P AC +∠ACB =180°,∴BC //AP 且AC 与PB 不平行.∴四边形P ACB 是梯形.27.(1)①);(4π22b a S -=阴影 ②连结PP ′,证△PBP ′为等腰直角三角形,从而PC =6.(2)将△P AB 绕点B 顺时针旋转90°到△P ′CB 的位置,由勾股逆定理证出∠P ′CP =90°,再证∠BPC +∠APB =180°,即点P 在对角线AC 上.。
2019-2020学年新人教九年级数学21章二次根式测验卷及答案
2019-2020学年新人教九年级数学21章二次根式测验卷及答案一. 选择题。
(每题4分,共20分)1. 有意义,则x 能取得最小整数是( )A. 0B. 1C. -1D. -42. 已知0a的值为( )A. 1B. -1C. 1±D. 以上答案都不对a 的整数部分为b ,则()b a b +的值是( )A. 1B. 2C. 4D. 94. 把(2x -根号外的因式移到根号内,得( )5. 若1x =,则1x x+的值是( )A. -2B. 0C. 2D. 二. 填空题。
(每题4分,共20分)6. x 的取值范围是 。
7. 已知3y =+,则___________y x =。
8. 比较大小:)"","",""--=填。
9. 在实数范围内因式分解:44_____________________x -=。
10. 20x y +-=,则_________x y -=。
三. 计算。
(每题7分,共28分)⎛ ⎝13.14. 2a四. 解答题。
(15—16题每题10分,17题12分)15. 如图:面积为482cm 的正方形四个角是面积为32cm 的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体的底面边长和高分别是多少?(精确到0.1 1.732cm ≈)16. 当15x17. 若最简二次根式3x⑴. 求x y 、的值。
⑵. 求x y 、平方和的算术平方根。
答案:1——5: ABDDD6. 25x ≤≤;7. 8;8.; 9. ()(22x x x +; 10. 0;11. 12. 36- 13. ;; 15. 底面边长为3.5cm ; 高为1.7cm ;16. 26x -;17. ()41.3x y =⎧⎨=⎩、 ()2.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十一章 二次根式
测试1 二次根式
学习要求
掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.
课堂学习检验
一、填空题
1.a +1表示二次根式的条件是______.
2.当x ______时,12--x 有意义,当x ______时,3
1+x 有意义. 3.若无意义2+x ,则x 的取值范围是______.
4.直接写出下列各式的结果: (1)49=_______; (2)2)7(_______; (3)2)7(-_______; (4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______.
二、选择题
5.下列计算正确的有( ). ①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-
A .①、②
B .③、④
C .①、③
D .②、④ 6.下列各式中一定是二次根式的是( ).
A .23-
B .2)3.0(-
C .2-
D .x
7.当x =2时,下列各式中,没有意义的是( ).
A .2-x
B .x -2
C .22-x
D .22x -
8.已知,21)12(2a a -=-那么a 的取值范围是( ).
A .21>
a B .2
1<a C .21≥a D .21≤a 三、解答题
9.当x 为何值时,下列式子有意义? (1);1x -
(2);2x -
(3);12+x
(4)⋅+-x
x 21
10.计算下列各式: (1);)23(2 (2);)1(22+a (3);)43(22-⨯- (4).)323(2-
综合、运用、诊断
一、填空题
11.x 2-表示二次根式的条件是______.
12.使1
2-x x 有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______.
14.当x =-2时,2244121x x x x ++-+-=________.
二、选择题
15.下列各式中,x 的取值范围是x >2的是( ).
A .2-x
B .21-x
C .x
-21 D .121-x 16.若022|5|=++-y x ,则x -y 的值是( ).
A .-7
B .-5
C .3
D .7 三、解答题
17.计算下列各式: (1);)π14.3(2- (2);)3(22-- (3);])32[(21- (4).)5.03
(22
18.当a =2,b =-1,c =-1时,求代数式ac b b 42-±-的值.
拓广、探究、思考
19.已知数a ,b ,c 在数轴上的位置如图所示: 化简:||)(||22b b c c a a ---++-的结果是:______________________.
20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求
△ABC 的c 边的长.
测试2 二次根式的乘除(一)
学习要求
会进行二次根式的乘法运算,能对二次根式进行化简.
课堂学习检测
一、填空题
1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.
2.计算:(1)=⨯
12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.
3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______.
二、选择题
4.下列计算正确的是( ).
A .532=⋅
B .632=⋅
C .48=
D .3)3(2-=- 5.如果)3(3-=
-⋅x x x x ,那么( ). A .x ≥0 B .x ≥3 C .0≤x ≤3 D .x 为任意实数
6.当x =-3时,2x 的值是( ).
A .±3
B .3
C .-3
D .9 三、解答题
7.计算:(1);26⨯
(2));33(35-⨯- (3);8223⨯
(4)
;1252735⨯ (5);131a ab ⋅ (6);5252a c c b b a ⋅⋅
(7);49)7(2⨯- (8);51322- (9) .7272y x
8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.
综合、运用、诊断
一、填空题
9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.
10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.
11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6.
二、选择题
12.若b a b a -=2成立,则a ,b 满足的条件是( ).
A .a <0且b >0
B .a ≤0且b ≥0
C .a <0且b ≥0
D .a ,b 异号 13.把4
324根号外的因式移进根号内,结果等于( ). A .11-
B .11
C .44-
D .112 三、解答题
14.计算:(1)=⋅x xy 6335_______; (2)=+222927b a a _______; (3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.
15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.
拓广、探究、思考
16.化简:(1)=-+1110)12()12(________; (2)=-⋅+)13()13(_________.
测试3 二次根式的乘除(二)
学习要求
会进行二次根式的除法运算,能把二次根式化成最简二次根式.
课堂学习检测
一、填空题
1.把下列各式化成最简二次根式: (1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=x y ______;。