第一章流体力学.
化工原理第一章流体力学基础
第一章 流体力学基础
m GA uA
17/37
1.3.1 基本概念
三、粘性——牛顿粘性定律
y x
v
内部存在内摩擦力或粘滞力
v=0
内摩擦力产生的原 因还可以从动量传 递角度加以理解:
v
单位面积上的内摩擦力,N m2
dv x
dy
动力粘度 简称粘度
速度梯度
----------------牛顿粘性定律
(2)双液柱压差计
p1
1略小于2
z1
p1 p2 2 1 gR
p1
R
p2
R
p2
1
z1
R 2
0
倾斜式压差计
浙江大学本科生课程 化工原理
第一章 流体力学基础
读数放大
14/14
幻灯片2目录
1.3 流体流动的基本方程 1.3.1 基本概念 1.3.2 质量衡算方程 1.3.3 运动方程 一、作用在流体上的力 二、运动方程 三、N-S方程 四、欧拉方程 五、不可压缩流体稳定层流时的N-S 方程若干解
v x v y vz 0
t x
y
z
t
vx
x
vy
y
vz
z
v x x
v y y
v z z
0
D
Dt
v x x
v y y
v z z
0
-------连续性方程微分式
若流体不可压缩,则D/Dt=0
v x v y v z 0 x y z
浙江大学本科生课程 化工原理
第一章 流体力学基础
dy
N m2 ms
Ns m2
Pa s
m
1Pa s 10P 1000cP
第一章流体力学基本概念
分别运动至A’,B’,C’,D’点,则有
A
B
A'
B'
udt
E D D D A A (u d)d u u t d dtudt
图1-2 速度梯度
由于
du ED
dt
因此得速度梯度 duED tgd d
dy dydt dt dt
可以看出dθ为矩形ABCD在dt时间后剪切变形角度,这就表明速度梯度实质上就 是流体运动时剪切变形角速度
•第一章流体力学基本概念
随着科学技术的不断进步,计算机的发展和应用,流体力学的研究领域和应用范 围将不断加深和扩大。从总的发展趋势来看,随着工业应用日益扩大,生产技术 飞速发展,不仅可以推动人们对流动现象深入了解,为科学研究提供丰富的课题 内容,而且也为验证已有的理论、假设和关系提供机会。理论和实践密切结合, 科学研究和工业应用相互促进,必将推动本学科逐步成熟并趋于完善。
第一章 流体力学基本概念
第一节 流体力学的发展、应用及其研究方法 第二节 流体的特征和连续介质假设 第三节 流体的主要物理性质及分类 第四节 作用在流体上的力
•第一章流体力学基本概念
第一节 流体力学的发展、应用及其研究方法
一、流体力学发展简史
流体力学是研究流体的平衡及运动规律,流体与固体之间的相互作 用规律,以及研究流体的机械运动与其他形式的运动(如热运动、化学 运动等)之间的相互作用规律的一门学科。 流体力学属于力学范畴,是 力学的一个重要分支。其发展和数学、普通力学的发展密不可分。流体 力学起源于阿基米德(Archimedes,公元前278~公元前212)对浮力的 研究。
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。
流体力学 (Fluid Mechanics)
着 色 甘 油
流体作层流时,各层之
间有相对滑动,沿管轴
流动速度最大,距轴越 远流速越小,在管壁上 甘油附着,流速为零。
无 色 甘 油
上海交通大学
物理系
1. 粘性力(内摩擦力): 相邻两流层之间因流速不同而 作相对运动时,在切线方向上存 在着的相互作用力。 2. 牛顿粘性定律
F 若令 S
v c 2 g(h h' )
B,C点
hF
3 (h h' ) 4
上海交通大学
物理系
如图所示,大容器底部接一根粗细不均的竖直细管
BC,B处横截面积为C处的两倍,B,C间高度差为 50cm。容器内水面(理想液体)至出口C处的高度为 1.8m。求图中竖直管中水面上升的高度。
上海交通大学
物理系
四、液流连续原理(Principle of continuity of flow)
适用范围:同一流管不可压缩液体的稳定流动 从一流管两端流入和流出的质量为:
B SB
m A A S Av At A
mB B S B v B t B
根据质量守恒方程
SA
A
VB A,B分别为同一流 管中的两个不同截 面上的点 液体是不可压 缩的,不变
上海交通大学 物理系
2. 汾丘里管(Venturi Tube)
应用:测量流体流速
上海交通大学
物理系
3. 比托管 通过测量液体的静压强与动压强来流体流速。 1 2 1 2 PB PA gh v A PA v B PB 2 2 其中: VB =0
上海交通大学
物理系
测量动脉血压
SA FA A
B
第一章 流体力学的基本概念
当i j 时 当i j 时
(b)];2)转动,使正方形绕4轴转动,直至对角线42与
42重合[图1-1(c)],则其转角为242;3)变形,剪切 正方形1234,并拉伸42对角线,使2与2重合[图1-1 (d)]。由此可见,这种流线都是直线的简单流动,也还 是由平动、转动、变形这三种运动形式复合而成的。
分析一般情况下流体运动的分解
ai ei a1e1 a2e2 a3e3 ax i a y j az k a
ei e1 e2 e3 i j k xi x1 x2 x3 x y z
描述流体运动的两种方法
速度分解定理
变形速度张量
应力张量
本构方程 漩涡运动的基本概念
第一节 描述流体运动的两种方法
一、拉格朗日法
拉格朗日法是从分析各个流体质点的运动状态着手来研究整个流场的流体 运动的。该方法的基本思想是:从某个时刻开始跟踪每一个流体质点,记 录这些质点的位置、速度、加速度及其它物理参数的变化。这种方法是离 散的质点运动描述方法在流体力学中的推广。该方法的分析公式为
r a, b, c, t t
,
2 r a , b, c , t a t 2
p p a, b, c, t ,
T T a, b, c, t ,
a, b, c, t
拉格朗日法初看容易理解,但就某些特定问题来求解方程是很困难的。
b1 b3 b3 b1 b1 b2 b2 b2 b3 a1 a2 a3 a2 a3 a2 a3 e1 a1 e2 a1 e3 x2 x3 x2 x3 x2 x3 x1 x1 x1
流体力学1
水 0.294 106 m 2 /s
1000C
空气 1.49 105 Pa s
空气 2.18 105 Pa s
空气 0.98 105 m 2 /s
空气 2.31 105 m 2 /s
空气的动力粘性系数比水小2个数量级,但空气的 运动粘性系数比水大。 空气的粘性系数随温度升高而增大,而水的粘性系 数随温度升高而减小。
微观(分子自由程的尺度)上看,流体质点是一个足够大的
分子团,包含了足够多的流体分子,以致于对这些分子行为 的统计平均值将是稳定的,作为表征流体物理特性和运动要 素的物理量定义在流体质点上。
2.7 1016 个分子
1mm3空气 ( 1个大气压,00C)
• 连续介质假设
连 续 介 质 假 设 将 流 体 区 域 看 成 由 流 体 质 点 连 续 组 成 , 占
力)予以抵抗,并在撤除外力后恢复原形,流体的这种性质称 为压缩性。
p V
p+Δp V-ΔV
•
d V / V d/ dV 将相对压缩值 与压强增量 d p之比值 称 dp dp V 1 dp 为压缩系数,其倒数 K 称为体积 K 随温度和压强而变,随温度变化不显著。液体的 K
值很大,除非压强变化很剧烈、很迅速,一般可不考虑压缩 性,作不可压缩流体假设,即认为液体的 K 值为无穷大,密 度为常数。但若考虑水下爆炸、水击问题时,则必须考虑压 缩性。
§1—3 作用在流体上的力
流体不能承受集中力,只能承受分布力。分布力按表现形式 又分为:质量力、表面力。
,指向表 面力受体外侧,所受表面力为 ΔP ,则应力
P p n lim A0 A
n
第一章 流体力学基础知识
物质导数表示流体微团通过点1时密度的瞬时变化率
上式右端第一项反映流场中静止一点密度的瞬时振荡
D V Dt t
五.作用在流体微团上的力 流体静平衡方程
• 表面力:相邻流体或物体作用于所研 究流体团块外表面,大小与流体团块 表面积成正比的接触力。
• 彻体力:外力场作用于流体微团质量 中心,大小与微团质量成正比的非接 触力。
N ∞ =法向力=合力在垂直于弦线方向分力;A∞ =轴向力=合力在平行于弦线方向分力;
dNu pucos dsu usin dsu dAu pusin dsu ucos dsu
dNl plcos dsl lsin dsl dAl pusin dsl lcos dsl
M z xcp N
xcp
M z N
由图中可以看出, N会产生一个关于前缘的负力矩(使机翼低头),故上式中含有负号。 Xcp定义为翼型压力中心,是翼型上气动力合力作用线与弦线的交点。 当合力作用在这个点上时,产生与分布载荷相同的效果。 为了确定分布载荷产生的气动力-气动力矩系统,最终的力系可以作用在物体的任何处,只要同 时给出关于该点的力矩值。
这种流动称为连续流。连续流流过的空间称为流场。
• 流体微团:想象流场中有一个个小的流体团,体积为dv。宏观上足够小,但其内部含有足够多的分 子,依然可以视为连续介质。在流场中运动,流体质量保持不变。
• 控制体:流场中的有限封闭区域。固定在流场中,体积形状保持不变。
• 在连续介质前提下,可以讨论介质内部某一几何点的密度
围绕点P划取一块微小空间,容积为ΔV,所包含介质质量Δm,则该空间内平均密度: = m
取极限ΔV→0,此极限值定义为P点介质密度: = lim m
第一章 流体力学的基础知识
u P u Z1 Z2 2g 2g P
假设从1—1断面到2—2断面流动过程中损失为h, 则实际流体流动的伯努利方程为
2 u12 P u2 Z1 Z2 h 2g 2g
2 1
2 2
P
第一章 流体力学的基础知识
1.3 流体动力学基础
【例 1.2 】如图 1-7所示,要 用水泵将水池中的水抽到用 水设备,已知该设备的用水 量为 60m3/h ,其出水管高
单体面积上流体的静压力称为流体的静压强。
若流体的密度为ρ,则液柱高度h与压力p的关系 为:
p=ρgh
第一章 流体力学的基础知识
1.2 流体静力学基本概念
1.2.1 绝对压强、表压强和大气压强
以绝对真空为基准测得的压力称为绝对压力,它是流 体的真实压力;以大气压为基准测得的压力称为表压 或真空度、相对压力,它是在把大气压强视为零压强 的基础上得出来的。
第一章 流体力学的基础知识
1.3 流体动力学基础
(3) 射流
流体经由孔口或管嘴喷射到某一空间,由于运动的 流体脱离了原来的限制它的固体边界,在充满流体的空 间继续流动的这种流体运动称为射流,如喷泉、消火栓 等喷射的水柱。
第一章 流体力学的基础知识
1.3 流体动力学基础
4. 流体流动的因素
(1) 过流断面
2. 质量密度
单位体积流体的质量称为流体的密度,即ρ=m/V
3. 重量密度
流体单位体积内所具有的重量称为重度或容重,以γ 表示。γ=G/V
第一章 流体力学的基础知识
1.1 流体主要的力学性质
质量密度与重量密度的关系为:
γ=G/V=mg/V=ρg
4. 粘性
表明流体流动时产生内摩擦力阻碍流体质点或流层 间相对运动的特性称为粘性,内摩擦力称为粘滞力。 粘性是流动性的反面,流体的粘性越大,其流动性
(完整版)流体力学 第一章 流体力学绪论
第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。
研究对象:流体,包括液体和气体。
2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。
4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。
•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。
•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。
流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。
5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。
这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。
6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。
这样的微团,称为流体质点。
流体微团:宏观上足够大,微观上足够小。
流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。
7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。
例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。
化工原理第一章流体力学
反映管路对流体的阻力特性
表示管路中流量与压力损失之间 关系的曲线
管路特性曲线的概念
01
03 02
管路特性曲线及其应用
管路特性曲线的绘制方法 通过实验测定一系列流量下的压力损失数据 将数据绘制在坐标图上,并进行曲线拟合
管路特性曲线及其应用
01 管路特性曲线的应用
02
用于分析管路的工作状态,如是否出现阻塞、泄漏等
流速和流量测量误差分析
• 信号处理误差:如模拟信号转换为数字信 号时的量化误差、信号传输过程中的干扰 等。
流速和流量测量误差分析
管道截面形状不规则
导致实际流通面积与计算流通面积存在偏差。
流体流动状态不稳定
如脉动流、涡街流等导致流量波动较大。
流速和流量测量误差分析
仪表精度限制
仪表本身的精度限制以及长期使用后的磨损等因素导 致测量误差增大。
流体静压强的表示
方法
绝对压强、相对压强和真空受力平衡条件,推导出流体平 衡微分方程。
流体平衡微分方程的物理意义
描述流体在静止状态下,压强、密度和重力 之间的关系。
流体平衡微分方程的应用
用于求解流体静力学问题,如液柱高度、液 面形状等。
重力作用下流体静压强的分布规律
连续介质模型的意义
连续介质模型是流体力学的基础,它 使得我们可以运用数学分析的方法来 研究流体的运动规律,从而建立起流 体力学的基本方程。
流体力学的研究对象和任务
流体力学的研究对象
流体力学的研究对象是流体(包括液体和气体)的平衡、运动及其与固体边界的相互作 用。
流体力学的任务
流体力学的任务是揭示流体运动的内在规律,建立描述流体运动的数学模型,并通过实验和 计算手段对流体运动进行预测和控制。具体来说,流体力学需要解决以下问题:流体的静力
第1章 流体力学基本知识
数学表达式:
二、流体的粘滞性 粘滞性 :流体内部质点间或层流间因相对运动 而产生内摩擦力(切力)以反抗相对运动的 性质。
牛顿内摩擦定律:
F-内摩擦力,N; S-摩擦流层的接触面面积,m2;
τ-流层单位面积上的内摩擦力(切应力),N/
m2;
du/dn-流速梯度,沿垂直流速方向单位长度 的流速增值;
hω1-2 =Σhf+Σhj
二、流动的两种型态--层流和紊流
二、流动的两种型态--层流和紊流
实验研究发现,圆管内流型由层流向湍流 的转变不仅与流速u有关,而且还与流体的 密度、粘度 以及流动管道的直径d有关。 将这些变量组合成一个数群du/,根据该 数群数值的大小可以判断流动类型。这个 数群称为雷诺数,用符号Re表示,即
从元流推广到总流,得:
由于过流断面上密度ρ为常数,以
u d u d
1 1 1 2 2 1 2
2
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv ρ1ω1v 1=ρ2ω2v 2
(1-11)
(1-11a)
(1-11)、 (1-11a) --质量流量的连 续性方程式。
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
v
2 2 2
2g
h12
第一章 流体力学基础知识
第一章流体力学基础知识本章先介绍流体力学的基本任务,研究方向和流体力学及空气动力学的发展概述。
然后介绍流体介质,气动力系数,矢量积分知识。
最后引入控制体,流体微团及物质导数的概念。
为流体力学及飞行器空气动力学具体知识的学习做准备。
1.1流体力学的基本任务和研究方法1.1.1流体力学的基本任务流体力学是研究流体和物体之间相对运动(物体在流体中运动或者物体不动而流体流过物体)时流体运动的基本规律以及流体与物体之间的作用力。
而空气动力学则是一门研究运动空气的科学。
众所周知,空气动力学是和飞机的发生,发展联系在一起的。
在这个意义上,这门科学还要涉及到飞机的飞行性能,稳定性和操纵性能问题。
事实上,空气动力学研究的对象还不限于飞机。
空气相对物体的运动,可以在物体的外部进行,像空气流过飞机表面,导弹表面和螺旋浆等;也可以在物体的内部进行,像空气在风洞内部和进气道内部的流动。
在这些外部或内部流动中,尽管空气的具体运动和研究运动的目的有所不同,但它们都发生一些共同的流动现象和遵循一些共同的流动规律,例如质量守恒,牛顿第二定律,能量守恒和热力学第一定律,第二定律等。
研究空气动力学的基本任务,不仅是认识这些流动所发生现象的基本实质,要找出这些共同性的基本规律在空气动力学中的表达,并且研究如何应用这些规律能动地解决飞行器的空气动力学问题和与之相关的工程技术问题,并对流动的新情况、新进展加以预测。
1.1.2空气动力学的研究方法空气动力学研究是航空科学技术研究的重要组成部分,是飞行器研究的“先行官”。
其研究方法,如同物理学各个分支的研究方法一样,有实验研究、理论分析和数值计算三种方法。
这些不同的方法不是相互排斥,而是相互补充的。
通过这些方法以寻求最好的飞行器气动布局形式,确定整个飞行范围作用在飞行器的力和力矩,以得到其最终性能,并保证飞行器操纵的稳定性。
实验研究方法在空气动力学中有广泛的应用,其主要手段是依靠风洞、水洞、激波管以及测试设备进行模拟实验或飞行实验。
流体力学第一章
不可压缩流体——液体——β值: 每增加1个大气压,水体积压缩为1/20000,所以, 一般不考虑水体的压缩。 若E=∞,ρ=const 实际液体:惯性、重力……,水流运动复杂; 理想液体:实际液体的简化——即ρ=const,不膨 胀,无粘性,无表面张力。 气体——可压缩流体。
求。 牛顿三定律(惯性定律、F=ma、作用力与反作用力) 质量守恒定律 能量守恒及其转化规律 动量守恒定律
水力学
(1)质量守恒定律
dm 0 dt
(2)机械能转化与守恒定律:动能+压能+位能+能量损失 =常数
(3)牛顿第二运动定律
F ma
(4)动量定律
d (mu ) F dt
二、连续介质模型 实质——分子间有间隙,分子随机运动导 致物理量不连续。
1.2.2 表面力
1、表面力:又称面积力(Surface Force) ,是毗邻流体 或其它物体作用在隔离体表面上的直接施加的接触力。它的大 小与作用面面积成正比。 按作用方向可分为: 压力:垂直于作用面。
切力:平行于作用面。
2 或 Pa N/m 2、应力:单位面积上的表面力,单位: 压强 p lim P A0 A T
后续课程:水文学、土力学、工程地质等;并直
接服务于工程应用。 • 其他:a.素质教育——“力学文化”、“水文化” ;
b .注册工程师考试必考科目;
c .研究生入学考试必考或选考科目之一。
本课程的基本要求 • 具有较为完整的理论基础,包括: (1)掌握流体力学的基本概念; (2)熟练掌握分析流体力学的总流分析方法,熟悉量 纲分析与实验相结合的方法,了解求解简单平面势流的方 法; (3)掌握流体运动能量转化和水头损失的规律,对传 统阻力有一定了解。
第一章流体力学导论(讲义).
等温压缩率物理意义:衡量流体可压缩性,表示 在一定温度下压强增加一个单位时流体密度的相对增 加率。 由于 v 1 ,所以等温压缩率还可以表示为:
1 v T v p T
等温压缩率另一种物理意义:在一定温度下,压 强增加一个单位时流体体积的相对缩小率。
3)、辐射机理
电磁波范围极广,通常把波长为0.4~40μm范围 的电磁波称为热射线。热射线产生于物质的原子内部, 而引起这种运动的基本原因是物体本身温度。
4)、产生辐射传热的条件 当两个物体温度都在绝对零度以上而且有温差时, 高温物体辐射给低温物体的能量大于低温物体辐射给高 温物体的能量。总的效果是高温物体辐射给低温物体能 量。实验证明:只有当物体的温度大于400℃时,因辐 射而传递的能量才比较显著。
20世纪以来,数学与计算机科学的发展,为 通过仿真研究传热学和流体力学奠定了基础。例如: 利用分析软件分析航天器热量分布,从而为航天器 的隔热设计奠定了理论基础。利用仿真软件分析潜 器形状与受到流体阻力的关系,指导潜器等水下平 台的设计。
第二节 传热学与流体力学的理论基础
一、传热学的理论基础
1、热量传递三种基本形式:
v
v
1
表1.2
4)、流体可压缩性与热膨胀性 (1)可压缩性 : 在外力作用下,体积或密度可以改变的性 质。 (2)热膨胀性:温度改变时流体体积或密度可以改变的性 质。 对于单一组分的流体,密度随压强、温度的改变:
d dp dT T dp dT p T 1 T — 等温压缩率 p T
•
传热学的主要研究内容
传热学是研究热量传递规律的科学
(新)第一章 流体力学(讲解教学课件)
mgz 1 mu 2 m p
2
J
1kg流体的总机械能为: zg u 2 p
2
J/kg
1N流体的总机械能为: z u 2 p J/N
2g g
(新)第一章 流体力学(讲解教学课件)
压头:每牛顿的流体所具有的能量 静压头;
2、外加能量:1kg流体从输送机械所获得的机械能 。
符号:We;
单位:J/kg ;
和其深度有关。 (2)在静止的、连续的同一液体内,处于同一水平面
上各点的压力均相等。
(新)第一章 流体力学(讲解教学课件)
• (2) 当液体上方的压力有变化时,液体内 部各点的压力也发生同样大小的变化。
(新)第一章 流体力学(讲解教学课件)
三、静力学基本方程的应用 (1)测量流体的压力或压差
① U管压差计 对指示液的要求:指示液要与被测流体 不互溶,不起化学作用;其密度应大于 被测流体的密度。
• 如:4×103Pa(真空度)、200KPa (表压)。
(新)第一章 流体力学(讲解教学课件)
【例题1-1】 在兰州操作的苯乙烯精馏塔塔顶的真空度 为620mmHg。在天津操作时,若要求塔内维持相同 的绝对压力,真空表的读数应为多少?兰州地区的 大气压力为640mmHg,天津地区的大气压力为 760mmHg。
p1-p2=(指-)Rg
若被测流体是气体上式可简化为
p1-p2=指Rg
(新)第一章 流体力学(讲解教学课件)
• 通常采用的指示液有:着色水、油、四氯化碳、 水银等。
• U形管压差计在使用时,两端口与被测液体的 测压点相连接。
• U形管压差计所测压差,只与读数R、指示液 和被测液体的密度有关,而与U形管的粗细、 长短、形状无关,在此基础上又产生了斜管压 差计、双液柱微差计、倒U形管压差计等。
《大学物理》第一章 流体力学
v 和
取一细流管,任取两个截面
S 2 ,两截面处的流速分别为
S1
1
S1
Δt v1
和 v2,
经过时间 t,流入细流管的流体质量
S2 v2
m1 V1 S1v1t
同理,流出的质量
m2 V2 S2v2t
流体质量守恒,即
m1 m2
S1v1 S2v2
或 Sv C
上式称为连续性原理或连续性方程,
(常量)
在管道中流动的流体,只要雷诺数相同,它们的流动状态就比较类似。
流体力学
30
大学
二 湍流 雷诺数
物理
例 人体大动脉的直径为 2.0×10 -2m ,血液的密度为103kg·m-3、 黏滞系数为3.5×10-3Pa·s,其平均流速为45×10-2m·s-1(大动 脉的临界雷诺数 Re 为110~850)
如图,取一细流管,经过短暂时间 △t ,截
c d v2 S2 Δt
面 S1 从位置 a 移到 b,截面 S2 从位置c 移到
d ,流过两截面的体积分别为
V1 v1S1t V2 v2S2t
b
v1
a S1
Δt
由连续性原理得 V1 V2 V
在b到c一段中运动状态未变,流体经过△t 时间动能变化量:
流线密处,表示流速大,反之则稀。
3、流管:由一组流线围成的管状区域称为流
管。
流管内流体的质量是守恒的。
通常所取的“流管”都是“细流管”。 当细流管截面积S 0 ,就称为流线。
流体力学
5
大学
一 理想流体的定常流动
物理
4、连续性原理 描述了不可压缩的流体任一流管中流体元在
不同截面处的流速 v 与截面积 S 的关系。
一、流体力学
• 分类:按运动方式分为流体静力学和流体 分类:按运动方式分为流体静力学 流体静力学和 动力学。 动力学。
2
流体力学概论
• 应用:在水利工程学、空气动力学、气象学、气 应用:在水利工程学、空气动力学、气象学、 体和液体输运、 体和液体输运、动物血液循环和植物液汁输运等 领域有运用。 领域有运用。
高尔夫球表面为什么有很多小凹坑? 高尔夫球表面为什么有很多小凹坑?
v1
1 2
v2
3
v3
8
1.2
理想流体的定常流动 流管——流线围成的管子 流线围成的管子. 流管 流线围成的管子
一般流线分布随时间改变. 一般流线分布随时间改变
二、定常流动
空间各点流速不随时间变化称定常流动. 空间各点流速不随时间变化称定常流动
定常流动流体能 加速流动吗? 加速流动吗?
v = v ( x, y, z)
1 2 1 2 P + ρvA = P + ρvB A B 2 2 SAvA = SBvB
A B h1 h H1
∵P −P = (ρ银 −ρ流)gh B A
2(ρ银 −ρ流)gh ∴vA = ρ流[1−(SA / SB)2]
所以流量为
Q= SAvA = SBvB = SASB
2(ρ银 −ρ流)gh 2 2 ρ流(SB −SA)
阻力系数约为0.8 阻力系数约为
阻力系数仅为0.137 阻力系数仅为
3
流体力学概论
• 应用: 应用:
植物水分运输动力? 植物水分运输动力? 人体血液循环图 毛细作用 渗透压 水分中的负压强
4
1.1
流体静力学
1、静止流体内应力的特点 压强 、
静止流体内部应力的特点: 静止流体内部应力的特点: a、 ∆ ⊥∆ ,无切向应力。(表现为流动性) F S b、同一点不同方位的截面的应力大小相等。 由上述第二个特点可引入:压强P 由上述第二个特点可引入:压强
流体力学 第一章
二、连续介质的概念(2)
问题:按连续介质的概念,流体质点是指 A、流体的分子 B、流体内的固体颗粒 C、几何的点 D、几何尺寸同流动空间相比是极小量, 又含有大量分子的微元体
连续介质:质点连续地充满所占空间的流体。
连续介质模型
组成流体的最小物质实体是流体质点 流体由无限多的流体质点连绵不断地组成,质点之 间无间隙
流体的主要物理性质
?问题:与牛顿内摩擦定律直接有关的因素是: A、切应力和压强 B、切应力和剪切变形速率 C、切应力和剪切变形 D、切应力和流速
牛顿流体:内摩擦力按粘性定律变化的流体 非牛顿流体:内摩擦力不按粘性定律变化的流体
流体的主要物理性质
动力粘性系数μ:又称绝对粘度、动力粘度、粘 度,是反映流体粘滞性大小的系数。
二、连续介质的概念(2)
连续介质模型的优点:
1、排除了分子运动的复杂性。 2、物理量作为时空连续函数,可以利用连续函 数这一数学工具来研究问题。
二、连续介质的概念(2)
连续介质模型 不适用
稀薄气体, 激波面等
第二节
流体的主要物理性质
流体的主要物理性质
流体的主要性质
可流动性 惯性 粘性 可压缩性
流体的粘度是由流动流体的内聚力和分子的动量交换所引 起的
y F C u+u u U
τ
τ
h B
U=0
x
流体的主要物理性质
粘性是流体抵抗剪切变形(相对运动)的一种属性 流体层间无相对运动时不表现粘性
粘性产生的机理
液体
分子间内聚力
流体团剪切变形
改变分子间距离
分子间引力阻止 距离改变 内摩擦抵抗变形
1流体力学基本知识
(kg/m3)
密度: 单位体积的质量称为流体的密度
(N/m3)
容重: 单位体积的重量称为流体的密度
二、流体的流动性和粘滞性
流体在运动状态时,由于流体各层的流速不同,就会在流层 粘滞性: 间产生阻滞相对运动和剪切变形的内摩擦力,称为粘滞力也 称粘滞性。
u ν0 = y h
作业:
1、名词解释: 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 2、写出流体的柏努利方程,并解释各部分意义。 写出流体的柏努利方程,并解释各部分意义。 3、如图判断压力的大小 4、判断图 中,A—A(a、b、c 、d),B—B,E—E是否为等压面,并说 判断图2中 是否为等压面, 明理由。 明理由。 5、如图3,液体1和液体3的密度相等,ρ1g=ρ3g=8.14 kN/m3,液体2的 如图3 液体1和液体3的密度相等, 1g=ρ = =ρ3g kN/m3,液体2 2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。( 。(1 ρ2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。(1)当 pB=68950Pa时,pA等于多少?(2)当pA=137900Pa时,且大气压力计 pB=68950Pa时 pA等于多少 等于多少? pA=137900Pa时 的读数为95976Pa时 点的表压力为多少? 的读数为95976Pa时,求B点的表压力为多少?
qv = ∫∫ v cos(v , x)dA
A
有效截面: 有效截面:
qv = ∫∫ vdA
A
3.平均流速: 3.平均流速:流经有效截 平均流速 面的体积流量除以有效截 面积而得到的商
流体力学和传热学
流体力学和传热学《流体力学和传热学》第一章流体力学1.1 流体介质流体(Fluid)是指可用来描述物质在物理状态机制上发生变形,具有形状改变能力的物质类型。
它们包括液体(Liquid)和气体(Gas),可以根据它们的性质将它们分为静力学流体( statically fluids)和动力学流体(dynamic fluids)。
1.2 流体流动流体力学研究的基础内容是流体流动,它是物质在物理空间内的连续改变,由于流体分布的不均匀性,会产生流动。
它是由于重力、压力差、粘度和其他因素引起的。
1.3 流体力学基本原理流体力学研究的基本原理,可以归纳为三大要素:物理定律、力学方程和保守定律。
物理定律指的是物理现象的基本准则,如流体的流动、密度、压力、速度、温度等,他们是流体力学研究的基本研究对象。
力学方程涉及的是流体的动力学特性,如流体内的力平衡方程、温度方程以及动量守恒方程等,是探索流体流动的机理的基础。
保守定律指的是流体受到外力的作用时,它的总动量、能量、动量和质量的变化,可从它们的定义和物理定律可以推出。
第二章传热学2.1 传热学的定义传热学(Thermodynamics)是研究物质在物理系统中的能量交换及其特性的学科,它是动力学、能源学以及工程热力学的一部分。
它涉及物体的物理特性、热质的传递机理及传热学定律。
2.2 传热学的基本原理传热学的基本原理,一般可以概括为三大要素:物理特性、热质传递机理和传热学定律。
物理特性是指传热学中有关物质的特性,如密度、温度和物性参数等,而热质传递机理是指它的传热原理,如热对流、热传导及热辐射等。
最后的传热学定律,根据物理原理推出了物体内部的热能的变化,也就是“物体内的热能不会凭空灰飞烟灭,只能够从一处转移到另外一处”这一定律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章流体力学.第一章流体力学一、流体:可以流动的物体——物体的变形与时间有关的——液体与气体liquid &gas。
二、流体输送在化工生产中的应用在化工生产过程中,物料从一个设备到另一个设备、在设备中进行物理或化学加工过程等,一般都是在流动的过程中进行的。
适宜的流动条件能使过程进行的更加完善。
因此,我们有必要在此首先讨论流体输送,以解决化工生产中的最基本的问题:1、管径的选择与管路布置;2、估算输送流体所需要的能量,选用输送机械;3、流速、流量、压强等的测定;4、提供适宜的流体流动条件,作为强化设备操作及设计高效能设备的依据。
第一节流体的基本物理量一、密度与比容density & specific volume(一)密度ρ与比重d1、密度:概念;表达式;单位;液体密度及其查取方法2、比重——相对密度(二)气体的密度一般可根据理想气体状态方程求得。
例题:求常压下、25℃时氧气的密度?(三)混合物的密度1、混合液体混合前后总体积不变的原则例题:求25℃时40%(质量百分数)的苯、甲苯溶液的密度?2、混合气体用平均分子量例题:求常压下、25℃时空气的密度?(四)比容ν比容的概念;表达式;单位;与密度的关系。
二、压强p(压力)pression or pressure1、定义,表达式,单位与其它常用压力单位,单位换算因子;2、压强与压力3、用液柱高度表示压强单位的意义:该液柱作用于底部单位面积上的重力。
4、表压、绝压、真空度。
(1)概念(2)相互关系:①表达式;②关系图(3)说明:上报工艺文件时注意要注明是表压还是绝压,如不注明,则表明是绝压。
小结:一、密度二、压力作业:气体密度计算1题,混合液体密度计算1题,表压、绝压、真空度换算1-2题。
三、流量与流速1、体积流量v q 与质量流量m q(1)体积流量符号;概念;表达式;单位。
(2)质量流量符号;概念;表达式;单位。
(3)体积流量与质量流量之间的关系 2、流速u 与质量流速G(1)流速:符号;概念;平均流速;表达式;单位。
(2)质量流速:符号;概念;表达式;单位。
(3)流速与质量流速之间的关系四、粘度μ degree of viscosity1、概念:粘度是表示流体流动性能的物理量。
我们知道有的流体容易流动,有的流体不易流动。
例如,水比油易流;油比蜂蜜易流。
这就是由于它们的粘度不同,粘度小易流,粘度大难流。
粘度越大的流体,在相同的流速下流动时,流体的阻力损失越大。
粘度是流体流动过程中不同流速的流体之间产生的相对摩擦的体现。
所以粘度是流体的动力学参数。
2、粘度的单位(1)Pa.s 泊(P )厘泊(CP )(mpa.s )(2)换算3、粘度与温度的关系4、粘度数值的查取(教材252,253页附录十一、十二)5、混合物的粘度(教材16页经验公式)(1)混合液体(2)混合气体第二节流体静力学 hydrostatics一、静力学基本方程式及其讨论1、静力学基本方程式常数=+=+ρρ2211p g z p g z或:常数=+=+gpz g p z ρρ2211 或:常数=+=+2211p g z p g z ρρ或()g h p g z z p p ρρ+=-+=012122、讨论(1)各项的物理意义(2)修正压强:g z p ρ+ (3)压强的传递性(4)等压面的概念(5)适用范围小结:一、流量与流速二、粘度三、静力学方程与等压面作业:管路中流量、流速计算2题二、静力学方程的应用(一)测压 1、U 形管压差计(1)结构:U 形玻璃管,标尺,指示液及其要求(2)测压原理:等压面,压差计算公式。
(3)讨论:① 当压差一定时,读数R 与U 形管的粗细、长短无关;② 为了得到比较适中的读数R ,应根据压差选用指示液,常用的指示液;③ 压差计可用于测量某一点的压力;④ 测量具有位差的两点间的压差时,U 形管压差计上的读数是修正压强差。
即:()()g R g z p g z p s ρρρρ-=+-+2211)(2、杯形斜管压差计——U 形管压差计的变形——创新结构;测压原理;优点;使用注意事项(二)测量液位1、用U 形管压差计来测量液位(1)特殊情况下(一侧指示液液位刚好与贮槽底部平齐)的液位计算:ρρsRh = (2)通过改进(设置“杯”)使特殊情况也适用于一般情况2、远距离测量教材22页图1-13装置测量原理分析:(1)观察室的作用(2)氮气压力与H 点压力的关系从而与液位关联(3)氮气压力计算(三)、计算液封的液位高度 1、液封的类型与作用(1)安全液封:维持正常生产用气压。
如需控制乙炔发生炉内压力P 采用上图装置。
(2)切断液封:在气体贮罐前后安装切断液封——安全作用,而且防漏,还可节省投资。
(3)溢流液封:在洗气塔液体溢流排放口为防气体带出设置的液封。
2、液封高度计算g h p ??=ρ gph ρ=(p 为表压)例:(教材24页例1-9,1-10)小结: U 形管压差计作业:静力学方程的应用2题第三节柏努利方程及应用一、稳定流动与不稳定流动连续流动的概念:液体质点连续;管路中满流。
二、连续性方程1、连续性方程式图示系统中,输入物料=输出物料即:1G =2G因为ρ??=ρ?=A u Q G ,故上式可写为:11A u ?2221A u ρ??=ρ?对于不可压缩流体:21ρ=ρ 则上式为:2211A u A u ?=? 对于圆形管路:2d 4A π=则上式又为:222211d u d u ?=?即:212221d d u u = 2、讨论:(1)适用范围:连续稳定流动系统(2)系统截面一定要具有连续性,而内部连不连续、发生什么过程可以不管(3)分支管路的连续性方程式 321G G G += 出进∑∑=G G3、连续性方程式的应用——选用管径(1)初估管径① 计算公式 uq d v=π4 ② 流速u 的确定(2)根据管子规格园整① 管子规格:表示管子规格的方法主要有两种:n m ?φ 及公称直径g D ② 选管例:冷冻盐水(25%的CaCl 2水溶液)由冷却系统回循环槽,温度为293K ,流量为5000kg/h 。
试确定所用水煤气管的规格?三、能量类型1、流体自身的能量类型:内能、位能、动能、静压能2、与环境交换的能量类型:外加能量、热能、损失能量四、柏努利方程1、机械能衡算式——柏努利方程式在图示系统中:输入机械能=输出机械能即:f e h u p g z W u p g z ∑+++=+++2222222111ρρ或:f 2222e 2111h g2u g p z H g 2u g p z ++ρ+=++ρ+2、讨论柏努利方程式(1)适用范围:a 稳定流动系统;b 不可压缩流体;c 重力场中。
(2)守衡与变化(3)各项的物理意义z ——设备plant 高低相对位置参数; p ——状态state 参数,由操作条件决定;u ——动力学dynamics 参数,这是最活跃的参数,一般可根据经验确定。
(4)对于理想流体,流动无阻力,流动过程中也无需外加能量,则柏氏式为:E f (h f )g2u g p z g 2u g p z 22222111+ρ+=+ρ+(5)对于静止流体,流速u =0 则柏氏式又为:gpz g p z 2211ρ+=ρ+或g )z z (p p 2112?ρ?-+=g h p 1?ρ?+= 此式就是静力学基本方程式。
所以说静力学基本方程式包括在柏努利方程式中(6)气体一般不可以使用柏氏式,但当压力变化不是很大(%20%100p p p 22121ρ+ρ=ρ (7)分支管路的柏氏式: g2u g p z g 2u g p z g 2u g p z 233322222111+ρ+=+ρ+=+ρ+小结:一、流体在不同的管径中流动时,流速比与管径的平方成反比;二、管径的选用三、柏努利方程作业:静力学方程1题,选管1题五、柏努利方程式的应用解题要求:①作图并在图上标出有关物理量;②取截面并确定基准水平面;③列柏氏式;④列已知条件;⑤代入方程求解;⑥结果讨论。
例1 在图示管路系统中,水槽液面维持不变,水可视为理想流体。
求(1)管路出口流速;(2)图中A 、B 、C 点的压强;(3)讨论流动系统中的能量转化关系。
解:(1)取截面1-1和2-2,以2-2截面为基准水平面(说明取截面的要点)列柏氏式: g2u gp z g2u gp z 22222111+ρ+=+ρ+列已知条件: z 1=5m z 2=0 p 1=0 p 2=0 (基准一致) u 1=0 u 2=? 代入求解得u 2=g 10 m/s(2)O mH m N g p A 22414)(/109.34=?=??-=表ρ)(1/981022表O mH m N g p B ==?=ρ)(3/109.23224表O mH m N g p c -=?-=??-=ρ(3)讨论能量转化关系结果讨论:① A 点的压强与槽底的压强是否相等?A 点的气蚀现象。
② C 点是否会发生气蚀现象?③ u 2与哪些因表有关?能否用无限向下增加管长来提高出口流速成?C 点能否无限增高?例2:如图所示的水冷却装置中,处理量为60 m 3/h ,输入管路的内径为100mm 的钢管,喷头入口处的压强不低于0.5at (表压),管路阻力损失为88.3j/kg 。
求泵的功率?(3/992m kg =热水ρ)解:取截面1-1和2-2,以2-2截面为基准水平面列柏氏式:f 22222111h g2u g p z H g 2u g p z ++ρ+=++ρ+列已知条件:m 3z 1= 0z 2=0p 1= Pa 109.4at 5.0p 42?==0u 1= =?π=221.04360060uH = m 981.93.88h f ==代入求解:H=m 27.11 (N /m N ?)KW W G g H N s 83.1183036009926081.927.11==??=??== 以上我们通过两个例题说明了柏努利方程式的应用(求管路出口流速和确定输送机械的功率)。
由于柏氏式中涉及的参数较多,所以其应用较活、较广。
小结:柏努利方程可用于:计算管路中流体流速;确定输送流体用压力;确定设备间相对位置高度;确定输送机械的功率。
教材30页-32页还列举了几个例题,同学们课后自己看书。
作业:柏努利方程的应用2题第四节管流过程一、管流过程的流体阻力flow of stream resistance1、观察流体阻力的实验2、流体阻力的表现形式(用柏努利方程分析流体在流动过程中损失的能量)3、流体阻力的来源(1)内因:流体本身的粘性(2)外因:流动状况及管路状况二、雷诺Reynold实验与流体的流动型态flow pattern1、雷诺实验与流体的流动型态(1)雷诺实验装置(2)雷诺实验操作、现象及其分析、流体的流动型态2、雷诺数Reynold’s number与流动型态的判定(1)雷诺数及其讨论(2)流动型态的判定(3)非圆形管路的当量直径3、层流边界层boundary layer与管内流速分布(1)层流边界层概念(2)管内流速分布①层流时②湍流时(3)湍流的特点第五节化工管路基础一、管子与管件1、化工生产中常用的管子类型钢管(有缝和无缝)、铸铁管、有色金属管、非金属管。