流体力学总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、质点:是指大小同所有流动空间相比微不足道,又含有大量分子,具有一定质量的流体微元。
含义:宏观尺寸非常小,微观尺寸足够大,具有一定的宏观物理量,形状可以任意划定质点间无空隙。
2、连续介质假设:把流体当做是由密集质点构成的、内部无空隙的连续体。
3、相对密度:物体质量与同体积4摄氏度蒸馏水质量比
4、体胀系数:压强不变时每增加单位温度时,流体体积的相对变化率(α),温度越高越大。
5、压缩率:当流体温度不变时每增加单位压强时,流体体积的相对变化率,压强越大压缩率越小压缩越难(kt)。
6、体积模量:温度不变,每单位体积变化所需压强变化量,(K),越大越难压缩。
7、不可压缩流体:体胀系数与压缩率均零的流体。
8、粘性:流体运动时内部产生切应力的性质,是流体的内摩擦特性,或者是流体阻抗剪切变形速度的特性,动力黏度μ:单位速度梯度下的切应力,运动黏度:流体的动力黏度与密度的比值。
9、速度梯度:速度沿垂直于速度方向y的变化率。
10、牛顿内摩擦定律:切应力与速度梯度成正比。
符合牛顿内摩擦定律的流体;不符合牛顿内摩擦定律的流体。
11、三大模型:连续介质模型、不可压缩模型、理想流体模型。
连续介质假设是流体力学中第一个带根本性的假设。
连续介质模型:认为液体中充满一定体积时不留任何空隙,其中没有真空,也没有分子间隙,认为液体是连续介质,由此抽象出来的便是连续介质模型。
不可压缩流体模型:在忽略液体或气体压缩性和热胀性时,认为其体积保持不变以简化分析,流体密度随压强变化很小,可视为常数的流体。
理想流体模型:连续介质模型和不可压缩模型的总和。
12、质量力与表面力之间的区别:
①作用点不同质量力是作用在流体的每一个质点上表面力是作用在流体表面上;
②质量力与流体的质量成正比(如为均质体与体积成正比)表面力与所取的流体的表面积成正比
③质量力是非接触产生的力,是力场的作用表面力是接触产生的力
13、简述气体和液体粘度随压强和温度的变化趋势及不同的原因。
答:气体的粘度不受压强影响,液体的粘度受压强影响也很小;液体的粘度随温度升高而减小,气体的粘度却随温度升高而增大,其原因是:分子间的引力是液体粘性的主要因素,而分子热运动引起的动量交换是气体粘性的主要因素。
1、质量力与表面力:与流体微团质量相关且集中作用在微团质量中心上的力;大小与表面面积有关且分布作用在流体表面的力(平衡流体无表面切向摩擦力,有流体静压力即内法线压力—静压强是当流体处于绝对静止或相对静止状态时流体中的压强)。
2、流体静压力是流体作用在受压面上的总作用力矢量,大小方向与受压面有关,流体静压强是一点上流体静压力的强度,是无方向标量,各向同性。
3、欧拉平衡方程:质量力与表面力任意方向上平衡(相等相反);受那方向上质量分力,静压强沿该方向必然变化。
4、有势质量力:质量力所做的功只与起点和终点的位置有关。
力的势函数:某函数对相应坐标的偏导数,等于单位质量力在相应坐标轴上的投影。
5、等压面:流体中压强相等的各点所组成的平面或曲面。
也是等势面、与单位质量力矢量
垂直、两不混合平衡液体交界面必是等压面。
6、静压强基本公式:平衡流体各点位置势能与压强势能一定。
7、绝对压强pabs:以没有气体分子存在的完全真空为基准起算的压强。
相对压强p:以当地大气压pa为基准起算的压强,各种压力表测得的压强为相对压强,相对压强又称为表压强或计示压强。
真空度pv:绝对压强小于当地大气压的数值。
测量压强做常用的仪器有:液柱式测压计和金属测压表。
液柱式测压计包括测压管、U形管测压计、倾斜式微圧计和压差计。
8、阿基米德原理:液体作用于潜体或浮体上的总压力,只有铅垂向上的浮力,大小等于所排开的液体重量,作用线通过潜体的几何中心。
9、流体平衡微分:在静止流体中,各点单位质量流体所受质量力与表面力相平衡。
10、静压强计量单位:应力单位,液柱高单位,大气压单位。
11、静止流体中应力的特性。
(1)方向沿作用面的内法线方向;(2)静压强的大小与作用面的方位无关各向同性。
12、由液体静力学基本方程得到的结论(推论):
(1)静压强的大小与液体的体积无关;
(2)两点的压强差等于两点之间单位面积垂直液柱的重量;
(3)在平衡状态下,液体内任一点压强的变化等值地传递到其他各点。
1、描述流体运动的两种方法:拉格朗日法和欧拉法。
除个别质点的运动问题外,都应用欧拉法。
拉格朗日法:是以个别质点为研究对象,观察该质点在空间的运动,然后将每个质点的运动情况汇总,得到整个流体的运动。
质点的运动参数是起始坐标和时间变量t的连续函数。
欧拉法:是以整个流动空间为研究对象,观察不同时刻各空间点上流体质点的运动,然后将每个时刻的情况汇总起来,描述整个运动。
空间点的物理量是空间坐标)和时间变量t的连续函数。
2、定常流动=恒定流:如果流场中物理量的分布与时间变化无关,则称为定常场或定常流动,当地导数为零(与空间坐标无关,则称为均匀场或均匀流动,流线平行迁移导数为零)。
3、控制体:是空间的一个固定不变的区域,是根据问题的需要所选择的固定的空间体积。
它的边界面称为控制面。
4、迹线:流体质点运动的轨迹,拉格朗日法。
5、流线:流场中的瞬时光滑曲线,曲线上各点的切线方向与该点瞬时速度方向一致(定常中流线形状不随时间变化且与迹线重合,除了奇点驻点不相交不突然转折),欧拉法。
流线构成一管状曲面,称为流管。
流线:表示某一瞬时流体各质点运动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。
(对的描绘)
6、流管流束总流:在垂直于流动方向的平面上,过流场中任意封闭的微小曲线上的点作流线所形成的管状面称为流管。
流束:流管以内的流体,称之为流束。
总流:由无数多个元流组成的,在一定边界内具有一定大小尺寸的实际流动的流体
7、流量、体积流量、质量流量:单位时间内通过某一过流断面的流体的量;单位时间内通过断面的流体体积;单位时间内通过断面的流体质量。
8、一(二、三)元流:除时间坐标外,流动参数随一(二、三)个空间坐标变化的流动。
9、理想伯努利方程:理想流体总机械能守恒。
重力流体的位能、压能、动能叫做位置、压强、速度水头。
10、皮托管:将流体动能转化为压能从而通过测压计测量流体速度的仪器。
11、节流式流量计:通过节流元件前后压差测定流量的仪器。
12、流线迹线相关
流线性质:(1)在恒定流中,流线的形状和位置不随时间变化;(2)在同一时刻,一般情况下流线不能相交或转折。
在恒定流中流线与迹线重合,非恒定流中一般情况下两者不重合,但当速度方向不随时间变化只是速度大小随时间变化时,两者仍重合。
差别:迹线是同一流体质点在不同时刻的位移曲线,与拉格朗日观点对应,而流线是同一时刻、不同流体质点速度方向与之相切的曲线,与欧拉观点相对应。
13、流动分类:(1)根据运动参数是否随时间变化,分为恒定流和非恒定流;(2)根据运动参数与空间坐标的关系,分为一元流、二元流和三元流;(3)根据流线是否平行,分为均匀流和非均匀流。
1、力学相似:实物流动与模型流动在对应点上对应物理量有一定的比例关系,包括几何相似(实物流动与模型流动有相似的边界形状,一切对应的线性尺寸成比例)、运动相似(实物流动与模型流动的流线几何相似,对应点速度成比例)、动力相似(实物流动与模型流动受同种外力作用,对应点上对应力成比例)。
2、相似准则:使两个流动动力相似,各项力符合的一定约束关系,包括雷诺准则(相似流动的雷诺数相等,粘滞力相似;雷诺数为惯性力与粘滞力之比)、弗劳德准则(相似流动的弗劳德数相等,重力相似;弗劳德数为惯性力与重力之比)、欧拉准则(相似流动的欧拉数相等,压力相似;欧拉数为压力与惯性力之比)。
3、相似条件:满足几何相似、运动相似、动力相似,以及两个流动的边界条件和起始条件相似。
4、相似关系:几何相似是运动相似和动力相似的前提与依据;动力相似是决定两个流动相似的主导因素;运动相似是几何相似和动力相似的表现。
4、量纲和谐原理:凡正确反映客观规律的物理方程,其各项的量纲必须是一致的。
6、量纲分析:方法是瑞利法和π定理,依据是量纲和谐原理。
7、为什么每个相似准则都是和惯性力做比较?
作用在流体上的力除惯性力是企图维持流体原来运动状态的力外,其他力都是企图改变运动状态的力。
如果把作用在流体上的各力组成一个力多边形的话,那么惯性力则是这个力多边形的合力,即牛顿定律F=ma。
流动的变化就是惯性力与其他上述各种力相互作用的结果。
因此各种力之间的比例关系应以惯性力为一方来相互比较。
1、层流:流速较小时,水沿轴向流动,流体质点没有横向运动,不互相混杂的流动状态。
2、湍流(紊流):流速较大时,流体质点有剧烈混杂,质点速度在横纵向上均有不规则脉动现象的流动状态。
3、临界:管径与运动粘度一定,从湍流变层流时,平均速度为下临界速度,无量纲数为下临界雷诺数(2320)。
4、水力半径:总流过流断面面积与湿周之比。
5、圆管中层流:只有轴向运动,定常、不可压缩,速度分布的轴对称性,等径管路压强变化的均匀性,管道中质量力不影响流动性能。
6、哈根伯肃叶定律:圆管层流的K型分布得到速度分布,推求流量、粘度。
7、沿程损失:等径管路中由于流体与管壁及流体本身的内部摩擦(沿程阻力),使流体能量沿流动方向逐渐降低,可以用压强损失、水头损失(压强水头差—达西公式)、功率损失(水头损失乘流量pg)表示。
8、尼古拉兹实验:对圆管有压流进行了系统的沿程阻力系数和断面流速分布的测定。
层流区(2320),临界区(4000,扎依钦科),光滑管湍流区(布拉休斯100000尼古拉兹),过
渡区(柯列布茹克=阿里特苏里用于三个阻力区),粗糙管湍流区(尼古拉兹=希夫林松)
9、局部损失:经过管路附件时产生的压强、水头、能量损失(涡旋区和速度重新分布)。
10、长管短管:水头损失绝大部分为沿程损失,局部损失可忽略的管路;水头损失中沿程损失、局部损失各占一定比例的管路。
11、管路特性:水头与流量的函数关系。
12、串联管路流量等,总水头损失等各段水头损失和;并联管路各段损失等,总流量为和。
13、管中水击(液压冲击):在有压管道中,由于某种原因,使水流速度突然发生变化,同时引起压强大幅度波动的现象。
用间接水击、过载保护、减小管路长度和增加管道弹性防止。
14、雷诺数与粘度、流速、管径(大小)有关。
15、圆管层流流动时,其断面的切应力直线分布、流速抛物面分布。
1、薄壁厚壁孔口区别:厚壁孔口只有内收缩,阻力系数分入口、断面收缩、后半段沿程当量苏力系数三部分。
2、厚壁孔口流速系数小,速度小;流量系数大,流量大。
3、管嘴正常工作条件:长度不能太短,p不能太大。
4、管道:简单管道(沿程直径和流量都不变化的管道)、串联管道(由直径不同的管段顺序连接起来的管道)、并联管道(在两节点之间并联两根或两根以上的管道)。
5、孔口、管嘴出流和有压管流各自的水力特点是:(1)孔口、管嘴出流只有局部水头损失,不计沿程水头损失,;(2)短管的局部水头损失和沿程水头损失都要计入,;(3)长管的局部水头损失和流速水头的总和同沿程水头损失相比很小,按沿程水头损失的某一百分数估算过忽略不计。