浙教版九年级数学上册知识点
数学九年级上浙教版知识点
数学九年级上浙教版知识点数学是一门重要的学科,也是一门较为抽象的学科。
在九年级上学期,浙教版的数学教材中涵盖了许多重要的知识点。
这些知识点的学习对于学生的综合能力的培养起着重要的作用。
接下来,我们将对数学九年级上浙教版的知识点进行归纳和论述。
一、有理数的运算有理数是指整数和分数的统称,它在数学中扮演着重要的角色。
九年级上学期,我们将继续学习有理数的运算,包括有理数的加减乘除、混合运算和运算律等等。
在学习这些知识点的过程中,我们需要掌握有理数的运算规则、性质和技巧,以提高解题的能力和速度。
二、平方根和实数在九年级上学期,我们将初步接触平方根和实数的概念。
平方根是一个数的算术平方的逆运算,它有正数平方根和负数平方根两种情况。
我们需要学习如何求平方根,以及平方根的性质和应用。
实数是指有理数和无理数的统称,它包括了所有的实数。
学习平方根和实数有助于我们更深入地理解数字的本质和数轴的结构。
三、一次函数与方程一次函数和方程是数学中最基本的内容之一。
在九年级上学期,我们将进一步学习一次函数和方程的性质、图像和应用。
一次函数是指一个自变量的函数表达式为一次多项式的函数,它具有明确的斜率和截距。
我们需要学习如何绘制一次函数的图像,以及怎样通过给定的条件来建立一次方程和解决问题。
四、解直角三角形直角三角形是指一个角为直角的三角形。
在九年级上学期,我们将学习解直角三角形的基本理论和方法。
通过学习勾股定理、正弦定理和余弦定理,我们可以求解直角三角形中各个角的大小和边的长度。
解直角三角形的知识在应用题和几何题中有着广泛的应用,是数学中一个非常实用的内容。
五、统计与概率统计与概率是数学中比较实际和有趣的内容之一。
在九年级上学期,我们将学习统计的基本概念、图表的制作和分析,以及概率的概念和应用。
统计是指对数据进行收集、整理、分析和解释,以得出结论和进行预测。
概率是指根据已知条件和事件的推论来确定事件发生的可能性。
掌握统计与概率的知识,有助于我们在实际生活中更好地理解和处理数据和事件。
浙教版数学九年级上-知识点汇总全章节
浙教版数学九年级上-知识点汇总全章节第1章 二次函数第一部分 基础知识1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;①当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,. 5. 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;①k ax y +=2;①()2h x a y -=;①()k h x a y +-=2;①c bx ax y ++=2. 6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越大,抛物线的开口越小;a 越小,抛物线的开口越大。
①平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,①顶点是),(ab ac a b 4422--,对称轴是直线a bx 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;①0>ab(即a 、b 同号)时,对称轴在y 轴左侧;①0<ab(即a 、b 异号)时,对称轴在y 轴右侧,“左同右异”. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,①抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ①0>c ,与y 轴交于正半轴;①0<c ,与y 轴交于负半轴. 10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2). (3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;①有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ①没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y nkx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ①方程组只有一组解时⇔l 与G 只有一个交点;①方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121第2章 简单事件的概率知识点一 必然事件、不可能事件、随机事件在一定条件下,有些事件必然会发生,这样的事件称为必然事件;相反地,有些事件必然不会发生,这样的事件称为不可能事件;在一定条件下,可能发生也可能不会发生的事件称为随机事件。
浙教版九年级数学上册知识点汇总
九年级(上册)1. 二次函数1.1. 二次函数把形如()0a ,,y 2≠++=是常数,其中c b a c bx ax 的函数叫做二次函数,称a 为二次项系数,b 为一次项系数,c 为常数项。
1.2. 二次函数的图象二次函数y=ax 2(a ≠0)的图象是一条抛物线,它关于y 轴对称,顶点是坐标原点。
当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点。
函数y=a(x-m)2+k(a ≠0)的图象,可以由函数y=ax 2的图象先向右(当m>0时)或向左(当m<0时)平移|m|个单位,再向上(当k>0时)或向下(当k<0时)平移|k|个单位得到,顶点是(m,k),对称轴是直线x=m 。
函数y=a(x-m)2+k(a ≠0)的图象是一条抛物线,它的对称轴是直线a b 2x -=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a 44,2b 2 当a>0时,抛物线开口向上,顶点是抛物线上的最低点;当a<0时,抛物线开口向下,顶点是抛物线上的最高点。
1.3. 二次函数的性质二次函数y=ax 2(a ≠0)的图象具有如下性质:1.4. 二次函数的应用运用二次函数求实际问题中的最大值或最小值,首先应当求出函数表达式和自变量的取值范围,然后通过配方变形,或利用公式求它的最大值或最小值。
注意:由此求得的最大值或最小值对应的自变量的必须在自变量的取值范围内。
2. 简单事件的概率2.1. 事件的可能性把在一定条件下一定会发生的事件叫做必然事件;把在一定条件下一定不会发生的事件叫做不可能事件;把在一定条件下可能发生,也可能不发生的事件叫做不确定事件或随机事件。
2.2.简单事件的概率把事件发生可能性的大小称为事件发生的概率,一般用P表示。
事件A发生的概率记为P(A)。
必然事件发生的概率为100%,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;随机事件的概率介于0与1之间,即0<P(随机事件)<1.如果事件发生的各种结果的可能性相同且互相排斥,结果总数为n,事件A包含其中的结果数为m(m≤n),则事件A发生的概率为:P(A)=m/n。
数学九年级浙江上册知识点
数学九年级浙江上册知识点一、有理数1. 自然数、整数、有理数的概念及其性质自然数包括0及其后面所有的正整数,整数包括自然数、0及其相反数,有理数包括整数和所有可以表示为分数的数。
有理数可以进行加减乘除以及比较大小。
2. 有理数的四则运算规则加法:有理数相加,符号相同则取绝对值相加,结果的符号与原符号相同;符号不同则取绝对值相减,结果的符号取绝对值大的数的符号。
减法:有理数相减,可以转化为加法运算。
乘法:有理数相乘,符号相同则结果为正,符号不同则结果为负。
除法:有理数相除,取被除数与除数的商作为结果,若符号相同则结果为正,符号不同则结果为负。
3. 有理数的倍数与约数倍数:一个数若可以被另一个数整除,则称该数为另一个数的倍数。
约数:一个数若可以整除另一个数,则称该数为另一个数的约数。
4. 有理数的比大小有理数比大小,可以根据绝对值的大小进行比较,绝对值大的数较大。
若绝对值相等,则根据正负进行比较,正数较大,负数较小。
二、平方与平方根1. 平方的概念与平方性质平方是一个数乘以自身所得到的结果,表示为x²,其中x为实数。
平方的结果一定是非负数。
2. 平方根的概念与平方根性质平方根是指一个数的平方等于该数的非负实数,表示为√x,其中x为非负数。
平方根可以是正数或零,但不可以是负数。
三、代数式与等式1. 代数式的概念与基本性质代数式是由数或变量及数运算符号组成的式子,可以通过数值的代入计算得到具体的结果。
代数式中的变量可以代表不同的数值。
2. 等式的概念与解方程等式是指两个代数式之间通过等号连接的关系,左右两边的代数式的计算结果是相等的。
解方程是指找到使等式成立的未知数的值。
四、二元一次方程1. 二元一次方程的概念与基本形式二元一次方程是指两个未知数的一次方程,其一般形式为ax+by+c=0,其中a、b、c为已知数且a和b不同时为0。
2. 二元一次方程的解法解二元一次方程可以使用代入法、消元法或图示法等。
浙教版初中数学九年级上知识点及典型例题
浙教版初中数学九年级上知识点及典型例题第一章:反比例函数1、反比例函数的概念一般地,形如y =kx (k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是x的函数,k 是比例系数. 注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式: (A )y = xk (k ≠ 0)(B )xy = k (k ≠ 0)(C )y=kx -1(k ≠0)同步训练:1、已知函数y =(m +1)x22-m 是反比例函数,则m 的值为 .2、已知变量y 与x-5成反比例,且当x=2时 y=9,写出y 与x 之间的函数解析式.2、反比例函数的图像和性质反比例函数xky =(k ≠0)的图象是由两个分支组成的曲线。
当0>k 时,图象在一、三象限:当0<k 时,图象在二、四象限。
反比例函数ky =(k ≠0)的图象关于直角坐标系的原点成中心对称。
3、反比例函数解析式的确定确定及诶是的方法仍是待定系数法。
由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
4、反比例函数中反比例系数的几何意义过反比例函数)0(≠=k xky 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S=PM •PN=xy x y =•。
k S k xy xky ==∴=,, 。
同步训练: 1.反比例函数xky =的图象与正比例函数Y=3X 的图象,交于点A (1,m ),则m =________,反比例函数的解析式为__________,这两个图象的另一个交点坐标是_________. 2.已知(11x y ,),(22x y ,),(33x y ,)是反比例函数2y x-=的图象上的三个点,并且1230y y y >>>,则123x x x ,,的大小关系是( )(A )123x x x <<; (B )312x x x ><; (C )123x x x >>; (D )132.x x x ><同步训练:1、已知关于x 的函数)1(-=x k y 和xky -=(k ≠0),它们在同一坐标系内的图象大致是( )2、已知反比例函数xky =的图象与一次函数m kx y +=的图象相交于点)1,2(.(1)分别求这两个函数的解析式.(2)试判断点)5,1(--P 关于x 轴的对称点'P 是否在一次函数m kx y +=的图象上.第二章:二次函数1、二次函数定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫 做x 的二次函数. 2、二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。
九上数学知识点总结(浙教版)(打印版)
九上数学知识点总结知识点、二次函数的概念和图像1、二次函数的概念:如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像:二次函数的图像是一条关于bx -=对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向;②有对称轴;③有顶点;④与y 轴有交点3、二次函数图像的平移函数)0()(2≠+-=a k m x a y 的图象可由函数2ax y =的图象先向右(当m>0)或向左(当m<0)平移|m|个单位,再向上(当k>0)或向下(当k<0)平移|k|个单位得到,顶点是(m,k ),对称轴是直线x=m4、函数平移规律(口诀:左加右减、上加下减)(1)函数图像向左移动b(b>0)个单位后,需将原函数解析式中x 改为(x+b),才符合移动后的图像所对应的函数解析式。
(2)函数图像向上移动c(c>0)个单位后,需将原函数解析式的等式右边整体加上c ,才符合移动后的图像所对应的函数解析式。
知识点、二次函数的解析式二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,。
h=,k=(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的因式分解))((212x x x x a c bx ax --=++,2,1x =aacb 24b 2-±-.二次函数c bx ax y ++=2可转化为两根式(交点式)))((21x x x x a y --=。
如果与x 轴没有交点,则不能这样表示。
知识点、二次函数的最值(1)如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,a b ac y 442-=最值。
浙教版九上数学知识点归纳总结
浙教版九上数学知识点归纳总结# 浙教版九年级上册数学知识点归纳总结## 第一章:数与式### 1.1 整式- 整式的概念:由数和字母的乘积组成的代数式。
- 单项式:只含有一个字母的整式。
- 多项式:由多个单项式相加或相减组成的整式。
### 1.2 因式分解- 提取公因式法:找出多项式中所有项的公共因子并提取出来。
- 公式法:利用已知的代数公式进行因式分解。
### 1.3 分式- 分式的概念:分子和分母都是整式的有理表达式。
- 分式的加减:需要通分后进行。
- 分式的乘除:分子乘分子,分母乘分母。
## 第二章:方程与不等式### 2.1 一元一次方程- 解法:移项、合并同类项、系数化为1。
### 2.2 一元二次方程- 解法:直接开平方法、配方法、公式法、因式分解法。
### 2.3 不等式- 不等式的概念:表达式两边不等关系的数学表达。
- 解法:移项、合并同类项、系数化为1。
## 第三章:函数### 3.1 函数的概念- 函数的定义:对于集合A中的每个元素x,都有集合B中唯一确定的元素y与之对应。
### 3.2 一次函数- 一次函数的表达式:\( y = kx + b \)。
- 图像:一条直线。
### 3.3 二次函数- 二次函数的表达式:\( y = ax^2 + bx + c \)。
- 图像:一个开口向上或向下的抛物线。
## 第四章:几何基础### 4.1 线段与角- 线段的性质:两点之间的最短距离。
- 角的分类:锐角、直角、钝角、平角、周角。
### 4.2 三角形- 三角形的分类:按边分等腰、等边、不等边;按角分锐角、直角、钝角。
### 4.3 四边形- 四边形的分类:平行四边形、矩形、菱形、正方形。
## 第五章:图形的变换### 5.1 平移- 平移的性质:图形的形状和大小不变,位置改变。
### 5.2 旋转- 旋转的性质:图形的形状和大小不变,方向改变。
### 5.3 对称- 对称的性质:图形关于某条直线或点对称。
浙教版九年级数学上册知识点汇总汇编
九年级(上册)1. 二次函数1.1. 二次函数把形如()0a ,,y 2≠++=是常数,其中c b a c bx ax 的函数叫做二次函数,称a 为二次项系数,b 为一次项系数,c 为常数项。
1.2. 二次函数的图象二次函数y=ax 2(a ≠0)的图象是一条抛物线,它关于y 轴对称,顶点是坐标原点。
当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点。
函数y=a(x-m)2+k(a ≠0)的图象,可以由函数y=ax 2的图象先向右(当m>0时)或向左(当m<0时)平移|m|个单位,再向上(当k>0时)或向下(当k<0时)平移|k|个单位得到,顶点是(m,k),对称轴是直线x=m 。
函数y=a(x-m)2+k(a ≠0)的图象是一条抛物线,它的对称轴是直线a b 2x -=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a 44,2b 2 当a>0时,抛物线开口向上,顶点是抛物线上的最低点;当a<0时,抛物线开口向下,顶点是抛物线上的最高点。
1.3. 二次函数的性质二次函数y=ax 2(a ≠0)的图象具有如下性质:1.4. 二次函数的应用运用二次函数求实际问题中的最大值或最小值,首先应当求出函数表达式和自变量的取值范围,然后通过配方变形,或利用公式求它的最大值或最小值。
注意:由此求得的最大值或最小值对应的自变量的必须在自变量的取值范围内。
2. 简单事件的概率2.1. 事件的可能性把在一定条件下一定会发生的事件叫做必然事件;把在一定条件下一定不会发生的事件叫做不可能事件;把在一定条件下可能发生,也可能不发生的事件叫做不确定事件或随机事件。
2.2.简单事件的概率把事件发生可能性的大小称为事件发生的概率,一般用P表示。
事件A发生的概率记为P(A)。
必然事件发生的概率为100%,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;随机事件的概率介于0与1之间,即0<P(随机事件)<1.如果事件发生的各种结果的可能性相同且互相排斥,结果总数为n,事件A包含其中的结果数为m(m≤n),那么事件A发生的概率为:P(A)=m/n。
浙教版九年级上册数学知识点归纳
浙教版九年级上册数学知识点归纳知识点一:代数基础
- 代数表达式的定义和性质
- 一元一次方程及其应用
- 一元一次方程组及其解法
- 不等式的表示和解法
知识点二:几何图形与综合
- 平行线和平行四边形的性质
- 三角形的性质和分类
- 相似三角形的判定和性质
- 圆的元素和性质
- 综合运算与应用
知识点三:数与式
- 分数的计算和运用
- 百分数的计算和运用
- 十字相乘法的运用
- 字母代数式的计算
知识点四:统计与概率
- 统计图表的分析和应用
- 事件和概率的基本概念
- 事件的独立性和互斥性
- 抽样和调查的方法和应用知识点五:函数
- 函数的基本概念和记法
- 函数关系式的表示和运算- 函数图象的性质和分析
- 一次函数和二次函数的应用知识点六:立体几何
- 空间几何图形的表示和性质
- 空间几何图形的计算和变换
- 柱体、圆柱和圆锥的应用
以上是浙教版九年级上册数学的知识点归纳。
通过学习这些知识点,能够帮助同学们更好地理解数学的基础知识,提高数学解题能力。
浙教版九年级《数学》上册
角角边相等
证明三角形全等的条件 之一,即两个角和一边 分别相等,则两三角形
全等。
角边角相等
证明三角形全等的条件 之一,即两个角和一边 的对角分别相等,则两
三角形全等。
边角边相等
证明三角形全等的条件 之一,即两边和一边的 对角分别相等,则两三
角形全等。
四边形中的证明
对角线性质
四边形的对角线互相平分,这 是四边形的一个重要性质。
一元二次方程的应用
总结词:实际应用
详细描述:一元二次方程在日常生活和生产实践中有着广泛的应用。例如,在物理学中,一元二次方 程可以用来描述物体的运动轨迹;在经济学中,一元二次方程可以用来解决最优化问题,如最大利润 、最小成本等;在工程学中,一元二次方程可以用来进行结构设计、稳定性分析等。
配方法
总结词:具体操作
02 第二章:一元二次方程
一元二次方程的概念
总结词:基础定义
详细描述:一元二次方程是只含有一个未知数,且未知数的最高次数为2的方程。一 般形式为ax^2 + bx + c = 0,其中a、b、c为常数,且a≠0。
一元二次方程的解法
总结词:求解方法
详细描述:一元二次方程的解法有多种,包括直接开平方法、配方法、公式法和因式分解法等。其中,配方法是常用的方法 之一,通过配方将方程转化为完全平方形式,从而简化求解过程。
概率的基本性质
概率具有可加性和有限可加性,即 对于两个互斥事件的并,其概率等 于各事件概率的和。
概率的应用
决策分析
概率可以用于决策分析,帮助人 们评估不同方案的风险和不确定
性。
预测和统计推断
在统计学中,概率用于预测和统 计推断,例如通过大数定律和中
浙教九年级上册数学知识点
浙教九年级上册数学知识点数学是一门抽象而又具体的学科,它是人类智慧的结晶,也是一种思维的锻炼。
在浙教九年级上册数学课程中,我们将学习许多重要的数学知识点,这些知识将为我们打下坚实的数学基础,并为我们未来的学习和生活提供帮助。
一、有理数的加减运算在第一章,我们学习了有理数的加减运算。
有理数包括整数和分数,在计算过程中,我们要了解加法和减法的规则,并学会如何进行有理数的加减运算。
此外,我们还研究了有理数的加减混合运算,以及运算规律的应用。
掌握这些知识,将有助于我们在实际生活中进行数值计算和解决问题。
二、相似与全等在第二章,我们学习了相似与全等。
相似和全等是几何中非常重要的概念,通过相似和全等,我们可以研究和描述图形之间的关系。
在学习中,我们要认识到相似与全等的定义和性质,并学会利用相似与全等的特点进行图形的构造和证明。
这些知识对于我们的几何学习和问题解决非常关键。
三、代数中的一次函数第三章,我们学习了代数中的一次函数。
一次函数是数学中最简单也是最重要的一类函数之一,它可以用来描述直线的增长和变化规律。
通过学习一次函数的定义、性质和画图方法,我们可以更好地理解函数的概念,并学会应用一次函数解决实际问题。
此外,我们还学习了一次函数的应用和解析法。
一次函数的研究对于我们今后的高中数学学习非常重要。
四、平面坐标系与直角坐标系在第四章,我们学习了平面坐标系与直角坐标系。
平面坐标系是描述平面上点的位置的一种工具,我们通过学习平面坐标系的建立和性质,可以更好地认识平面中的几何问题。
直角坐标系是平面坐标系的一种特殊情况,它是在数轴上引入坐标轴构建的。
通过学习直角坐标系的性质和应用,我们可以方便地将几何问题转化为代数问题,并解决实际问题。
五、图形的三视图第五章,我们学习了图形的三视图。
图形的三视图是描述三维空间物体的一种方法,通过学习三视图的构造和特点,我们可以更好地理解和描述三维物体的形状与结构。
在学习中,我们要掌握三视图的绘制方法和投影规律,并学会应用三视图解决实际问题。
浙教版九年级上册数学知识点总结
三一文库()/初中三年级〔浙教版九年级上册数学知识点总结〕1 基本信息1.y的变化值与对应的x的变化值成正比例,比值为k即:△y/△x=k (△为任意不为零的实数),即函数图像的斜率。
2.一次函数的表达式:y=kx+b3.性质:当k>0时,y随x的增大而增大;当k当b>0时,该函数与y轴交于正半轴;当b当x=0时,b为函数在y轴上的截距。
4.一次函数定义域x∈R,值域f(x)∈R5.一次函数在x∈R上的单调性:若f(x)=kx+b,k>0,则该函数在x∈R上单调递增。
若f(x)=kx+b,k第1页共4页2 函数性质1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k≠0) (k不等于0,且k,b为常数)2.当x=0时,b为函数在y轴上的,坐标为(0,b).当y=0时,该函数图像在x轴上的交点坐标为(-b/k,0)3.k为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴正方向夹角,Θ≠90°)形、取、象、交、减。
4.当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数.5.函数图像性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图像相交;当k互为负倒数时,两直线垂直;当k,b都相同时,两条直线重合。
3 图像性质1.作法与图形:通过如下3个步(1)列表(2)描点:一般取两个点,根据“两点确定一条直线”的道理;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点分别是-k分之b与0,0与b)24。
浙教版九年级数学上册知识点及典型例题
九年级上册第一章 二次函数一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:上加下减。
3. ()2y a x h =-的性质:左加右减。
a 的符号开口方向 顶点坐标 对称轴性质向上 ()00,y 轴 0x >时,y 随x 的增大而增大;0x <时,y随x 的增大而减小;0x =时,y 有最小值0.0a <向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y随x 的增大而增大;0x =时,y 有最大值0.a 的符号开口方向 顶点坐标 对称轴性质0a > 向上y 轴 0x >时,y 随x 的增大而增大;0x <时,y随x 的增大而减小;0x =时,y 有最小值c .0a <向下()0c ,y 轴.a 的符号开口方向 顶点坐标 对称轴 性质0a >向上 X=h x h >时,y 随x 的增大而增大;x h <时,y随x 的增大而减小;x h =时,y 有最小值0. 0a <向下X=hx h >时,y 随x 的增大而减小;x h <时,y随x 的增大而增大;x h =时,y 有最大值0.4. ()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.a 的符号开口方向 顶点坐标对称轴 性质0a > 向上 ()h k , X=h x h >时,y 随x 的增大而增大;x h <时,y随x 的增大而减小;x h =时,y 有最小值k .0a <向下()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y随x 的增大而增大;x h =时,y 有最大值k .六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为 ,顶点坐标为 .当2b x a <-时,y 随x 的增大而减小;当2bx a>-时,y 随x 的增大而增大;当2bx a =-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2bx a=-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当 时, ,即抛物线的对称轴在 ;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时, ,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴 ,即抛物线与y 轴交点的纵坐标为 ;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑵ 当0c <时,抛物线与y 轴的交点在x 轴 ,即抛物线与y 轴交点的纵坐标为 .总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离2214b acAB x x a-=-=. ② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.∆>⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:练习1、函数a ax y -=2与xay =在同一直角坐标系中的图象可能是( )A B C D2、反比例函数y =k -1x与一次函数y = k (x+1)在同一坐标系中的象只可能是( )3、某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件,调查表明:单价每上涨1元,该商品每月的销量就减少10件. (1)请写出每月销售该商品的利润y 元与单价上涨x 元的函数关系式; (2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?第二章 圆的基本性质【本章知识框架】∆= 抛物线与x 轴只有一个交点 二次三项式的值为非负 一元二次方程有两个相等的实数根0∆< 抛物线与x 轴无交点 二次三项式的值恒为正一元二次方程无实数根.O C B A圆 基本元素:圆的定义,圆心,半径,弧,弦,弦心距的 垂径定理 认 对称性:旋转不变性,轴对称,中心对称(强)识 圆心角、弧、弦、弦心距的关系 与圆有关的角:圆心角,圆周角弧长,扇形的面积,弓形的面积,及组合的几何图形 圆中的有关计算:圆锥的侧面积、全面积一、圆的概念1、圆的定义:线段OA 绕着它的一个端点O 旋转一周,另一个端点A 所形成的封闭曲线,叫做圆.点O 叫做圆心,线段OP 叫做半径。
浙教版九年级数学上册知识点
浙教版九年级数学上册知识点课堂临时报佛脚,不如课前预习好。
其实任何学科都是一样的,学习任何一门学科,勤奋都是最好的学习方法,没有之一,书山有路勤为径。
下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。
九年级上册数学单元知识点第一章证明一、等腰三角形1、定义:有两边相等的三角形是等腰三角形。
2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”)2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)3.等腰三角形的两底角的平分线相等。
(两条腰上的中线相等,两条腰上的高相等)4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
特殊的等腰三角形等边三角形1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。
(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。
2、性质:⑴等边三角形的内角都相等,且均为60度。
⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。
⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。
3、判定:⑴三边相等的三角形是等边三角形。
⑵三个内角都相等的三角形是等边三角形。
⑶有一个角是60度的等腰三角形是等边三角形。
⑷有两个角等于60度的三角形是等边三角形。
二、直角三角形全等1、直角三角形全等的判定有5种:(1)、两角及其夹边对应相等的两个三角形全等;(ASA)(2)、两边及其夹角对应相等的两个三角形全等;(SAS)(3)、三边对应相等的两个三角形全等;(SSS)(4)、两角及其中一角的对边对应相等的两个三角形全等;(AAS)(5)、斜边及一条直角边对应相等的两个三角形全等;(HL)2、在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半3、在直角三角形中,斜边上的中线等于斜边的一半4垂直平分线:垂直于一条线段并且平分这条线段的直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版九年级数学上册知识点九年级上册数学单元知识点
第一章证明
一、等腰三角形
1、定义:有两边相等的三角形是等腰三角形。
2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角〞)
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一〞)
3.等腰三角形的两底角的平分线相等。
(两条腰上的中线相等,两条腰上的高相等)
4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴
3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
特殊的等腰三角形
等边三角形
1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。
(注意:假设三角形三条边都相等那么说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。
2、性质:⑴等边三角形的内角都相等,且均为60度。
⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。
⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。
3、判定:⑴三边相等的三角形是等边三角形。
⑵三个内角都相等的三角形是等边三角形。
⑶有一个角是60度的等腰三角形是等边三角形。
⑷有两个角等于60度的三角形是等边三角形。
二、直角三角形全等
1、直角三角形全等的判定有5种:
(1)、两角及其夹边对应相等的两个三角形全等;(ASA)
(2)、两边及其夹角对应相等的两个三角形全等;(SAS)
(3)、三边对应相等的两个三角形全等;(SSS)
(4)、两角及其中一角的对边对应相等的两个三角形全等;(AAS)
(5)、斜边及一条直角边对应相等的两个三角形全等;(HL)
2、在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半
3、在直角三角形中,斜边上的中线等于斜边的一半
4垂直平分线:垂直于一条线段并且平分这条线段的直线。
性质:线段垂直平分线上的点到这一条线段两个端点距离相等。
判定:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
5、三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等,交点为三角形的外心。
九年级数学知识点总结
直线与圆的位置关系
①直线和圆无公共点,称相离。
AB与圆O相离,d>r。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。
AB与⊙O相交,d
③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个的公共点叫做切点。
AB与⊙O相切,d=r。
(d为圆心到直线的距离)
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程
如果b^2-4ac>0,那么圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,那么圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,那么圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1
当x=-C/Ax2时,直线与圆相离;
旋转变换
1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
说明:(1)图形的旋转是由旋转中心和旋转的角度所决定的;(2)旋转过程中旋转中心始终保持不动.(3)旋转过程中旋转的方向是相同的.(4)旋转过程静止时,图形上一个点的旋转角度是一样的.⑤旋转不改变图形的大小和形状.
2.性质:(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
3.旋转作图的步骤和方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转
角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形.
说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角.
初三年级数学知识点归纳
旋转
一.知识框架
二.知识概念
1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
)
2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。
3.中心对称图形与中心对称:
中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
4.中心对称的性质:
关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
本章内容通过让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步开展空间观察,培养几何思维和审美意识,在实际问题中体验数学的快乐,激发对学习学习。