【浙教版】九年级数学(上)第一章《二次函数》课时训练 (含参考答案)
浙教版九年级上册数学第1章 二次函数含答案
浙教版九年级上册数学第1章二次函数含答案一、单选题(共15题,共计45分)1、已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.一、二、三、四象限.2、抛物线y=ax2+bx+c的顶点D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c>0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确的结论是()A.③④B.②④C.②③D.①④3、二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象,则关于x的方程ax2+bx+c=m有实数根的条件是()A.m≥﹣2B.m≥5C.m≥0D.m>44、已知二次函数y=ax²-8ax(a为常数)的图象不经过第二象限,在自变量x 的值满足2≤x≤3时,其对应的函数值y的最大值为3,则a的值为()A. B. C. D.5、若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0 5B.0 1C.﹣4 5D.﹣4 16、把函数的图像向下平移2个单位长度,所得到的新函数的解析式是()A. B. C. D.7、已知一次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1B.2C.3D.48、函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为A.1B.2C.3D.49、二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④10、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是A.a>0B.3是方程ax 2+bx+c=0的一个根C.a+b+c=0D.当x <1时,y随x的增大而减小11、已知二次函数y=1﹣3x+5x2,则其二次项系数a,一次项系数b,常数项c分别是()A.a=1,b=﹣3,c=5B.a=1,b=3,c=5C.a=5,b=3,c=1 D.a=5,b=﹣3,c=112、关于二次函数的下列结论,不正确的是()A.图象的开口向上B.当时,y随x的增大而减小C.图象经过点D.图象的对称轴是直线13、下列结论中,不正确的有()①反比例函数y=的函数值y随x的增大而减小;②任意三点确定一个圆;③圆既是轴对称图形又是中心对称图形;④二次函数y=x2-2x-3(x≥1)的函数值y随x的增大而减小;⑤平分弦的直径垂直于弦;⑥相等的圆周角所对的弧相等.A.2个B.3个C.4个D.5个14、如图,在同一平面直角坐标系中,函数与的图象可能是().A. B. C. D.15、当a-1≤x≤a时,函数y=x2-2x+1的最小值为1,则a的值为( )A.1B.2C.1或2D.0或3二、填空题(共10题,共计30分)16、若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是________.17、函数y=2x2﹣3x+4经过第________象限.18、将y=2x2﹣12x﹣12变为y=a(x﹣m)2+n的形式,则m•n=________.19、形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为________.20、已知二次函数的顶点坐标为(1,4),且其图象经过点(-2,-5),求此二次函数的解析式________.21、函数y=x2+2x-8与y轴的交点坐标是________.22、二次函数的图象如图所示,则y<0时自变量x的取值范围是________ .23、已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 …y … 3 ﹣2 ﹣5 ﹣6 ﹣5 …则关于x的一元二次方程ax2+bx+c=﹣2的根是________.24、若是二次函数,则m=________.25、二次函数y=ax2+bx+c (a≠0)(a≠0,a,b,C为常数)的图象,若关于x的一元二次方程ax2+bx+c=m有实数根,则m的取值范围是________.三、解答题(共5题,共计25分)26、如图,直线AB交x轴于点B,交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°,AD:AB=1:2.(1)求点D的坐标;(2)求经过O、D、B三点的抛物线的函数关系式.27、国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A,B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同,销售中发现A型汽车的每周销量yA(台)与售价x(万元/台)满足函数关系式yA =﹣x+20,B型汽车的每周销量yB(台)与售价x(万元/台)满足函数关系式yB=﹣x+14.(1)求A、B两种型号的汽车的进货单价;(2)已知A型汽车的售价比B型汽车的售价高2万元/台,设B型汽车售价为t万元/台.每周销售这两种车的总利润为W万元,求W与t的函数关系式,A、B两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元?28、如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,A点在原点的左则,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P 是直线BC下方的抛物线上一动点。
浙教版九年级数学(上)课时训练 1.1 二次函数 含答案
浙教版九年级数学(上)课时训练 1.1 二次函数含答案正确的是( )A.m n≥B.n m≤C.m>n D.m<n6. 已知:二次函数中的满足下表:…0 1 2 3 ……0 …的值为()A.-2 B.5 C.1 D.07.从地面竖立向上抛出一个小球,小球的高度(单位:)与小球运动时间(单位:)之间的关系式为,那么小球从抛出至回落到地面所需要的时间是( )A.6s B.4s C.3sD.2s二、填空题8.二次函数的二次项系数是,一次项系数是,常数项.9.已知函数2k ky kx+=是关于x的二次函数,则k= .10.对于二次函数 y =2x 2-bx +3,当x =1时,y =1,则b 的值为__________.11. 若把二次函数化为的形式,其中为常数,则= .12. 小汽车刹车距离s (m )与速度v (km /h )之间的函数关系式为21001v s =,一辆小汽车速度为100km /h ,在前方80m 处停放一辆故障车,此时刹车 有危险(填“会”或“不会”). 三、解答题 13. 已知y =(m -4)x 232--m m +2x -3是二次函数,求m 的值。
参考答案一、选择题1. A2. C3. C4. B5. D6. D7. A 二、填空题8.-3,-6,5 9. -1 10.4 11. -3 12.不会 三、解答题 13. 根据题意知:232240mm m ⎧--=⎨-≠⎩解得m =-1。
浙教版九年级上册第一章 二次函数(含答案)
浙教版九年级上册第一章二次函数一、选择题1.下列函数中,是二次函数的是( )A .y =3x ﹣2B .y =1x 2C .y =x 2+1D .y =(x ﹣1)2﹣x 22.二次函数 y =k x 2−6x +3 的图象与x 轴有交点,则k 的取值范围是( )A .k <3B .k <3 且 k ≠0C .k ≤3D .k ≤3 且 k ≠03.已知二次函数y =−12x 2+bx 的对称轴为x =1,当m ≤x ≤n 时,y 的取值范围是2m ≤y ≤2n .则m +n 的值为( )A .−6或−2B .14或−74C .14D .−24.已知二次函数y =a x 2+bx +c (a ≠0)的图象如图所示,在下列5个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b <m(am +b)(m ≠1的实数),其中正确的结论有( )A .1个B .2个C .3个D .4个5.如图,二次函数y =−x 2+x +2及一次函数y =x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数,当直线y =x +m 与新图象有4个交点时,m 的取值范围是( )A .14<m <−3B .254<m ≤1C .−2<m <1D .−3<m <−2二、填空题6.若y =(m−3)x m2−5m +8+2x−3是关于x 的二次函数,则m 的值是 .7.二次函数 y =−(x−6)2+8 的最大值是 .8.已知抛物线y =a x 2−2ax 经过A (m−1,y 1),B (m,y 2),C (m +3,y 3)三点,且y 1<y 3<y 2≤−a 恒成立,则m 的取值范围为 .9.飞机着陆后滑行的距离s (米)与滑行时间t (秒)的关系满足s =−32t 2+bt .当滑行时间为10秒时,滑行距离为450米,则飞机从着陆到停止,滑行的时间是 秒.10.如图,抛物线y =−87x 2+247x +2与x 轴交于A 、B 两点,与y 轴交于C 点,P 为抛物线对称轴上动点,则PA +PC 取最小值时,点P 坐标是 .11.若定义一种新运算:m@n ={m−n(m ≤n)m +n−3(m >n),例如:1@2=1−2=−1,4@3=4+3−3=4.下列说法:(1)−7@9= ;(2)y =(−x +1)@(x 2−2x +1)与直线y =m(m 为常数)有1个交点,则m 的取值范围是 .三、单选题12. 已知y =(a−1)x 2−2x +a 2是关于x 的二次函数,其图象经过(0,1),则a 的值为( )A .a =±1B .a =1C .a =−1D .无法确定13.抛物线 y =−3x 2+6x +2 的对称轴是( )A .直线 x =2B .直线 x =−2C .直线 x =1D .直线 x =−114.已知二次函数y =3x 2+2x−1,把图象向右平移n 个单位长度后,使两个函数图象与x 轴的交点中,相邻的两个交点之间的距离都相等,则n 的值为( )A .43B .83C .23或83D .43或8315.已知一个二次函数y =a x 2+bx +c 的自变量x 与函数y 的几组对应值如下表,x …−4−2035…y…−24−80−3−15…则下列关于这个二次函数的结论正确的是( )A.图象的开口向上B.当x>0时,y的值随x的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线x=116.直线y=ax+b与抛物线y=a x2+bx+b在同一坐标系里的大致图象正确的是()A.B.C.D.四、解答题17.已知二次函数过点A(0,−2),B(−1,0),C(2,0).(1)求此二次函数的解析式;(2)当x为何值时,这个二次函数取到最小值?并求出这个最小值.18.已知二次函数y=x2−4x+1.(1)将该二次函数化成y=a(x+ℎ)2+k的形式.(2)自变量x在什么范围内时,y随x的增大而增大?19.在平面直角坐标系中,已知抛物线y=a x2−2a2x−3(a≠0).(1)若a=1,当−2<x<3时,求y的取值范围;(2)已知点A(2a−1,y1),B(a,y2),C(a+2,y3)都在该抛物线上,若(y1−y3)(y3−y2)>0,求a 的取值范围.20.在平面直角坐标系xOy中,已知抛物线y=x2−2tx+t2−t.(1)求抛物线的顶点坐标(用含t的代数式表示);(2)点P(x1,y1),Q(x2,y2)在抛物线上,其中t−1≤x1≤t+2,x2=1−t.①若y1的最小值是−2,求y1的最大值;②若对于x1,x2,都有y1<y2,求t的取值范围.21.若一个函数的解析式等于另两个函数解析式的和,则这个函数称为另两个函数的“生成函数”.现有关于x的两个二次函数y1,y2,且y1=a(x−m)2+4(m>0),y1,y2的“生成函数”为:y=x2+4x+14;当x=m时,y2=15;二次函数y2的图象的顶点在y轴上.(1)求m的值;(2)求二次函数y1,y2的解析式.22.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使得利润最大?小明同学,为了完成以上问题,小明分析:调整价格包括涨价和降价两种情况.小明先探索了涨价的情况,下面是小明的思路,请你帮助小明完善以下内容:(1)假设每件涨价x元,则所得利润y与x的函数关系式为 ;其中x的取值范围是 ;在涨价的情况下,定价 元时,利润最大,最大利润是 .(2)请你参考小明(1)的思路继续思考,在降价的情况下,求最大利润是多少?(3)在(1)(2)的讨论及现在的销售情况,回答商家如何定价能使利润能达到最大?23.在平面直角坐标系中,二次函数y=−x2+bx+c(b、c为常数)的图象经过点A(3,0)和点B(0,3 ).(1)求这个二次函数的表达式.(2)当0≤x≤m+1时,二次函数y=−x2+bx+c的最大值与最小值的差为1,求m的取值范围.(3)当m≤x≤m+1(m>0)时,设二次函数y=−x2+bx+c的最大值与最小值的差为ℎ,求ℎ与m之间的函数关系式.(4)点P在直线x=m上运动,若在坐标平面内有且只有两个点P使△PAB为直角三角形,直接写出m 的取值范围.答案解析部分1.【答案】C 2.【答案】D 3.【答案】D 4.【答案】B 5.【答案】D 6.【答案】27.【答案】88.【答案】−12<m <09.【答案】2010.【答案】(32,87)11.【答案】(1)−16(2)−3<m <−112.【答案】C 13.【答案】C 14.【答案】D 15.【答案】D 16.【答案】D17.【答案】(1)y =x 2−x−2(2)当x =12时,y 的最小值为−9418.【答案】(1)y =(x−2)2−3(2)当x >2时,y 随x 的增大而增大19.【答案】(1)解:当a =1时,y =x 2−2x−3,抛物线开口向上,对称轴为直线x =1,x =−2比x =3距离对称轴远,∴x =1时,y =1−2−3=−4为函数最小值,当x =−2时,y =4+4−3=5为函数最大值,∴当−2<x <3时,−4≤y <5;(2)解:∵对称轴为直线x =a ,∴当a >0时,抛物线开口向上,函数有最小值y 2,∴y3−y2>0,∵(y1−y3)(y3−y2)>0,∴y1−y3>0,即y1>y3,∴|2a−1−a|>|a+2−a|,解得a>3,当a<0时,抛物线开口向下,函数有最大值y2,∴y3−y2<0,∵(y1−y3)(y3−y2)>0,∴y1−y3<0,即y1<y3,∴|2a−1−a|>|a+2−a|,解得a<−1,∴a的取值范围是a>3或a<−1.20.【答案】(1)(t,−t)(2)①2;②t<−12或t>32.21.【答案】(1)m=1(2)y1=−2(x−1)2+4;y2=3x2+1222.【答案】(1)y=−10x2+100x+6000;0⩽x⩽30;65;6250元(2)解:设每件降价x元,则每星期售出商品的利润w元,则w=(20−x)(300+20x)=−20x2+100x+6000,∵函数的对称轴为x=−1002×(−20)=2.5,∴当x=2.5(元)时,则w=−20×2.52+100×2.5+6000=6125(元);(3)解:∵6250>6125,∴用涨价方式比降价方式获得利润大,当定价为65元时,利润最大.23.【答案】(1)解:将A(3,0)、B(0,3)代入y=−x2+bx+c中,得{−9+3b+c=0,c=3.解得{b=2,c=3.∴y=−x2+2x+3.(2)解:∵函数图象的顶点坐标为(1,4),∴点B(0,3)关于对称轴直线x=1的对称点的坐标为(2,3),4−3=1.∴1≤m+1≤2,∴0≤m≤1(3)解:当0<m ≤12时,ℎ=4−(−m 2+2m +3)=m 2−2m +1.当12<m ≤1时,ℎ=4−(−m 2+4)=m 2.当m >1时,ℎ=−m 2+2m +3−(−m 2+4)=2m−1.(4)m =0或m =3或m <3−322或m >3+322.。
浙教版九年级上册数学第1章 二次函数 含答案
浙教版九年级上册数学第1章二次函数含答案一、单选题(共15题,共计45分)1、如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5B.x>5C.x<﹣1且x>5D.x<﹣1或x>52、抛物线的对称轴是直线()A. x=2B. x=-2C. x=1D. x=-13、对于二次函数y=﹣x2,下列说法不正确的是()A.开口向下B.对称轴为y轴C.顶点坐标是(0,0)D.y随x 增大而减小4、如图所示的是二次函数图象的一部分,其对称轴是且过点则下列选项中错误的是()A. B. C. D.5、将抛物线向左平移1个单位,再向下平移3个单位,得到的抛物线是( )A. B. C. D.6、已知二次函数的图象如图所示,有下列5个结论:①;②;③;④;⑤,(的实数)其中正确的结论有()A.2个B.3个C.4个D.5个7、已知二次函数的图象如图所示,则这个二次函数的表达式为()A. B. C. D.8、已知二次函数 y=ax2+bx+c(a≠0),过(1,y1)(2,y2).①若 y1>0 时,则 a+b+c>0②若 a=b 时,则 y1<y2③若 y1<0,y2>0,且a+b<0,则 a>0④若 b=2a﹣1,c=a﹣3,且 y1>0,则抛物线的顶点一定在第三象限上述四个判断正确的有()个.A.1B.2C.3D.49、定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A.当m=﹣3时,函数图象的顶点坐标是()B.当m>0时,函数图象截x轴所得的线段长度大于C.当m≠0时,函数图象经过同一个点 D.当m<0时,函数在x 时,y随x的增大而减小10、如图,抛物线y=与ax2+bx+c 与 x 轴交于点A(-1,0),B(5,0),给出下列判断:①ac<0;②;③b+4a=0;④4a-2b+c<0.其中正确的是()A.①②B.①②③C.①②④D.①②③④11、二次函数y=(x-1)2+2的最小值为()A.1B.-1C.2D.-212、二次函数y=a +bx+c的图象如图所示,则下列关系式错误的是()A.a<0B.b>0C. ﹣4ac>0D.a+b+c<013、如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )A.1个B.2个C.3个D.414、已知函数y=k(x+1)(x﹣),下列说法正确的是()A.方程k(x+1)(x﹣)=﹣3必有实数根B.若移动函数图象使其经过原点,则只能将图象向右移动1个单位C.若k>0,则当x>0时,必有y 随着x的增大而增大D.若k<0,则当x<﹣1时,必有y随着x的增大而增大15、将二次函数y=x2的图象向左平移3个单位,再向上平移3个单位,平移后的图象的函解析式是()A. y=(x+3)2 +3B. y=(x﹣3)2 +3C. y=(x+3)2﹣3 D. y=(x﹣3)2﹣3二、填空题(共10题,共计30分)16、二次函数y=ax2+2x﹣2,若对满足3<x<4的任意实数x都有y>0成立,则实数a的取值范围为________.17、如图,抛物线y=x2+bx+c(c>0)与y轴交于点C,顶点为A,抛物线的对称轴交x轴于点E,交BC于点D,tan∠AOE= .直线OA与抛物线的另一个交点为B.当OC=2AD时,c的值是________.18、将抛物线y=x2沿x轴向右平移2个单位后所得的抛物线解析式是________。
浙教版九年级上册数学第1章 二次函数含答案完整版
浙教版九年级上册数学第1章二次函数含答案一、单选题(共15题,共计45分)1、下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x 1 1.2 1.3 1.4y ﹣1 0.04 0.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1B.1.1C.1.2D.1.32、二次函数y=﹣x2﹣2x+c在﹣3≤x≤2的范围内有最小值﹣5,则c的值是()A.﹣6B.﹣2C.2D.33、过点(1,0),B(3,0),C(﹣1,2)三点的抛物线的顶点坐标是()A.(1,2)B.(1,)C.(﹣1,5)D.(2,)4、已知二次函数y=ax2+bx+c的图象如图所示,那么下列结论:①a<0,②b<0,③c<0,其中正确的判断是()A.①②B.①③C.②③D.①②③5、抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A 在点(﹣3,0)和点(﹣2,0)之间,其部分图象如图所示,则下列结论:①b2﹣4ac<0;②当x>﹣1时,y随x的增大而减小;③a+b+c<0;④若方程ax2+bx+c﹣m=0没有实数根,则m>2;⑤3a+c<0,其中正确结论的个数是()A.2 个B.3 个C.4 个D.5 个6、将y=3x2通过平移,先向上平移2个单位,再向左平移3个单位,可得到抛物线是( )A.y=3(x+3) 2-2B.y=3(x+ 3) 2+2C.y=3(x+2) 2-3D.y= 3(x-2) 2+37、二次函数的顶点坐标为,其部分图象如图所示.以下结论错误的是()A. B. C. D.关于x的方程无实数根8、已知抛物线y=-2(x-3)2+5,则此抛物线()A.开口向下,对称轴为直线x=-3B.顶点坐标为(-3,5)C.最小值为5D.当x>3时y随x的增大而减小9、如图抛物线(),下列结论错误的是()A. a、b同号B.C. 和时,y值相同 D.当时,10、已知抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为()A.x=﹣1B.x=1C.x=2D.y轴11、二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 …y … 4 0 ﹣2 ﹣2 0 4 …下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣12、如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,若点P(2017,m)在第1009段抛物线C1009上,则m的值为()A.﹣1B.0C.1D.不确定13、要得到抛物线,可以将抛物线()A.向右平移6个单位长度,再向下平移3个单位长度B.向右平移6个单位长度,再向上平移3个单位长度C.向左平移6个单位长度,再向上平移3个单位长度D.向左平移6个单位长度,再向下平移3个单位长度14、如果将抛物线y=x2向左平移1个单位,那么所得新抛物线的表达式是()A.y=x 2+1B.y=x 2﹣1C.y=(x+1)2D.y=(x﹣1)2.15、小明将如图两水平线l1、l2的其中一条当成x轴,且向右为正方向;两条直线l3、l4的其中一条当成y轴,且向上为正方向,并在此坐标平面中画出二次函数y=ax2﹣2a2x+1的图象,则()A.l1为x轴,l3为y轴 B.l2为x轴,l3为y轴 C.l1为x轴,l4为y轴 D.l2为x轴,l4为y轴二、填空题(共10题,共计30分)16、已知点A(-1,y1)、B(-2,y2)、C(3,y3)在抛物线y=-x2-2x+c上,则y1、y2、y3的大小关系是________.17、将y=2x2的函数图象向左平移3个单位,再向上平移2个单位,得到二次函数解析式为________.18、将抛物线,绕着点旋转后,所得到的新抛物线的解析式是________.19、二次函数y=ax2+bx+c(a≠0)的图象如图(虚线部分为对称轴),给出以下5个结论:①x≤1时,y随x的增大而增大;②abc>0;③b<a+c;④4a+2b+c>0;⑤3a﹣b<0,其中正确的结论有________(填上所有正确结论的序号).20、小明推铅球,铅球行进高度与水平距离之间的关系为,则小明推铅球的成绩是________ .21、我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为,和;②图象具有对称性,对称轴是直线;③当或时,函数值随值的增大而增大;④当或时,函数的最小值是0;⑤当时,函数的最大值是4.其中正确结论的个数是________.22、抛物线y=ax2+3与x轴的两个交点分别为(m,0)和(n,0),则当x=m+n 时,y的值为________.23、抛物线y=ax2+bx(a>0,b>0)的图象经过第________象限.24、当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,则m=________.25、抛物线y=﹣ax2+2ax+3(a≠0)的对称轴是________.三、解答题(共5题,共计25分)26、已知函数y=2x2-(3-k)x+k2-3k-10的图象经过原点,试确定k的值。
浙教版九年级上册数学第1章 二次函数含答案(精练)
浙教版九年级上册数学第1章二次函数含答案一、单选题(共15题,共计45分)1、将抛物线y=x2向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣2)2+3B.y=(x+2)2+2C.y=(x﹣3)2+2D.y=(x+3)2+22、关于二次函数y=-2(x-3) +5的最大值,下列说法正确的是( )A.最大值是3B.最大值是-3C.最大值是5D.最大值是-53、抛物线y=x2﹣bx+8的顶点在x轴上,则b的值一定为()A.4B.﹣4C.2或﹣2D.4 或﹣44、抛物线y=x2-2x-1上有点P(-1,y1)和Q (m,y2),若y1>y2,则m的取值范围为( )A.m>-1B.m<-1C.-1<m<3D.-1≤m<35、二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x=﹣1或x=2时,y=0D.当x>0时,y随x的增大而增大6、抛物线y=-2x2+1的对称轴是()A.直线x=B.直线x=-C.直线x=2D.直线x=07、如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③ac>0;④当y<0时,x<﹣1或x>2.其中正确的个数是()A.1B.2C.3D.48、已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是().A.(1,0)B.(2,0)C.(-2,0)D.(-1,0)9、抛物线的顶点坐标是()A. B. C. D.10、抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x﹣3,则b、c的值为()A.b=2,c=2B.b=2,c=0C.b=﹣2,c=﹣1D.b=﹣3,c=211、抛物线向左平移8个单位,再向下平移9个单位后,所得抛物线关系式是()A. (x+8)2-9B. (x-8) 2+9C. (x-8) 2-9D.(x+8) 2+912、已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是()A.abc>0B.a+b+c>0C.c<0D.b<013、对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x 轴有两个交点14、小颖用计算器探索方程ax2+bx+c=0的根,作出如图所示的图象,并求得一个近似根x=﹣3.4,则方程的另一个近似根(精确到0.1)为()A.4.4B.3.4C.2.4D.1.415、将函数y=x2+x的图象向右平移a(a>0)个单位,得到函数y=x2﹣3x+2的图象,则a的值为()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、若抛物线y=ax2经过点A ( ,-9),则其解析式为________。
浙教版九年级上册数学第1章 二次函数含答案(配有卷)
浙教版九年级上册数学第1章二次函数含答案一、单选题(共15题,共计45分)1、在同一平面直角坐标系中,函数和的图象大致是()A. B. C. D.2、已知抛物线的对称轴为直线,与x轴的一个交点坐标,其部分图象如图所示,下列结论:抛物线过原点;;;抛物线的顶点坐标为;当时,y随x增大而增大其中结论正确的是()A. B. C. D.3、同一坐标系中,抛物线y=(x-a)2与直线y=a+ax的图象可能是( )A. B. C.D.4、二次函数的图象如图所示,则下列结论中正确的是()A.a>0B.b>0C.c>0D.b 2-4ac>05、从地面竖直向上抛出一小球,小球的高度y米与小球运动的时间x秒之间的关系式为若小球在第7秒与第14秒时的高度相同,则在下列时间中小球所在高度最高的是A.第8秒B.第10秒C.第12秒D.第15秒6、将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价()A.5元B.10元C.15元D.20元7、如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0)和B (3,0).下列结论中:①abc>0;②2a+b=0;③方程ax2+bx+c=2(a≠0)没有实数根.其中正确的结论有()A.①②B.①③C.②③D.①②③8、如图,这是二次函数的图象,则的值等于()A.3B.2C.-2D.-39、已知:二次函数y=ax2+bx+c的图象如图所示,下列说法中正确的是()A. B. C.D.当,10、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.函数y=ax 2+bx+c(a≠0)的最小值是-4 C.-1和3是方程ax 2+bx+c=0(a≠0)的两个根 D.当x<1时,y 随x的增大而增大11、把抛物线先向左平移1个单位,再向下平移2个单位长度后,所得的函数表达式为( )A. B. C.D.12、将抛物线向上平移个单位后得到抛物线()A. B. C. D.13、对于二次函数,下列说法正确的是()A.当,随的增大而增大B.当时,有最大值C.图象的顶点坐标为D.图象与轴有一个交点14、二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是( )A. B. C. D.15、已知二次函数的与的部分对应值如下表:…0 1 3 …… 1 3 1 …则下列判断中正确的是()A.拋物线开口向上B.拋物线与轴交于负半轴C.当时,D.方程的正根在3与4之间二、填空题(共10题,共计30分)16、已知正整数a满足不等式组(x为未知数)无解,则a的值为________ ;函数y=(3﹣a)x2﹣x﹣3图象与x轴的交点坐标为________ 17、将抛物线y=2x2﹣12x+16绕它的顶点旋转180°,所得抛物线的解析式是________18、如图,二次函数y=ax2+bx+c(a>0)的图象的顶点为点D,其图象与x轴的交点A、B的横坐标分别为-1,3,与y轴负半轴交于点C.在下面五个结论中:①2a-b=0;②a+b+c>0;③c=-3a;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a的值有4个.其中正确的结论是________ (只填序号).19、若关于x的一元二次方程a(x+m)2-3=0的两个实数根分别为x1=-1,x2=3,则抛物线y=a(x+m-2)2-3与x轴的交点坐标为________.20、如右图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为________米.21、定义函数f(x),当x≤3时,f(x)=x2﹣2x,当x>3时,f(x)=x2﹣10x+24,若方程f(x)=2x+m有且只有两个实数解,则m的取值范围为________.22、若抛物线y=x2﹣x﹣12与x轴分别交于A,B两点,则AB的长为________23、如图,在平面直角坐标系中,抛物线与y轴交于点A,过点A作x轴的平行线交抛物线于点M,P为抛物线的顶点,若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为________.24、函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0;其中正确的个数有________个.25、如图是二次函数图象的一部分,有下列4个结论:①;②;③关于x的方程的两个根是,;④关于x的不等式的解集是.其中正确的结论是________.三、解答题(共5题,共计25分)26、已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴相交于A、B两点,且AB =2,求m的值.27、小明利用暑假20天(8月5日至24日)参与了一家网店经营的社会实践.负责在网络上销售一种新款的SD卡,每张成本价为20元.第x天销售的相关信息如下表所示.销售量p(张)p=50-x销售单价q(元/q=30+x张)(1)请计算哪一天SD卡的销售单价为35元?(2)在这20天中,在网络上这款销售SD卡在哪一天获得利润最大?这一天赚了多少元?28、某产品成本为400元/件,由经验得知销售量y与售价x是成一次函数关系,当售价为800元/件时能卖1000件,当售价1000元/件时能卖600件,问售价多少时利润W最大?最大利润是多少?29、某公司生产一种电子产品每天的固定成本为2000元,每生产一件产品需增加投入50元,已知每天总收入y(元)满足函数:,其中x是该产品的日产量.当日产量为何值时,公司所获得利润最大?最大利润为多少元?30、东方商场购进一批单价为20元的日用品,销售一段时间后,经调查发现,若按每件24元的价格销售时,每月能卖36件;若按每件29元的价格销售时,每月能卖21件,假定每月销售件数y(件)与价格x(元/件)之间满足关系一次函数.(1)试求y与x的函数关系式;(2)为了使每月获得利润为144元,问商品应定为每件多少元?(3)为了获得了最大的利润,商品应定为每件多少元?参考答案一、单选题(共15题,共计45分)1、D2、C3、D4、D5、B6、A7、C8、D9、C10、D11、B12、C13、B14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
浙教版九年级上册数学第1章 二次函数含答案
浙教版九年级上册数学第1章二次函数含答案一、单选题(共15题,共计45分)1、在平面直角坐标系中,二次函数 y1=﹣x2+4x 和一次函数 y2=2x 的图象如图所示,那么不等式﹣x2+4x>2x 的解集是()A.x<0B.0<x<4C.0<x<2D.2<x<42、已知抛物线,与轴的一个交点为,则代数式的值为()A. B. C. D.3、已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个4、在直角坐标系中,把抛物线y=x2+4向上平移2个单位长度,再向右平移3个单位长度,可得到抛物线的解析式为()A.y=(x﹣3)2+2B.y=(x﹣3)2+6C.y=(x+3)2+2 D.y=(x+3)2+65、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列四个结论①a、b同号②当x=1和x=3时函数值相等③4a+b=0④当y=-2时x的值只能取0其中正确的个数A.1个B.2个C.3个D.4个6、抛物线的顶点在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上7、一条开口向上的抛物线的顶点坐标是(﹣1,2),则它有()A.最大值1B.最大值﹣1C.最小值2D.最小值﹣28、已知二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的y与x的部分对应值如下表:x 3.23 3.24 3.25 3.26y ﹣0.06 ﹣0.08 ﹣0.03 0.09判断方程ax2+bx+c=0的一个解x的取值范围是()A.3<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x <3.269、已知函数y=(x﹣a)(x﹣b)(其中a>b)的图象如下面右图所示,则函数y=ax+b的图象可能正确的是()A. B. C. D.10、二次函数与的图象与x轴有交点,则k的取值范围是A. B. 且 C. D. 且11、如图,点A,B的坐标分别为(1,4)和(4,4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为( )A.-3B.1C.5D.812、如图,已知抛物线的对称轴为直线,与x轴的两个交点是A,B,其中点A的坐标为,则下列结论:①;②;③点B的坐标是;④点、是抛物线上的两点,若,则,其中正确结论的个数是()A.1个B.2个C.3个D.4个13、已知抛物线y=ax2+b x+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A.a>0B.b<0C.c<0D.a+b+c>014、下列函数中,属于二次函数的是 ( )A. B. C. D.15、下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y轴;④顶点(0,0),其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、将抛物线向上平移个单位,再向左平移个单位后,得到的抛物线的顶点坐标是________.17、对称轴为的抛物线如图所示,与x 轴分别交于点,,,有下列五个结论:①;②;③(t为实数);④当时,y随x增大而增大;⑤若方程的两个实数根分别为,,且,则,.其中结论错误的是________.18、已知函数,当时,此函数的最大值是________,最小值是________.19、已知二次函数y1=ax2+bx+c与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4),B(8,2).如图所示,则能使y1>y2成立的x的取值范围是________20、抛物线y=x2+mx+4与x轴仅有一个交点,则该交点的坐标是________.21、对于一个函数,如果它的自变量x与对应的函数值y满足:当-1≤x≤1时,-1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=-x均是“闭函数”.已知y=ax2+bx+c(a≠0)是“闭函数”,且抛物线经过点A(1,-1)和点B(-1,1),则a的取值范围是________.22、已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c的两个根分别是x1=1.3和x2=________。
浙教版九年级上册数学第1章 二次函数含答案
浙教版九年级上册数学第1章二次函数含答案一、单选题(共15题,共计45分)1、二次函数的大致图象如图所示,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x< ,y随x的增大而减小D.当 -1 < x < 2时,y>02、如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A.①②③B.①②④C.②③④D.③④⑤3、如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,与y轴相交于C点,图中虚线为抛物线的对称轴,则下列正确的是( )A.a<0B.b<0C.c>0D.b 2-4ac<04、抛物线y=x2, y=-3x2, y=x2的图象开口最大的是()A.y= x 2B.y=-3x 2C.y=x 2D.无法确定5、已知抛物线与x轴没有交点,过、、、四点,则的大小关系是( )A. B. C. D.6、已知二次函数y=﹣x2+2x﹣3,用配方法化为y=a(x﹣h)2+k的形式,结果是()A.y=﹣(x﹣1)2﹣2B.y=﹣(x﹣1)2+2C.y=﹣(x﹣1)2+4 D.y=﹣(x+1)2﹣47、关于x的二次函数y=a(x+1)(x﹣m),其图象的对称轴在y轴的右侧,则实数a、m应满足()A.a>0,m<﹣1B.a>0,m>1C.a≠0,0<m<1D.a≠0,m >18、抛物线y= x2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为()A.y = x 2+ 2x + 1B.y = x 2 + 2x - 2C.y = x 2 - 2x -1 D.y = x2 - 2x + 19、如图,抛物线与x轴交于点A和B,线段AB的长为2,则k的值是()A.3B.−3C.−4D.−510、如图,在矩形ABCD中,AB=8,AD=6,点M为对角线AC上的一个动点(不与端点A,C重合),过点M作ME⊥AD,MF⊥DC,垂足分别为E,F,则四边形EMFD面积的最大值为()A.6B.12C.18D.2411、若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x2﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个12、已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是( )A.有最大值2,有最小值-2.5B.有最大值2,有最小值1.5C.有最大值1.5,有最小值-2.5D.有最大值2,无最小值13、若抛物线y=x2-2x+m的最低点的纵坐标为n,则m-n的值是()A.-1B.C.1D.214、如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y 轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,则下列结论:①a﹣b+c<0;②2a+b+c>0;③x(αx+b)≤a+b;④a>﹣1.其中正确的有()A. 4个B.3个C.2个D.1个15、抛物线y=(x-2)2+1是由抛物线影响y=x2平移得到的,下列对于抛物线y=x2的平移过程叙述正确的是()A.先向右平移2个单位,再向上平移1个单位B.先向右平移2个单位,再向下平移1个单位C.先向左平移2个单位,再向上平移1个单位 D.先向左平移2个单位,再向下平移1个单位二、填空题(共10题,共计30分)16、如图,抛物线的对称轴为直线,与轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①;②方程的两个根是;③;④当时,的取值范围是;⑤当时,随增大而增大;其中结论正确有________.17、函数与的图象及交点如图所示,则不等式x2<x+2的解集是________.18、已知二次函数()图象的顶点在第二象限,且过点(1,0),则________0(用“<、>、、、=”填写).19、若二次函数(、为常数)的图象如图,则的值为________20、抛物线经过点A(0,3),B(2,3),抛物线的对称轴为________.21、若二次函数y=2x2经过平移后顶点的坐标为(﹣2,3),则平移后的解析式为________.22、把函数y=x2+3的图象向下平移1个单位长度得到的图象对应的函数关系式为________.23、已知二次函数y=m (x﹣1)( x﹣4)的图象与x轴交于A,B两点(点A 在点B的左边),顶点为C,将该二次函数的图象关于x轴翻折,所得图象的顶点为D.若四边形ACBD为正方形,则m的值为________.24、将抛物线y=-x2-4x(-4≤x≤0)沿y轴折叠后得另一条抛物线,若直线y=x+b与这两条抛物线共有3个公共点,则b的取值范围为________。
浙教版九年级上册数学第1章 二次函数 含答案
浙教版九年级上册数学第1章二次函数含答案一、单选题(共15题,共计45分)1、二次函数的图象与轴有两个交点,则的取值范围是( )A. B. C. D.2、已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是()A.abc>0B.a+b+c>0C.c<0D.b<03、已知二次函数,当时,,则m 的取值范围为().A. B. C. D.4、将二次函数y=(x﹣1)2+2的图象向下平移3个单位,得到的图象对应的表达式是()A.y=(x+2)2+2B.y=(x﹣4)2+2C.y=(x﹣1)2﹣1 D.y=(x﹣1)2+55、如图,开口向下的抛物线交y轴正半轴于点A,对称轴为直线x=1.下列结论:①;②若抛物线经过点( -1,0),则;③;若(,),(,)是抛物线上两点,且,则. 其中正确的结论是( )A.①④B.①②C.③④D.②③6、对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是( )A.y =-2x 2 + 8x +3B.y =-2x 2–8x +3C.y = -2x 2 + 8x –5 D.y =-2x 2–8x +27、把抛物线y=3x2向右平移一个单位,则所得抛物线的解析式为( )A. y=3(x+1)2B.y=3(x-1) 2C.y=3x 2+1D.y=3x 2-18、如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确序号是()A.①②④B.②③④C.②④D.③④9、已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①abc >0;②2a+b<0;③a+b<m(am+b)(m≠1的实数);④(a+c)2<b2;⑤a>1.其中正确的项是()A.①⑤B.①②⑤C.②⑤D.①③④10、已知二次函数y=ax +bx+c的图象如图所示,下列结论:①abc>0;②b<a+c;③4a+2b+c>0;④a+b+c>m(am+b)+c(m≠1的实数),其中正确的结论有 ( )A. 个B. 个C. 个D. 个11、若抛物线y=x2-2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是( )A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4D.抛物线与x轴的交点为(-1,0),(3,0)12、将抛物线y=2x2的图象先向上平移3个单位,再向右平移4个单位所得的解析式为()A. B. C. D.13、二次函数y=ax2+bx+c(a≠0)大致的图象如图,关于该二次函数,下列说法不正确的是()A.函数有最大值B.对称轴是直线x=C.当x<时,y随x 的增大而减小D.当时﹣1<x<2时,y>014、已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.3是方程ax 2+bx+c=0的一个根15、抛物线y=﹣x2﹣2x的对称轴是()A.x=1B.x=﹣1C.x=2D.x=﹣2二、填空题(共10题,共计30分)16、某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是________元.17、若二次函数y=ax2-3x+a2-1的图象开口向下且经过原点,则a的值是________.18、用描点法画二次函数y=ax2+bx+c(a≠0)的图象时,列出了如下表格:x …-1 0 1 2 3 4 …y=ax2+bx+c(a≠…8 3 0 -1 0 3 …0)那么当该二次函数值y > 0时,x的取值范围是________.19、已知抛物线:y=ax2+bx+c(a>0)经过A(﹣1,1),B(2,4)两点,顶点坐标为(m,n),有下列结论:①b<1;②c<2;③0<m<;④n≤1.则所有正确结论的序号是________.20、抛物线在y=x2﹣2x﹣3在x轴上截得的线段长度是________ .21、函数y=﹣3x2﹣5 x﹣,当x=________时,函数有最________值,是________.22、抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为________.23、抛物线与x轴有交点,则k的取值范围是________.24、已知二次函数y=ax2+bx+c的图象如图,①abc>0;②b<a+c;③4a+2b+c >0;④2c<3b;⑤a+b<m(am+b)(m≠1),其中结论正确的有________(填序号)25、如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是________.三、解答题(共5题,共计25分)26、我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理:∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0∴(x+1)2+2≥2,故x2+2x+3的最小值是2.试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.27、某商场出售一种成本为20元的商品,市场调查发现,该商品每天的销售量(kg)与销售价(元/kg)有如下关系:w=-2x+80.设这种商品的销售利润为y (元).(1)求y与x之间的函数关系式;(2)在不亏本的前提下,销售价在什么范围内每天的销售利润随售价增加而增大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/kg,该农户想要每天获得150元的销售利润,销售价应定为多少元?28、当m为何值时,函数是二次函数.29、已知抛物线的顶点为(4,﹣8),并且经过点(6,﹣4),试确定此抛物线的解析式.并写出对称轴方程.30、体育测试时,九年级一名学生,双手扔实心球.已知实心球所经过的路线是某个二次函数图象的一部分,如果球出手处点距离地面的高度为,当球运行的水平距离为时,达到最大高度的处(如图),问该学生把实心球扔出多远?(结果保留根号)参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、C5、B6、C7、B8、C9、A10、B11、C12、C13、C14、D15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1二次函数一.选择题1.下列函数给出下列四个函数:①x y -=;②x y =;③x y 1=;④2x y =中,二次函数的个数为 ( ) A .1 B .2 C .3 D .42. 下列函数中,当x =0时,y =0的是( )A .B .C .D .3. 二次函数,当函数值为2时,自变量的值是( )A .-2B .2 C . 1 D .-1 4. 某工厂第一年的利润为20(万元),第三年的利润y (万元),与平均年增长率x 之间的函数关系式是( )A .220(1)y x =-B .220(1)y x =+C .2(1)20y x =-+D .2(1)20y x =--5. 若二次函数的图象上有两个点当x =1时,y =m ;当x =2时,y =n ,则与 的关系正确的是( )A .m n ≥B .n m ≤C .m >nD .m <n6. 已知:二次函数中的满足下表:… 0 1 2 3 … … 0 …的值为( )A .-2B .5C .1D .07.从地面竖立向上抛出一个小球,小球的高度(单位:)与 小球运动时间(单位:)之间的关系式为,那么小球从抛出至回落到地面所需要的时间是( )A .6sB .4sC .3sD .2s二.填空题8.二次函数的二次项系数是 ,一次项系数是 ,常数项 .9.已知函数2k k y kx +=是关于x 的二次函数,则k = . 10.对于二次函数 y =2x 2-bx +3,当x =1时,y =1,则b 的值为__________.11. 若把二次函数化为的形式,其中为常数,则= . 12. 小汽车刹车距离s (m )与速度v (km /h )之间的函数关系式为21001v s =,一辆小汽车速度为100km /h ,在前方80m 处停放一辆故障车,此时刹车 有危险(填“会”或“不会”).三.解答题13.已知y =(m -4)x 232--m m +2x -3是二次函数,求m 的值。
参考答案一.选择题1. A2. C3. C4. B5. D6. D7. A二.填空题8.-3,-6,5 9. -1 10.4 11. -3 12.不会三.解答题13. 根据题意知:232240m m m ⎧--=⎨-≠⎩解得m =-11.2二次函数的图象一.选择题1.已知抛物线2(1)y m x =-经过点(-1,2),则m 的值是( ) A .1 B .-1 C .2 D .-22.二次函数2(1)3y x =+-的图象上的最低点坐标是( ) A .(1,-3) B .(-1,3)C .(-1,-3)D .(1,3)3.二次函数243y x x =-+化为2()y a x h k =++的形式为( )A .2(2)1y x =--B .2(2)1y x =+-C .2(2)1y x =++D .2(2)3y x =++4.二次函数的图象如图所示,根据图象可知,二次函数的解析式可能是( )A .232y x x =++B .22y x x =--C .22y x x =-+D .232y x x =--二.填空题5.抛物线2y x =-的开口 ,顶点坐标是 ,顶点是抛物线的 ,对称轴是 .6.抛物线23y x =先向右平移1个单位,现向下平移2个单位,可得抛物线 .7.已知抛物线的顶点坐标是(2,-1),且经过点(0,3),则此抛物线的解析式的常数项是 .8. 已知汽车刹车距离s (cm )关于速度v (km /h )的函数解析式是21100s v =.在一辆车速是80km /h 的汽车前方70m 处,停放着一辆故障车,此时刹车 有危险(填“会”或“不会”).三.解答题9.已知二次函数221222y x x =-+.(1)函数的图象可以由22y x =经怎样的平移得到?(2)求函数图象的顶点坐标及对称轴.参考答案一.选择题1. B2.C3. A4. B二.填空题5. 向下,(0,0),最高点,0x =6. 23(1)2y x =--7.38.不会三.解答题9. (1)221222y x x =-+可化为22(3)4y x =-+,它可以由22y x =先向右平移3个单位,再向上平移4个单位后得到.(2)该函数图象的顶点坐标是(3, 4),对称轴为3x =.1.2二次函数的图象(2)1.抛物线y =x 2+4与y 轴的交点坐标是………………( )A .(4,0)B .(-4,0)C .(0,-4)D .(0,4)2.抛物线21(3)52y x =---的对称轴是…………………( ) A .x =-3 B . x =3 C .x =5 D .x =-53.把抛物线y =-2x 2向上平移1个单位,得到的抛物线是…( ) A .y =-2(x +1)2 B .y =-2(x -1)2C .y =-2x 2+1D .y =-2x 2-14.将抛物线y =2x 2向左平移2个单位,得到的抛物线是…( ) A .y =2x 2+2 B .y =2x 2-2C .y =2(x +2)2D .y =2(x -2)25.二次函数y =-3(x -2)2+9图象的开口方向.对称轴和顶点坐标分别为…( )A .开口向下.对称轴为2-=x .顶点坐标(2,9)B .开口向下.对称轴为2=x .顶点坐标(2,9)C .开口向上.对称轴为2-=x .顶点坐标(–2,9)D .开口向上.对称轴为2=x .顶点坐标(–2,–9)6.在同一坐标平面内,图象不可能...由函数y =2x 2+1的图象通过平移变换.轴对称变换得到的函数是……………( )A .22(1)1y x =+-B .223y x =+C .221y x =--D .2112y x =- 7.函数y =-3(x -1)2+1是由y =-3x 2向 平移 单位,再向 平移 单位得到的. 它的对称轴是直线 ,顶点坐标是 .8.将抛物线y =2x 2先沿x 轴方向向左平移2个单位,再沿y 轴方向向下平移3个单位,所得抛物线的解析式是_____________.9.抛物线y =2(x -2)2-6的顶点为C ,已知y =-kx +3的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为 .10.若抛物线y=ax 2+b 经过点(1,2)与点0).(1)求a ,b 的值;(2)若把此抛物线向右平移3个单位,求此时抛物线的顶点.11.图象的顶点为(-2,-2 ),且经过原点的二次函数的关系式是…( )A .y =12(x +2)2 -2B .y =12(x -2)2 -2 C .y =2(x +2)2 -2 D .y =2(x -2)2 -212.不论m 取任何实数,抛物线y =a (x +m )2+m (a ≠0)的顶点都…( )A .在y =x 直线上B .在直线y =-x 上C .在x 轴上D .在y 轴上13.任给一些不同的实数n ,得到不同的抛物线y =2x 2+n ,如当n =0,±2时,关于这些抛物线有以下结论:①开口方向都相同;②对称轴都相同;③形状都相同;④都有最低点,其中判断正确的个数是………………………………………( )A .1个B .2个C .3个D .4个14.如图,已知二次函数2(0)y kx k k =+≠与反比例函数k y x =-,它们在同一直角坐标系中的图象大致是………………( )15.将抛物线212y x =先向下平移2个单位,再向左平移2个单位.(1)求此时抛物线的解析式;(2)应将此抛物线向右平移多少个单位,才能使所得的抛物线经过原点?A.B. C.16.抛物线y=-x2+mx+n先向左平移2个单位,再向上平移1个单位,得到抛物线y=-x2,求m,n的值.17.如图,抛物线y1=-x2+2向右平移1个单位得到抛物线y2,回答下列问题:(1)抛物线y2的顶点坐标_____________;(2)阴影部分的面积S=___________;(3)若再将抛物线y2绕原点O旋转180°向_________,顶点坐标___________,抛物线y3的解析式为 .参考答案1.D2.B3.C4.C5.B6. D 解析:抛物线的平移和轴对称变换不改变二次项系数的绝对值的值.7.右 1 上 1 x =1 (1,1)8.y =2(x +2)2-39.解析:C 的坐标为(2,-6),代入直线y =-kx +3,得k =92,即y =92-x +3,它与x 轴交点坐标为(23,0),与y 轴交点坐标(0,3),∴S =12323⨯⨯=1.答案:110.(1) 将点(1,2)与点,0)代入y=ax 2+b ,得230a b a b +=⎧⎨+=⎩,∴13a b =-⎧⎨=⎩ (2) 抛物线的解析式为y =-x 2+3,向右平移3个单位后得y =-(x -3)2+3此时顶点坐标为(3,3).11.解析:∵顶点坐标为(-2,-2),∴设解析式为y =a (x +2)2-2,再把(0,0)点代入,得a =12. 答案:B12.解析:∵抛物线顶点坐标为(-m ,m ),∴顶点在直线y =-x 上.答案:B13.解析:由于常数项n 不影响抛物线的开口方向.对称轴.形状.及有最低点的性质,因此四个判断都正确.答案:D14.解析:二次函数y =kx 2+k 的顶点为(0,k ). 选项B .C 中,由反比例函数图象位于一.三象限,知-k>0,即k<0,于抛物线应开口向下,顶点在y轴的负半轴,故均不对;选项A.D中,由反比例函数图象位于二.四象限,知-k<0,即k>0,于抛物线应开口向上,顶点在y轴的正半轴,故D不对,A正确.答案:A(x+2)2-2;15.解:(1) 平移后的抛物线解析式为y=12(2) 设抛物线向右平移m(m>0)个单位后经过原点,则y=1(x+2-2 m)2-2.(0+2-m)2-2,解得m=0(舍)或4,把(0,0)代入,得0=12即抛物线向右平移4个单位,才能使所得的抛物线经过原点. 16. 分析:我们逆向思考,将抛物线从终点y=-x2移至起点,可得起点抛物线的解析式,化为一般形式后便可求得m,n的值.解:抛物线y=-x2向右平移2个单位,再向下平移1个单位,得到y=-(x-2)2-1,即为抛物线y=-x2+mx+n,而y=-(x-2)2-1=-x2+4x-5,∴m=4,n=-5.17.解析:(1) y2的解析式为y2=-(x-1)2+2,∴顶点坐标为(1,2);(2)在第一象限中,将阴影部分去掉,通过平移可得2×2的正方形方格,∴阴影部分面积S=3×2-2×2=2;(3)将抛物线y2绕原点O旋转180°后,方向相反,顶点从原来的(1,2)变为(-1,-2),因此y3的解析式可用顶点式表示为y3=(x+1)2-2.答案:(1)(1,2) (2)2 (3)上(-1,-2) y3=(x+1)2-21.3二次函数的性质一.选择题1. 已知抛物线的顶点坐标是(-3,-5),且开口向下,则此抛物线对应的二次函数有( )A .最小值-3B .最大值-3C .最小值-5D .最大值-52.已知二次函数22y ax bx =++的大致图象如图所示,那么函数y ax b =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限3.在二次函数266y x x =-+的图象中,当y 随x 的增大而减小时,x 的取值范围是( )A .3x <B .6x >C .3x >D .6x <4.给出下列四个函数:①2y x =;②51y x =--;③6y x=;④23y x =.0<x 时,y 随x 的增大而减小的函数有( ) A .1个 B .2个 C .3个 D .4个二.填空题5.已知二次函数231y x mx =-++,当1x =-时,y 有最大值,则2m = .6.函数234y x x =--与x 轴的交点坐标是 .7.已知函数y 1=x 2与函数y 2=-12x +3的图象大致如图,若y 1<y 2,则自变量x 的取值范围是 .8.如图为二次函数2y ax bx c =++的图象,在下列说法中: (1)0a <;(2)0c <;(3)方程2ax bx c ++=0的根为11x =,23x =;(4)当1x > 时,y 随着x 的增大而增大.正确的说法有 .(请写出所有正确说法的序号)三.解答题9.如图,二次函数的图象与x 轴相交于A .B 两点,与y 轴相交于点C ,点C .D 是二次函数图象上的一对对称点,一次函数的图象过点B .D .(1)求D 点的坐标;(2)求一次函数的表达式;(3)根据图象写出使一次函数值大于二次函数值的x 的取值范围.1.4二次函数的应用(1)1.如图所示,是一个长8m.宽6m的矩形小花园,根据需要将它的长缩短xm.宽增加xm,要想使修改后的小花园面积达到最大,则x 应为( )A.1mB.1.5C.2mD.2.5m2.小明参加学校运动会的跳高比赛,函数h=3.15t-4.5t2(t单位:秒;h单位:米)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )A.0.25秒B.0.3秒C.0.35秒D.0.7秒3.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最大值是cm2.4.一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A距地面的距离OA为1m,球路的最高点B(8,9),则这个二次函数的表达式为__ ____,小孩将球抛出了约_____米(精确到0.1m).5.国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=170-2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2与x之间的函数关系式;(2)求月产量x的范围;(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?1.4 二次函数的应用(2)一.基础训练1.函数y=2++的最大值是______.x x2452.炮弹从炮口射出后飞行的高度h(米)与飞行的时间t(秒)之间的函数关系式为h=v0tsinα-5t2,其中v是发射的初速度,α是炮弹的发射角,当v0=300米/秒,α=30°时,炮弹飞行的最大高度为_______米,该炮弹在空中飞行了______秒落到地面上.3.如图,某涵洞呈抛物线形,现测得水面宽AB=1.6米时,涵洞顶点O到水面的距离为2.4米,在图中的直角坐标系中,涵洞所在抛物线的函数关系式为______.4.如图,直角三角形AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为()5.如图,某工厂大门是抛物线形水泥建筑,大门地面宽4米,顶部距地面的高度为4.4米,现有一辆满载货物的汽车欲通过大门,其装货宽度为2.4米,该车要想通过此门,装货后的最大高度应小于()A.2.80米B.2.816米C.2.82米D.2.826米6.如图,今有网球从斜坡OA的点O处抛出,网球的抛物路线的函数关系是y=4x-12x2,斜坡的函数关系是y=12x2,其中y是垂直高度,x是与点O的水平距离.(1)求网球到达的最高点的坐标;(2)网球落在斜坡上的点A处,写出点A的坐标.7.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱. (1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润W(元)与销售价x(元/箱)之间的函数关系式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?8.如图所示,一位运动员在距篮圈4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05m.(1)建立如图所示的坐标系,求抛物线的解析式;(2)该运动员身高1.8m,在这次跳投中,球在头顶上方0.25m处出手,问球出手时,他跳离地面的高度是多少?二.提高训练9.如图,图中四个函数的图象分别对应的解析式是①y=ax2;②y=bx2;③y=cx2;④y=dx2.则a,b,c,d的大小关系为()A.a>b>c>dB.a<c<b<dC.a>c>b>dD.d>c>b>a10.为备战世界杯,中国足球队在某次训练中,一队员在距离球门12m处挑射,正好射中了2.4m高的球门横梁,若足球运行的路线是抛物线y=ax2+bx+c(如图).有下列结论:①a+b+c>0;②-1<a<0;③a-b+c>0;④0<b<-12a.其中正确的结论是()60A.①②B.①④C.②③D.②④11.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC 向点C以2cm/s的速度移动,回答下列问题:(1)设运动后开始第t秒时,五边形APQCD的面积为S(单位:厘米2),写出S与t之间的函数关系式,并求出自变量t的取值范围;(2)t为何值时S最小?并求出S的最小值.12.如图,有一边长为5cm的正方形ABCD和等腰△PQR,PQ=PR=5cm,QR=8cm,点B,C,Q,R在同一直线L上,当C,Q两点重合时,等腰△PQR以1cm/s的速度沿直线L按箭头方向开始匀速运动,t秒后正方形ABCD与等腰△PQR重合部分的面积为S(单位:cm2).(1)当t=3s时,求S的值;(2)当t=5s时,求S的值;(3)当5≤t≤8时,求S与t之间的函数关系式,并求出S的最大值.13.如图,甲船位于乙船的正西方向26km处,现甲.乙两船同时出发,甲船以每小时12km的速度朝正北方向行驶,乙船以每小时5km 的速度朝正西方向行驶,何时两船相距最近?最近距离是多少?三.拓展训练14.如图,在直角梯形ABCD中,∠A=∠D=90°,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:(1)四边形CGEF的面积S关于x的函数关系式和x的取值范围;(2)面积S是否存在最小值?若存在,求出最小值;若不存在,请说明理由;(3)当x为何值时,S的数值等于x的4倍?1.4二次函数的应用(3)一.选择题1.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是( )A .203210x y x y +-=⎧⎨--=⎩,B .2103210x y x y --=⎧⎨--=⎩,C .2103250x y x y --=⎧⎨+-=⎩,D .20210x y x y +-=⎧⎨--=⎩,2.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点()x y ,在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三角限D .第四象限3.函数y =ax -3的图象与y =bx +4的图象交于x 轴上一点,那么a ∶b 等于( )A .-4∶3B .4∶3C .(-3)∶(-4)D .3∶(-4)4.如果⎩⎨⎧-==23y x 是方程组⎪⎩⎪⎨⎧=+=+53121ny mx ny mx 的解,则一次函数y =mx +n 的解析式为( )A .y =-x +2B .y =x -2C .y =-x -2D .y =x +25.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,能表示这个一次函数图象的方程是( )A .2x -y +3=0B .x -y -3=0C .2y -x +3=0D .x +y -3=06.如图,直线AB :y =21x +1分别与x 轴.y 轴交于点A .点B ,直线CD :y =x +b 分别与x 轴.y 轴交于点C .点D .直线AB 与CD 相交于点P ,已知ABD S ∆=4,则点P 的坐标是( )A .(3,25) B .(8,5) C .(4,3) D .(21,45)二.填空题7.原题:一次函数3x 2y -=与x 234y -=的交点坐标为______。