1.1.1空间几何体的结构 第2课时

合集下载

【高中数学必修二】1.1空间几何体的结构

【高中数学必修二】1.1空间几何体的结构

一、 棱柱的结构特征:
思考:具备哪些性质的几何体叫做棱柱?
A1
D1
B1
C1 A1 C B A
C1
A1 B1 B1
E1
D1
C1
E
D A
C
B
A B
C
D
1、棱柱的定义:有两个面互相平行,其余 各面都是四边形,并且每相邻两个四边形
的公共边都互相平行,由这些面所围成的
几何体叫做棱柱。
两个互相平行的平面叫做棱柱的底面,
知识小结
简单空间几何体的分类
多面体
旋转体
知识小结
简单几何体的结构特征
柱体
棱柱 圆柱
锥体 棱锥 圆锥
台体 棱台 圆台

简单组合体的结构特征
答:四对平行平面; 只有一对可以作为棱柱的底面.
练习:观察下面的几何体,哪些是棱柱?



1.1空间几何体的结构(2)
辨析 下列命题是否正确? 有一个面是多边形,其余各面都是 三角形的立体图形一定是棱锥.
明矾晶体
辨析 判断:下列几何体是不是棱台,为什么?
(1)
(2)
思考:既然棱柱、棱锥、棱台都是多面 体,那么它们之间有怎样的关系?当底 面发生变化时,它们能否相互转化?
其余各面叫做棱柱的侧面。 相邻侧面的公共边叫做棱柱的侧棱。 侧面与底的公共顶点叫做棱柱的顶点。
底面
侧面 侧棱 顶点
2、棱柱的分类:棱柱的底面可以是三角形、 四边形、五边形、 …… 把这样的棱柱分别 叫做三棱柱、四棱柱、五棱柱……
三棱柱
四棱柱
五棱柱
侧棱不垂直于底的棱柱叫做斜棱柱。 侧棱垂直于底的棱柱叫做直棱柱。 底面是正多边形的直棱柱叫做正棱柱。

空间几何体的结构 导学案

空间几何体的结构 导学案

第一章:空间几何体教材分析几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。

空间几何体是几何学的重要组成部分,它在土木建筑、机械设计、航海测绘等大量实际问题中都有广泛的应用。

本章我们从对空间几何体的整体观察入手,研究空间几何体的结构特征、三视图和直观图,了解一些简单几何体的表面积与体积的计算方法。

1.1空间几何体的结构(2课时)第一课时(多面体、旋转体)一、【学习目标】1.了解棱柱、棱锥、棱台的定义,掌握棱柱、棱锥、棱台的结构特征及其关系;2.能够运用几何体的特征判断几何体的名称。

二、【课前自主学习】(一)、下面请同学们观察课本P2图1.1-1的物体,然后回答以下问题:1、这些图片中的物体具有什么样的几何结构特征?你能对它们进行分类吗?(2),(5),(7),(9),(13),(14),(15),(16) 具有什么样的特点?像这样的几何体称为______________(3),(4),(6),(8),(10),(11),(12) 具有什么样的特点:像这样的几何体称为______________2、定义(1)、多面体:____________________________________。

①、__________________________________面;②、__________________________________棱;③、_________________________________顶点;④、按围成多面体的面数分为:__________________________(2)、旋转体:_______________________________________________________________________________ _____________________________________.(二)、问题1:(1)、与其他多面体相比,图片中的多面体(5)、(7)、(9)具有什么样的共同特征?(2)、请同学们仔细观察下列几何体,说说他们的共同特点.讨论结果:特点:________________________________________________________________________。

【同步课堂】人教A版高中数学必修2第一章1.1.1-2空间几何体的结构课件(共40张PPT)

【同步课堂】人教A版高中数学必修2第一章1.1.1-2空间几何体的结构课件(共40张PPT)
棱柱 2.其余各面都是四边形(侧面)
3.每相邻两个侧面的公共边(侧棱)都互 相平行
10
探究问题 1:
长方体按如图截去一角后所得的两部分还是棱柱 吗?
D’
C’
A’
B’
D C
A
B
11
探究问题 2:
有两个面互相平行,其余各面都是平行四边形的几 何体是棱柱吗? 定义: 1、有两个面互相平行,
2、其余各面都是四边形,
D
C 底面
的侧棱。
A
B
棱锥可以表示为:棱锥S-ABCD
底面是三角形,四边形,五边形----的棱锥分 别叫三棱锥,四棱锥,五棱锥---
13
思考:一个棱锥至少有几个面?一个N棱锥有分别 有多少个底面和侧面?有多少条侧棱?有多少个 顶点?
至少有4个面;1个底面,N个侧面,N条侧棱,1个顶 点.
14
练习:下列几何体是不是棱锥,为什么?
旋转体: 由一个平面图形绕它所在平面内的
一条定直线旋转所形成的封闭几何体
注:棱柱与圆柱统称为柱体
5
1.棱柱的结构特征:
①有两个面互相平行 ②其余各面都是四边形
③每相邻两个四边形的公共边互相平行
有两个面互相平行,其余各面都是四边形,每相邻两个四
边形的公共边互相平行,由这些面围成的图形叫做棱柱
6
1、棱柱 1、两个互相平行的面叫棱柱的底面。
3、每相邻两个四边形的公共边 都互相平行。
12
2.棱锥的结构特征
有一个面是多边形,其余各面都是有一个公共顶
点的三角形,由这些面所围成的多面体叫做棱锥.
底面:棱锥中的多边形面叫做棱锥的底面或底。 S 顶点
侧面:有公共顶点的各个三角形面叫做棱锥

高中数学必修二《1.1.1空间几何体的结构特征》课件

高中数学必修二《1.1.1空间几何体的结构特征》课件

②侧面 结构 侧面是平行 特征 四边形
③侧棱
平行且相等
②侧面是 有一个公共顶 点的三角形 ③侧棱
相交于一点但 不一定相等
棱台 ①两个底面 平行且相似 的多边形 ②侧面 都是梯形
③侧棱 各侧棱延长后 相交于一点
《辨一辨》
1、判断下列命题是否正确:
1)有两个面平行,其余各个面都是四边形的几何体叫
棱柱 () zx```xk
×
2)有两个面平行,其余各个面都是平行四边形的几何
体叫棱柱()
×
3)有两个面平行,其余各面都是四边形,且每相邻两 个四边形的公共边都互相平行的几何体叫棱柱()
4)一个√ 棱柱至少有5个面()

2、长方体按如图截去一角后所得的两部分还是棱柱吗?
D’
G
G’
C’
A’
F
F’
B’
D A
H
H’
E
C
E’
答:都是棱柱.
D'
C'
D' C'
A`
B'
D'
C'
A`
B' A`
B'
A`
B'
D A
C B
D A
C
D
BA
C
D
A B
C B
斜棱柱:侧棱不垂直于底面的棱柱
直棱柱:侧棱垂直于底面的棱柱
正棱柱:底面是正多边形的直棱柱
平行六面体:六个面都是平行四边形
长方体:六个面都是矩形
正方体:六个面都是正方形
判断下列说法是否正确:
③斜高都相等
A
C
O
所有棱长都相等的正三棱锥叫正四面体 B

2014-2015学年高中数学(人教版必修二)课时训练第一章 1.1 1.1.1 柱、锥、台、球的结构特征 第二课时

2014-2015学年高中数学(人教版必修二)课时训练第一章 1.1 1.1.1 柱、锥、台、球的结构特征 第二课时
栏 目 链 接

点评:对于(4),容易认为旋转 360° 之后,得到两 个圆锥.这是不正确的,因旋转轴左侧的直角三角形 旋转得到的几何体隐藏于右侧三角形旋转得到的几 何体中.
栏 目 链 接

跟 踪 训 练
1.(1)以等腰梯形的对称轴为轴旋转一周,所形成 的旋转体是________. (2)下图是由________几何体组成的.
栏 目 链 接

自 测 自 评
解析: A 错误, 这里需指明绕直角梯形与底边 垂直的腰旋转; B 错误, 这里需指明绕直角边旋转; C 错误,圆柱是旋转体. 答案:D
栏 目 链 接

自 测 自 评
2.在空间中,到定点的距离等于定长的所有点的集合 是( ) A.球 C.圆 B.球的大圆 D.球面
栏 目 链 接
答案:(1)圆台
(2)球、圆柱

题型二
旋转体的结构特征
旋转体主要看是由什么几何图形绕旋转轴旋转而成.
例2 根据下列对几何体结构特征的描述,说明几何体
栏 目 链 接
的名称.
栏 目 链 接
图示
表示法

思 考 应 用 1.我们用的篮球、排球、铅球都是球吗? 解析:球是球体的简称.球体包括球面及所围成的空 间部分.从集合观点来看,球可看作是空间中与一个定点 的距离小于或等于定长的点的集合,这个定点就是球心,
栏 目 链 接
定长就是球的半径.通常我们用的篮球、排球是指球面,
栏 目 链 接

基 础 梳 理
旋转体 结构特征 以直角三角形的一条直 角边所在直线为旋转 轴,其余两边旋转形成 的面所围成的旋转体叫 圆锥 .棱锥与圆 做________ 锥统称为椎体 用平行于圆锥底面的平 面去截圆锥,底面与截 面之间的部分叫做 圆台 .与圆柱和圆 ________ 锥一样,圆台也有轴、 底面、侧面、母线.棱 台与圆台统称为台体 图示 表示法 圆锥用表示它的 轴的字母表示, 左图中圆锥表示 为 圆 锥 SO

人教版高中数学必修2第一章1.1空间几何体的结构 1.1.1 柱、锥、台、球的结构特征

人教版高中数学必修2第一章1.1空间几何体的结构 1.1.1 柱、锥、台、球的结构特征

归纳小结
空间几何体的定义: 如果只考虑物体的形状和大小,而不考虑
其它因素,那么这些由物体抽象出来的空间图 形就叫做空间几何体。
空间几何体的分类:
1.多面体:由若干平面多边形围成的几何体。 2.旋转体:由一个平面图形绕它所在的平面 内的一条定直线旋转所成的封闭几何体。
2、5、7、9到底有哪些特征?
棱锥的顶点 棱锥的侧棱
棱锥的侧面
棱锥的底面
3. 棱锥的分类 底面是三角形、四边形、五边形
……的棱锥分别叫做三棱锥、四棱锥、 五棱锥……其中三棱锥又叫做四面体.
4. 棱锥的表示
用顶点和底面各顶点的字母来表示
如:棱锥S-ABCD
S
D
C
A
B
问题:有一个面是多边形,其余各面都是 三角形的几何体是棱锥吗?.
2. 棱台的有关概念
上底面 下底面
顶点 侧面 侧棱
3.棱台的分类
由三棱锥、四棱锥、五棱锥……截得的 棱台分别叫做三棱台、四棱台、五棱台……
4.棱台的表示
D1 A1
用表示上、下底面
D
顶点的字母来表示 A
如:棱台ABCD-A1B1C1D1
C1 B1
C
B
练习:下列几何体是不是棱台,为什么?
(1)
(2)
三、棱台 1、棱台的结构特征
用一个平行于棱锥底面的平面去截棱
锥,底面与截面之间的部分叫做棱台
三、棱台 1、棱台的结构特征
用一个平行于棱锥底面的平面去截
棱锥,底面与截面之间的部分叫做棱台
特征1:由棱锥截得(侧面是梯形,侧棱的延长 线相交于一点)
特征2:截面和底面平行 (两底面是对应边互相
平行的相似多边形)

最新人教版高中数学必修二第一章空间几何体第一节第2课时 圆柱、圆锥、圆台、球、简单组合体的结构特征

最新人教版高中数学必修二第一章空间几何体第一节第2课时 圆柱、圆锥、圆台、球、简单组合体的结构特征

第2课时圆柱、圆锥、圆台、球、简单组合体的结构特征1.圆柱的结构特征(1)在圆柱中,圆柱的任意两条母线是什么关系?过两条母线的截面是怎样的图形?提示:圆柱的任意两条母线平行,过两条母线的截面是矩形.(2)在圆柱中,过轴的截面是轴截面,圆柱的轴截面是什么图形?轴截面含有哪些重要的量?提示:圆柱的轴截面是矩形,轴截面中含有圆柱的底面圆的直径与圆柱的母线.2.圆锥的结构特征在圆锥中,过轴的截面是轴截面,圆锥的轴截面是什么图形?轴截面含有哪些重要的量?提示:圆锥的轴截面是等腰三角形,轴截面中含有圆锥的底面圆的直径与圆锥的母线.3.圆台的结构特征经过圆台的任意两条母线作截面,截面是什么图形?提示:因为圆台的任意两条母线长度均相等,且延长后相交,故经过任意两条母线的截面是以这两条母线为腰的等腰梯形.4.球的结构特征球体与球面的区别和联系是什么?提示:区别联系球面球的表面是球面,球面是旋转形成的曲面球面是球体的表面球体球体是几何体,包括球面及其所围成的空间部分5.简单组合体定义由简单几何体组合而成的几何体构成的基本形式由简单几何体拼接而成由简单几何体截去或挖去一部分而成1.辨析记忆(对的打“√”,错的打“×”)(1)圆柱上底面圆周上任一点与下底面圆周上任一点的连线是圆柱的母线.( ×)提示:圆柱的母线与轴是平行的.(2)圆台有无数条母线,它们相等,延长后相交于一点. ( √)提示:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台,由此可知此说法正确.(3) 用一个平面去截圆锥,得到一个圆锥和一个圆台.( ×)提示:用与底面平行的平面去截圆锥,才能得到一个圆锥和一个圆台.(4) 用任意一个平面去截球,得到的是一个圆面.( √)提示:因为球是一个几何体,包括表面及其内部,所以用一个平面去截球,得到的是一个圆面.2.如图所示的图形中有( )A.圆柱、圆锥、圆台和球B.圆柱、球和圆锥C.球、圆柱和圆台D.棱柱、棱锥、圆锥和球【解析】选B.根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台.3.(教材习题改编)若一个圆锥的轴截面是等边三角形,其面积为 3 ,则这个圆锥的母线长为________.【解析】如图所示,设等边三角形ABC为圆锥的轴截面,由题意知圆锥的母线长即为△ABC的边长,且S△ABC =34AB2,所以 3 =34AB2,所以AB=2.答案:2类型一圆柱、圆锥、圆台、球的结构特征(直观想象)1.下列说法中错误的是( )A.以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥B.以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥C.经过圆锥任意两条侧面的母线的截面是等腰三角形D.圆锥侧面的母线长有可能大于圆锥底面圆的直径2.下列说法中正确的是( )①用不过球心的截面截球,球心和截面圆心的连线垂直于截面;②球面上任意三点可能在一条直线上;③球的半径是连接球面上任意一点和球心的线段.A.①B.①②C.①③D.②③3.下列几种说法:①圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都可以构成直角三角形;②圆锥的顶点与底面圆周上任意一点的连线是圆锥侧面的母线;③圆柱的轴截面是过侧面的母线的截面中最大的一个;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.【解析】1.选A.A错误.如图(1)所示旋转轴是直角三角形的斜边所在直线时,得到的旋转体不是圆锥;B正确.由圆锥的定义可知此说法正确;C正确.如图(2),由圆锥侧面的母线相等可知,所得截面是等腰三角形;D正确.圆锥侧面的母线和底面圆的直径构成等腰三角形,当圆锥侧面母线和底面的直径所成的夹角大于60°时,圆锥侧面的母线长大于圆锥底面圆的直径.2.选C.由球的结构特征可知①③正确.3.由圆锥的定义及母线的性质知①②正确,圆柱的轴截面过上下底的直径,所以是过母线的截面中最大的一个.④不正确,夹在圆柱的两个平行于底面的截面间的几何体才是旋转体.答案:①②③1.判断旋转体形状的步骤(1)明确旋转轴l.(2)确定平面图形中各边(通常是线段)与l的位置关系.(3)依据圆柱、圆锥、圆台、球的定义和一些结论来确定形状.2.与简单旋转体的截面有关的结论(1)圆柱、圆锥、圆台平行于底面的截面都是圆面.(2) 圆柱、圆锥、圆台的轴截面(即过旋转轴的截面)分别是矩形、等腰三角形、等腰梯形.【补偿训练】下列说法正确的是________.(填序号)①一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;②圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;③到定点的距离等于定长的点的集合是球.【解析】①错.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.②正确.③错,应为球面.答案:②类型二简单组合体的结构特征(直观想象)【典例】如图(1)、(2)所示的图形绕虚线旋转一周后形成的几何体分别是由哪些简单几何体组成的?【思路导引】依据简单旋转体的结构特征从上到下逐一分析.【解析】旋转后的图形如图所示.其中图(1)是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图(2)是由一个圆锥O5O4,一个圆柱O3O4及一个圆台O1O3中挖去圆锥O2O1组成的.由旋转体组成的简单几何体的确定(1)判断旋转体形状的关键是轴的确定,看是由平面图形绕哪条直线旋转所得,同一个平面图形绕不同的轴旋转,所得的旋转体一般是不同的.(2)在旋转过程中观察平面图形的各边所形成的轨迹,应利用空间想象能力,或亲自动手做出平面图形的模型来分析旋转体的形状.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是_______.【解析】由圆锥的定义知是两个同底的圆锥形成的组合体.类型三旋转体中的计算问题(直观想象、数学运算)角度1 有关圆柱、圆锥、圆台和球的计算问题【典例】(2021·新高考I卷)已知圆锥的底面半径为 2 ,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2 B.2 2 C.4 D.4 2【解析】选B.设母线长为l,则底面周长为2 2 π,其侧面展开图半周长为πl,故πl=2 2 π,所以l=2 2 .角度2 旋转体表面的两点间的距离最大(小)值【典例】如图,圆台侧面的母线AB的长为20 cm,上、下底面的半径分别为5 cm,10 cm,从母线AB的中点M处拉一条绳子绕圆台侧面转到B点,求这条绳子长度的最小值.【思路导引】转化为在圆台的侧面展开图中,求两个点距离最小值的问题.【解析】作出圆台的侧面展开图,如图所示,由Rt△OPA与Rt△OQB相似,得OAOA+AB=PAQB,即OAOA+20=510,解得OA =20,所以OB =40.设∠BOB ′=α,由弧BB ′的长与底面圆Q 的周长相等, 得2×10×π=π·OB ·α180°, 解得α=90°.所以在Rt △B ′OM 中, B ′M 2=OB ′2+OM 2=402+302=502,所以B ′M =50.即所求绳长的最小值为50 cm.1.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量. (2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想. 2.与圆锥有关的截面问题的解决策略 (1)画出圆锥的轴截面.(2)在轴截面中借助直角三角形或三角形的相似关系建立高、母线长、底面圆的半径长的等量关系,求解便可.1.上、下底面面积分别为36π和49π,母线长为5的圆台,其两底面之间的距离为( ) A .4 B .3 2 C .2 3 D .2 6【解析】选D.圆台的母线长l 、高h 和上、下两底面圆的半径r ,R 满足关系式l 2=h 2+(R -r)2,求得h =2 6 ,即两底面之间的距离为2 6 .2.已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M. (1)若OA =1,求圆M 的面积;(2)若圆M 的面积为3π,求OA. 【解析】(1)若OA =1,则OM =12 ,故圆M 的半径r =OA 2-OM 2 =12-⎝ ⎛⎭⎪⎫122=32 ,所以圆M 的面积S =πr 2=34π.(2)因为圆M 的面积为3π,所以圆M 的半径r = 3 , 则OA 2=⎝ ⎛⎭⎪⎫OA 2 2+3,所以34 OA 2=3,所以OA 2=4,所以OA =2.。

1.1.1 棱柱、棱锥、棱台的结构特征2

1.1.1 棱柱、棱锥、棱台的结构特征2

③有关概念:
平行 的面. 底面:两个互相_____
侧面:其余各面; 公共边 侧棱:相邻侧面的_______;
侧面 与底面的公共顶点. 顶点:_____
三棱柱 ④分类:依据底面多边形的边数.如:底面是三角形的叫_______.
(2)棱锥:
多边形 其余各面 ①定义:有一个面是_______,
一个公共顶点 的三角形,由这 都是有_____________ 些面所围成的多面体叫做棱锥.
【规律总结】解答空间几何体概念辨析题的关注点 (1)认清概念的本质及棱柱、棱锥、棱台的结构特征 ,采用举反 例法排除错误的选项. (2)从底面多边形的形状,侧面形状以及它们之间的位置关系等 角度紧扣几何体的结构特征进行判断. 提醒:判断说法正误问题,要紧扣几何体的结构特征,理解棱柱、 棱锥、棱台的概念.
【变式训练】
用两个平面将如图所示的三棱柱ABC-A′B′C′分为三个三棱
锥.
【解析】如图,三棱柱ABC-A′B′C′可分为三棱锥C′-ABC、
三棱锥B-A′B′C′和三棱锥C′-ABA′.
类型三
多面体的展开图
1.如图代表未折叠的正方体的展开图,将其折叠起来,变成正方 体后,图形是 ( )
2.(2014·济宁高一检测)如图是一个正方体纸盒,在其中的三个 面上各画一条线段构成△ABC,且A,B,C分别是各棱上的中点,现 将纸盒剪开展成平面图,则不可能的展开图是 ( )
【自主解答】1.选B.由图可知,折叠后三条线段在相邻的三个 平面内,并且互相平行,故排除A,C.又由原平面图知,只有两个 平面是空白的,排除D,故选B. 2.选B.B选项折叠后两个画一条线段的三角形与另一个画一条 线段的三角形不交于一个顶点,与正方体三个画一条线段的三 角形交于一个顶点不符.

1.1.1空间几何体的结构2

1.1.1空间几何体的结构2

A’
母 线
O’
B’ 轴 侧 面
圆柱的表示方法:
A
O B
底面
用表示它的轴的字母表示,如:“圆柱OO'” 棱柱与圆柱统称为柱体。
顶点
定义:以直角三角形的 一条直角边所在直线为 旋转轴,其余两边旋转 形成的曲面所围成的几 何体叫做圆锥。
S
母 线 轴 侧 面
A
O
底面
B 圆锥的表示方法: 用表示它的轴的字母表示,如:“圆锥SO”
教学重点:
让学生感受大量空间实物及模型,概括出 柱、锥、台、球的结构特征,简单组合体应用。
教学难点:
柱、锥、台、球的结构特征的概括。
一、新课引入
在现实生活中,我们的周围存在着各种各样的 物体,它们具有不同的几何形状。
它们能否由平面图形进行旋转而成?
旋转体
一条平面曲线绕着它所在的平面内的一条 定直线旋转所形成的曲面叫作旋转面。 封闭的旋转面围成的几何体叫作旋转体。
三、典例分析
例1 将一个直角梯形绕其较短的底所在的直 线旋转一周得到一个几何体,关于该几何体的 以下描绘中,正确的是( D ) A、是一个圆台 B、是一个圆柱 C、是一个圆柱和一个圆锥的简单组合体 D、是一个圆柱被挖去一个圆锥后所剩的几何体
例2 课本P9 习题1.1A组 第3题。
解:(1)由圆锥和圆台组合而成的简单组 合体。 (2)由四棱柱和四棱锥组合而成的 简单组合体。
O
球、圆柱、圆锥、圆台过轴的截面分别是什么 图形?
几何体的分类
柱体
锥体
台体

多面体
旋转体
观察下图所示的几何体,说一说它们各由 哪些简单几何体组合而成?
由简单几何体组合而成的几何体叫 简单组合体。

高中数学必修二全册课件ppt人教版

高中数学必修二全册课件ppt人教版

解析答案
反思与感悟
解 (1)∵这个几何体的所有面中没有两个互相平行的面,∴这个几何体不是棱柱. (2)在四边形ABB1A1中,在AA1上取E点,使AE=2;在BB1上取F点,使BF=2;连接C1E、EF、C1F,则过C1、E、F的截面将几何体分成两部分,其中一部分是棱柱ABC—EFC1,其侧棱长为2;截去部分是一个四棱锥C1—EA1B1F,该几何体的特征为:有一个面为多边形,其余各面都是有一个公共顶点的三角形.
①③
1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2.各种棱柱之间的关系(1)棱柱的分类
棱柱
(2)常见的几种四棱柱之间的转化关系
3.棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:
名称
底面
侧面
侧棱

平行于底面的截面
棱柱
斜棱柱
平行且全等的两个多边形
平行四边形
第一 章 § 1.1 空间几何体的结构
第1课时 多面体的结构特征
1.认识组成我们的生活世界的各种各样的多面体;2.认识和把握棱柱、棱锥、棱台的几何结构特征;3.了解多面体可按哪些不同的标准分类,可以分成哪些类别.
问题导学
题型探究
达标检测
学习目标
问题导学 新知探究 点点落实
如图棱柱可记作:棱柱
相关概念:底面(底):两个互相 的面侧面: 侧棱:相邻侧面的顶点: 的公共顶点
互相平行
四边形
互相平行
平行
其余各面
公共边
侧面与底面
ABCDEF—
A′B′C′D′E′F′
答案
分类:①依据:底面多边形的 ②类例: (底面是三角形)、 (底面是四边形)……

高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征

高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征

解:所截两部分分别是四棱柱和三棱柱.几何体ABCD-
一二三
知识精要 思考探究 典题例解 迁移应用
三、简单几何体的表面展开与折叠问题 1.绘制展开图
(1)绘制多面体的表面展开图要结合多面体的几何特征,发 挥空间想象能力或者是亲手制作多面体模型.
(2)在解题过程中,常常给多面体的顶点标上字母,先把多面 体的底面画出来,然后依次画出各侧面,便可得到其表面展开


底面:两个互相平行的面

侧面:底面以外的其余各面

侧棱:相邻侧面的公共边

顶点:侧面与底面的公共顶



记 法
棱柱 ABCDEF-A'B'C'D'E'F'
分 类
按底面多边形的边数分为三棱柱、四棱柱…
目标导航 预习导引
12
(2)棱锥的结构特征:
定 有一个面是多边形,其余各面都是有一个公共顶
义 点的三角形,由这些面所围成的多面体叫做棱锥
紧扣概念解题 在解答关于空间几何体概念的判断题时,要注意紧扣定义 判断,这就要求熟悉各种空间几何体的概念的内涵和外延,切 忌只凭图形主观臆断,如本例若意识不到棱台各侧棱延长后
交于一点则会致错.
多个梯形相连.
一二三
知识精要 思考探究 典题例解 迁移应用
【例3】 (1)请画出如图所示的几何体的表面展开图.
(2)根据下面所给的平面图形,画出立体图形.
一二三
知识精要 思考探究 典题例解 迁移应用
思路分析:由题意首先弄清几何体的侧面各是什么形状,然 后再通过空间想象或动手实践进行展开或折叠. 解:(1)展开图如图所示
A1B1C1平行于平面ABC,

人教版高一数学必修二辅导讲义:1.1空间几何体的结构

人教版高一数学必修二辅导讲义:1.1空间几何体的结构

第一章、空间几何体1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征(一)课本知识:1.空间几何体(1)空间几何体的定义空间中的物体都占据着空间的一局部,假设只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.类别多面体旋转体定义由假设干个围成的几何体由一个平面图形绕它所在平面内的一条旋转所形成的.图形相关概念面:围成多面体的各个.棱:相邻两个面的.顶点:的公共点.轴:形成旋转体所绕的 .2.多面体多面体定义图形及表示相关概念棱柱有两个面互相,其余各面都是,并且每相邻两个四边形的公共边都互相,由这些面所围成的多面体叫做棱柱.如图可记作:棱柱底面(底):两个互相平行的面.侧面:.侧棱:相邻侧面的.顶点:侧面与底面的.棱锥有一个面是,其余各面都是有一个公共顶点的,由这些面所围成的多面体叫做棱锥如图可记作:棱锥底面(底):面.侧面:有公共顶点的各个.侧棱:相邻侧面的.顶点:各侧面的.棱台用一个的平面去截棱锥,底面与截面之间的局部叫做棱台.如图可记作:棱台上底面:原棱锥的.下底面:原棱锥的.侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与上(下)底面的公共顶点.知识梳理:要点一棱柱、棱锥、棱台的概念1.棱柱的结构特征侧棱都相等,侧面都是平行四边形,两个底面相互平行;2.棱锥的结构特征有一个面是多边形,其余各面是有一个公共顶点的三角形;3.棱台的结构特征上下底面相互平行,各侧棱的延长线交于同一点.典型例题1、有以下说法:①有两个面平行,其余各面都是平行四边形所围成的几何体一定是棱柱;②各个面都是三角形的几何体是三棱锥;③用一个平行于棱锥底面的平面去截棱锥,得到的几何体叫做棱台;④棱柱的各相邻侧面的公共边互相平行.以上说法中,正确说法的序号是________(写出所有正确说法的序号).反应训练1、有以下说法:①一个棱锥至少有四个面;②如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;③五棱锥只有五条棱;④用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.以上说法中,正确说法的序号是________(写出所有正确说法的序号).典型例题2、长方体ABCD-A′B′C′D′,当用平面BCFE把这个长方体分成两局部后,各局部形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.反应训练2、以下说法:①有两个面互相平行,其余的面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确的个数为( ) A.3 B.2 C.1 D.0 要点三多面体的外表展开图1.绘制多面体的外表展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型,在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其外表展开图.2.假设是给出多面体的外表展开图,来判断是由哪一个多面体展开的,那么可把上述过程逆推.典型例题3、请画出以下图所示的几何体的外表展开图.反应训练3、根据右图所给的几何体的外表展开图,画出立体图形1.1.1柱、锥、台、球的结构特征(二)1.1.2简单组合体的结构特征课本知识:1.旋转体旋转体结构特征图形表示圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;于轴的边旋转而成的圆面叫做圆柱的底面;于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,于轴的边都叫做圆柱侧面的母线我们用表示圆柱轴的字母表示圆柱,左图可表示为圆锥以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的所围成的旋转体叫做圆锥我们用表示圆锥轴的字母表示圆锥,左图可表示为圆台用平行于的平面去截圆锥,底面与截面之间的局部叫做圆台我们用表示圆台轴的字母表示圆台,左图可表示为球以半圆的直径所在直线为旋转轴,旋转一周所形成的旋转体叫做球体,简称球.半圆的圆心叫做球的,半圆的半径叫做球的半径,半圆的直径叫做球的直径球常用球心字母进行表示,左图可表示为(1)定义:由组合而成的几何体叫做简单组合体.(2)简单组合体的两种根本形式:由简单几何体而成;由简单几何体一局部而成.特别提醒:圆是一条封闭的曲线,圆面是一个圆围成的圆内平面.球是几何体,球面是指半圆沿直径旋转形成的曲面,球是旋转体.知识梳理:要点一、旋转体的结构特征圆柱、圆锥、圆台、球从生成过程来看,它们分别是由矩形、直角三角形、直角梯形、半圆绕着某一条直线旋转而成的几何体,因此它们统称为旋转体.但应注意的是:所谓旋转体就是一个平面图形绕着这个平面图形所在的平面内一条直线旋转一周所得到的几何体,因此它还含有除圆柱、圆锥、圆台、球之外的几何体.典型例题1、以下说法:①在圆柱的上、下两底面的圆周上各取一点,那么这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,那么这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的选项是( )A.①②B.②③C.①③D.②④反应训练1、以下说法中正确的选项是( )A.圆台是直角梯形绕其一边旋转而成的B.圆锥是直角三角形绕其一边旋转而成的C.圆柱不是旋转体D.圆台可以看作是平行于底面的平面截一个圆锥而得到的要点二圆柱、圆锥、圆台的侧面展开图把柱、锥、台体沿一条侧棱或母线展开成平面图,这样便把空间问题转化成了平面问题,对解决简单空间几何体的面积问题或侧面上(球除外)两点间的距离问题,是很有效的方法.典型例题2、如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?反应训练2、假设本例中蚂蚁围绕圆柱转两圈,如下图,那么它爬行的最短距离是多少?要点三简单组合体的结构特征判断实物图是由哪些简单几何体所组成的图形问题,首先要熟练掌握简单几何体的结构特征,其次要善于将复杂的组合体“分割〞成几个简单的几何体.简单组合体有以下三种形式:1.多面体与多面体的组合体:即由两个或两个以上的多面体组合而成的几何体.2.多面体与旋转体的组合体:即由一个多面体与一个旋转体组合而成的几何体.3.旋转体与旋转体的组合体:即由两个或两个以上的旋转体组合而成的几何体.典型例题3、请描述如下图的组合体的结构特征.反应训练3、说出以下几何体的结构特征.一、选择题1.以下说法中正确的选项是( )A .棱柱中两个互相平行的平面一定是棱柱的底面B .棱柱的面中,至少有两个面互相平行C .棱柱中一条侧棱的长叫棱柱的高D .棱柱的侧面是平行四边形,但它的底面一定不是平行四边形2.如图,D ,E ,F 分别是等边△ABC 各边的中点,把该图按虚线折起,可以得到一个( )A .棱柱 B .棱锥 C .棱台 D .旋转体3.以下三个说法,其中正确的选项是( )①用一个平面去截棱锥,棱锥底面和截面之间的局部是棱台; ②两个底面平行且相似,其余各面都是梯形的多面体是棱台; ③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台. A .0个 B .1个 C .2个 D .3个4.在长方体ABCD -A 1B 1C 1D 1中,AB =3,AD =2,CC 1=1,一条绳子从点A 沿外表拉到点C 1,那么绳子的最短的长是( )A .3 2 B .2 5 C.26 D .65.如图,以下几何体中,________是棱柱,________是棱锥,________是棱台.6.在正方体上任意选择4个顶点,它们可能是如下各种几何图形的4个顶点,这些几何体是________(写出所有正确结论的序号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.7.在如下图的三棱柱ABC -A 1B 1C 1中,请连接三条线,把它分成三局部,使每一局部都是一个三棱锥.8.如下图,在正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=2,由顶点B 沿棱柱侧面(经过棱AA 1)到达顶点C 1,与AA 1的交点记为M .求:(1)三棱柱侧面展开图的对角线长;(2)从B 经M 到C 1的最短路线长及此时A 1MAM的值.1.以下说法正确的选项是( )A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心2.底面半径为2且底面水平放置的圆锥被过高的中点且平行于底面的平面所截,那么截得的截面圆的面积为( )A.πB.2π C.3πD.4π3.以下说法正确的有( )①球的半径是球面上任意一点与球心的连线段②球的直径是球面上任意两点间的连线段③用一个平面截一个球,得到的是一个圆④不过球心的截面截得的圆的半径小于球半径A.①② B.①④ C.①②④D.③④4.如下图的几何体,关于其结构特征,以下说法不正确的选项是( )A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形5.给出以下说法:(1)直角三角形绕一边旋转得到的旋转体是圆锥(2)夹在圆柱的两个平行截面间的几何体还是一个旋转体(3)圆锥截去一个小圆锥后剩余局部是圆台(4)通过圆台侧面上一点,有无数条母线其中正确的说法是________(写出所有正确说法的序号).6.把一个圆锥截成圆台,圆台的上下底面半径之比是14,母线长为10,那么圆锥的母线长是________.7.如图(1)所示,正三棱柱的底面边长是4cm、过BC的一个平面交侧棱AA′于D,假设AD的长为2cm,求截面△BCD的面积.图(1) 图(2)8.从一个底面半径和高都是R的圆柱中,挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到如以下图所示的几何体.如果用一个与圆柱下底面距离等于l并且平行于底面的平面去截它,求所得截面的面积.。

【名校】河南省漯河市高级中学人教版高中数学必修二1.1《空间几何体的结构》课件 (共44张PPT)

【名校】河南省漯河市高级中学人教版高中数学必修二1.1《空间几何体的结构》课件 (共44张PPT)

截面边A形1B,1C五1D边1与形底…面…A的BC棱D不台平分行别.叫三
棱台,四棱台,五棱台……
上 底 顶点 C’ 面
B’
C侧面
下底面 B
三棱台
四棱台ABCD-A'B'C'D'
棱台的应用
小结:棱柱、棱锥、棱台的结构特征比较
结构特征 定义
底面
棱柱
两个平面互相平行,其 余各面都是四边形,并 且每相邻两个四边形的 公共边都平行,这些面 围成的几何体称为棱柱
图(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)有何 共同特点?这些几何体可以统一叫什么名称?
具有同样的特点:组成几何体的每个面都是平面图形, 并且都是平面多边形。
多面体
图(1)、(3)、(4)、(6)、(8)、(10)(11)、(12)有何 共同特点?这些几何体可以统一叫什么名称?
C B
旋转体
一个矩形绕着它的一条边所在的一条直 线旋转所成的封闭几何体叫做圆柱,这条定 直线叫做圆柱的轴.
我们把一个平面图形绕着它所在平面内 的一条直线旋转所行成的封闭几何体叫做旋 转体,这条定直线叫做旋转体的轴.
探究问题
分别以直角三角形的不同的边所在的直线为 轴旋转三角形得到的旋转体形状相同吗? 如果不 同请你画出来。
叫做圆的侧面。

5、无论旋转到什么位置,不垂直 线
于轴的边都叫做圆柱侧面的母线,
圆柱侧面的所有母线平行且相等,
且数值等于圆柱的高。
A
6、圆柱用表示它的轴的字母表示,
如图:记作圆柱OO’
7、注:棱柱与圆柱统称为柱体。
O’
B’

侧 面

O

新人教版高中数学必修二全册课件ppt

新人教版高中数学必修二全册课件ppt

(1)三棱柱有 6 个顶点,三棱锥有 4 个顶点;
(2)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的
母线;
本 课
(3)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几
时 栏
何体是圆台;

(4)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角
开 关
做圆柱侧面的母线.圆柱用表示它的轴的字母表示,如下图中的圆
柱表示为圆柱 O′O.
研一研·问题探究、课堂更高效
问题 2 如图,平行于圆柱底面的截面,经过圆柱任意两条母线的截 面分别是什么图形?



栏 目
答 分别是圆面、矩形.


研一研·问题探究、课堂更高效
探究点二 圆锥的结构特征 问题 1 类比圆柱的定义,结合下图你能给圆锥下个定义吗?
5.简单组合体
(1)概念:由 简单几何体 组合而成的几何体叫做简单组
合体.常见的简单组合体大多是由具有柱、锥、台、球等


几何结构特征的物体组成的.


(2)基本形式:一种是由简单几何体 拼接 而成,另一种是


由简单几何体 截去 或 挖去 一部分而成.

研一研·问题探究、课堂更高效
[问题情境]

举世闻名的比萨斜塔是意大利的一个著名景点.它的构造从外形
课 时
上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物
栏 目
和它一样,也都是由一些简单几何体组合而成的组合体.本节我

们就来学习旋转体与简单组合体的结构特征.

研一研·问题探究、课堂更高效
探究点一 圆柱的结构特征

空间几何体的结构1

空间几何体的结构1
有两个面是互相平行的相 似多边形,其余各面都是 梯形,每相邻两个梯形的 公共腰的延长线共点.
思考2:参照棱柱的说法,棱台的底面、 侧面、侧棱、顶点分别是什么含义?
上底面 顶点 侧面
侧棱
下底面
原棱锥的底面和截面分别叫做棱台的下底面和 上底面,其余各面叫做棱台的侧面,相邻侧面的 公共边叫做棱台的侧棱,侧面与底面的公共顶点 叫做棱台的顶点.
思考3:试说明下列几何体分别是怎样组 成的?
有一个面是多边形,其余各面都是有 一个公共顶点的三角形,由这些面围 成的多面体叫做棱锥.
思考2:参照棱柱的说法,棱锥的底面、 侧面、侧棱、顶点分别是什么含义?
顶点 侧面 底面
侧棱
多边形面叫做棱锥的底面,有公共顶点的各三角 形面叫做棱锥的侧面,相邻侧面的公共边叫做棱 锥的侧棱,各侧面的公共顶点叫做棱锥的顶点.
思考3:经过圆锥任意两条母线的截面是 什么图形?
思考4:经过圆锥的轴的截面称为轴截面, 你能说出圆锥的轴截面有哪些基本特征 吗?
知识探究(四):圆台的结构特征
思考1:用一个平行于圆锥底面的平面去 截圆锥,截面与底面之间的部分叫做圆 台.圆台可以由什么平面图形旋转而形成?
思考2:与圆柱和圆锥一样,圆台也有轴、 底面、侧面、母线,它们的含义分别如 何?
上底面
侧面
母线

下底面
思考3:经过圆台任意两条母线的截面是 什么图形?轴截面有哪些基本特征?
理论迁移
例1 将下列平面图形绕直线AB旋转 一周,所得的几何体分别是什么?
B B B A
A
A 图1
图2
图3
第三课时 球、简单组合体的结构特征
问题提出
1.棱柱、棱锥、棱台是三个基本的多面 体,圆柱、圆锥、圆台是三个基本的旋 转体,其中棱柱和圆柱统称为柱体,棱 锥和圆锥统称为锥体,棱台和圆台统称 为台体.除此之外,在我们的生活中还有 一个最常见的空间几何体是什么? 2.球是多面体还是旋转体?球有什么结 构特征?

高中数学必修二课时安排

高中数学必修二课时安排

中学数学必修②第一章空间几何体(需8课时)1.1空间几何体的结构(共2课时)1.1.1柱、锥、台、球的结构特征(1课时)1.1.2简洁几何体的结构特征(1课时)1.2空间几何体的三视图和直观图(共2课时)1.2.1空间几何体的三视图(1课时)1.2.2空间几何体的直观图(1课时)1.3空间几何体的表面积与体积(共2课时)1.3.1柱体、锥体、台体的表面积与体积(1课时)1.3.2球的体积与表面积(1课时)实习作业(共1课时)小结(共1课时)其次章点、直线、平面之间的位置关系(需11课时)2.1空间点、直线、平面之间的位置关系(共4课时)2.1.1平面(1课时)2.1.2空间中直线与直线之间的位置关系(1课时)2.1.3空间中直线与平面之间的位置关系(1课时)2.1.4平面与平面之间的位置关系(1课时)2.2直线、平面平行的判定及性质(共3课时)2.2.1直线与平面平行的判定(1课时)2.2.2平面与平面平行的判定(1课时)2.2.3 直线、平面平行的性质与2.2.4平面与平面平行的性质(1课时)2.3直线、平面垂直的判定及性质(共3课时)2.3.1直线与平面垂直的判定(1课时)2.3.2平面与平面垂直的判定(1课时)2.3.3 直线、平面垂直的性质与2.3.4平面与平面垂直的性质(1课时)小结(共1课时)第三章直线与方程(需9课时)3.1直线的倾斜角与斜率(共2课时)3.1.1倾斜角与斜率(1课时)3.1.2两条直线平行与垂直的判定(1课时)3.2直线的方程(共3课时)3.2.1直线的点斜式方程(1课时)3.2.2直线的两点式方程(1课时)3.2.3 直线的一般方程(1课时)3.3直线的交点坐标与距离公式(共3课时)3.3.1两条直线的交点坐标(1课时)3.3.2两点间的距离(1课时)3.3.3 点到直线的距离(1课时)小结(共1课时)第四章圆与方程(需9课时)4.1圆的方程(共2课时)4.1.1圆的标准方程(1课时)4.1.2圆的一般方程(1课时)4.2直线、圆的位置关系(共4课时)4.2.1直线与圆的位置关系(1课时)4.2.2圆与圆的位置关系(1课时)4.2.3直线与圆的方程的应用(2课时)4.3空间直角坐标系(共2课时)4.3.1空间直角坐标系(1课时)4.3.2空间两点间的距离(1课时)小结(共1课时)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考1:经过圆锥任意两条母线的截面是 什么图形?
思考2:经过圆锥的轴的截面称为轴截面, 圆锥的轴截面有哪些基本特征?
知识探究(四):圆台的结构特征
用一个平行于圆锥底面的平面去截圆 锥,截面与底面之间的部分叫做圆台.
上底面 侧面
母线

下底面
思考1: 经过圆台任意两条母线的截面 是什么图形?轴截面有哪些基本特征?
第二课时 棱台、圆柱、圆锥、圆台的结构特征
复习回顾
棱柱、棱锥的图形结构分别有哪几个 特征?
知识探究(一):棱台的概念
用一个平行于棱锥底面的平面去截 棱锥,截面与底面之间的部分形成另一 个多面体,这样的多面体叫做棱台.
知识探究(二):棱台的结构特征
1、有两个面是互相平行 的相似多边形 2、其余各面都是梯形 3、每相邻两个梯形的公 共腰的延长线共点
思考2:设圆台的上、下底面圆圆心分别 为O′、O,过线段OO′的中点作平行于 底面的截面称为圆台的中截面,那么圆 台的上、下底面和中截面的面积有什么 关系?
o′
o
理论迁移
例1 将下列平面图形绕直线AB旋转 一周,所得的几何体分别是什么?
B B B A 图3三角形ABC中,已知AC=2, BC= , 2 3 ,以直线 C 90 AC为轴将△ABC 旋转一周得到一个圆锥,求经过该圆锥 任意两条母线的截面三角形的面积的最 大值.
思考2:经过圆柱的轴的截面称为轴截面, 那么圆柱的轴截面有哪些基本特征?
知识探究(四):圆锥的结构特征
知识探究(四):圆锥的概念
以直角三角形的一条直角边所在直 线为旋转轴,其余两边旋转形成的面所 围成的旋转体叫做圆锥.
顶点

侧面
母线
底面
1、旋转轴叫做圆锥的轴 2、垂直于轴的边旋转而成的圆面叫做底面 3、斜边旋转而成的曲面叫做圆锥的侧面 4、斜边在旋转中的任何位置叫做圆锥侧面 的母线
上底面
顶点 侧面
侧棱
上底面 2、其余各面叫做棱台的侧面 3、相邻侧面的公共边叫做棱台的侧棱
下底面
1、原棱锥的底面和截面分别叫做棱台的下底面和
4、侧面与底面的公共顶点叫做棱台的顶点
思考1:下列多面体一定是棱台吗?如 何判断?
思考2:三棱台、四棱台、五棱台、…… 分别是什么含义?
知识探究(三):圆柱的概念
A A
C
B
C
B
D
课堂作业: P7练习:1,2. 大本9-11页。
以矩形的一边所在直线为旋转 轴,其余三边旋转形成的面所围成 的旋转体.

侧面
母线
母线
底面
1、旋转轴叫做圆柱的轴 2、垂直于轴的边旋转而成的圆面叫做圆柱的底面3 平行于轴的边旋转而成的曲面叫做圆柱的侧面4、 平行于轴的边在旋转中的任何位置叫做圆柱侧面的 母线
思考1:平行于圆柱底面的截面、经过 圆柱任意两条母线的截面分别是什么图 形?
相关文档
最新文档