必修4第一章三角函数同步练习及答案

合集下载

北师大版高中数学必修四第一章三角函数同步练习(一)

北师大版高中数学必修四第一章三角函数同步练习(一)
(1) ; (2)
47.计算: .
48.化简: .
49.函数 与函数 的图像有_____交点.
50.如果 ,那么 是第__________象限的角.
51.根据函数Βιβλιοθήκη 的图像,写出使 成立的 的取值集合.
52.函数 的单调递增区间是___________.
53.函数 的定义域是__________.
54.求函数 的最大值和最小值,并写出使函数最大值和最小值时的自变量 的集合.
5.若 ,且 < < ,则 的值的等于( )
A. B. C.- D.
6.函数 在下列区间上是增函数的是( )
A.[- , ]B.[- , ]C. D.[- , ]
7.函数 的图象可以看成是把函数 的图象做以下平移得到( )
A.左平移 B.右平移 C.左平移 D.右平移
8. 等于( )
A.0 B.1 C.-1 D.
24.证明 是非周期函数.
25.终边在 轴上的角的集合是_____________.
26.与- 终边相同的角的集合是____________.
27.在 ~ 范围内,与角- 18'终边相同的角是___________.
28.写出与下列各角终边相同的角的集合,并把集合中适合不等式- 的元素写出来.
(1) ; (2) ; (3)- 15'
55.比价下列各组数的大小:
(1) 与 ; (2) 与 .
56.函数 的定义域是_________.
57.判断下列函数的奇偶性:
(1) ; (2) ;
(3) ; (4) .
58.研究方程 的根的个数.
答案:
1、A 2、C 3、B 4、A 5、C
6、B 7、A 8、C

高中数学必修四第一章《三角函数》单元测试题(含答案)

高中数学必修四第一章《三角函数》单元测试题(含答案)

高中数学必修四第一章单元测试题《三角函数》(时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.( )A. B. C. D.2.函数的一条对称轴可能是( )A. B. C. D.3.已知1sin 3θ=, ,2πθπ⎛⎫∈ ⎪⎝⎭,则tan θ= A. 2- B. 2- C. 24-D. 28- 4.已知,,则( ).A. B. C. D. ,5.已知弧度数为2的圆心角所对的弦长为2,则这个圆心角所对的弧长是( ) A. 2 B.C.D.6.下列区间上函数cos 3y x π⎛⎫=+⎪⎝⎭为增函数的是( )A. ,44ππ⎡⎤-⎢⎥⎣⎦ B. 2,63ππ⎡⎤⎢⎥⎣⎦ C. 24,33ππ⎡⎤⎢⎥⎣⎦ D. 711,66ππ⎡⎤⎢⎥⎣⎦7.已知α为第二象限角,则222sin 1-sin cos 1-cos αααα+的值是( ) A. -1 B. 1 C. -3 D. 3 8.如图,函数(,)的图象过点,则的函数解析式为( )A.B.C. D.9.将函数的图象向右平移个单位后关于轴对称,则的值可能为( )A. B. C. D.10.已知tan 4θ=,则2sin cos sin 17sin 4θθθθ++的值为( )A.1468 B. 2168 C. 6814 D. 682111.函数()()sin f x A x ωϕ=+的图象如下图所示,为了得到()cos g x A x ω=-的图像,可以将()f x 的图像( )A. 向右平移12π个单位长度 B. 向右平移512π个单位长度C. 向左平移12π个单位长度 D. 向左平移512π个单位长度 12.同时具有以下性质:“①最小正周期是π;②图象关于直线3x π=对称;③在,63ππ⎡⎤-⎢⎥⎣⎦上是增函数;④一个对称中心为,012π⎛⎫⎪⎝⎭”的一个函数是( ) A. sin 26x y π⎛⎫=+⎪⎝⎭B. sin 23y x π⎛⎫=+ ⎪⎝⎭C. sin 26y x π⎛⎫=- ⎪⎝⎭D. sin 23y x π⎛⎫=-⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若角α的终边经过点()1,2--,则2sin2cos αα+=____________. 14.函数()()π20,2f x sin x ωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,则ω=__________, ϕ=__________.15.若()()sin 2cos 2,αππα-=-则()()()()sin 5cos 23cos sin παπαπαα-+----的值为____________.16.给出下列四个命题: ①函数2sin 23y x π⎛⎫=-⎪⎝⎭的一条对称轴是512x π=; ②函数tan y x =的图象关于点(2π,0)对称; ③函数2cos sin y x x =+的最小值为1-;= 0,则12x x k π-=,其中k Z ∈; 以上四个命题中正确的有_____________(填写正确命题前面的序号).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题10(1(2)2sin sin2αα+.18.(本小题12分)(1)已知角α终边上一点,求cos α和tan α的值.(2)已知α是第三象限的角,且简()f α;②若,求()f α19.(本小题12分)已知函数()()sin (0,24,)2f x A wx b A w πϕϕ=++><<<.(1)求函数()f x 的解析式;(2)求()f x 的图象的对称中心及()2f x 的递减区间.20.(本小题12分)某同学用“五点法”画函数()()sin (0,0,)2f x A x A πωϕωϕ=+>><在某一个周期内的图象时,列表并填入了部分数据,如下表:6π23π0 22-(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并求出函数()f x 的解析式; (Ⅱ)将()y f x =图象上所有点向左平行移动12π个单位长度,得到()y g x =图象,求()y g x =的图象离原点O 最近的对称中心. 21.(本小题12分)已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.(1)求的值;(2)函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.22.(本小题12分)函数()()sin (0,)2f x x πωϕωϕ=+><在它的某一个周期内的单调减区间是511,1212ππ⎡⎤⎢⎥⎣⎦. (1)求()f x 的解析式;(2)将()y f x =的图象先向右平移6π个单位,再将图象上所有点的横坐标变为原来的12倍(纵坐标不变),所得到的图象对应的函数记为()g x ,求函数()g x 在3,88ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.高中数学必修四第一章单元测试题《三角函数》参考答案(时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.( )A. B. C. D.【答案】D 【解析】,选D.2.函数的一条对称轴可能是( )A. B. C. D.【答案】B3.已知1sin 3θ=, ,2πθπ⎛⎫∈ ⎪⎝⎭,则tan θ= A. 2- B. 2- C. 24- D. 28- 【答案】C 【解析】∵1sin 3θ=, ,2πθπ⎛⎫∈ ⎪⎝⎭,∴222cos 1sin 3θθ=--=-,则1sin 23tan cos 4223θθθ===--,故选C.4.已知,,则( ).A. B. C. D. ,【答案】D 【解析】 ∵,,∴,,∴.故选.5.已知弧度数为2的圆心角所对的弦长为2,则这个圆心角所对的弧长是( ) A. 2 B. C.D.【答案】C【解析】6.下列区间上函数cos 3y x π⎛⎫=+⎪⎝⎭为增函数的是( ) A. ,44ππ⎡⎤-⎢⎥⎣⎦ B. 2,63ππ⎡⎤⎢⎥⎣⎦ C. 24,33ππ⎡⎤⎢⎥⎣⎦ D. 711,66ππ⎡⎤⎢⎥⎣⎦【答案】C【解析】当44x ππ-≤≤时,712312x πππ≤+≤, 函数不是增函数;当263x ππ≤≤时, 23x πππ≤+≤,函数是减函数;当2433x ππ≤≤时, 533x πππ≤+≤,函数是增函数;选C.7.已知α为第二象限角,则222sin 1-sin cos 1-cos αααα+的值是( ) A. -1 B. 1 C. -3 D. 3 【答案】B8.如图,函数(,)的图象过点,则的函数解析式为( )A.B.C. D.【答案】B【解析】由题意可得A=2,f(0)=由所以,,选B.9.【2018届河南省天一大联考高三上测试二(10月】将函数的图象向右平移个单位后关于轴对称,则的值可能为( )A. B. C. D.【答案】D10.已知tan 4θ=,则2sin cos sin 17sin 4θθθθ++的值为( )A.1468 B. 2168 C. 6814 D. 6821【答案】B【解析】()2222sin cos sin 1sin 17sin 417tan 4sin cos tan θθθθθθθθθ+++=++ ()22141162117tan 68686841tan tan tan θθθθ++=+=+=+,故选B 11.函数()()sin f x A x ωϕ=+的图象如下图所示,为了得到()cos g x A x ω=-的图像,可以将()f x 的图像( )A. 向右平移12π个单位长度B. 向右平移512π个单位长度 C. 向左平移12π个单位长度 D. 向左平移512π个单位长度【答案】B【解析】试题分析:由题意可得,解之得,故,又可得,即,所以,而,即函数可由函数的图象向右平移512π个单位长度而得到,故应选B. 12.【2018届广西柳州市高三上摸底】同时具有以下性质:“①最小正周期是π;②图象关于直线3x π=对称;③在,63ππ⎡⎤-⎢⎥⎣⎦上是增函数;④一个对称中心为,012π⎛⎫ ⎪⎝⎭”的一个函数是( )A. sin 26x y π⎛⎫=+⎪⎝⎭B. sin 23y x π⎛⎫=+ ⎪⎝⎭C. sin 26y x π⎛⎫=- ⎪⎝⎭D. sin 23y x π⎛⎫=-⎪⎝⎭【答案】C第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【2018届福建省惠安惠南中学高三10月月考】若角α的终边经过点()1,2--,则2sin2cos αα+=____________.【答案】1【解析】由三角函数定义得2tan 21α-==∴- 2sin2cos αα+= 22222sin cos cos 2tan 1411sin cos 141tan ααααααα+++===+++14.函数()()π20,2f x sin x ωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,则ω=__________, ϕ=__________.【答案】2π3 π615.若()()sin 2cos 2,αππα-=-则()()()()sin 5cos 23cos sin παπαπαα-+----的值为____________.【答案】35-【解析】因为()()sin 2cos 2sin 2cos ,αππααα-=-∴=-()()()()sin 5cos 2sin 5cos 3cos 33cos sin 3cos sin 5cos 5παπααααπααααα-+-+===-----+-故答案为35-.16.给出下列四个命题: ①函数2sin 23y x π⎛⎫=-⎪⎝⎭的一条对称轴是512x π=; ②函数tan y x =的图象关于点(2π,0)对称; ③函数2cos sin y x x =+的最小值为1-;④若12sin 2sin 244x x ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭ = 0,则12x x k π-=,其中k Z ∈; 以上四个命题中正确的有_____________(填写正确命题前面的序号). 【答案】①②③ 【解析】把512x π=代入函数得1y =,为最大值,故正确; 结合函数tan y x =的图象可得点,02π⎛⎫⎪⎝⎭是函数tan y x =的图象的一个对称中心,故正确; 函数 22215cos sin sin 124y x x x sinx sinx ⎛⎫=+=-++=--+ ⎪⎝⎭ []1,1sinx ∈-Q 当sin 1x =-时,函数取得最小值为1-,故正确。

必修四第一章三角函数测试题(含答案)[2]

必修四第一章三角函数测试题(含答案)[2]

必修四第一章三角函数测试题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(必修四第一章三角函数测试题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为必修四第一章三角函数测试题(含答案)(word版可编辑修改)的全部内容。

必修四第一章三角函数测试题班别姓名分数一、选择题1.已知cos α=错误!,α∈(370°,520°),则α等于( )A.390°B.420°C.450°D.480°2.若sin x·tan x〈0,则角x的终边位于()A.第一、二象限B.第二、三象限 C.第二、四象限D.第三、四象限3.函数y=tan 错误!是( )A.周期为2π的奇函数B.周期为错误!的奇函数C.周期为π的偶函数D.周期为2π的偶函数4.已知函数y=2sin(ωx+φ)(ω〉0)在区间[0,2π]的图象如图,那么ω等于( )A.1 B.2 C.错误! D.错误!5.函数f(x)=cos(3x+φ)的图象关于原点成中心对称,则φ等于( )A.-错误!B.2kπ-错误!(k∈Z) C.kπ(k∈Z)D.kπ+错误!(k∈Z)6.若sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( ) A.-错误! B.错误!C.±错误!D。

错误!7.将函数y=sin x的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A.y=sin错误!B.y=sin错误! C.y=sin错误! D.y=sin错误!8.在同一平面直角坐标系中,函数y=cos错误!(x∈[0,2π])的图象和直线y=错误!的交点个数是 ( )A.0 B.1 C.2 D.49.已知集合M=错误!,N={x|x=错误!+错误!,k∈Z}.则()必修四第一章三角函数测试题(含答案)(word版可编辑修改)A.M=N B.M N C.N M D.M∩N=∅10.设a=sin 错误!,b=cos 错误!,c=tan 错误!,则()A.a〈b<c B.a<c〈b C.b〈c<a D.b<a〈c二、填空题11.已知一扇形的弧所对的圆心角为54°,半径r=20 cm,则扇形的周长为________ cm。

必修四第一章 三角函数 精选练习题(有答案和解析)

必修四第一章 三角函数 精选练习题(有答案和解析)

必修四第一章 三角函数精选练习题一、选择题1.在0°~360°的范围内,与-510°终边相同的角是( ) A .330° B .210° C .150° D .30°B [因为-510°=-360°×2+210°,因此与-510°终边相同的角是210°.] 2.cos 420°的值为( ) A .12 B .-12C .32D .-32A [cos 420°=cos(360°+60°)=cos 60°=12,故选A.]3.已知角θ的终边上一点P (a ,-1)(a ≠0),且tan θ=-a ,则sin θ的值是( ) A .±22 B .-22 C .22 D .-12B [由题意得tan θ=-1a =-a , 所以a 2=1, 所以sin θ=-1a 2+(-1)2=-22.] 4.一个扇形的弧长与面积的数值都是6,这个扇形中心角的弧度数是( ) A .1 B .2 C .3 D .4C [设扇形的半径为r ,中心角为α,根据扇形面积公式S =12lr 得6=12×6×r ,所以r =2, 所以α=l r =62=3.]5.已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为( ) A .23 B .13 C .-23 D .-13 C [∵已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,∴1+2sin θcos θ=169,∴2sin θcos θ=79,故sin θ-cos θ=-(sin θ-cos θ)2 =-1-2sin θ·cos θ =-23,故选C.]6.函数y =tan(sin x )的值域是( ) A .⎣⎢⎡⎦⎥⎤-π4,π4B .⎣⎢⎡⎦⎥⎤-22,22C .[]-tan 1,tan 1D .[]-1,1C [sin x ∈[-1,1],又-π2<-1<1<π2,且y =tan x 在⎝ ⎛⎭⎪⎫-π2,π2上是增函数,所以y min =tan(-1)=-tan 1,y max =tan 1.]7.将函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式为( )A .y =sin 12xB .y =sin ⎝ ⎛⎭⎪⎫12x -π2C .y =sin ⎝ ⎛⎭⎪⎫12x -π6D .y =sin ⎝ ⎛⎭⎪⎫2x -π6 C [函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍可得y =sin ⎝ ⎛⎭⎪⎫12x -π3,再将所得的图象向左平移π3个单位,得到函数y =sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x +π3-π3=sin ⎝ ⎛⎭⎪⎫12x -π6.] 8.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间是( ) A .⎣⎢⎡⎦⎥⎤0,π8B .⎣⎢⎡⎦⎥⎤π8,π2C .⎣⎢⎡⎦⎥⎤0,3π8D .⎣⎢⎡⎦⎥⎤3π8,π2C [令2k π-π2≤2x -π4≤2k π+π2(k ∈Z )得k π-π8≤x ≤k π+3π8(k ∈Z ),k =0时,x∈⎣⎢⎡⎦⎥⎤-π8,3π8,又x ∈⎣⎢⎡⎦⎥⎤0,π2, ∴x ∈⎣⎢⎡⎦⎥⎤0,3π8,故选C.]9.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π4B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝ ⎛⎭⎪⎫2x +3π4D .y =2sin ⎝ ⎛⎭⎪⎫2x -3π4C [由图可知A =2,4⎝ ⎛⎭⎪⎫π8+π8=2πω得ω=2,且2×⎝ ⎛⎭⎪⎫-π8+φ=π2+2k π(k ∈Z )∴φ=2k π+3π4(k ∈Z ), 又∵|φ|<π, ∴φ=3π4,故选C.]10.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )C [∵P 0(2,-2),∴∠P 0Ox =π4.按逆时针转时间t 后得 ∠POP 0=t ,∠POx =t -π4. 此时P 点纵坐标为2sin ⎝ ⎛⎭⎪⎫t -π4,∴d =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫t -π4.当t =0时,d =2,排除A ,D ; 当t =π4时,d =0,排除B.]11.设α是第三象限的角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则α2的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 B [∵α是第三象限的角, ∴π+2k π<α<3π2+2k π,k ∈Z . ∴π2+k π<α2<3π4+k π,k ∈Z . ∴α2在第二或第四象限. 又∵⎪⎪⎪⎪⎪⎪cos α2=-cos α2,∴cos α2<0.∴α2是第二象限的角.]12.化简1+2sin (π-2)·cos (π-2)得( )A .sin 2+cos 2B .cos 2-sin 2C .sin 2-cos 2D .±cos 2-sin 2 C [1+2sin (π-2)·cos (π-2) =1+2sin 2·(-cos 2) =(sin 2-cos 2)2, ∵π2<2<π,∴sin 2-cos 2>0. ∴原式=sin 2-cos 2.]13.同时具有下列性质的函数可以是( ) ①对任意x ∈R ,f (x +π)=f (x )恒成立; ②图象关于直线x =π3对称; ③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6C .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3D .f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6B [依题意知,满足条件的函数的周期是π,图象以直线x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.对于A 选项,函数周期为4π,因此A 选项不符合;对于C 选项,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 选项不符合;对于D 选项,f ⎝ ⎛⎭⎪⎫π3≠±1,即函数图象不以直线x =π3为对称轴,因此D 选项不符合.综上可知,应选B.]14.已知函数f (x )=-2tan(2x +φ)(|φ|<π),若f ⎝ ⎛⎭⎪⎫π16=-2,则f (x )的一个单调递减区间是( )A .⎝ ⎛⎭⎪⎫3π16,11π16B .⎝ ⎛⎭⎪⎫π16,9π16C .⎝ ⎛⎭⎪⎫-3π16,5π16D .⎝ ⎛⎭⎪⎫π16,5π16 A [由f ⎝ ⎛⎭⎪⎫π16=-2得-2tan ⎝ ⎛⎭⎪⎫π8+φ=-2,所以tan ⎝ ⎛⎭⎪⎫π8+φ=1,又|φ|<π,所以φ=π8,f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π8, 令k π-π2<2x +π8<k π+π2,k ∈Z 得 k π2-5π16<x <k π2+3π16,k ∈Z .可得f (x )的单调递减区间是⎝ ⎛⎭⎪⎫k π2-5π16,k π2+3π16,k ∈Z ,令k =1,可得f (x )的一个单调递减区间是⎝ ⎛⎭⎪⎫3π16,11π16.]二、填空题15.对于锐角α,若tan α=34,则cos 2α+2sin 2α=________. 6425 [由题意可得:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=6425.]16.已知sin α=13,且α是第二象限角,那么cos(3π-α)的值为________. 223[cos(3π-α)=-cos α=-(-1-sin 2α)=1-⎝ ⎛⎭⎪⎫132=223.] 17.函数y =3-tan x 的定义域是________.⎝ ⎛⎦⎥⎤k π-π2,k π+π3(k ∈Z ) [作出三角数线如图,由函数可知3-tan x ≥0中tan x ≤3,而3对应角为π3,由图中阴影部分可得定义域为⎝ ⎛⎦⎥⎤k π-π2,k π+π3(k ∈Z ).]18.函数y =tan ⎝ ⎛⎭⎪⎫2x -π4的定义域为________.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π8+k π2,k ∈Z[2x -π4≠π2+k π,即x ≠3π8+k π2,k ∈Z .]19.若函数y =sin(ωx +φ)(ω>0)的部分图象如图所示,则ω=________.4 [观察图象可知函数y =sin(ωx +φ)的半个周期为π4, 所以2πω=π2,ω=4.]20.已知函数f (x )=sin(ωx +φ)(ω>0),若将f (x )的图象向左平移π3个单位长度所得的图象与将f (x )的图象向右平移π6个单位长度所得的图象重合,则ω的最小值为________.4 [由条件可知,图象变换后的解析式分别为y =sin ⎝ ⎛⎭⎪⎫ωx +ωπ3+φ和y =sin ⎝ ⎛⎭⎪⎫ωx -ωπ6+φ,由于两图象重合,所以ωπ3+φ=-ωπ6+φ+2k π(k ∈Z ). 即ω=4k (k ∈Z ),由ω>0,∴ωmin =4.]21.一扇形的圆心角为2弧度,记此扇形的周长为C ,面积为S ,则C -1S 的最大值为________.4 [由已知可得弧长l =2r ,周长C =4r ,面积S =12×lr =r 2,∴C -1S =4r -1r 2=-1r 2+4r =-⎝ ⎛⎭⎪⎫1r -22+4,故C -1S 的最大值为4.] 22.已知角α终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角α的最小正值是________.5π3 [角α终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,即⎝ ⎛⎭⎪⎫12,-32, tan α=-3212=-3,且α为第四象限角,所以角α的最小正值是5π3.]23.函数y =2+cos x2-cos x(x ∈R )的最大值为________.3 [由题意有y =42-cos x-1,因为-1≤cos x ≤1,所以1≤2-cos x ≤3,则43≤42-cos x ≤4,由此可得13≤y ≤3,于是函数y =2+cos x 2-cos x (x ∈R )的最大值为3.]24.对于函数f (x )=⎩⎨⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+k π(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2k π(k ∈Z )对称; ④当且仅当2k π<x <π2+2k π(k ∈Z )时,0<f (x )≤22. 其中正确命题的序号是________. ③④ [作出函数f (x )的图象如图所示:由图象可知f (x )为周期函数,T =2π,①错误;当x =2k π+π或x =2k π+3π2时,取最小值-1,故②错误;x =π4+2k π(k ∈Z )和x =5π4+2k π(k ∈Z )都是该图象的对称轴,故③正确; 当2k π<x <π2+2k π(k ∈Z )时,f (x )图象在x 轴上方且f (x )max =22. 故0<f (x )≤22.故④正确.]三、解答题25.已知sin(π-α)·cos(-8π-α)=60169,且α∈⎝ ⎛⎭⎪⎫π4,π2,求sin α与cos α的值.[解] 由已知条件可得sin αcos α=60169,∴(sin α+cos α)2=1+2sin αcos α=1+120169=289169, (sin α-cos α)2=1-2sin αcos α=1-120169=49169. ∵x ∈⎝ ⎛⎭⎪⎫π4,π2,∴sin α>cos α, ∴⎩⎪⎨⎪⎧sin α+cos α=1713,sin α-cos α=713,解方程组得sin α=1213,cos α=513.26.(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值; (2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值; (3)已知角α终边上一点P 到x 轴的距离与到y 轴的距离之比为3∶4,求2sin α+cos α的值.[解] (1)∵α终边过点P (4,-3),∴r =|OP |=5,x =4,y =-3, ∴sin α=y r =-35,cos α=x r =45, ∴2sin α+cos α=2×⎝ ⎛⎭⎪⎫-35+45=-25.(2)∵α终边过点P (4a ,-3a )(a ≠0), ∴r =|OP |=5|a |,x =4a ,y =-3a . 当a >0时,r =5a ,sin α=y r =-35, cos α=x r =45, ∴2sin α+cos α=-25;当a <0时,r =-5a ,∴sin α=y r =35, cos α=x r =-45, ∴2sin α+cos α=25.综上,2sin α+cos α=-25或25. (3)当点P 在第一象限时,sin α=35, cos α=45,2sin α+cos α=2; 当点P 在第二象限时,sin α=35, cos α=-45,2sin α+cos α=25;当点P 在第三象限时,sin α=-35, cos α=-45,2sin α+cos α=-2; 当点P 在第四象限时,sin α=-35, cos α=45,2sin α+cos α=-25.27.是否存在角α,β,α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.[解] 假设存在角α,β满足条件,则{sin α=2sin β, ①3cos α=2cos β, ② 由①2+②2得sin 2α+3cos 2α=2. ∴cos 2α=12, ∴cos α=22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4.当α=π4时,代入②得:cos β=32, ∵0<β<π,∴β=π6,代入①可知成立; 当α=-π4时,代入②得cos β=32,∵0<β<π,∴β=π6,此时代入①式不成立,故舍去. ∴存在α=π4,β=π6满足条件.28.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1. (1)求函数f (x )的最大值,并求取得最大值时x 的值; (2)求函数f (x )的单调递增区间.[解] (1)当2x +π3=2k π+π2,则x =k π+π12(k ∈Z )时,f (x )max =3. (2)当2k π-π2≤2x +π3≤2k π+π2,即k π-5π12≤x ≤k π+π12时,函数f (x )为增函数.故函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ). 29.如图是函数y =A sin(ωx +φ)+k (A >0,ω>0,|φ|<π2)的一段图象.(1)求此函数解析式;(2)分析一下该函数是如何通过y =sin x 变换得来的? [解] (1)由图象知A =-12-⎝ ⎛⎭⎪⎫-322=12,k =-12+⎝ ⎛⎭⎪⎫-322=-1,T =2×⎝ ⎛⎭⎪⎫2π3-π6=π,∴ω=2πT =2.∴y =12sin(2x +φ)-1. 当x =π6,2×π6+φ=π2,∴φ=π6. ∴所求函数解析式为y =12sin ⎝ ⎛⎭⎪⎫2x +π6-1.(2)把y =sin x 向左平移π6个单位得到y =sin ⎝ ⎛⎭⎪⎫x +π6,然后纵坐标保持不变、横坐标缩短为原来的12倍,得到y =sin ⎝ ⎛⎭⎪⎫2x +π6,再横坐标保持不变,纵坐标变为原来的12倍,得到y =12sin ⎝ ⎛⎭⎪⎫2x +π6,最后把函数y =12sin ⎝ ⎛⎭⎪⎫2x +π6的图象向下平移1个单位,得到y=12sin ⎝ ⎛⎭⎪⎫2x +π6-1的图象.30.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2)和(x 0+3π,-2).(1)求f (x )的解析式;(2)将f (x )的图象上的所有点的横坐标缩短到原来的13倍(纵坐标不变),然后再将所得的图象向右平移π3个单位,得到函数g (x )的图象,写出函数g (x )的解析式,并用五点作图的方法画出g (x )在长度为一个周期的闭区间上的图象.[解] (1)由f (x )=A sin(ωx +φ)在y 轴上的截距为1,最大值为2,得1=2sin φ,所以sin φ=12.又|φ|<π2,所以φ=π6.由题意易知T =2[(x 0+3π)-x 0]=6π, 所以ω=2πT =13, 所以f (x )=2sin ⎝ ⎛⎭⎪⎫x 3+π6.(2)将f (x )的图象上的所有点的横坐标缩短到原来的13倍(纵坐标不变),得到y =2sin ⎝ ⎛⎭⎪⎫x +π6的图象;再把所得图象向右平移π3个单位,得到g (x )=2sin ⎝ ⎛⎭⎪⎫x -π3+π6=2sin ⎝ ⎛⎭⎪⎫x -π6的图象.列表:。

【人教A版】高中数学必修4教学同步讲练第一章《任意角的三角函数》练习题(含答案)

【人教A版】高中数学必修4教学同步讲练第一章《任意角的三角函数》练习题(含答案)

第一章 三角函数1.2 任意角的三角函数1.2.1 任意角的三角函数A 级 基础巩固一、选择题1.已知角α终边经过P ⎝ ⎛⎭⎪⎫32,12,则cos α等于( )A.12B.32C.33 D .±122.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM3.若α=2π3,则α的终边与单位圆的交点P 的坐标是( )A.⎝ ⎛⎭⎪⎫12,32B.⎝ ⎛⎭⎪⎫-12,32C.⎝⎛⎭⎪⎫-32,12D.⎝ ⎛⎭⎪⎫12,-324.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都可能5.函数y =11+sin x的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π2+2k π,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π2+2k π,k ∈ZC.{}x |x ≠2k π,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-3π2+2k π,k ∈Z二、填空题6.(2016·四川卷)sin 750°=________. 7.sin 1 485°的值为________.8.已知θ∈⎝ ⎛⎭⎪⎫π3,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为____________.三、解答题9.求下列各式的值:(1)sin(-1 320°)cos(1 110°)+cos(-1 020°)sin 750°; (2)cos ⎝ ⎛⎭⎪⎫-233π+tan 17π4.10.已知P (-2,y )是角α终边上一点,且sin α=-55,求cosα与tan α的值.B 级 能力提升1.若α是第三象限角,则|sin α|sin α-cos α|cos α|=( )A .0B .1C .2D .-22.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α=________.3.利用三角函数线,写出满足|cos α|>|sin α|的角α的集合.参考答案第一章 三角函数1.2 任意角的三角函数1.2.1 任意角的三角函数A 级 基础巩固一、选择题1.已知角α终边经过P ⎝ ⎛⎭⎪⎫32,12,则cos α等于( )A.12B.32C.33 D .±12解析:由三角函数定义可知,角α的终边与单位圆交点的横坐标为角α的余弦值,故cos α=32. 答案:B2.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM解析:因为78π是第二象限角,所以sin 78π>0,cos 78π<0,所以MP >0,OM <0, 所以MP >0>OM . 答案:D3.若α=2π3,则α的终边与单位圆的交点P 的坐标是( )A.⎝ ⎛⎭⎪⎫12,32B.⎝ ⎛⎭⎪⎫-12,32C.⎝⎛⎭⎪⎫-32,12D.⎝ ⎛⎭⎪⎫12,-32解析:设P (x ,y ),因为角α=2π3在第二象限,所以x =-12,y =1-⎝ ⎛⎭⎪⎫-122=32,所以P ⎝ ⎛⎭⎪⎫-12,32.答案:B4.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都可能解析:因为sin αcos β<0,α,β∈(0,π),所以sin α>0,cos β<0,所以β为钝角.答案:B 5.函数y =11+sin x的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π2+2k π,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π2+2k π,k ∈ZC.{}x |x ≠2k π,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-3π2+2k π,k ∈Z解析:因为1+sin x ≠0,所以sin x ≠-1. 又sin 3π2=-1,所以x ≠3π2+2k π,k ∈Z. 答案:A 二、填空题6.(2016·四川卷)sin 750°=________. 解析:sin 750°=sin(30°+2×360°)=sin 30°=12.答案:127.sin 1 485°的值为________.解析:sin 1 485°=sin(4×360°+45°)=sin 45°=22.答案:228.已知θ∈⎝ ⎛⎭⎪⎫π3,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为____________.解析:作图如下,因为θ∈⎝ ⎛⎭⎪⎫π3,π2,所以θ >π4,根据三角函数线的定义可知AT >MP >OM .答案:AT >MP >OM 三、解答题9.求下列各式的值:(1)sin(-1 320°)cos(1 110°)+cos(-1 020°)sin 750°; (2)cos ⎝ ⎛⎭⎪⎫-233π+tan 17π4.解:(1)原式=sin(-4×360°+120°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 120°cos 30°+cos 60°sin 30°=32×32+12×12=1. (2)原式=cos ⎣⎢⎡⎦⎥⎤π3+(-4)×2π+tan ⎝ ⎛⎭⎪⎫π4+2×2π=cosπ3+tan π4=12+1=32. 10.已知P (-2,y )是角α终边上一点,且sin α=-55,求cos α与tan α的值.解:因为点P 到原点的距离为r =4+y 2,所以sin α=y4+y 2=-55,所以y 2+4=5y 2,所以y 2=1.又易知y <0,所以y =-1,所以r =5,所以cos α=-25=-255,tan α=-1-2=12.B 级 能力提升1.若α是第三象限角,则|sin α|sin α-cos α|cos α|=( )A .0B .1C .2D .-2解析:因为α是第三象限角,所以sin α<0,cos α<0, 所以|sin α|sin α-cos α|cos α|=-1-(-1)=0.答案:A2.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α=________.解析:因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos θ<0,所以点(-3cos θ,4cos θ)到原点的距离r =5|cos θ|=-5cos θ, 所以cos α=-3cos θ-5cos θ=35.答案:353.利用三角函数线,写出满足|cos α|>|sin α|的角α的集合. 解:如图,作出单位圆.所以角α满足的集合为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪k π-π4<α<k π+π4,k ∈Z .。

必修4第一章三角函数基础训练及答案

必修4第一章三角函数基础训练及答案

(数学4必修)第一章 三角函数()一、选择题1. 设α角属于第二象限,且2cos 2cos αα-=,则2α角属于( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限2. 给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tan cos 107sin πππ. 其中符号为负的有( ) A . ① B . ② C . ③ D . ④3. 02120sin 等于( )A . 23±B . 23C . 23-D . 21 4. 已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于( ) A . 43- B . 34- C . 43 D . 34 5. 若α是第四象限的角,则πα-是( ) A . 第一象限的角 B . 第二象限的角 C . 第三象限的角 D . 第四象限的角6. 4tan 3cos 2sin 的值( )A . 小于0B . 大于0C . 等于0D . 不存在二、填空题1. 设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限.2. 设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0, 其中正确的是_____________________________.3. 若角α与角β的终边关于y 轴对称,则α与β的关系是___________.4. 设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 .5. 与02002-终边相同的最小正角是_______________. 三、解答题1. 已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值.2. 已知2tan =x ,求xx x x sin cos sin cos -+的值.3. 化简:)sin()360cos()810tan()450tan(1)900tan()540sin(00000x x x x x x --⋅--⋅--4. 已知)1,2(,cos sin ≠≤=+m m m x x 且, 求(1)x x 33cos sin +;(2)x x 44cos sin +的值.数学4(必修)第一章 三角函数(上)参考答案一、选择题1. C 22,(),,(),2422k k k Z k k k Z ππαππαππππ+<<+∈+<<+∈当2,()k n n Z =∈时,2α在第一象限;当21,()k n n Z =+∈时,2α在第三象限; 而cos coscos 0222ααα=-⇒≤,2α∴在第三象限; 2. C 00sin(1000)sin 800-=>;000cos(2200)cos(40)cos 400-=-=>tan(10)tan(310)0π-=-<;77sincos sin 7171010,sin 0,tan 01717109tan tan 99πππππππ-=>< 3. B0sin1202== 4. A 43sin 4sin ,cos ,tan 55cos 3ααααα==-==- 5. Cπααπ-=-+,若α是第四象限的角,则α-是第一象限的角,再逆时针旋转0180 6.A 32,sin 20;3,cos30;4,tan 40;sin 2cos3tan 40222ππππππ<<><<<<<>< 二、填空题1. 四、三、二 当θ是第二象限角时,sin 0,cos 0θθ><;当θ是第三象限角时,sin 0,cos 0θθ<<;当θ是第四象限角时,sin 0,cos 0θθ<>;2. ② 1717sin 0,cos 01818MP OM ππ=>=< 3. 2k αβππ+=+ α与βπ+关于x 轴对称4. 2 21(82)4,440,2,4,22l S r r r r r l rα=-=-+===== 5. 0158 0000020022160158,(21603606)-=-+=⨯三、解答题1. 解:21tan 31,2tan k k αα⋅=-=∴=±,而παπ273<<,则1tan 2,tan k αα+==得tan 1α=,则sin cos 2αα==-,cos sin αα∴+= 2. 解:cos sin 1tan 123cos sin 1tan 12x x x x x x +++===---- 3. 解:原式=000sin(180)1cos tan()tan(90)tan(90)sin()x x x x x x -⋅⋅---- sin 1tan tan ()sin tan tan x x x x x x=⋅⋅-=- 4. 解:由sin cos ,x x m +=得212sin cos ,x x m +=即21sin cos ,2m x x -= (1)233313sin cos (sin cos )(1sin cos )(1)22m m m x x x x x x m --+=+-=-=(2)24244222121sin cos 12sin cos 12()22m m m x x x x --+++=-=-=。

完整版必修4第一章三角函数单元测试卷含详细解答

完整版必修4第一章三角函数单元测试卷含详细解答

必修 4 第一章三角函数单元测试卷一.选择题(共10 小题,满分50 分,每题 5 分)1.已知α为第三象限角,则所在的象限是()A .第一或第二象限B .第二或第三象限C.第一或第三象限 D .第二或第四象限2.已知 cosθ?tanθ< 0,那么角θ是()A .第一或第二象限角B .第二或第三象限角C.第三或第四象限角 D .第一或第四象限角3.以下各角中,与30°的角终边相同的角是()A .60°B . 120°C.﹣30° D .390°4.已知,则 tanα=()A.﹣1 B .C. D .15. tan(﹣ 1410°)的值为()A .B .C. D .6.若=()A .B .C. D .7.既是偶函数又在区间(0,π)上单一递减的函数是()A .y=sinxB . y=cosx C. y=sin2x D .y=cos2x8.设,,,则()A .a< b< cB . a< c<b C. b<c< a D .b< a< c9.函数 y=2sin(﹣ 2x), x∈[0,π])为增函数的区间是()A.[0,]B.[ ,]10.要获取函数 y=cos( 2x+1 )的图象,只需将函数A .向左平移 1 个单位C.向左平移个单位C.[,]D.[,π]y=cos2x的图象()B.向右平移 1 个单位D .向右平移个单位二.填空题(共 5 小题,满分25 分,每题 5 分)11.已知点 P(﹣ 3, 4)在角α的终边上,则sinα= _________.12.若 cosα=﹣,且α∈(π,),则tanα=_________.13.已知 f (x) =,则f()=_________.14.函数 f (x) =sinx+2|sinx| , x∈[0, 2π]的图象与直线y=k 有且仅有两个不一样样的交点,则实数k 的取值范围是_________.15.函数的图象为C,以下结论中正确的选项是_________.(写出所有正确结论的编号)①图象 C 对于直线对称;②图象 C 对于点对称;③ 函数f( x)在区间内是增函数;④由 y=3sin2x的图角向右平移个单位长度能够获取图象C.三.解答题(共 6 小题)16.已知扇形的周长是8,( 1)若圆心角α=2,求弧长l(注)( 2)若弧长为6,求扇形的面积S.17.已知cosa=﹣,a为第二象限角,求sina, tana.18.已知.(1)求 sinx﹣ cosx 的值;( 2)求的值.19.已知函数在某一个周期内的图象的最高点和最低点的坐标分别为(, 2)(,﹣ 2).( 1)求 A 和ω的值;( 2)已知α∈( 0,),且,求f(α)的值.20.已知 f (x) =Asin (ωx+ φ)( A > 0,ω>0, 0<φ<π)图象的一部分以以以下列图:( 1)求 f( x)的分析式;( 2)写出 f( x)的单一区间.21.如图是函数的一段图象.( I)求φ的值及函数f( x)的分析式;( II )求函数的最值及零点.必修 4 第一章三角函数单元测试卷参照答案与试题分析一.选择题(共 10 小题,满分 50 分,每题 5 分)1.( 5 分)(2005?陕西)已知α为第三象限角,则所在的象限是()A .第一或第二象限B .第二或第三象限C.第一或第三象限 D .第二或第四象限考点:象限角、轴线角;角的变换、缩短变换.分析:α为第三象限角,即k∈Z,表示出,今后再判断即可.解答:解:由于α为第三象限角,即k∈Z,所以,k∈Z 当 k 为奇数时它是第四象限,当k 为偶数时它是第二象限的角.应选 D.讨论:本题察看象限角,角的变换,是基础题.能够实行到其余象限.2.( 5 分)(2007?北京)已知 cosθ?tanθ< 0,那么角θ是()A .第一或第二象限角B .第二或第三象限角C.第三或第四象限角 D .第一或第四象限角考点:象限角、轴线角.专题:计算题.分析:依照cosθ?tanθ<0和“一全正、二正弦、三正切、四余弦”来判断角θ所在的象限.解答:解:∵ cosθ?tanθ<0,∴ 角θ是第三或第四象限角,应选 C.讨论:本题的考点是三角函数值得符号判断,需要利用题中三角函数的不等式和“一全正、二正弦、三正切、四余弦”对角的终边地址进行判断.3.( 5 分)(2007?怀柔区模拟)以下各角中,与30°的角终边相同的角是()A .60°B . 120°C.﹣30° D .390°考点:终边相同的角.专题:计算题.分析:依照终边相同的角之间相差周角的整数倍,我们能够表示出与30°的角终边相同的角α的会合,分析题目中的四个答案,找出可否存在知足条件的k 值,即可获取答案.解答:解:∵ 与30°的角终边相同的角α的会合为{ α|α=30 °+k?360°,k∈Z}当 k=1 时,α=390°应选 D讨论:本题察看的知识点是终边相同的角,其中依照终边相同的角之间相差周角的整数倍,表示出与30°的角终边相同的角α的会合,是解答本题的重点.4.( 5 分)(2012?辽宁)已知,则tanα=()A.﹣1B.C.D.1考点:同角三角函数间的基本关系.专题:计算题.分析:由条件可得 1﹣ 2sinαcosα=2,即 sin2α=﹣ 1,故 2α=,α=,进而求得 tanα的值.解答:解:∵ 已知,∴ 1﹣2sinαcosα=2,即 sin2α=﹣ 1,故 2α=,α=,tanα=﹣1.应选 A.讨论:本题主要察看同角三角函数的基本关系的应用,求得α=,是解题的重点,属于基础题.5.( 5 分)(2013?石家庄二模) tan(﹣ 1410°)的值为()A .B .C. D .考点:运用引诱公式化简求值.专题:三角函数的求值.分析:利用引诱公式把要求的式子化为tan30°,进而求得结果.解答:°)=tan30°=,解: tan(﹣ 1410°)=tan(﹣ 180°×8+30应选 A.讨论:本题主要察看引诱公式的应用,属于基础题.6.( 5 分)(2012?茂名一模)若=()A .B .C. D .考点:运用引诱公式化简求值.专题:计算题.分析:利用引诱公式化简已知等式的左边,求出cosα的值,再由α的范围,利用同角三角函数间的基本关系求出sin α的值,再将所求式子中的角度变形后,利用引诱公式变形后,将sinα的值代入即可求出值.解答:,解:∵ cos(π+α) =﹣cosα=∴ cosα=﹣,又π<α<π,∴ sinα=﹣=﹣,则 sin(5π﹣α)=sin[4 π+(π﹣α)] =sin(π﹣α) =sinα=﹣.应选 D讨论:本题察看了运用引诱公式化简求值,以及同角三角函数间的基本关系,灵便变换角度,熟练掌握公式是解本题的重点.7.( 5 分)(2013?上海)既是偶函数又在区间(0,π)上单一递减的函数是()A .y=sinxB . y=cosx C. y=sin2x D .y=cos2x考点:余弦函数的奇偶性;余弦函数的单一性.专题:三角函数的图像与性质.分析:依照函数的奇偶性除去 A 、 C,再依照函数的单一性除去D,经查验 B 中的函数知足条件,进而得出结论.解答:解:由于函数y=sinx 和 y=sin2x 都是奇函数,故除去 A 、C.由于函数y=cosx 是偶函数,周期等于2π,且在( 0,π)上是减函数,故知足条件.由于函数y=cos2x是偶函数,周期等于π,在(0,)上是减函数,在(,π)上是增函数,故不知足条件.应选 B.讨论:本题主要察看余弦函数的奇偶性和单一性,属于中档题.8.( 5 分)(2008?天津)设,,,则()A .a< b< cB . a< c<b C. b<c< a D .b< a< c考点:正弦函数的单一性;不等式比较大小;余弦函数的单一性;正切函数的单一性.专题:压轴题.分析:把a,b转变为同一种类的函数,再运用函数的单一性比较大小.解答:解:∵, b=.而<,sinx 在( 0,)是递加的,所以,应选 D.讨论:本题察看了三角函数的单一性以及相互变换.9.( 5 分)(2004?天津)函数 y=2sin(﹣ 2x), x∈[0,π] )为增函数的区间是()A .B.[,]C.[,]D.[,π][0, ]考点:正弦函数的单一性;函数y=Asin (ωx+ φ)的图象变换.专题:计算题.分析:先依照引诱公式进行化简,再由复合函数的单一性可知y= ﹣ 2sin( 2x﹣)的增区间可由y=2sin( 2x﹣)的减区间获取,再由正弦函数的单一性可求出x 的范围,最后结合函数的定义域可求得答案.解答:解:由 y=2sin (﹣ 2x) =﹣ 2sin( 2x﹣)其增区间可由 y=2sin ( 2x﹣)的减区间获取,即 2kπ+ ≤2x﹣≤2kπ+, k∈Z∴ kπ+ ≤x≤kπ+, k∈Z .令 k=0 ,≤x≤,应选 C.讨论:本题主要察看三角函数引诱公式的应用和正弦函数的单一性.察看基础知识的综合应用和灵便能力,三角函数的知识点比很多,内容比较琐碎,平时要注意积累基础知识.10.( 5 分)( 2012?安徽)要获取函数 y=cos( 2x+1 )的图象,只需将函数y=cos2x 的图象()A .向左平移 1 个单位B.向右平移 1 个单位C.向左平移个单位 D .向右平移个单位考点:函数 y=Asin (ωx+ φ)的图象变换.专题:常例题型.分析:化简函数 y=cos( 2x+1 ),今后直接利用平移原则,推出平移的单位与方向即可.解答:解:由于函数y=cos( 2x+1) =cos[2(x+ )] ,所以要获取函数y=cos( 2x+1 )的图象,只需将函数y=cos2x 的图象向左平移个单位.应选 C.讨论:本题察看三角函数的图象的平移变换,注意平移时x 的系数必定是“1”.二.填空题(共 5 小题,满分25 分,每题 5 分)11.(5 分)( 2012?顺义区二模)已知点P(﹣ 3, 4)在角α的终边上,则sinα=.考点:随意角的三角函数的定义.专题:三角函数的求值.分析:x= ﹣ 3, y=4, r=|OP|=5,再由 sinα=,求得结果.由于已知点 P(﹣ 3, 4)在角α的终边上,可得解答:解:∵ 已知点P(﹣3,4)在角α的终边上,∴ x=﹣3,y=4,r=|OP|=5,则 sinα= = ,故答案为.讨论:本题主要察看随意角的三角函数的定义,属于基础题.12.( 5 分)( 2011?重庆)若cosα=﹣,且α∈(π,),则tanα=.考点:随意角的三角函数的定义.专题:计算题.分析:依照α∈(π,), cosα=﹣,求出 sinα,今后求出 tanα,即可.解答:解:由于α∈(π,),cosα=﹣,所以sinα=﹣,所以tanα==故答案为:讨论:本题是基础题,察看随意角的三角函数的定义,注意角所在的象限,三角函数值的符号,是本题解答的重点.13.( 5 分)( 2012?宿州三模)已知f ( x)=,则f()=﹣.考点:运用引诱公式化简求值.专题:计算题.分析:由题意可得f()=f(﹣)=sin(﹣),利用引诱公式求出结果.解答:解:∵已知 f ( x) =,则f()=f(﹣)=sin(﹣)=﹣sin=﹣,故答案为﹣.讨论:本题主要察看利用引诱公式求三角函数值,属于基础题.14.(5 分)( 2005?上海)函数k 的取值范围是(1,3)f( x)=sinx+2|sinx| , x∈[0 , 2π]的图象与直线.y=k有且仅有两个不一样样的交点,则实数考点:正弦函数的图象.专题:压轴题;数形结合.分析:依照sinx≥0和sinx<0对应的求出 k 的取值范围.x 的范围,去掉绝对值化简函数分析式,再由分析式画出函数的图象,由图象解答:解:由题意知,,在坐标系中画出函数图象:由其图象可知当直线y=k , k∈( 1, 3)时,与 f( x) =sinx+2|sinx| ,x∈[0, 2π]的图象与直线y=k 有且仅有两个不一样样的交点.故答案为:( 1, 3).讨论:本题的考点是正弦函数的图象应用,即依照x 的范围化简函数分析式,依照正弦函数的图象画出原函数的图象,再由图象求解,察看了数形结合思想和作图能力.15.(5 分)( 2007?安徽)函数的图象为C,以下结论中正确的选项是①②③.(写出所有正确结论的编号)①图象 C 对于直线对称;②图象 C对于点对称;③函数 f( x)在区间内是增函数;④由 y=3sin2x的图角向右平移个单位长度能够获取图象C.考点:函数 y=Asin (ωx+ φ)的图象变换;正弦函数的单一性;正弦函数的对称性.专题:综合题;压轴题;整体思想.分析:把代入求值,只假如的奇数倍,则① 正确,把横坐标代入求值,只假如π的倍数,则② 对;同原因x 的范围求出的范围,依照正弦函数的单一区间判断③ 可否对,由于向右平移故把 x=x ﹣代入进行化简,再比较判断④ 可否正确.解答:解:①、把代入得,,故① 正确;②、把 x=代入得,,故② 正确;③ 、当时,求得,故③ 正确;④ 、有条件得,,故④ 不正确.故答案为:①②③.讨论:本题察看了复合三角函数图象的性质和图象的变换,把作为一个整体,依照条件和正弦函数的性质进行求解以及判断,察看了整体思想.三.解答题(共 6 小题)16.已知扇形的周长是8,( 1)若圆心角α=2,求弧长 l(注)( 2)若弧长为6,求扇形的面积S.考点:扇形面积公式;弧长公式.专题:计算题.分析:( 1)直接利用,求出扇形的弧长.(2)求出扇形的半径,利用面积公式求出扇形的面积.解答:解:扇形的周长是 8,(1)若圆心角α=2,弧长 l,所以 l=2r , l+2r=8 ,所以 l=4 ,;( 2)若弧长为6,半径 r=1 ,所以扇形的面积S=.讨论:本题是基础题,察看扇形的周长与面积的计算问题,正确利用公式是解题的重点.17.已知 cosa=﹣,a为第二象限角,求sina, tana.考点:同角三角函数间的基本关系;象限角、轴线角.: 算 .分析: 先依照 α所在的象限,判断出sin α的正 , 而依照同角三角函数的基本关系,利用cos α的 求得sin α,而求得 tan α的 .解答:解: ∵ a 第二象限角, ∴ sin α>0∴ sin α==tan α= =点 : 本 主要考 了同角三角函数基本关系的 用.注意依照角的范 确定三角函数的正 号.18.已知.( 1)求 sinx cosx 的 ;( 2)求的 .考点 : 运用 公式化 求 ;同角三角函数 的基本关系.: 三角函数的求 .分析: ( 1)利用同角三角函数基本关系式直接求出sinx 和 cosx 的 , 而求出 果.( 2)先利用 公式化 所求的式子,将原式分子分母同除以 cos 2x , 化成 tanx 的表达式去解. 解答:解: ∵sinx= 2cosx ,又 sin 2x+cos 2x=1, ∴ 5cos 2x=1,∴( 1)( 2)原式 == ⋯( 12 分)点 : 本 考 同角三角函数基本关系式的 用和三角函数的 公式, 算要正确,属于中档 .19.( 2012?广州二模)已知函数在某一个周期内的 象的最高点和最低点的坐 分 (, 2)(, 2).( 1)求A 和 ω的 ;( 2)已知 α∈( 0,),且,求f (α)的 .考点 : 由 y=Asin ( ωx+ φ)的部分 象确定其分析式;三角函数的恒等 及化 求 .: 算 . 分析:( 1)由函数 象最高点和最低点 坐 可得振幅 A ,相 最高和最低点 的横坐 之差 半个周期,可求得函数的周期, 而得ω 的即( 2)先利用同角三角函数基本关系式和二倍角公式计算 sin2α、cos2α的值,再利用( 1)中结论,将 f ( α)化简,代入 sin2α、 cos2α的值求值即可解答:解:( 1) ∵某一个周期内的图象的最高点和最低点的坐标分别为( , 2)( ,﹣ 2).∴ A=2, T=2 ×(﹣) =π∴ ω==2∴ A=2 , ω=2( 2) ∵ α∈( 0,),且, ∴cos α=∴ sin2α= ,cos2α=1﹣ 2sin 2α=﹣由( 1)知∴=sin2 α﹣cos2α= +=讨论: 本题主要察看了y=Asin ( ωx+ φ)型函数的图象和性质,三角变换公式在三角化简和求值中的应用,属基础题20.已知 f ( x ) =Asin ( ωx+ φ)( A >0, ω> 0,0< φ< π)图象的一部分以以以下列图:( 1)求 f ( x )的分析式;( 2)写出 f ( x )的单一区间.考点 : 由 y=Asin ( ωx+ φ)的部分图象确定其分析式;正弦函数的单一性.专题 : 计算题.分析:( 1)由图象直接求出 A 和 T ,可求 ω,依照特别点( , 2)求出 φ,即可求函数 f (x )的分析式;( 2)依照正弦函数的单一性直接求出函数的单一增区间和单一减区间即可.解答: 解:( 1)由图可知 A=2T= π∴ ω=2当时 f (x )取最大值 ∴φ=∴ φ=吻合条件∴ f ( x ) =2sin ( 2x+)(6 分)( 2) f ( x )的单一递加区间为(9 分)f (x )的单一递减区间为(12 分)讨论: 本题察看三角函数 y=Asin ( ωx+ φ)的图象及其分析式,三角函数的单一性,察看计算能力,是基础题.21.如是函数的一段象.( I)求φ的及函数f( x)的分析式;( II )求函数的最及零点.考点:由 y=Asin (ωx+ φ)的部分象确定其分析式;函数的零点.:算.分析:( I)利用三角函数的象直接求出A,推出函数的周期,利用周期公式求出ω,象点,合φ的范求φ的,即可获取函数f( x)的分析式;( II )通函数,求出它的表达式,利用正弦函数的最以及x 的取,求出函数的最,利用正弦函数的零点求出函数的零点.解答:解:( I )由可知, A=2 .⋯(2 分)函数的周期,所以.⋯(4 分)因象点,所以,即.所以.因,所以.所以.⋯(7 分)( II )依意,.当,即, y 获取最大,且最大等于2.当,即, y 获取最小,且最小等于2.⋯( 10 分)因, g( x) =0,所以,函数 g( x)零点.⋯( 12 分)点:本是中档,考三角函数的分析式的求法,函数的象的用,正弦函数的基本知,考算能力.。

人教A版新课标高中数学必修4第一章《三角函数》综合练习题(含答案)

人教A版新课标高中数学必修4第一章《三角函数》综合练习题(含答案)

第一章《三角函数》综合练习一、选择题1.已知角α的终边经过点0p (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-2.半径为πcm ,圆心角为120︒所对的弧长为()A .3πcmB .23πcmC .23πcm D .223πcm 3.函数12sin[()]34y x π=+的周期、振幅、初相分别是( )A .3π,2-,4πB .3π,2,12πC .6π,2,12πD .6π,2,4π4.sin y x =的图象上各点纵坐标不变,横坐标变为原来的12,然后把图象沿x 轴向右平移3π个单位,则表达式为( ) A .1sin()26y x π=-B .2sin(2)3y x π=-C .sin(2)3y x π=-D .1sin()23y x π=-5.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数图像( )A .关于直线x =π4对称B .关于点(π3,0)对称C .关于点(π4,0)对称D .关于直线x =π3对称6.如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |7.函数y=cos 2x –3cosx+2的最小值是()A .2B .0C .41 D .68.函数y =3sin ⎝⎛⎭⎪⎫-2x -π6(x ∈[0,π])的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤0,5π12B.⎣⎢⎡⎦⎥⎤π6,2π3C.⎣⎢⎡⎦⎥⎤π6,11π12D.⎣⎢⎡⎦⎥⎤2π3,11π12 9.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ= D.4=B10.已知1cos()63πα+=-,则sin()3πα-的值为()A .13B .13-C .233D .233-11.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对12.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )A. 1B.22C. 0D.22-二、填空题13.函数x x f cos 21)(-=的定义域是______________ 14.若sin α+cos αsin α-cos α=2,则sin αcos α的值是_____________.15、函数])32,6[)(6cos(πππ∈+=x x y 的值域是 . 16.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是__________.三、解答题17.已知α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.(1)化简()f α; (2)若31sin()23πα-=-,求()f α的值.18.已知tan 3α=,求下列各式的值: (1)4sin cos 3sin 5cos αααα-+ ;(2)212sin cos cos ααα+.19.(1)画出函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 在一个周期的函数图像;(2)求出函数的对称中心和对称轴方程.20.已知y =a -b cos3x (b >0)的最大值为32,最小值为-12.(1)判断其奇偶性.(2)求函数y =-4a sin(3bx )的周期、最大值,并求取得最大值时的x ;21.已知函数45)62sin(21++=πx y (1)求函数的单调递增区间; (2)写出y=sinx 图象如何变换到15sin(2)264y x π=++的图象第一章《三角函数》综合练习答案一、选择题1-5 CDCBB 6-10 CBBCA 11-12 BB 二、填空题13、5[2,2],33k k k Z ππππ++∈14、31015、1[]216、13k << 17. 解析:(1)sin (tan )1()sin cos (tan )cos f ααααααα-==---;(2)若31sin()23πα-=-,则有1cos 3α=-,所以()f α=3。

必修4第一章三角函数同步练习及答案

必修4第一章三角函数同步练习及答案

第一章 三角函数§1.1 任意角和弧度制一、选择题1.若α是第一象限角,则下列各角中一定为第四象限角的是 ( ) (A) 90°-α (B) 90°+α (C)360°-α (D)180°+α2.终边与坐标轴重合的角α的集合是 ( ) (A){α|α=k ·360°,k ∈Z} (B){α|α=k ·180°+90°,k ∈Z} (C){α|α=k ·180°,k ∈Z} (D){α|α=k ·90°,k ∈Z}3.若角α、β的终边关于y 轴对称,则α、β的关系一定是(其中k ∈Z ) ( ) (A) α+β=π (B) α-β=2π(C) α-β=(2k +1)π (D) α+β=(2k +1)π 4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为 ( )(A)3π (B)32π (C)3 (D)25.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π(B)-3π (C)6π (D)-6π *6.已知集合A ={第一象限角},B ={锐角},C ={小于90°的角},下列四个命题:①A =B =C ②A ⊂C ③C ⊂A ④A ∩C =B ,其中正确的命题个数为 ( ) (A)0个 (B)2个 (C)3个 (D)4个 二.填空题7.终边落在x 轴负半轴的角α的集合为 ,终边在一、三象限的角平分线上的角β的集合是 . 8. -1223πrad 化为角度应为 . 9.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的 倍. *10.若角α是第三象限角,则2α角的终边在 ,2α角的终边在 . 三.解答题11.试写出所有终边在直线x y 3-=上的角的集合,并指出上述集合中介于-1800和1800之间的角.12.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.13.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少? *14.如下图,圆周上点A 依逆时针方向做匀速圆周运动.已知A 点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.§.任意角的三角函数一.选择题1.函数y =|sin |sin x x +cos |cos |x x +|tan |tan x x的值域是 ( )(A){-1,1} (B){-1,1,3} (C) {-1,3} (D){1,3} 2.已知角θ的终边上有一点P (-4a ,3a )(a ≠0),则2sin θ+cos θ的值是 ( )(A) 25 (B) -25 (C) 25或 -25 (D) 不确定3.设A 是第三象限角,且|sin2A |= -sin 2A ,则2A是 ( ) (A) 第一象限角 (B) 第二象限角 (C) 第三象限角 (D) 第四象限角4. sin2cos3tan4的值 ( ) (A)大于0 (B)小于0 (C)等于0 (D)不确定5.在△ABC 中,若cos A cos B cos C <0,则△ABC 是 ( )(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)锐角或钝角三角形*6.已知|cos θ|=cos θ, |tan θ|= -tan θ,则2θ的终边在 ( )(A)第二、四象限 (B)第一、三象限 (C)第一、三象限或x 轴上 (D)第二、四象限或x 轴上 二.填空题 7.若sin θ·cos θ>0, 则θ是第 象限的角;8.求值:sin(-236π)+cos 137π·tan4π -cos 133π= ;9.角θ(0<θ<2π)的正弦线与余弦线的长度相等且符号相同,则θ的值为 ;*10.设M =sin θ+cos θ, -1<M <1,则角θ是第 象限角. 三.解答题11.求函数y =lg(2cos x的定义域。

【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)

【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)

第一章 三角函数1.2.1 任意角的三角函数一、选择题1.已知sin α+cos α=–15,α∈(0,π),则tan α的值为A .–43或–34B .–43C .–34D .34【答案】C【解析】∵sin α+cos α=–15,α∈(0,π),∴α为钝角,结合sin 2α+cos 2α=1,∴sin α=35,cos α=–45,则tan α=sin cos αα=–34,故选C . 2.若点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,则sin α的值为A .12-B .12C .3D 3 【答案】C【解析】因为点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,即点132⎛- ⎝⎭,在角α的终边上,则3sin α=,故选C .3.若角α的终边过点P (3,–4),则cos α等于A .35B .34-C .45-D .45【答案】A【解析】∵角α的终边过点P (3,–4),∴r =5,∴cos α=35,故选A .4.如果角θ的终边经过点(3,–4),那么sin θ的值是A .35B .35-C .45D .45-【答案】D【解析】∵角θ的终边经过点(3,–4),∴x =3,y =–4,r 22x y +,∴sin θ=y r=–45,故选D .5.若sinαtanα<0,且costanαα<0,则角α是A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】∵sinαtanα<0,可知α是第二或第三象限角,又costanαα<0,可知α是第三或第四象限角.∴角α是第三象限角.故选C.6.已知点P(x,3)是角θ终边上一点,且cosθ=–45,则x的值为A.5 B.–5 C.4 D.–4 【答案】D【解析】∵P(x,3)是角θ终边上一点,且cosθ=–45,∴cosθ=29x+=–45,∴x=–4.故选D.7.若点P(sinα,tanα)在第三象限,则角α是A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【解析】∵点P(sinα,tanα)在第三象限,∴sinα<0,tanα<0.∴角α是第四象限角.故选D.8.如果角α的终边过点(2sin60°,–2cos60°),则sinα的值等于A.12B.–12C.–3D.–3【答案】B【解析】角α的终边过点(2sin60°,–2cos60°),即(31-,),由任意角的三角函数的定义可知:sinα=()()221 231=-+-.故选B.9.若角120°的终边上有一点(–4,a),则a的值是A.43B.43-C.43±D.310.已知4sin5α=,并且P(–1,m)是α终边上一点,那么tanα的值等于A .43-B .34-C .34D .43【答案】A 【解析】∵4sin5α=,并且P (–1,m )是α45=,∴m =43,那么tan α=1m-= –m =–43,故选A . 11.已知sin α<0,且tan α>0,则α的终边所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵sin α<0,∴α的终边在第三、第四象限或在y 轴负半轴上,∵tan α>0,∴α的终边在第一或第三象限,取交集可得,α的终边所在的象限是第三象限角.故选C . 12.若角α终边经过点P (sin2π2πcos 33,),则sin α=A .12BC .12-D . 【答案】C【解析】∵角α终边经过点P (sin 2π2πcos 33,),即点P ,–12),∴x ,y =–12,r =|OP |=1,则sin α=y r=y =–12,故选C .13.已知角α的终边过点12P ⎛ ⎝⎭,,则sin α=A .12B C D . 【答案】C【解析】由题意可得,x =12,y ,r =|OP |=1,∴sin α=y r,故选C .14.已知角α的终点经过点(–3,4),则–cos α=A .35B .–35C .45D .–45【答案】A【解析】∵角α的终点经过点(–3,4),∴x =–3,y =4,r =|OP |=5,则–cos α=–35x r =,故选A . 二、填空题15.若角α的终边与单位圆交于P (–35,45),则sin α=45;cos α=___________;tan α=___________.【答案】45;35-;43- 【解析】∵角α的终边与单位圆交于P (–35,45),|OP |=223455⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭=1,∴由任意角的三角函数的定义可知:sin α=44515=,同理可得cos α=35-;tan α=445335=--;故答案为:45;35-;43-.16.已知23cos 4a x a-=-,x 是第二、三象限角,则a 的取值范围是__________.17.已知角α的终边经过点P (–2,4),则sin α–cos α的值等于__________.35【解析】∵角α的终边经过点P (–2,4),∴x =–2,y =4,r =|OP 5,∴sin α=25y r =,cos α=xr= 5,则sin α–cos α3535. 18.适合条件|sin α|=–sin α的角α是__________.【答案】[2k π–π,2k π],k ∈Z【解析】∵|sin α|=–sin α,∴–sin α≥0,∴sin α≤0,由正弦曲线可以得到α∈[2k π–π,2k π],k ∈Z ,故答案为:[2k π–π,2k π],k ∈Z .19.若角α的终边经过点(–1,–2),则tan α=___________.【答案】2【解析】∵角α的终边经过点(–1,–2),∴由三角函数定义得tan α=21--=2.故答案为:2. 20.已知角θ的终边经过点P (x ,2),且1cos 3θ=,则x =___________.2 【解析】∵角θ的终边经过点P (x ,2),且21cos 34x θ==+,解得x 22.21.若sinθ<0,cosθ>0,则θ在第___________象限.【答案】四【解析】由sinθ<0,可知θ为第三、第四象限角或终边在y轴负半轴上的角.由cosθ<0,可知θ为第一、第四象限角或终边在x轴正半轴上的角.取交集可得,θ在第四象限.故答案为:四.三、解答题22.已知点P(3m,–2m)(m<0)在角α的终边上,求sinα,cosα,tanα.【解析】因为点P(3m,–2m)(m<0)在角α的终边上,所以x=3m,y=–2m,r=–13m,sinα=21313yr==,cosα=31313xr=-=-,tanα=32yx=-.23.确定下列各式的符号:(1)sin 103°·cos 220°;(2)cos 6°·tan 6.24.已知角α的终边在直线y=2x上,分别求出sinα,cosα及tanα的值.【解析】当角α的终边在第一象限时,在角α的终边上任意取一点P(1,2),则x=1,y=2,r=|OP5,∴sinα=255yr==cosα=55xr=,tanα=yx=2;当角α的终边在第三象限时,在角α的终边上任意取一点P(–1,–2),则x=–1,y=–2,r=|OP|=5,∴sinα=yr=5=25,cosα=xr=5=5,tanα=yx=2.25.已知角α的终边上一点P (m )(m ≠0),且sin α=4,求cos α,tan α的值.【解析】设P (x ,y ).由题设知x=y=m ,所以r 2=|OP|2=(2+m 2(O 为原点),,所以sin α=mr =4,所以=,3+m 2=8,解得当r=,x=所以cos =,tan当m=r=,x=y=所以cos =,tan26.已知角α终边上一点P (m ,1),cos α=–13.(1)求实数m 的值; (2)求tan α的值.【解析】(1)角α终边上一点P (m ,1),∴x =m ,y =1,r =|OP∴cos α=–13,解得m =.(2)由(1)可知tan α=1m。

(压轴题)高中数学必修四第一章《三角函数》测试(含答案解析)

(压轴题)高中数学必修四第一章《三角函数》测试(含答案解析)

一、选择题1.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 2.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .83.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.假设在水流量稳定的情况下,简车上的每一个盛水筒都做逆时针匀速圆周运动.现将筒车抽象为一个几何图形,如图所示,圆O 的半径为4米,盛水筒M 从点0P 处开始运动,0OP 与水平面的所成角为30,且每分钟恰好转动1圈,则盛水筒M 距离水面的高度H (单位;m )与时间t (单位:s )之间的函数关系式的图象可能是( )A .B .C .D .4.下列结论正确的是( ) A .sin1cos1< B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭5.平面直角坐标系xOy 中,点()00,P x y 在单位圆O 上,设xOP α∠=,若5,36ππα⎛⎫∈ ⎪⎝⎭,且3sin 65πα⎛⎫+= ⎪⎝⎭,则0x 的值为A .3310- B .3310+ C .3310D .43310- 6.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C7.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =8.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积12=(弦×矢+矢×矢).弧田是由圆弧(弧田弧)及圆弧两端点的弦(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到孤田弦的距离之差,现有一弧田,其矢长等于8米,若用上述弧田面积计算公式算得该弧田的面积为128平方米,则其弧田弧所对圆心角的正弦值为( ) A .60169B .120169C .119169D .591699.设函数()()sin 16f x x N πωω*⎛⎫=-+∈ ⎪⎝⎭在55,126ππ⎡⎤⎢⎥⎣⎦上单调递减,则下述结论: ①()f x 关于,012π⎛⎫⎪⎝⎭中心对称;②()f x 关于直线23x π=轴对称;③()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的值域为30,2⎡⎤⎢⎥⎣⎦;④方程()1f x =在[]0,2π有4个不相同的根. 其中正确结论的编号是( ) A .①②B .②③C .②④D .③④10.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=-⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .1311.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .112.若函数()22()sin 23cos sin f x x x x =+-的图像为E ,则下列结论正确的是( ) A .()f x 的最小正周期为2π B .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数 D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E 二、填空题13.“一湾如月弦初上,半壁澄波镜比明”描述的是敦煌八景之一的月牙泉.如图所示,月牙泉由两段在同一平面内的圆弧形岸连接围成.两岸连接点间距离为603米.其中外岸为半圆形,内岸圆弧所在圆的半径为60米.某游客绕着月牙泉的岸边步行一周,则该游客步行的路程为_______米.14.设函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图象为C ,给出下列命题:①图象C 关于直线1112π=x 对称;②函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是减函数;③函数()f x 是奇函数;④图象C 关于点,03π⎛⎫⎪⎝⎭对称.其中,错误命题的是______.15.已知函数()()2sin 0f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是-2,则ω的最小值等于__________.16.已知M 是函数()()238sin f x x x x R π=--∈的所有零点之和.则M 的值为_____. 17.给出下列4个命题:①函数2cos 32y x π⎛⎫=+ ⎪⎝⎭是奇函数;②函数y =sin (2x +3π)的图象关于点(12π,0)成中心对称; ③x =8π是函数y =sin (2x +54π)的一条对称轴方程;④存在实数α,使得32sin 42πα⎛⎫+= ⎪⎝⎭.把你认为正确命题的序号都填在横线上____. 18.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________.19.已知将函数()sin()(06,)22f x x ππωθωθ=+<<-<<的图象向右平移3π个单位长度得到画()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ωθ⋅=________.20.函数()()0,0,2(f x Asin x A πωϕωϕ=+>><)的部分图像如图所示.则()f x 的解析式是_____.三、解答题21.已知函数()()2sin 0,22x f x ωϕωπϕ=≥<⎛⎫+ ⎪⎝⎭的图像向右平移6π个单位长度得到()g x 的图像, ()g x 图像关于原点对称,()f x 的相邻两条对称轴的距离是2π. (1)求()f x 在[]0,π上的增区间; (2)若()230f x m -=+在0,2x π⎡⎤∈⎢⎥⎣⎦上有两解,求实数m 的取值范围.22.已知函数2()3sin cos cos (0)f x x x x ωωωω=->周期是2π. (1)求()f x 的解析式,并求()f x 的单调递增区间;(2)将()f x 图像上所有点的横坐标扩大到原来的2倍,再向左平移6π个单位,最后将整个函数图像向上平移32个单位后得到函数()g x 的图像,若263x ππ≤≤时,()2g x m -<恒成立,求m 得取值范围.23.如图所示,摩天轮的半径为50m ,最高点距离地面高度为110m ,摩天轮的圆周上均匀地安装着24个座舱,并且运行时按逆时针匀速旋转,转一周大约需要12min .甲,乙两游客分别坐在P ,Q 两个座舱里,且他们之间间隔2个座舱(本题中将座舱视为圆周上的点).(1)求劣弧PQ 的弧长l (单位:m );(2)设游客丙从最低点M 处进舱,开始转动min t 后距离地面的高度为m H ,求在转动一周的过程中,H 关于时间t 的函数解析式;(3)若游客在距离地面至少85m 的高度能够获得最佳视觉效果,请问摩天轮转动一周能有多长时间使甲,乙两位游客都有最佳视觉效果.24.游客乘坐位于长沙贺龙体育场的摩天轮可近观长沙中心城区城市美景,远眺岳麓山,俯瞰橘子洲,饱览湘江风光.据工作人员介绍,该摩天轮直径约100米,摩天轮的最低处P 与地面的距离为20米,设有60个座舱,游客先乘坐直升电梯到入口(人口在摩天轮距地面的最低处)处等待,当座舱到达最低处P 时有序进入座舱,摩天轮逆时针方向匀速运行一周约需20分钟.以摩天轮的圆心为坐标原点,水平线为x 轴建立如图所示的平面直角坐标系.(1)试将游客甲离地面的距离()h t (单位:米)表示为其坐上摩天轮的时间t (单位:分钟)的函数;(2)若游客乙在甲后的5分钟也在点P 处坐上摩天轮,求在乙坐上摩天轮后的多少分钟时甲乙的离地面距离之差首次达到最大.25.已知函数()()()2cos 0,0f x x ωϕωϕπ=+><<的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 图象上每个点的横坐标变为原来的2倍(纵坐标不变),再将得到的图象向右平移4个单位长度,所得图象的函数为()g x ,若不等式()0g x m -≤在[]0,6x ∈恒成立,求实数m 的取值范围.26.己知函数()sin 3cos (0, 0 )f x A x A x A ωωω=+>>,其部分图象如图所示.(1)求A 和ω的值;(2)求函数()y f x =在[]0,π的单调增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由图可知,172482g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,根据函数图象的平移变化法则可知()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈, 因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.2.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标,可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.3.D解析:D 【分析】先根据题意建立坐标系,写出盛水筒M 距离水面的高度H 与时间t 之间的函数关系式,再根据关系式即可判断. 【详解】解:以O 为圆心,过点O 的水平直线为x 轴,建立如图所示的平面直角坐标系:0306xOP π∠==,OP ∴在()t s 内转过的角为:26030t t ππ=, ∴以x 轴正半轴为始边,以OP 为终边的角为:306t ππ-,P ∴点的纵坐标为:4sin 306t ππ⎛⎫-⎪⎝⎭, H ∴与t 之间的函数关系式为:4sin 2306H t ππ⎛⎫=-+⎪⎝⎭, 当sin 1306t ππ⎛⎫-= ⎪⎝⎭时,max 426H =+=, 当sin 1306t ππ⎛⎫-=-⎪⎝⎭时,max 422H =-+=-, 对A ,B ,由图像易知max min H H =-,故A ,B 错误; 对C ,max min H H <-,故C 错误; 对D ,max min H H >-,故D 正确. 故选:D. 【点睛】关键点点睛:本题解题的关键是理解题意,根据题意写出H 与t 之间的函数关系式.4.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增,因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.5.A解析:A 【分析】由题意根据三角函数定义可知0x cos α=,先根据角α的取值范围求出6πα⎛⎫+⎪⎝⎭的取值范围继而求出4cos 65πα⎛⎫+=- ⎪⎝⎭,再通过凑角求cos α. 【详解】5,36ππα⎛⎫∈ ⎪⎝⎭,则26ππαπ<+<,则由3sin 65πα⎛⎫+= ⎪⎝⎭,得4cos 65πα⎛⎫+=- ⎪⎝⎭.由点()00,P x y 在单位圆O 上,设xOP α∠=,则0x cos α=. 又cos αcos 66ππα⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦cos sin 6666cos sin ππππαα⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭431552=-+⨯310-=故0x =.选A. 【点睛】本题考查三角函数定义及三角恒等变换的简单应用.解题中注意所求角的取值范围.由配凑法根据已知角构造所求角进行求解是三角恒等变换中常用的解题技巧.6.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.7.B解析:B 【分析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项. 【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B . 【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性; (4)从图象的特殊点,排除不合要求的解析式..8.B解析:B 【分析】求出弦长,再求出圆的半径,然后利用三角形面积求解. 【详解】如图,由题意8CD =,弓琖ACB 的面积为128,1(8)81282AB ⨯+⨯=,24AB =, 设所在圆半径为R ,即OA OB R ==,则22224(8)2R R ⎛⎫=-+ ⎪⎝⎭,解得13R =, 5OD =,由211sin 22AB OD OA AOB ⨯=∠得 2245120sin 13169AOB ⨯∠==. 故选:B .【点睛】关键点点睛:本题考查扇形与弓形的的有关计算问题,解题关键是读懂题意,在读懂题意基础上求出弦长AB ,然后求得半径R ,从而可解决扇形中的所有问题.9.D解析:D 【分析】利用题干中的已知条件求得2ω=,可得出()sin 216f x x π⎛⎫=-+ ⎪⎝⎭,利用正弦型函数的对称性可判断①②的正误,利用正弦型函数的值域可判断③的正误,求出方程()1f x =在[]0,2π上的解,可判断④的正误. 【详解】N ω*∈,由55,126x ππ⎡⎤∈⎢⎥⎣⎦可得55126666x πωπππωπω-≤-≤-, 由于函数()()sin 16f x x N πωω*⎛⎫=-+∈ ⎪⎝⎭在55,126ππ⎡⎤⎢⎥⎣⎦上单调递减, 所以,()553,2,21266622k k k Z πωππωπππππ⎡⎤⎡⎤--⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,所以,521262532662k k ωππππωππππ⎧-≥+⎪⎪⎨⎪-≤+⎪⎩,解得()248121055k k k Z ω++≤≤∈,由248121055k k ++≤,解得16k ≤,N ω*∈且k Z ∈,0k ∴=,可得825ω≤≤,2ω∴=,则()sin 216f x x π⎛⎫=-+ ⎪⎝⎭.对于①,sin 2sin 00126ππ⎛⎫⨯-==⎪⎝⎭,所以,112f π⎛⎫= ⎪⎝⎭, 所以,函数()f x 的图象关于点,112π⎛⎫⎪⎝⎭成中心对称,①错误; 对于②,271sin 2sin 13662πππ⎛⎫⨯-==-≠± ⎪⎝⎭,②错误;对于③,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,5112,666x πππ⎡⎤-∈⎢⎥⎣⎦,则11sin 262x π⎛⎫-≤-≤ ⎪⎝⎭, 所以,()302f x ≤≤,即()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的值域为30,2⎡⎤⎢⎥⎣⎦,③正确; 对于④,当[]0,2x π∈时,232,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 令()1f x =,可得sin 206x π⎛⎫-= ⎪⎝⎭,206x π∴-=或26x ππ-=或226x ππ-=或236x ππ-=.所以,方程()1f x =在[]0,2π有4个不相同的根,④正确. 故选:D. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).10.A解析:A 【分析】由题意知函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数,作出两个函数图象,数形结合即可求解. 【详解】令()()()0h x f x g x =-=可得()()f x g x =,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于 函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数. 分别作出()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象,由图知两个函数图象在区间[]2,2ππ-上有4个交点,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是4, 故选:A 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.11.A解析:A 【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称.又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+,故()f x 是周期函数且周期为π,故③正确. 又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 12.C解析:C 【分析】利用二倍角和辅助角公式化简函数为()2sin(2+)3f x x π=;根据正弦型函数的性质验证选项得解 【详解】()sin 222sin(2+)3f x x x x π==()f x 最小正周期22T ππ==,A 错误; ()2sin[2()+]2sin(2)2sin 2333f x x x x ππππ-=-=-=,B 错误; 当7(,)1212x ππ∈时,32(,)322x πππ+∈ ()f x ∴在7(,)1212ππ上是减函数,C 正确; 将2sin 2y x =向左平移3π个单位长度得到22sin[2()]2sin(2)33y x x ππ=-=-,D 错误. 故选:C 【点睛】本题考查正弦型函数性质的相关命题的辨析,涉及到二倍角和辅助角公式化简三角函数、正弦型函数的周期性、对称性和单调区间的求解、三角函数平移变换的应用等知识;关键是能够熟练掌握整体对应的方法,通过代入检验,结合正弦函数图象可确定正弦型函数的性质.二、填空题13.【分析】如图作出月牙湖的示意图由题意可得可求的值进而由图利用扇形的弧长公式可计算得解【详解】如图是月牙湖的示意图是的中点连结可得由条件可知所以所以所以月牙泉的周长故答案为:【点睛】关键点点睛:本题的 解析:(40303)π+【分析】如图,作出月牙湖的示意图,由题意可得3sin QPO ∠=,可求,QPO QPT ∠∠的值,进而由图利用扇形的弧长公式可计算得解. 【详解】如图,是月牙湖的示意图,O 是QT 的中点,连结PO ,可得PO QT ⊥,由条件可知603QT =,60PQ = 所以3sin 2QPO ∠=,所以3QPO π∠=,23QPT π∠=,所以月牙泉的周长(260303403033l πππ=⨯+⨯=+.故答案为:(40π+ 【点睛】关键点点睛:本题的关键是根据实际问题抽象出图象,再根据数形结合分析问题.14.②③④【分析】根据函数的图象与性质分析函数的对称性奇偶性与单调性即可得出结论【详解】解:①由得令直线为函数图象的对称轴故图象C 关于直线对称故①正确;由得令得函数在区间内是增函数故②错误;故函数不是奇解析:②③④ 【分析】根据函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象与性质,分析函数的对称性,奇偶性与单调性,即可得出结论. 【详解】 解:①由232x k πππ-=+,Z k ∈,得25121x k ππ=+,Z k ∈, 令1k =,直线1112π=x 为函数图象的对称轴, 故图象C 关于直线1112π=x 对称,故①正确; 由222232k x k πππππ-+≤-≤+,k Z ∈,得5,1212x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈, 令0k =,得函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数,故②错误; ()00f ≠,故函数()f x 不是奇函数,故③错误;由23x k ππ-=,k Z ∈,得612x k ππ=+,k Z ∈,图象C 不关于点,03π⎛⎫ ⎪⎝⎭对称,故④错误.故答案为:②③④. 【点睛】本题考查正弦函数的图象与性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.15.【分析】先根据函数在区间上的最小值是确定的取值范围进而可得到或求出的范围得到答案【详解】函数在区间上的最小值是则的取值范围是当时函数有最小值或或的最小值等于故答案为:【点睛】本题主要考查正弦函数的最解析:32【分析】先根据函数在区间[,]34ππ-上的最小值是2-确定x ω的取值范围,进而可得到32ωππ--或342ωππ,求出ω的范围得到答案. 【详解】函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-, 则x ω的取值范围是[,]34ωπωπ-,当22x k πωπ=-+,k Z ∈时,函数有最小值2-,32ωππ∴--,或342ωππ,k Z ∈, ∴32ω≥,或6ω,k Z ∈, 0ω>,ω∴的最小值等于32.故答案为:32. 【点睛】本题主要考查正弦函数的最值的应用.考查基础知识的运用能力.三角函数式高考的重要考点,一定要强化复习.16.【分析】根据和的函数图像的对称点和交点个数得出答案【详解】令可得作出和的函数图像如图所示:由图像可知两函数图像有个交点又两函数图像均关于直线对称的个零点之和为故答案为:【点睛】本题考查了函数零点之和 解析:12【分析】根据8sin y x π=和23y x =-的函数图像的对称点和交点个数得出答案. 【详解】令()0f x =可得8sin 23x x π=-,作出8sin y x π=和23y x =-的函数图像如图所示:由图像可知两函数图像有8个交点, 又两函数图像均关于直线32x =对称, ∴()f x 的8个零点之和为324122⨯⨯=.故答案为:12 【点睛】本题考查了函数零点之和,考查了转化与化归、数形结合的思想,属于基础题.17.①③【分析】根据三角函数的奇偶性对称中心对称轴和最值对四个命题逐一分析由此确定正确命题的序号【详解】①为奇函数所以①正确②由于所以②错误③由于所以③正确④由于的最大值为所以④错误故答案为:①③【点睛解析:①③ 【分析】根据三角函数的奇偶性、对称中心、对称轴和最值对四个命题逐一分析,由此确定正确命题的序号. 【详解】①,22cos sin 323y x x π⎛⎫=+=- ⎪⎝⎭为奇函数,所以①正确.②,由于sin 2sin 11232πππ⎛⎫⨯+== ⎪⎝⎭,所以②错误. ③,由于53sin 2sin 1842πππ⎛⎫⨯+==- ⎪⎝⎭,所以③正确. ④24πα⎛⎫+ ⎪⎝⎭2322<,所以④错误.故答案为:①③ 【点睛】本小题主要考查三角函数的奇偶性、对称性、最值以及诱导公式,属于中档题.18.②③【分析】根据三角函数的零点性质三角函数对称和三角函数诱导公式依次判断每个选项得到答案【详解】①中是的两个零点即是的整数倍①错误;②中②正确;故④错误;③中③正确;所以正确命题序号是②③故答案为:解析:②③ 【分析】根据三角函数的零点性质,三角函数对称和三角函数诱导公式依次判断每个选项得到答案. 【详解】①中12,x x 是()f x 的两个零点,即12x x -是2π的整数倍,①错误; ②中06f π⎛⎫-= ⎪⎝⎭,②正确;故④错误; ③中4sin 24cos 2cos 23236y x x x ππππ⎛⎫⎛⎫⎛⎫=+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,③正确; 所以正确命题序号是②③. 故答案为:②③. 【点睛】本题考查了三角函数的对称,零点,诱导公式,意在考查学生对于三角函数知识的综合应用.19.【分析】和的图象都关于对称所以①②由①②结合即可得到答案【详解】由题意因为和的图象都关于对称所以①②由①②得又所以将代入①得注意到所以所以故答案为:【点睛】本题考查正弦型函数的性质涉及到函数图象的平解析:34π-【分析】()f x 和()g x 的图象都关于4x π=对称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②结合06,22ππωθ<<-<<即可得到答案.【详解】由题意,()()sin()33g x f x x ππωωθ=-=-+,因为()f x 和()g x 的图象都关于4x π=对 称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②,得12123(),,k k k k Z ω=-∈,又06ω<<,所以3ω=,将3ω=代入①,得11,4k k Z πθπ=-∈,注意到22ππθ-<<,所以4πθ=-,所以34ωθπ⋅=-.故答案为:34π- 【点睛】本题考查正弦型函数的性质,涉及到函数图象的平移、函数的对称性,考查学生的运算求解能力,是一道中档题.20.【分析】由图像对应横坐标可求再将代入可进一步求解由图像过点可求进而求解【详解】由解得又函数过所以解得又图像过可得解得故故答案为:【点睛】本题考查由三角函数图像求解析式属于中档题解析:()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭【分析】由34T 图像对应横坐标可求ω,再将6x π=代入可进一步求解ϕ,由图像过()0,1点可求A ,进而求解 【详解】由1132312644T πππω-==⋅,解得2ω=,又函数过()max ,6f x π⎛⎫⎪⎝⎭, 所以63A f Asin ππϕ⎛⎫⎛⎫=⎪ ⎪⎝⎝⎭+⎭=,解得6π=ϕ,又图像过()0,1可得()106f Asin π==,解得2A =,故()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭故答案为:()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭【点睛】本题考查由三角函数图像求解析式,属于中档题三、解答题21.(1)70,,,1212ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦;(2)12⎛ ⎝⎦. 【分析】(1)由()f x 的相邻两条对称轴的距离是2π,可得函数的周期,从而得出ω的值,由平移得出()g x 的解析式,根据()g x 图像关于原点对称,可求出ϕ的值,从而可求()f x 单调增区间,得出答案.(2)令23t x π=+则4,33t ππ⎡⎤∈⎢⎥⎣⎦,则[2s n 2]i t ∈,根据()230f x m -=+有两解,即2sin 32t m =-有两解,从而可得答案. 【详解】解:由()f x 的相邻两条对称轴的距离是2π,则22T ππω==,1,ω∴= ()()2sin 2f x x ϕ∴=+()2sin 2sin 2326x g x x ππϕϕ⎡⎤⎛⎫-+ ⎪⎢⎛⎫==-+ ⎪⎝⎥⎝⎣⎦⎭⎭函数()g x 的图像关于原点对称,3k πϕπ-+=,,2πϕ<所以3πϕ=()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭(1)由222232k x k πππππ-≤+≤+,k Z ∈得51212k x k ππππ-≤≤+,k Z ∈ 令0k =得51212x ππ-≤≤ 1k =得7131212x ππ≤≤ ()f x ∴在[]0,π增区间是70,,,1212ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦()2令23t x π=+,0,,2x π⎡⎤∈⎢⎥⎣⎦则4,33t ππ⎡⎤∴∈⎢⎥⎣⎦所以[2s n 2]i t ∈若()230f x m -=+有两解,即2sin 32t m =-在4,33t ππ⎡⎤∈⎢⎥⎣⎦上有两解,由2sin y t =322m -<,即123m <≤12m ∴<≤m ∴的取值范围是12⎛ ⎝⎦【点睛】关键点睛:本题考查求正弦型函数的单调增区间和根据方程的解个数求参数的范围问题,解答本题的关键是设23t x π=+,由0,,2x π⎡⎤∈⎢⎥⎣⎦则4,33t ππ⎡⎤∈⎢⎥⎣⎦所以[2s n ,2]i 3t ∈-若()230f x m -=+有两解,即2sin 32t m =-在4,33t ππ⎡⎤∈⎢⎥⎣⎦上有两解,然后数形结合求解,属于中档题.22.(1)1()sin 462f x x π⎛⎫=-- ⎪⎝⎭,单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈;(2)()0,2. 【分析】(1)根据正弦和余弦的二倍角公式化简可得1()sin 262f x x πω⎛⎫=-- ⎪⎝⎭,由222T ππω==,解得2ω=,带入正弦函数的递增区间242262k x k πππππ-≤-≤+,化简即可得解; (2)根据三角函数的平移和伸缩变换可得()sin 216g x x π⎛⎫=++ ⎪⎝⎭,根据题意只需要max min [()2][()2]g x m g x -<<+,分别在263x ππ≤≤范围内求出()g x 的最值即可得解. 【详解】(1)2()3cos cos f x x x x ωωω=-312(cos 21)22x x ωω=-+ 1sin 262x πω⎛⎫=-- ⎪⎝⎭由222T ππω==,解得2ω=所以,1()sin 462f x x π⎛⎫=-- ⎪⎝⎭ ∵242262k x k πππππ-≤-≤+∴224233k x k ππππ-≤≤+∴21226k k x ππππ-≤≤+ ∴()f x 的单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈ (2)依题意得()sin 216g x x π⎛⎫=++ ⎪⎝⎭因为|()|2g x m -<,所以()2()2g x m g x -<<+因为当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()2()2g x m g x -<<+恒成立所以只需max min [()2][()2]g x m g x -<<+转化为求()g x 的最大值与最小值当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()y g x =为单调减函数所以max ()1126g x g π⎛⎫==+= ⎪⎝⎭,()min21103g x g π⎛⎫==-+= ⎪⎝⎭, 从而max [()2]0g x -=,min [()2]2g x +=,即02m <<所以m 的取值范围是()0,2. 【点睛】本题考查了三角函数的单调性和最值,考查了三角函数的辅助角公式和平移伸缩变换,有一定的计算量,属于中档题.本题关键点有: (1)三角函数基本量的理解应用; (2)三角函数图像平移伸缩变换的方法; (3)恒成立思想的理解及转化. 23.(1)252m π;(2)50sin()6062H x ππ=-+,其中012t ≤≤;(3)5min 2. 【分析】(1)根据弧长的计算公式可求PQ 的长度.(2)建立如图所示的平面直角坐标系,利用三角函数的定义可求H 关于时间t 的函数解析式.(3)利用(2)中所得的解析式并令85H ≥,求出不等式的解后可得甲,乙两位游客都有最佳视觉效果的时间长度. 【详解】(1)因为摩天轮的圆周上均匀地安装着24个座舱,故每个座舱与中心连线所成的扇形的圆心角为22412ππ=, 故25350122lm ππ. (2)建立如图所示的平面直角坐标系,设sin()H A wx B ϕ=++, 由题意知,12T =,所以26w T ππ==, 又由50,1105060A r B ===-=,所以50sin()606H x πϕ=++,当0x =时,可得sin 1ϕ=-,所以2πϕ=-,故H 关于时间t 的函数解析式为50sin()6062H x ππ=-+,其中012t ≤≤.(3)令50sin()608562H x ππ=-+≥,即1sin()622x ππ-≥, 令522,6626k x k k Z ππππππ+≤-≤+∈,解得412812,k x k k Z +≤≤+∈, 因为甲乙两人相差3312min 242⨯=, 又由354min 22-=,所以有5min 2甲乙都有最佳视觉效果. 【点睛】三角函数实际应用问题的处理策略: 1、已知函数模型求解数学问题;2、把实际问题抽象转化成数学问题,利用三角函数的有关知识解决问题;3、根据实际问题转化为已知条件转化为三角函数的解析式和图象,然后在根据数形结合思想研究三角函数的性质,进而加深理解函数的性质. 24.(1)()50sin 707050cos ,010210h t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭;(2)52分钟. 【分析】(1)根据题意分析游客甲绕原点作匀速圆周运动,根据三角函数定义可把他离地面的距离()h t 表示出来;(2)先求出游客乙离地面距离的函数()g t ,则()()h h t g t =-△即为甲乙的离地面距离之差,利用函数求最值. 【详解】(1)法1:据题意,游客甲绕原点按逆时针方向作角速度为22010ππ=弧度/分钟的匀速圆周运动,设经过t 分钟后甲到达Q ,则以OP 为始边,OQ 为终边的角的大小是10t π, 因为圆的半径为50r =米,由三角函数定义知点Q 的纵坐标为50sin 102y t ππ⎛⎫=-⎪⎝⎭, 则其离地面的距离为:()()205050sin 7050cos 010210h t t t t πππ⎛⎫=++-=-≥⎪⎝⎭. 法2:因为摩天轮是作匀速圆周运动,故可设()()()sin 0,0h t A t b A ωϕω=++>>,据题意有12050,2070,A b A A b b ⎧+==⎧⇒⎨⎨-+==⎩⎩又周期20T =,所以10πω=,由在最低点入舱得01022πππϕϕ⋅+=-⇒=-,故得()50sin 707050cos ,010210h t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭. (2)由(1)可知游客乙离地面的距离:()()7050cos 57050sin 1010g t t t ππ⎡⎤=--=-⎢⎥⎣⎦,其中时间t 表示游客甲坐上摩天轮的时间,则甲乙的离地面距离之差为:()()50sin cos 1010104h h t g t t t t ππππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭△,当()21042t k k ππππ-=+∈Z ,即()15202t k k =+∈Z 时,甲乙离地面距离之差达到最大,所以152t =,即游客乙坐上摩天轮552t -=分钟后,甲乙的离地面距离之差首次达到最大. 【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式:(1)求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;。

高一下册数学必修四第一章 三角函数.知识点及同步练习

高一下册数学必修四第一章 三角函数.知识点及同步练习

巩固练习
1、 在直角坐标系中,若角α与角β的终边关于x轴对称,则α与β的
关系一定是 ( )
A.α=-β B.α+β=k·360°(k∈Z) C.α-β=k·360°(k∈Z)
D.以上答案都不对
2、圆内一条弦的长等于半径,这条弦所对的圆心角是
()
A.等于1弧度 B.大于1弧度 C.小于1弧度
D.无法
判断
(2) 角α + k·720 °与角α终边相同,但不能表示与角
α终边相同的所有角. 例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 例5.写出终边在上的角的集合S,并把S中适合不等式- 360°≤β<720°的元素β写出来. 思考题:已知α角是第三象限角,则α/2,α/3,α/4各是第 几象限角?
D.{α∣-270°+k·360°<α<-180°+k·360°,k∈Z}
11、下列命题是真命题的是( )
Α.三角形的内角必是一、二象限内的角 B.第一象限的角必是
锐角
C.不相等的角终边一定不同
D.=
12、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、
C关系是( )
A.B=A∩C B.B∪C=C
度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角所对应的弧长与半径的比值是否是确
定的?与圆的半径大小有关吗?
弧度制的性质:
①半圆所对的圆心角为
②整圆所对的圆心角为
③正角的弧度数是一个正数.
④负角的弧度数是一
个负数.
⑤零角的弧度数是零.
⑥角α的弧度数的绝
对值|α|=
始边 终边 顶点 A O B

完整版)高中三角函数测试题及答案

完整版)高中三角函数测试题及答案

完整版)高中三角函数测试题及答案高一数学必修4第一章三角函数单元测试班级:__________ 姓名:__________ 座号:__________评分:__________一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

(48分)1、已知$A=\{\text{第一象限角}\}$,$B=\{\text{锐角}\}$,$C=\{\text{小于90°的角}\}$,那么$A$、$B$、$C$ 关系是()A.$B=A\cap C$B.$B\cup C=C$C.$A\cap D$D.$A=B=C$2、将分针拨慢5分钟,则分钟转过的弧度数是A。

$\frac{\pi}{3}\sin\alpha-\frac{2}{3}\cos\alpha$ B。

$-\frac{\pi}{3}$C。

$\frac{\pi}{6}$D。

$-\frac{\pi}{6}$3、已知 $\tan\alpha=-5$,那么 $\tan\alpha$ 的值为A。

2B。

$\frac{1}{6164}$C。

$-\frac{1}{6164}$D。

$-\frac{2}{3}$4、已知角 $\alpha$ 的余弦线是单位长度的有向线段,那么角 $\alpha$ 的终边()A。

在 $x$ 轴上B。

在直线 $y=x$ 上C。

在 $y$ 轴上D。

在直线 $y=x$ 或 $y=-x$ 上5、若 $f(\cos x)=\cos 2x$,则 $f(\sin 15^\circ)$ 等于()A。

$-\frac{2}{3}$B。

$\frac{3}{2}$C。

$\frac{1}{2}$D。

$-\frac{1}{2}$6、要得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图象只需将$y=3\sin 2x$ 的图象A。

向左平移 $\frac{\pi}{4}$ 个单位B。

向右平移 $\frac{\pi}{4}$ 个单位C。

高中数学必修4(人教A版)第一章三角函数1.6知识点总结含同步练习及答案

高中数学必修4(人教A版)第一章三角函数1.6知识点总结含同步练习及答案

21 24 7.9 11.1
经长期观察,函数 y = f (t) 的图象可以近似地看成函数 y = k + A sin (ωt + φ) 的图象.下面的函数 中,最能近似表示表中数据间对应关系的函数是 ( A.y = 11 + 3 sin (
)
π π t + ) , t ∈ [0, 24] 12 2 π B.y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C.y = 11 + 3 sin t , t ∈ [0, 24] 12 π D.y = 11 + 3 sin t , t ∈ [0, 24] 6
π π t + ) , t ∈ [0, 24] 12 2 π B. y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C. y = 11 + 3 sin t , t ∈ [0, 24] 6 π D. y = 11 + 3 sin t , t ∈ [0, 24] 12
3. 某城市一年中 12 个月的平均气温与月份的关系可近似地用三角函数 y = a + A cos
π (x − 6) ( 6
x = 1, 2, 3, ⋯ , 12 ) 来表示,已知 6 月份的月平均气温最高,为 28∘ C , 12 月份的月平均气温最
低,为 18∘ C ,则 10 月份的平均气温值为
B.[1, 7]
D.[0, 1] 和 [7, 12]
2π π π 弧度,从而经过 t 秒转了 = t 弧度. 12 6 6 1 √3 π 而 t = 0 时, 点 A ( , .经过 t 秒后点 A 的纵坐标为 ) ,则 ∠xOA = 2 2 3

新课标数学必修4第1章三角函数练习(含答案)

新课标数学必修4第1章三角函数练习(含答案)

1.1.1任意角一、情景导入: 1.角的概念的推广(1)任意角的形成:角可以看成是由一条射线绕着它的端点旋转而成的,射线的端点叫做角的顶点,旋转开始时的射线叫做角的始边,终止时的射线叫做角的终边.(2)正角、负角和零角:按逆时针方向旋转而成的角叫做正角.按顺时针方向旋转而成的角叫做负角.当射线没有作任何旋转时,形成的角叫做零角.(3)象限角:角的顶点与坐标原点重合,角的始边与x 轴的正半轴重合,角的终边落在第几象限,就把这个角称为第几象限的角.如果角的终边落在坐标轴上,则称这个角称为轴上角. 2.象限角及终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合{|360,}S k k Z ββα==+⋅︒∈,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和; 二、感受理解: 1.设{}90E =︒小于的角,{}F =锐角,{}G =第一象限的角,{}90M =︒︒小于的角,但不小于0的角 ,你能分清这几个有关角的集合之间的包含关系吗?2.在 ~间,求出与下列各角终边相同的角,并判定它们分别是哪一个象限的角.(1);(2).3.分别写出: ①终边在轴负半轴上的角的集合; ②终边在 轴上的角的集合;③终边在第一、三象限角平分线上的角的集合; ④终边在四象限角平分线上的角的集合.4.如图,终边落在 位置时的角的集合是____________;线边落在位置,且在[]360,360-︒︒内的角的集合是_________;终边落在阴影部分(含边界)的角的集合是______________.5.探究等分角所在的象限我们都知道,60︒是锐角,60︒角的一半30︒也是锐角.60360k ︒+⋅︒,k Z ∈是第一象限角,它的一半30180,k k Z ︒+⋅︒∈是否仍在第一象限呢?三、迁移拓展:6.下列命题中,正确的是( ).A .始边和终边都相同的两个角一定相等B . 是第二象限的角C .若,则4α是第一象限角 D .相等的两个角终边一定相同7.在“①160°②480°③-960°④-1600°”这四个角中,属于第二象限的角是( )A .①B .①②C .①②③D .①②③④8.经过3小时35分钟,时针与分针转过的度数之差是( ).A .B .C .D .9.下列结论中正确的是( )A.小于90°的角是锐角B.第二象限的角是钝角C.相等的角终边一定相同D.终边相同的角一定相等10.若α是第一象限的角,则-2α是( )A.第一象限的角B.第一或第四象限的角C.第二或第三象限的角D.第二或第四象限的角11.与终边相同的角的集合是___________,它们是第____________象限的角,其中最小的正角是___________,最大负角是___________.12.已知 的终边在 轴上的上方,那么是第__________象限的角.13.设,,,则相等的角集合为____________.14.若角与 的终边关于轴对称,则与的关系是__________;若角与的终边互相垂直,则与的关系是___________.提示:可结合图形分析 15.给出下列命题:①和的角的终边方向相反; ②和的角的终边相同;③第一象限的角和锐角终边相同; ④ (21)180k α=+⋅︒与(41)180,()k k Z β=±⋅︒∈终边相同; 其中所有正确命题的序号是______________.16.求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角:(1) ;(2).17.已知{}9036045360,90360225360,A k k k k k Z ααα=-︒+⋅︒<<︒+⋅︒︒+⋅︒<<︒+⋅︒∈或{}360150360,B k k k Z ββ=⋅︒<<︒+⋅︒∈,求与提示:可根据图形分析两集合间的关系18.如图所示,写出图中阴影部分(包括边界)的角的集合,并指出 是否是该集合中的角.19.已知 是第二象限的角,你能结合图示分别找到以下问题的答案吗?(1)2α角所在的象限 (2) 角所在的象限20.若角 的终边经过点 ,试写出角的集合,并求出集合中绝对值最小的角.四、实践应用:21.α是一个任意角,则α与-α的终边是( )A .关于坐标原点对称B .关于x 轴对称C .关于直线y=x 对称D .关于y 轴对称 22.若α与β的终边互为反向延长线,则有( )A .α=β+180°B .α=β-180°C .α=-βD .α=β+(2k+1)180°,k∈Z参考答案: 1.1.1任意角 二、感受理解 1.略2.(1),三(2),三3.①;② ;③;④.4.{}120k k Zαα=︒+⋅︒∈;{}45,315-︒︒{}45360120360,k k k Z ββ-︒+⋅︒≤≤︒+⋅︒∈.5. 一、三三、迁移拓展:6.D 7.C 8.C 9.C 10.D11. ,三,,12.一、三13.,14.(21)180,k k Z αβ+=+⋅︒∈,90360,k k Z αβ-=±︒+⋅︒∈15.②、④16.(1){}120360,k k Z αα=-︒+⋅︒∈, ,;(2),31523'︒,4437'-︒.17. {}90360150360,36045360,A B k k k k k Z ααα=︒+⋅︒<<︒+⋅︒⋅︒<<︒+⋅︒∈或 {}90360225360,A B k k k Z αα=︒+⋅︒<<︒+⋅︒∈-18.,是19.(1)一、三,(2)三,四,或轴负半轴上的角20.,.四、实践应用: 21.B 22.D1.1.2弧度制一、情景导入:1. 弧度制(1)1弧度的角:等于半径长的圆弧所对的圆心角叫做1弧度的角,这种用弧度来度量的制度称弧度制(2)正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,任一已知角α的弧度数都满足lr α=,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径.2.度数与弧度数的换算:180rad π︒=10.01745180rad rad π︒=≈, 1801()57.35718'rad π=︒≈︒=︒请写出下列特殊角的弧度数与角度数.3.相关计算公式(1)圆心角α,半径r ,弧长l 之间的关系:l r α==180n r π(2)扇形面积公式:221122360n r S r lr πα===二、感受理解:1.请你用弧度制表示下列特殊位置的角,这些内容对今后的学习很重要.(1)终边在x 轴上的角 (2)终边在y 轴上的角 (3)终边在坐标轴上的角(4)终边在第一、三象限角平分线上的角。

(典型题)高中数学必修四第一章《三角函数》测试(有答案解析)(1)

(典型题)高中数学必修四第一章《三角函数》测试(有答案解析)(1)

一、选择题1.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图像如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=- ⎪⎝⎭B .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭C .()3sin 26f x x π⎛⎫=-⎪⎝⎭D .1()3sin 26f x x π⎛⎫=-⎪⎝⎭ 2.已知关于x 的方程2cos ||2sin ||20(0)+-+=≠a x x a a 在(2,2)x ππ∈-有四个不同的实数解,则实数a 的取值范围为( ) A .(,0)(2,)-∞+∞B .(4,)+∞C .(0,2)D .(0,4)3.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .454.已知函数f (x )=2sinxsin (x+3φ)是奇函数,其中(0,)2πϕ∈ ,则函数g (x )=cos (2x-φ)的图象( ) A .关于点(,0)12π对称 B .关于轴512x π=-对称 C .可由函数f (x )的图象向右平移6π个单位得到 D .可由函数f (x )的图象向左平移3π个单位得到5.已知函数()()cos f x x ωϕ=+(0>ω,0πϕ-<<)的图象关于点,08π⎛⎫⎪⎝⎭对称,且其相邻对称轴间的距离为23π,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象,则下列说法中正确的是( )A .()f x 的最小正周期23T π= B .58πϕ=-C .()317cos 248πx g x ⎛⎫=- ⎪⎝⎭D .()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦6.如图,一个摩天轮的半径为10m ,轮子的最低处距离地面2m .如果此摩天轮按逆时针匀速转动,每30分钟转一圈,且当摩天轮上某人经过点P (点P 与摩天轮天轮中心O 的高度相同)时开始计时,在摩天轮转动的一圈内,此人相对于地面的高度不小于17m 的时间大约是( )A .8分钟B .10分钟C .12分钟D .14分钟7.设函数()32sin cos f x x x x +,给出下列结论: ①()f x 的最小正周期为π ②()y f x =的图像关于直线12x π=对称③()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减 ④把函数2cos2y x =的图象上所有点向右平移12π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的编号是( ). A .①④B .②④C .①②④D .①②③8.下列结论正确的是( )A .sin1cos1<B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭9.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x10.有以下四种变换方式: ①向左平移12π个单位长度,再将每个点的横坐标伸长为原来的2倍;②向左平移6π个单位长度,再将每个点的横坐标伸长为原来的2倍; ③再将每个点的横坐标伸长为原来的2倍,再向左平移6π个单位长度; ④再将每个点的横坐标伸长为原来的2倍,再向右平移6π个单位长度; 其中能将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象变为函数sin y x =图象的是( ) A .①③B .②③C .①④D .②④11.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .112.已知函数()sin cos f x x x =+,则下列说法正确的是( ) A .()f x 的最小值为0 B .()f x 的最大值为2 C .()()2f x f x π-=D .1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上有解 二、填空题13.函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值,则ω的范围__________.14.已知函数()()π5sin 24f x x x ⎛⎫=-∈ ⎪⎝⎭R ,对于下列说法:①要得到()5sin 2g x x =的图象,只需将()f x 的图象向左平移4π个单位长度即可;②()y f x =的图象关于直线3π8x =对称:③()y f x =在[]π,π-内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦;④5π8y f x ⎛⎫=+⎪⎝⎭为奇函数.则上述说法正确的是________(填入所有正确说法的序号). 15.设函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图象为C ,给出下列命题:①图象C 关于直线1112π=x 对称;②函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是减函数;③函数()f x 是奇函数;④图象C 关于点,03π⎛⎫⎪⎝⎭对称.其中,错误命题的是______.16.已知函数()sin()f x A x ωϕ=+(其中0A >,0,0ωϕπ><<)的图象关于点M 5(,0)12π成中心对称,且与点M 相邻的一个最低点为2(,3)3π-,则对于下列判断: ①直线2x π=是函数()f x 图象的一条对称轴;②函数()3y f x π=-为偶函数;③函数1y =与35()()1212y f x x ππ=-≤≤的图象的所有交点的横坐标之和为7π.其中正确的判断是__________________.(写出所有正确判断的序号)17.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度15的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60和30,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上,若国歌长度约为50秒,升旗手应以__________(米 /秒)的速度匀速升旗.18.关于函数()()4sin 23f x x x π⎛⎫=-∈ ⎪⎝⎭R ,有下列命题: ①43y f x π⎛⎫=+⎪⎝⎭为偶函数; ②方程()2f x =的解集为,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭; ③()y f x =的图象关于点,03π⎛-⎫⎪⎝⎭对称;④()y f x =在[]0,2π内的增区间为50,12π⎡⎤⎢⎥⎣⎦和11,212ππ⎡⎤⎢⎥⎣⎦; ⑤()y f x =的振幅为4,频率为1π,初相为3π-. 其中真命题的序号为______. 19.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________.20.已知定义在R 上的函数()f x 满足3()2f x f x ⎛⎫=-+⎪⎝⎭,且(2)3f -=,则(2020)f =________.三、解答题21.已知函数()()1sin 226f x x x R π⎛⎫=+∈ ⎪⎝⎭.(1)填写下表,并用“五点法”画出()f x 在[0,]π上的图象;26x π+6π 136πxπ ()f x(2)将()y f x =的图象向上平移1个单位,横坐标缩短为原来的2,再将得到的图象上所有点向右平移4π个单位后,得到()g x 的图象,求()g x 的对称轴方程.22.已知函数()12sin 26x f x π⎛⎫=+⎪⎝⎭,x ∈R . (1)用“五点法”画出函数()f x 一个周期内的图象; (2)求函数()f x 在[],ππ-内的值域; (3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象,求函数()g x 在[],ππ-内的单调增区间.23.已知函数()sin 2sin 2233f x x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭, (1)求函数()f x 的最小正周期; (2)当π[0,]2x ∈时,(i )求函数()f x 的单调递减区间;(ii )求函数()f x 的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量x 的值.24.已知函数()()()f x g x h x =,其()g x x =,()h x =_____. (1)写出函数()f x 的一个周期(不用说明理由);(2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值. 从①cos 4x π⎛⎫+⎪⎝⎭,②2sin 24x π⎛⎫- ⎪⎝⎭这两个条件中任选一个,补充在上面问题中并作答, 注:如果选择多个条件分别解答.按第一个解答计分. 25.已知sin(3)(),cos x f x x R xπ-=∈(1)若α为第三象限角,且3sin 5α=-,求()f α的值. (2)若,34x ππ⎡⎤∈-⎢⎥⎣⎦,且21()2()1cos g x f x x =++,求函数()g x 的最小值,并求出此时对应的x 的值.26.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:(1)这个港口的水深与时间的关系可用函数(,)近似描述,试求出这个函数解析式;(2)一条货船的吃水深度(船底与水面的距离)为5米,安全条例规定至少要有1.25米的安全间隙(船底与洋底的距离),利用(1)中的函数计算,该船何时能进入港口?在港口最多能呆多久?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 本题首先可根据33π44T求出ω,然后根据当43x π=时函数()f x 取最大值求出ϕ,最后代入30,2⎛⎫- ⎪⎝⎭,即可求出A 的值.【详解】因为4π7π3π3124,所以33π44T ,T π=,因为2T πω=,所以2ω=,()sin(2)f x A x ϕ=+,因为当43x π=时函数()sin(2)f x A x ϕ=+取最大值, 所以()42232k k Z ππϕπ⨯+=+∈,()26k k Z πϕπ=-+∈,因为2πϕ<,所以6πϕ=-,()sin 26f x A x π⎛⎫=-⎪⎝⎭, 代入30,2⎛⎫- ⎪⎝⎭,3sin 26A π⎛⎫-=- ⎪⎝⎭,解得3A =,()3sin 26f x x π⎛⎫=- ⎪⎝⎭,【点睛】关键点点睛:本题考查根据函数图像求函数解析式,对于()sin()f x A x ωϕ=+,可通过周期求出ω,通过最值求出A ,通过代入点坐标求出ϕ,考查数形结合思想,是中档题.2.D解析:D 【分析】令2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,易知函数()f x 是偶函数,将问题转化为研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,令sin t x =,则转化为2()22(0)=--≠h t at t a 有一个根(1,1)t ∈-求解.【详解】当(2,2)x ππ∈-,2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,则()()f x f x -=,函数()f x 是偶函数,由偶函数的对称性,只需研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,设sin t x =,则2()22(0)=--≠h t at t a 有一个根(1,1)t ∈- ①当0a <时,2()22=--h t at t 是开口向下,对称轴为10t a=<的二次函数, (0)20h =-<则(1)0->=h a ,这与0a <矛盾,舍去;②当0a >时,2()22=--h t at t 是开口向上,对称轴为10t a=>的二次函数, 因为(0)20h =-<,(1)220-=+->=h a a , 则存在(1,0)t ∈-,只需(1)220=--<h a ,解得4a <, 所以04a <<.综上,非零实数a 的取值范围为04a <<. 故选:D . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解3.B解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值.因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 4.B解析:B 【分析】利用三角函数的奇偶性求得φ,再利用三角函数的图象对称性、函数y=Asin (ωx+φ)的图象变换规律,判断各个选项是否正确,从而得出结论. 【详解】函数f (x )=2sinxsin (x+3φ)是奇函数,其中0,2πϕ⎛⎫∈ ⎪⎝⎭, ∴y=2sinxsin (x+3φ)是奇函数,∴3φ=2π,φ=6π,则函数g (x )=cos (2x ﹣φ)=cos (2x ﹣6π). 当12x π=时,206x π-=,112g π⎛⎫= ⎪⎝⎭,则函数不关于点,012π⎛⎫⎪⎝⎭对称,选项A 错误; 当512x π=-时,26x ππ-=-,则函数关于直线512x π=-对称,选项B 正确;函数()2sin sin 2sin cos sin 22f x x x x x x π⎛⎫=+== ⎪⎝⎭, 其图像向右平移6π个单位的解析式为sin 2sin 2sin 263y x x x ππ⎡⎤⎛⎫⎛⎫==-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项C 错误; 其图像向左平移3π个单位的解析式为2sin 2sin 2sin 233y x x x ππ⎡⎤⎛⎫⎛⎫==+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项D 错误; 故选B. 【点睛】本题主要考查三角函数的奇偶性、对称性,函数y=Asin (ωx+φ)的图象变换规律,属于中档题.函数()sin y A x ωϕ=+(A >0,ω>0)的性质:(1)奇偶性:=k ϕπ ,k Z ∈时,函数()sin y A x ωϕ=+为奇函数;=2k πϕπ+,k Z ∈时,函数()sin y A x ωϕ=+为偶函数.;(2)周期性:()sin y A x ωϕ=+存在周期性,其最小正周期为T =2πω;(3)单调性:根据y =sin t 和t =x ωϕ+的单调性来研究,由+22,22k x k k Z πππωϕπ-≤+≤+∈得单调增区间;由3+22,22k x k k Z πππωϕπ≤+≤+∈得单调减区间;(4)对称性:利用y =sin x 的对称中心为()(),0k k Z π∈求解,令()x k k ωϕπ+=∈Z ,求得x ;利用y =sin x 的对称轴为()2x k k Z ππ=+∈求解,令()+2x k k πωϕπ+=∈Z ,得其对称轴.5.D解析:D 【分析】首先根据三角函数的性质,可知相邻对称轴间的距离是半个周期,判断A ;再求函数的解析式,判断B ;根据平移规律得到函数()g x ,判断C ;最后根据函数()g x 的解析式,利用整体代入的方法求函数的单调递减区间. 【详解】相邻对称轴间的距离是半个周期,所以周期是43π,故A 不正确; 243T ππω==,解得:32ω=,()f x 的图象关于点,08π⎛⎫⎪⎝⎭对称,3,282k k Z ππϕπ∴⨯+=+∈,解得:5,16k k Z πϕπ=+∈ 0πϕ-<<, 1116πϕ∴=-,故B 不正确; ()311cos 216f x x π⎛⎫=-⎪⎝⎭,向左平移3π个单位长度后得()31133cos cos 2316216g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故C 不正确; 当02x π≤≤时,3339,2161616x πππ⎡⎤-∈-⎢⎥⎣⎦,当3390,21616x ππ⎡⎤-∈⎢⎥⎣⎦时,函数单调递减,即,82x ππ⎡⎤∈⎢⎥⎣⎦,故D 正确. 故选:D 【点睛】关键点点睛:本题的关键是根据三角函数的性质求得函数()f x 的解析式,第四个选项是关键,需根据整体代入的方法,先求33216x π-的范围,再确定函数的单调递减区间. 6.B解析:B 【分析】由题可得此人相对于地面的高度h 与时间t 的关系是()10sin1203015h t t π=+≤≤,再令10sin121715t π+≥求出t 的范围即可得出. 【详解】设时间为t 时,此人相对于地面的高度为h , 则由题可得当0t =时,12h =, 在时间t 时,此人转过的角为23015t t ππ=, 此时此人相对于地面的高度()10sin 1203015h t t π=+≤≤,令10sin 121715t π+≥,则1sin 152t π≥, 所以56156t πππ≤≤,解得52522t ≤≤, 故在摩天轮转动的一圈内,此人相对于地面的高度不小于17m 的时间大约是()25510min 22-=. 故选:B. 【点睛】本题考查三角函数的实际应用,解题的关键是得出高度与时间的关系()10sin1203015h t t π=+≤≤,再解三角函数不等式即可.7.C解析:C 【分析】根据题意,利用辅助角公式和两角和的正弦公式化简得()2sin(2)3f x x π=+,根据2T ωπ=求出最小正周期即可判断①;利用整体代入法求出()y f x =的对称轴,即可判断②;利用整体代入法求出()y f x =的单调减区间,从而可得在区间2,63ππ⎡⎤⎢⎥⎣⎦上先减后增,即可判断③;根据三角函数的平移伸缩的性质和诱导公式化简,即可求出平移后函数,从而可判断④. 【详解】解:函数()2sin cos sin 22sin(2)3f x x x x x x x π++=+, 即:()2sin(2)3f x x π=+,所以()f x 的最小正周期为222T πππω===,故①正确; 令2,32πππ+=+∈x k k Z ,解得:,122k x k Z ππ=+∈, 当0k =时,则直线12x π=为()y f x =的对称轴,故②正确;令3222,232k x k k Z πππππ+≤+≤+∈,解得:7,1212ππππ+≤≤+∈k x k k Z , 所以()f x 的单调递减区间为:7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当0k =时,()f x 的一个单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦, 则区间7,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故在区间2121,3228,6ππππ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦上先减后增,故③错误; 把函数2cos2y x =的图象上所有点向右平移12π个单位长度,得到s 2)2cos 22co 22cos 2126332sin(2y x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-=-=+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎦⎣⎦+⎝⎭⎣即平移后得到函数()y f x =的图象,故④正确. 所以所有正确结论的编号是:①②④. 故选:C. 【点睛】关键点点睛:本题考查三角函数的图象和性质,熟练掌握正弦型函数的周期、对称轴、单调区间的求法,以及三角函数的平移伸缩是解题的关键,还考查辅助角公式、两角和的正弦公式以及诱导公式的应用,考查学生化简运算能力.8.D解析:D【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增, 因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.9.C解析:C 【分析】利用奇偶性的定义判断函数奇偶性,判断AD 错误,结合常见基本初等函数的单调性判断B 错误,C 正确即可. 【详解】选项A 中,()22xxf x -=-,定义域R ,()()()2222xx x x f x f x ---=-=--=-,则()f x 是奇函数,不符合题意;选项D 中,()cos3=f x x x ,定义域R ,()()()cos 3cos3f x x x x x f x -=--=-=-,则()f x 是奇函数,不符合题意;选项B 中,()23f x x =-,定义域R ,()()()2233x x f x f x -=--=-=,则()f x 是偶函数,但二次函数()23f x x =-在在(),0-∞上是减函数,在()0,∞+上是增函数,故不符合题意;选项C 中,()2ln =-f x x ,定义域为(),0-∞()0,+∞,()()2ln 2ln f x x x f x -=--=-=,则()f x 是偶函数.当()0,x ∈+∞时,()2ln f x x =-是减函数,所以由偶函数图象关于y 轴对称可知,()f x 在(),0-∞上是增函数,故符合题意. 故选:C. 【点睛】 方法点睛:定义法判断函数()f x 奇偶性的方法: (1)确定定义域关于原点对称; (2)计算()f x -;(3)判断()f x -与()f x 的关系,若()()f x f x -=,则()f x 是偶函数;若()()f x f x -=-,则()f x 是奇函数;若两者均不成立,则()f x 是非奇非偶函数.10.A解析:A 【分析】直接利用三角函数图像的平移变换和伸缩变换求出结果. 【详解】对于①:sin 26y x π⎛⎫=-⎪⎝⎭向左平移12π个单位长度得到sin 2+=sin2126y x x ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin y x =;故①正确;对于②:sin 26y x π⎛⎫=-⎪⎝⎭向左平移6π个单位长度得到sin 2+=sin 2+666y x x πππ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=+ ⎪⎝⎭;故②错误;对于③:sin 26y x π⎛⎫=- ⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=-⎪⎝⎭,再向左平移6π个单位长度,得到sin sin 66y x x ππ⎛⎫=+-= ⎪⎝⎭;故③正确; 对于③:sin 26y x π⎛⎫=- ⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=- ⎪⎝⎭,再向右平移6π个单位长度,得到sin sin()663y x x πππ⎛⎫=--=- ⎪⎝⎭;故④错误; 故选:A 【点睛】关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a .11.A解析:A 【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称.又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+, 故()f x 是周期函数且周期为π,故③正确.又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 12.C解析:C【分析】 可得()()2f x f x π+=,得出()f x 是以2π为周期的函数,故只需考虑0,2x π⎡⎤∈⎢⎥⎣⎦即可. 【详解】()()sin cos cos sin 222f x x x x x f x πππ⎛⎫⎛⎫+=+++=+= ⎪ ⎪⎝⎭⎝⎭,()f x ∴是以2π为周期的函数,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()sin cos sin cos 4f x x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,则3,444x πππ⎡⎤+∈⎢⎥⎣⎦,41x π⎛⎫+ ⎝∴≤⎪⎭≤根据函数的周期性可得()f x 的最小值为1,故AB 错误,∴1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上无解,故D 错误, ()()sin cos cos sin222f x x x x x f x πππ⎛⎫⎛⎫-=-+-=+= ⎪ ⎪⎝⎭⎝⎭,故C 正确. 故选:C. 【点睛】本题考查三角函数的应用,解题的关键是得出()f x 是以2π为周期的函数,故只需考虑0,2x π⎡⎤∈⎢⎥⎣⎦即可. 二、填空题13.【分析】根据函数在区间上有50个最大值由第50个和第51个最大值满足求解【详解】因为函数在区间上有50个最大值第一个最大值为:第二个最大值为:第三个最大值为:…第50个最大值为:第51个最大值为:所解析:589601,120120ππ⎡⎫⎪⎢⎣⎭【分析】根据函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值,由第50个和第51个最大值满足49220502232ππππωπ+⨯≤+<+⨯求解.【详解】因为函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值, 第一个最大值为: 32x ππω+=,第二个最大值为: 232x ππωπ+=+, 第三个最大值为: 432x ππωπ+=+,…第50个最大值为: 49232x ππωπ+=+⨯, 第51个最大值为: 50232x ππωπ+=+⨯, 所以 49220502232ππππωπ+⨯≤+<+⨯,解得49512010120πππωπ+≤<+, 综上:ω的范围是589601,120120ππ⎡⎫⎪⎢⎣⎭.故答案为:589601,120120ππ⎡⎫⎪⎢⎣⎭【点睛】易错点点睛:本题容易忽视第50个和第51个最大值要满足49220502232ππππωπ+⨯≤+<+⨯.14.②④【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案【详解】①要得到的图象应将的图象向左平移个单位长度所以①错误;②令解得所以直线是的一条对称轴故②正确;③令解得因为所以在定义域内的单解析:②④ 【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案. 【详解】①要得到()5sin 2g x x =的图象,应将()ππ5sin 25sin 248f x x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象向左平移π8个单位长度,所以①错误;②令ππ2π42x k -=+,k ∈Z ,解得3ππ82k x =+,k ∈Z ,所以直线3π8x =是()y f x =的一条对称轴,故②正确;③令ππ3π22π42π22k k x ≤+≤-+,k ∈Z ,解得3π7πππ88k x k +≤≤+,k ∈Z ,因为[]π,πx ∈-,所以()f x 在定义域内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦和5ππ,88⎡⎤--⎢⎥⎣⎦,所以③错误;④5π5ππ5sin 25sin 2884y f x x x ⎡⎤⎛⎫⎛⎫=+=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦是奇函数,所以该说法正确. 【点睛】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对()sin y A ωx φ=+的图象与性质的掌握,属于中档题.15.②③④【分析】根据函数的图象与性质分析函数的对称性奇偶性与单调性即可得出结论【详解】解:①由得令直线为函数图象的对称轴故图象C 关于直线对称故①正确;由得令得函数在区间内是增函数故②错误;故函数不是奇解析:②③④ 【分析】根据函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象与性质,分析函数的对称性,奇偶性与单调性,即可得出结论. 【详解】 解:①由232x k πππ-=+,Z k ∈,得25121x k ππ=+,Z k ∈, 令1k =,直线1112π=x 为函数图象的对称轴, 故图象C 关于直线1112π=x 对称,故①正确; 由222232k x k πππππ-+≤-≤+,k Z ∈,得5,1212x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈, 令0k =,得函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是增函数,故②错误;()00f ≠,故函数()f x 不是奇函数,故③错误;由23x k ππ-=,k Z ∈,得612x k ππ=+,k Z ∈,图象C 不关于点,03π⎛⎫ ⎪⎝⎭对称,故④错误.故答案为:②③④.【点睛】本题考查正弦函数的图象与性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.16.②③【分析】根据已知条件确定函数的解析式进一步利用整体思想确定函数的对称轴方程对称中心及各个交点的特点进一步确定答案【详解】函数(其中)的图象关于点成中心对称且与点相邻的一个最低点为则:所以进一步解解析:②③ 【分析】根据已知条件确定函数的解析式,进一步利用整体思想确定函数的对称轴方程,对称中心及各个交点的特点,进一步确定答案. 【详解】函数()()sin f x A x ωϕ=+(其中0A >,0,0ωϕπ><<)的图象关于点M 5,012π⎛⎫⎪⎝⎭成中心对称,且与点M 相邻的一个最低点为2,33π⎛⎫- ⎪⎝⎭,, 则:2543124T πππ-== , 所以T π=: ,326f x sin x π⎛⎫=+ ⎪⎝⎭(). 进一步解得:223A πωπ===, 由于()()sin f x A x ωϕ=+(其中0A >,0,0ωϕπ><<)的图象关于点M 5,012π⎛⎫⎪⎝⎭成中心对称,,所以:5212k k Z πϕπ⋅+∈=(), 解得:5,6k k Z πϕπ-∈= ,由于0ϕπ<<, 所以:当1k = 时,6πϕ=.所以: ①当2x π=时,33262f sin πππ⎛⎫=+=- ⎪⎝⎭().故错误. ②3232633f x sin x cos x πππ⎡⎤⎛⎫⎛⎫--+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=.则3y f x π⎛⎫=- ⎪⎝⎭为偶函数,故正确. ③由于:351212x ππ-≤≤,则:0266x ππ≤+≤,所以函数()f x 的图象与1y =有6个交点. 根据函数的交点设横坐标为123456x x x x x x 、、、、、, 根据函数的图象所有交点的横标和为7π.故正确. 故答案为②③ 【点睛】本题考查的知识要点:正弦型函数的解析式的求法,主要确定A ,ω、φ的值,三角函数诱导公式的变换,及相关性质得应用,属于基础题型.17.6【分析】根据题意可求得然后利用正弦定理求得最后在中利用求得答案【详解】在中由正弦定理得;在中(米)所以升旗速度(米/秒)故答案为06【点睛】本题主要考查了解三角形的实际应用此类问题的解决关键是建立解析:6 【分析】根据题意可求得,45BDC ∠=︒,30CBD ∠=︒,CD =BC ,最后在Rt ABC 中利用sin60AB BC =︒求得答案.【详解】在BCD 中,45BDC ∠=︒,30CBD ∠=︒,CD =由正弦定理,得sin 45sin 30CD BC ︒==︒在Rt ABC 中,sin?6030AB BC =︒==(米). 所以升旗速度300.650t AB v ===(米/秒). 故答案为0.6. 【点睛】本题主要考查了解三角形的实际应用.此类问题的解决关键是建立数学模型,把实际问题转化成数学问题,利用所学知识解决,属于中档题.18.③⑤【分析】①利用三角函数的奇偶性判断真假;②解三角方程来判断真假;③利用代入法判断真假;④利用单调性的知识判断真假;⑤根据的有关概念判断真假【详解】①依题意令则所以①错误②由得当即时但所以②错误③解析:③⑤ 【分析】①利用三角函数的奇偶性判断真假;②解三角方程来判断真假;③利用代入法判断真假;④利用单调性的知识判断真假;⑤根据()sin y A ωx φ=+的有关概念判断真假. 【详解】①,依题意4474sin 24sin 24sin 233333y f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,令()4sin 23g x x π⎛⎫+ ⎝=⎪⎭,则()4sin 24sin 233g x x x ππ⎛⎫⎛⎫-=-+≠+ ⎪ ⎪⎝⎭⎝⎭,所以①错误.②,由()4sin 223f x x π⎛⎫=-= ⎪⎝⎭得1sin 232x π⎛⎫-= ⎪⎝⎭.当5236x ππ-=,即712x π=时,1sin 232x π⎛⎫-= ⎪⎝⎭,但7,124x x x k k Z πππ⎧⎫=∉=+∈⎨⎬⎩⎭,所以②错误.③,()24sin 4sin 0333f ππππ⎛⎫⎛⎫-=--=-= ⎪ ⎪⎝⎭⎝⎭,所以()y f x =的图象关于点,03π⎛-⎫⎪⎝⎭对称,即③正确. ④,由于5104sin 4sin 30333f ππππ⎛⎫⎛⎫=-==⎪⎪⎝⎭⎝⎭,()24sin 44sin 4332f ππππ⎛⎛⎫⎛⎫=-=-=⨯-=- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭所以11,212ππ⎡⎤⎢⎥⎣⎦不是()f x 的增区间,所以④错误. ⑤,()y f x =的振幅为4,周期22T ππ==,频率为11T π=,初相为3π-,所以⑤正确. 故答案为:③⑤ 【点睛】本小题主要考查三角函数的奇偶性、对称性、单调性、和三角函数的概念,属于中档题.19.②③【分析】根据三角函数的零点性质三角函数对称和三角函数诱导公式依次判断每个选项得到答案【详解】①中是的两个零点即是的整数倍①错误;②中②正确;故④错误;③中③正确;所以正确命题序号是②③故答案为:解析:②③ 【分析】根据三角函数的零点性质,三角函数对称和三角函数诱导公式依次判断每个选项得到答案. 【详解】①中12,x x 是()f x 的两个零点,即12x x -是2π的整数倍,①错误; ②中06f π⎛⎫-= ⎪⎝⎭,②正确;故④错误;③中4sin 24cos 2cos 23236y x x x ππππ⎛⎫⎛⎫⎛⎫=+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,③正确; 所以正确命题序号是②③. 故答案为:②③. 【点睛】本题考查了三角函数的对称,零点,诱导公式,意在考查学生对于三角函数知识的综合应用.20.3【分析】由已知可得是函数的一个周期所以再由可求得可得答案【详解】由已知可得则有则是函数的一个周期所以又所以所以故答案为:3【点睛】本题考查了函数的周期性及其应用准确理解周期性的定义是解题的关键属于解析:3 【分析】由已知可得,3是函数()f x 的一个周期,所以(2020)(1)f f =,再由(2)3f -=, 可求得()13f =,可得答案. 【详解】由已知可得,3()2f x f x ⎛⎫+=- ⎪⎝⎭,则有333(3)++()222f x f x f x f x ⎛⎫⎛⎫+==-+= ⎪ ⎪⎝⎭⎝⎭,则3是函数()f x 的一个周期, 所以(2020)(67331)(1)f f f =⨯+=, 又(2)3f -=,所以()()123f f =-=, 所以(2020)3f =, 故答案为:3. 【点睛】本题考查了函数的周期性及其应用,准确理解周期性的定义是解题的关键,属于中档题.三、解答题21.(1)答案见解析;(2)34k x ππ=+,k Z ∈. 【分析】(1)分别令x 等于0、6π、512π、23π、1112π、π,求得对应的纵坐标,确定点的坐标,列表、描点、作图即可;(2)利用放缩变换与平移变换法则可得到()15sin 4126g x x π⎛⎫=-+ ⎪⎝⎭,再令5462x k k Z πππ-=+∈,可得答案. 【详解】(1)由题意可得表格如下:26x π+6π 2π π32π 2π136πx6π 512π 23π 1112ππ()f x141212- 014(2)将()y f x =的图象向上平移1个单位得到1sin 2126y x π⎛⎫=++ ⎪⎝⎭的图象,再横坐标缩短为原来的12可得到1sin 4126y x π⎛⎫=++ ⎪⎝⎭的图象,再向右平移4π个单位可得115sin 41sin 412626y x x πππ⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎝⎭⎝⎭的图象, 即()15sin 4126g x x π⎛⎫=-+ ⎪⎝⎭, 令5462x k πππ-=+,解得34k x k Z ππ=+∈,, 所以()g x 的对称轴方程是34k x ππ=+,k Z ∈. 【点睛】方法点睛:“五点法”作一个周期上的图象,主要把握三处主要位置点:1、区间端点;2、最值点;3、零点.22.(1)答案见解析;(2)3,2⎡⎤⎣⎦;(3)5,6ππ⎡⎤-⎢⎥⎣⎦ 【分析】(1)利用五点法作图,按照列表、描点、连线的步骤作图即可; (2)根据x ππ-≤≤求出126x π+的范围,再利用正弦函数的性质求出1sin 26x π⎛⎫+ ⎪⎝⎭的范围即可求值域; (3)先求出()12sin 6212g x f x x ππ⎛⎫=+⎛⎫=-⎪⎝⎭ ⎪⎝⎭,再令12222122k x k πππππ-+≤+≤+, ()k Z ∈,不等式的解集与[],ππ-求交集即可.【详解】(1)利用五点法作图列表如下:126x π+ 02ππ32π 2πx3π-23π 53π 83π 113π()f x0 2 02-(2)因为x ππ-≤≤,所以123263x πππ-≤+≤, 所以31sin 1226x π⎛⎫-≤+≤ ⎪⎝⎭, 所以()12sin 2263x f x π⎛⎫=+≤⎪⎝⎭-≤, 函数()f x 在[],ππ-内的值域为3,2⎡⎤-⎣⎦(3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象, 则()112sin 2sin 6266212g x x x x f ππππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎛⎫=-⎪⎝⎝⎦⎭⎭⎣,令12222122k x k πππππ-+≤+≤+()k Z ∈,解得:754466k x k ππππ-+≤≤+()k Z ∈, 当0k =时,7566x ππ-≤≤,当1k =时172966x ππ≤≤, 又因为[],x ππ∈-,所以56x ππ-≤≤, ()g x 在[],ππ-内的单调增区间为5,6ππ⎡⎤-⎢⎥⎣⎦,【点睛】关键点点睛:在求三角函数单调区间时,要把x ωϕ+看成一个整体让其满足正弦的单调区间,解出的x 的范围即为所求三角函数的单调区间. 23.(1)最小正周期为π;(2)(i )ππ[,]122;(ii )当π=12x 时,()f x 取最大值为2;当π=2x 时,()f x 取最小值为 【分析】(1)利用和差公式展开合并,再利用辅助角公式计算可得()2sin (2+)3f x x π=,可得最小正周期为π;(2)(i )通过换元法令π23t x =+,求出sin y t =的范围,然后再根据sin y t =的单调递减区间求解即可;(ii )根据函数单调性求得最大值,然后计算端点值,比较大小之后可得函数的最小值. 【详解】 解:(1)πππ()=sin(2+)sin(2)2=sin 22=2sin(2+)333f x x x x x x x +-.2π==π2T ,∴()f x 的最小正周期为π. (2)(i )π[0,]2x ∈,∴ππ4π2[,]333t x =+∈,sin y t =,π4π[,]33t ∈的单调递减区间是π4π[,]23t ∈,且由ππ4π2233x ≤+≤,得ππ122x ≤≤, 所以函数()f x 的单调递减区间为ππ[,]122.(ii )由(i )知,()f x 在ππ[,]122上单调递减,在π[0,]12上单调递增.且π(0)=2sin 3f =ππ()=2sin 2122f =,π4π()=2sin 23f =所以,当π=12x 时,()f x 取最大值为2;当π=2x 时,()f x 取最小值为 【点睛】思路点睛:(1)关于三角函数解析式化简问题,首先利用和差公式或者诱导公式展开合并化为同角,然后再利用降幂公式进行降次,最后需要运用辅助角公式进行合一化简运算;(2)三角函数的单调区间以及最值求解,需要利用整体法计算,可通过换元利用sin y t =的单调区间以及最值求解.24.若选①(1)T π=;(2)最小值2-1;若选②(1)2T π=,(2,最小值1--. 【分析】(1)结合所选选项,然后结合二倍角公式及辅助角公式进行化简,然后结合周期公式可求;(2)由已知角x 的范围,然后结合正弦函数的性质即可求解. 【详解】解:选①,(1)因为()()cos 2sin cos sin 4f x x x x x x π⎛⎫=+=- ⎪⎝⎭, 22sin cos 2sin sin 2cos 21x x x x x =-=+-214x π⎛⎫=+- ⎪⎝⎭,故函数的周期T π=; (2)因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,当244x ππ+=-即4πx =-时,函数取得最小值2-,当242x ππ+=即8x π=时,函数取得1,选②,(1)()2sin 24x f x x π⎛⎫=-⎪⎝⎭1cos 2x x π⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦,)2sin sin x x =-,故函数的一个周期2T π=,(2)由,44x ππ⎡⎤∈-⎢⎥⎣⎦可得sin 22x ⎡∈-⎢⎣⎦,1sin 2x =时即6x π=时,函数取得最大值4,当sin x =时即4πx =-时,函数取得最小值1-. 【点睛】此题考查二倍角公式及辅助角公式的应用,考查正弦函数性质的应用,考查计算能力,属于中档题 25.(1) 34- (2) 函数()g x 的最小值为1,此时4x π= 【分析】(1)先化简函数解析式得()tan f x x =-,则由条件可得3tan 4α=,得出答案.(2)由条件可得()2tan 2tan 2g x x x =-+,则由,34x ππ⎡⎤∈-⎢⎥⎣⎦,设tan t x ⎡⎤=∈⎣⎦,根据二次函数()222211y t t t =-+=-+即可得出答案. 【详解】 由已知有sin(3)sin(3)sin ()tan cos cos cos x x xf x x x x xππ---===-=-(1)若α为第三象限角,且3sin 5α=-,则4cos 5α=-,则3tan 4α= ()3tan 4f αα=-=-(2)()()2222cos sin 21tan 2tan 2cos x xg x f x x x x +=++=-+,34x ππ⎡⎤∈-⎢⎥⎣⎦,设tan t x ⎡⎤=∈⎣⎦即()222211y t t t =-+=-+,当1t =,即4x π= 时,有最小值1所以当4x π=时,函数()g x 有最小值1.【点睛】关键点睛:本题考查根据三角函数求值和将函数化为tan α的二次式求最值,解答本题的关键是由()()2222cos sin 21tan 2tan 2cos x x g x f x x x x +=++=-+将函数化为二次式,根据tan α⎡⎤⎣⎦∈求最小值,属于中档题.。

(典型题)高中数学必修四第一章《三角函数》测试(包含答案解析)(1)

(典型题)高中数学必修四第一章《三角函数》测试(包含答案解析)(1)

一、选择题1.若函数()sin 2f x x =与()2cos g x x =都在区间(),a b 上单调递减,则b a -的最大值是( ) A .π4B .π3C .π2D .2π32.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图像如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=- ⎪⎝⎭B .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭C .()3sin 26f x x π⎛⎫=-⎪⎝⎭D .1()3sin 26f x x π⎛⎫=-⎪⎝⎭ 3.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 4.函数()()2sin f x x ωϕ=+(0>ω,2πϕ<)的部分图象如图所示,则()fπ=( )A .3-B .3-C .3 D .35.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++><⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 6.如图,一个摩天轮的半径为10m ,轮子的最低处距离地面2m .如果此摩天轮按逆时针匀速转动,每30分钟转一圈,且当摩天轮上某人经过点P (点P 与摩天轮天轮中心O 的高度相同)时开始计时,在摩天轮转动的一圈内,此人相对于地面的高度不小于17m 的时间大约是( )A .8分钟B .10分钟C .12分钟D .14分钟7.若函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=( )A .34B .14C .32D .128.下列命题正确的是( )A .函数sin ||y x =是偶函数又是周期函数B .函数3tan lg3tan xy x+=-是奇函数C .函数tan 6y ax π⎛⎫=+ ⎪⎝⎭的最小正周期是a πD .函数cos(sin )y x =是奇函数9.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =10.函数2()cos sin (R)f x x x x =+∈的最小值为( ) A .54B .1C .1-D .2-11.将函数()2sin (04)6f x x πωω⎛⎫=-<< ⎪⎝⎭的周期为π,则以下说法正确的是( ) A .1ω=B .函数()y f x =图象的一条对称轴为12x π=C .()3f f x π⎛⎫⎪⎝⎭D .函数()y f x =在区间0,2π⎛⎫⎪⎝⎭,上单调递增12.已知函数()()()()2sin 0,0,f x x ωϕωϕπ=+>∈的部分图像如图所示,将()y f x =图像上所有点的横坐标缩小到原来的12(纵坐标不变),所得图像对应的函数()g x 解析式为( )A .()2sin 46g x x π⎛⎫=+ ⎪⎝⎭B .()2sin 43g x x π⎛⎫=+ ⎪⎝⎭C .()2sin 23g x x π⎛⎫=+⎪⎝⎭D .()2sin 3g x x π⎛⎫=+⎪⎝⎭二、填空题13.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 14.sin 75=______. 15.函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象为C ,以下结论中正确的是______(写出所有正确结论的编号). ①图象C 关于直线1112π=x 对称; ②图象C 关于点2,03π⎛⎫⎪⎝⎭对称; ③函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数; ④由3sin 2y x =的图象向右平移3π个单位长度可以得到图象C . 16.已知M 是函数()()238sin f x x x x R π=--∈的所有零点之和.则M 的值为_____. 17.已知函数f (x )=A sin (3πx +φ),x ∈R ,A >0,0<φ<2π.y =f (x )的部分图象,如图所示,P ,Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ),点R 的坐标为(1,0),∠PRQ =23π,则sin ∠PQR =_____.18.若函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π)的图象经过点,26π⎛⎫⎪⎝⎭,且相邻两条对称轴间的距离为2π,则4f π⎛⎫⎪⎝⎭的值为________. 19.已知函数2()cos ()1(0,0,0)2πf x A ωx φA ωφ=++>><<的最大值为3,()f x 的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则(1)(2)f f +=_____.20.已知函数()3sin(2)cos(2)(0)f x x x ϕϕϕπ=+-+<<是定义在R 上的奇函数,则()8f π-的值为______.三、解答题21.已知函数()2sin()cos sin(2)(0)f x x x ωϕϕωϕω=+-+>在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递增.(1)求ω的取值范围;(2)当ω取最小正整数时,关于x 的方程211()()022f x f x --=在区间,6m π⎛⎫- ⎪⎝⎭上恰有5个实数根,求m 的取值范围.22.广东省清远市美林湖摩天轮是国内最大的屋顶摩天轮,该摩天轮直径为84米,摩天轮的最高点距地面101米,摩天轮匀速转动,每转动一圈需要t 分钟,若小明从摩天轮的最低点处登上摩天轮,从小明登上摩天轮的时刻开始计时.(1)求小明与地面的距离y (米)与时间x (分钟)的函数关系式;(2)在摩天轮转动一圈过程中,小明的高度在距地面80米以上的时间不少于5分钟,求t 的最小值.23.已知函数21()3sincos cos 2222x x x f x =++. (1)求函数()f x 的最小正周期;(2)将函数()y f x =的图象上的各点向左平移32π个单位,再保持纵坐标不变,横坐标缩短到原来的一半;得到函数()y g x =的图象,求函数()y g x =的最大值及取得最大值时x 的取值集合.24.把()cos()(0,||)2f x x πωϕωϕ=+><的图象纵坐标保持不变,横坐标变为原来的2倍得()g x 的图象,已知()g x 图象如图所示(1)求函数()f x 的解析式; (2)若()()2()6h x f x g x π=-+,求()h x 在0,2π⎡⎤⎢⎥⎣⎦上的值域. 25.已知函数()sin()f x x ωϕ=+,其中π0,(0,)2ωϕ>∈.从条件①、条件②、条件③这三个条件中选择两个作为已知条件,求: (Ⅰ)()f x 的单调递增区间; (Ⅱ)()f x 在区间[0,]2π的最大值和最小值.条件①:函数()f x 最小正周期为π; 条件②:函数()f x 图象关于点π(,0)6-对称; 条件③: 函数()f x 图象关于π12x =对称. 26.已知函数()2sin(2)(0)6f x x πωω=+>.(1)若点5(,0)8π是函数()f x 图像的一个对称中心,且(0,1)ω∈,求函数()f x 在3[0,]4π上的值域;(2)若函数()f x 在(,)33π2π上单调递增,求实数ω的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意求出(),()f x g x 原点附近的单调递减区间,根据递减区间分析可得max 3π4b =,min π4a =,相减即可. 【详解】 解:由题意函数()sin 2f x x =在π3π,44⎛⎫⎪⎝⎭上单调递减,函数()2cos g x x =在()0,π上单调递减, 所以则max 3π4b =,min π4a =,所以b a -的最大值为3πππ442-=. 故选:C. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.2.C解析:C 【分析】 本题首先可根据33π44T 求出ω,然后根据当43x π=时函数()f x 取最大值求出ϕ,最后代入30,2⎛⎫- ⎪⎝⎭,即可求出A 的值. 【详解】 因为4π7π3π3124,所以33π44T ,T π=,因为2T πω=,所以2ω=,()sin(2)f x A x ϕ=+,因为当43x π=时函数()sin(2)f x A x ϕ=+取最大值,所以()42232k k Z ππϕπ⨯+=+∈,()26k k Z πϕπ=-+∈, 因为2πϕ<,所以6πϕ=-,()sin 26f x A x π⎛⎫=-⎪⎝⎭, 代入30,2⎛⎫- ⎪⎝⎭,3sin 26A π⎛⎫-=- ⎪⎝⎭,解得3A =,()3sin 26f x x π⎛⎫=- ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查根据函数图像求函数解析式,对于()sin()f x A x ωϕ=+,可通过周期求出ω,通过最值求出A ,通过代入点坐标求出ϕ,考查数形结合思想,是中档题.3.A解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】 解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+ -⎪⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.4.A解析:A 【分析】由函数()f x 的部分图像得到函数()f x 的最小正周期,求出ω,代入5,212π⎛⎫⎪⎝⎭求出ϕ值,则函数()f x 的解析式可求,取x π=可得()f π的值.【详解】由图像可得函数()f x 的最小正周期为521212T πππ⎡⎤⎛⎫=⨯--= ⎪⎢⎥⎝⎭⎣⎦,则22T πω==. 又5552sin 22sin 212126f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则5sin 16⎛⎫+= ⎪⎝⎭πϕ, 则5262k ϕπ=π+π+,k Z ∈,则23k πϕπ=-,k Z ∈,22ππϕ-<<,则0k =,3πϕ=-,则()2sin 23f x x π⎛⎫=-⎪⎝⎭, ()2sin 22sin 33f ππππ⎛⎫∴=-=-= ⎪⎝⎭故选:A. 【点睛】方法点睛:根据三角函数()()sin 0,0,2f x A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图像求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.5.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++><⎪⎝⎭的最小正周期是π所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭, 对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误;对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.6.B解析:B 【分析】由题可得此人相对于地面的高度h 与时间t 的关系是()10sin1203015h t t π=+≤≤,再令10sin121715t π+≥求出t 的范围即可得出.设时间为t 时,此人相对于地面的高度为h , 则由题可得当0t =时,12h =, 在时间t 时,此人转过的角为23015t t ππ=, 此时此人相对于地面的高度()10sin 1203015h t t π=+≤≤,令10sin 121715t π+≥,则1sin 152t π≥, 所以56156t πππ≤≤,解得52522t ≤≤, 故在摩天轮转动的一圈内,此人相对于地面的高度不小于17m 的时间大约是()25510min 22-=. 故选:B. 【点睛】本题考查三角函数的实际应用,解题的关键是得出高度与时间的关系()10sin1203015h t t π=+≤≤,再解三角函数不等式即可.7.C解析:C 【分析】 由0,3x π⎡⎤∈⎢⎥⎣⎦计算出x ω的取值范围,可得出0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,再由函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减可得出关于ω的等式,由此可解得实数ω的值. 【详解】0ω>,当0,3x π⎡⎤∈⎢⎥⎣⎦时,0,3x πωω⎡⎤∈⎢⎥⎣⎦,由于函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,则0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦, 所以,032πωπ<≤,由于函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,所以,函数()f x 在3x π=处取得最大值,则()232k k N πωππ=+∈,又032πωπ<≤,所以,32πωπ=,解得32ω=. 故选:C.关键点点睛:本题通过正弦型函数在区间上的单调性求参数值,解题的就是将函数在区间上的单调性转化为两个区间的包含关系,并且分析出函数()f x 的一个最大值点,进而列出关于ω的等式求解.8.B解析:B 【分析】根据函数的奇偶性与周期性判断各个选项. 【详解】sin y x =是偶函数,但不是周期函数,A 错误;对函数()f x =0>得tan x <<,33k x k k Z ππππ-<<+∈,定义域关于原点对称,()()f x f x -==-=-,函数是奇函数,B 正确;tan 6y ax π⎛⎫=+ ⎪⎝⎭的最小正周期是a π,C 错误;记()g x cos(sin )x =,定义域是R ,()()cos sin cos(sin )cos(sin )()g x x x x f x -=-=-==⎡⎤⎣⎦,()f x 是偶函数,D 错误.故选:B . 【点睛】关键点点睛:本题考查函数的奇偶性与周期性.判断奇偶性一般用奇偶性的定义进行判断.tan y x ω=的最小正周期是T πω=,sin()y x ωϕ=+的最小正周期是2πω.9.B解析:B 【分析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项. 【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B .思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性; (4)从图象的特殊点,排除不合要求的解析式..10.C解析:C 【分析】由平方关系化为sin x 的函数,换元后利用二次函数性质得最小值. 【详解】由已知2()1sin sin f x x x =-+,令sin t x =,则[1,1]t ∈-,2()()1f x g t t t ==-++215()24t =--+,∵[1,1]t ∈-,∴1t =-时,min ()1g t =-. 故选:C . 【点睛】本题考查与三角函数有关的复合函数的最值.求三角函数的最值有两种类型:(1)利用三角恒等变换公式化函数为()sin()f x A x k ωϕ=++形式,然后由正弦函数性质得最值或值域.(2)转化为关于sin x (或cos x )的函数,用换元法,设sin t x =(或cos t x =)变成关于t 的二次函数,利用二次函数的性质求得最值或值域.11.C解析:C 【分析】由周期求出ω,然后由正弦函数的性质判断. 【详解】函数()2sin (04)6f x x πωω⎛⎫=-<< ⎪⎝⎭的周期为π,所以22πωπ==,A 错; 12x π=时,206x π-=,12x π=不是对称轴,B 错;3x π=时,226x ππ-=,即23f π⎛⎫= ⎪⎝⎭为最大值,因此()3f f x π⎛⎫⎪⎝⎭正确,C 正确; 0,2x π⎛⎫∈ ⎪⎝⎭时,52,666x πππ⎛⎫-∈- ⎪⎝⎭,而sin y x =在5,66ππ⎛⎫- ⎪⎝⎭上不单调,D 错; 故选:C . 【点睛】方法点睛:本题考查三角函数的性质,对函数()sin()f x A x ωϕ=+,掌握五点法是解题关键.解题时可由x 的值或范围求得x ωϕ+的值或范围,然后结合正弦函数性质判断.12.B解析:B 【分析】 由32341234T πππ⎛⎫=--= ⎪⎝⎭可求出T π=,进而可得2ω=,令 ()22122k k Z ππϕπ⨯+=+∈结合()0,ϕπ∈即可求得ϕ的值,再根据三角函数图象的伸缩变换即可求()g x 的解析式. 【详解】 由图知32934123124T ππππ⎛⎫=--== ⎪⎝⎭, 所以T π=,可得2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+, 令()22122k k Z ππϕπ⨯+=+∈,所以()23k k Z πϕπ=+∈,因为()0,ϕπ∈,所以令0k =,可得3πϕ=,所以()2sin 23f x x π⎛⎫=+⎪⎝⎭, 将()y f x =图像上所有点的横坐标缩小到原来的12(纵坐标不变), 可得()2sin 43g x x π⎛⎫=+ ⎪⎝⎭, 故选:B二、填空题13.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】 由题意可得()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值.∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭, ∴()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ. 则=4sin()4cos 462f ππϕϕ⎛⎫+==±⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.14.【解析】试题分析:将非特殊角化为特殊角的和与差是求三角函数值的一个有效方法考点:两角和的正弦 解析:【解析】 试题分析:232162sin 75sin(4530)sin 45cos30cos 45sin 3022224︒︒︒︒︒︒︒=+=+=⨯+=将非特殊角化为特殊角的和与差,是求三角函数值的一个有效方法. 考点:两角和的正弦15.①②③【分析】利用整体代入的方式求出对称中心和对称轴分析单调区间利用函数的平移方式检验平移后的图象【详解】由题:令当时即函数的一条对称轴所以①正确;令当时所以是函数的一个对称中心所以②正确;当在区间解析:①②③ 【分析】利用整体代入的方式求出对称中心和对称轴,分析单调区间,利用函数的平移方式检验平移后的图象.由题:()3sin 23x f x π⎛⎫=- ⎪⎝⎭,令2,32x k k Z πππ-=+∈,5,122k x k Z ππ=+∈, 当1k =时,1112π=x 即函数的一条对称轴,所以①正确; 令2,3x k k Z ππ-=∈,,62k x k Z ππ=+∈,当1k =时,23x π=, 所以2,03π⎛⎫⎪⎝⎭是函数的一个对称中心,所以②正确; 当5,1212x ππ⎛⎫∈- ⎪⎝⎭,,2223x ππ⎛⎫∈- ⎪⎝π⎭-,()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是增函数,所以③正确;3sin 2y x =的图象向右平移3π个单位长度得到23sin 23sin 233y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,与函数()3sin 23x f x π⎛⎫=- ⎪⎝⎭不相等,所以④错误. 故答案为:①②③ 【点睛】此题考查三角函数的图象和性质,利用整体代入的方式求解对称轴对称中心,求解单调区间,根据函数的平移变换求解平移后的函数解析式.16.【分析】根据和的函数图像的对称点和交点个数得出答案【详解】令可得作出和的函数图像如图所示:由图像可知两函数图像有个交点又两函数图像均关于直线对称的个零点之和为故答案为:【点睛】本题考查了函数零点之和 解析:12【分析】根据8sin y x π=和23y x =-的函数图像的对称点和交点个数得出答案. 【详解】令()0f x =可得8sin 23x x π=-,作出8sin y x π=和23y x =-的函数图像如图所示:由图像可知两函数图像有8个交点, 又两函数图像均关于直线32x =对称, ∴()f x 的8个零点之和为324122⨯⨯=.故答案为:12 【点睛】本题考查了函数零点之和,考查了转化与化归、数形结合的思想,属于基础题.17.【分析】根据周期求出再由直角三角形的边角关系以及勾股定理求出最后由正弦定理求出【详解】过点作延长线的垂线垂足为连接如下图所示则由正弦定理可知则故答案为:【点睛】本题主要考查了正弦型函数图象的性质的应 解析:2114【分析】根据周期求出32TDQ ==,再由直角三角形的边角关系以及勾股定理求出,PR PQ ,最后由正弦定理求出sin PQR ∠.【详解】过点Q 作PR 延长线的垂线,垂足为D ,连接PQ ,如下图所示263T ππ==,则32T DQ == 6xRQ RQD π∠=∠=3tan3363DR DQ π∴=⋅=⨯=223,23,12921PR DP PQ PD PQ ∴===+=+=由正弦定理可知sin sin PQ PRPRQ PQR=∠∠则33sin 212sin 1421PR PRQPQR PQ⋅⋅∠∠===21【点睛】本题主要考查了正弦型函数图象的性质的应用,涉及了正弦定理解三角形,属于中档题.18.【分析】根据函数f (x )的图象与性质求出Tω和φ的值写出f (x )的解析式再求出的值即可【详解】函数f (x )=2sin (ωx+φ)图象相邻两条对称轴间的距离为∴从而得ω=又f(x)=2sin(2x+φ 3【分析】根据函数f (x )的图象与性质求出T 、ω和φ的值,写出f (x )的解析式,再求出4f π⎛⎫ ⎪⎝⎭的值即可. 【详解】函数f (x )=2sin (ωx +φ)图象相邻两条对称轴间的距离为2π,∴22T π=,从而得ω=222T πππ==, 又f (x )=2sin (2x +φ)的图象经过点,26π⎛⎫ ⎪⎝⎭,∴2sin 26πϕ⎛⎫⨯+ ⎪⎝⎭=2,即3π+φ=2π+2k π,k ∈Z ,又因为0<φ<π,所以φ=6π,故f (x )=2sin 26x π⎛⎫+ ⎪⎝⎭,∴2sin 2446f πππ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭【点睛】本题考查了正弦型函数的图象与性质的应用问题,属于中档题.19.【分析】利用二倍角公式可得由函数的最大值可求出由相邻两条对称轴间的距离可求出周期再利用周期公式可求出将点代入解析式可求出从而可得函数的解析式即可求出的值【详解】因为函数的最大值为所以所以由函数相邻两 解析:3【分析】利用二倍角公式可得()cos(22)122A Af x ωx φ=+++,由函数的最大值可求出A ,由相邻两条对称轴间的距离可求出周期,再利用周期公式可求出ω,将点(0,2)代入解析式可求出ϕ,从而可得函数的解析式,即可求出(1)(2)f f +的值. 【详解】21cos(22)()cos ()11cos(22)1222ωx φA Af x A ωx φA ωx φ++=++=⋅+=+++,因为函数()f x 的最大值为3,所以1322A A++=,所以2A =, 由函数()f x 相邻两条对称轴间的距离为2,可得周期4T =,所以222T ππω==,所以4πω=, 所以()cos(2)22πf x x φ=++,又()f x 的图象与y 轴的交点坐标为(0,2),所以cos 222ϕ+=,所以cos20ϕ=,又02πϕ<<,所以=4πϕ, 所以()cos()2sin 2222πππf x x x =++=-+, 所以(1)(2)sin 2sin 2120232πf f π+=-+-+=-+-+=. 故答案为:3 【点睛】本题主要考查求三角函数的图象与性质,二倍角的余弦公式,诱导公式,属于中档题.20.【分析】利用辅助角公式化简根据正弦型函数为奇函数可构造方程求得进而得到解析式代入即可求得结果【详解】为上的奇函数解得:又故答案为:【点睛】本题考查根据正弦型函数的奇偶性求解参数值已知解析式求解三角函解析:【分析】利用辅助角公式化简()f x ,根据正弦型函数为奇函数可构造方程求得ϕ,进而得到()f x 解析式,代入8x π=-即可求得结果.【详解】()()()2cos 22sin 26f x x x x πϕϕϕ⎛⎫=+-+=-+ ⎪⎝⎭,()f x 为R 上的奇函数,()6k k Z πϕπ∴-=∈,解得:()6k k Z πϕπ=+∈,又0ϕπ<<,6πϕ∴=,()2sin 2f x x ∴=,2sin 84f ππ⎛⎫⎛⎫∴-=-= ⎪ ⎪⎝⎭⎝⎭故答案为:. 【点睛】本题考查根据正弦型函数的奇偶性求解参数值、已知解析式求解三角函数值的问题;关键是能够通过辅助角公式将函数化简为正弦型函数,进而利用奇偶性构造方程求得参数.三、解答题21.(1)9(0,1],52⎡⎤⋃⎢⎥⎣⎦;(2)1923,66ππ⎛⎤⎥⎝⎦. 【分析】(1)先根据两角和的正弦公式将()f x 进行化简,再根据0>ω以及()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递增,即可求出ω的取值范围; (2)根据(1)中ω的取值范围,写出()f x 的解析式,再根据211()()022f x f x --=得出()1f x =或1()2f x =-,再结合在区间,6m π⎛⎫- ⎪⎝⎭上恰有5个实数根,即可求出m 的取值范围. 【详解】(1)()2sin()cos sin(2)f x x x ωϕϕωϕ=+-+2sin()cos sin()cos cos()sin x x x ωϕϕωϕϕωϕϕ=+-+-+sin()cos cos()sin x x ωϕϕωϕϕ=+-+sin x ω=,()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递增,∴2 32222kk ωπππωπππ⎧≥-+⎪⎪⎨⎪≤+⎪⎩,k Z∈,解得:36142k kω-+≤≤+,k∈Z又0ω>,∴01ω<≤或952ω≤≤,即ω的取值范围为9(0,1],52⎡⎤⋃⎢⎥⎣⎦;(2)由(1)知[]21111,()()()1()0222f x f x f x f xω⎡⎤=--=-+=⎢⎥⎣⎦,解得:()1f x=或1()2f x=-,故在区间,6mπ⎛⎫- ⎪⎝⎭上,sin1x=或1sin2x=-时恰有5个实数根,5个实数根分别为2π,76π,116π,52π,196π.1sin62π⎛⎫-=-⎪⎝⎭,192366mππ∴<≤,即m的取值范围为1923,66ππ⎛⎤⎥⎝⎦.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 22.(1)242cos 59y x tπ⎛⎫=-+ ⎪⎝⎭(0x ,t 为参数);(2)15. 【分析】(1)以摩天轮最低点为原点,最低点的切线为x 轴建立直角坐标系,设sin()y A x b ωϕ=++,根据最高点和最低点的距离,求得,A b 的值,进而求得,ωϕ的值,即可求解.(2)由80y ≥,得到21cos 2x t π⎛⎫≤- ⎪⎝⎭,得到2533t t -≥,即可求解.【详解】(1)如图所示,以摩天轮最低点为原点,最低点的切线为x 轴建立直角坐标系, 由题意可设sin()(0,0,0)y A x b A b ωϕω=++>>因为摩天轮的最高点距地面101m ,最低点距地面1018417(m)-=,所以101,17,A b A b +=⎧⎨-+=⎩解得42,59A b ==,又函数周期为t ,可得2t πω=,所以242sin 59(0)y x x t πϕ⎛⎫=++⎪⎝⎭. 又0x =时,17y =,所以21742sin 059t πϕ⎛⎫=⨯++ ⎪⎝⎭,即sin 1,ϕϕ=-可取2π-,所以2242sin 5942cos 592y x x t tπππ⎛⎫⎛⎫=-+=-+⎪⎪⎝⎭⎝⎭(0x ≥,t 为参数). (2)依题意,可知242cos 5980y x tπ⎛⎫=-+≥⎪⎝⎭,即21cos 2x tπ⎛⎫≤- ⎪⎝⎭,不妨取第一圈,可得2242,3333t tx x t πππ≤≤≤≤, 所以持续时间为2533t t-≥,即15t ≥,所以t 的最小值为15.【点睛】三角函数实际应用问题的处理策略: 1、已知函数模型求解数学问题;2、把实际问题抽象转化成数学问题,利用三角函数的有关知识解决问题;3、根据实际问题转化为已知条件转化为三角函数的解析式和图象,然后在根据数形结合思想研究三角函数的性质,进而加深理解函数的性质. 23.(1)2π;(2)2,5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【分析】(1)先利用二倍角公式化简,再用辅助角公式化为()f x sin 16x π⎛⎫=++ ⎪⎝⎭,即可求出()f x 的最小正周期;(2)利用图像变换得到()y g x =的解析式,利用换元法就可以得到()y g x =的最大值及取得最大值时 x 的取值 【详解】(1)∵函数31cos 1()22x f x x +=++ sin 16x π⎛⎫=++ ⎪⎝⎭∴函数的周期为2π(2)依题意:函数()f x sin 16x π⎛⎫=++ ⎪⎝⎭的图象上的各点向左平移32π个单位,得到y 3sin +1= -cos 1626x x πππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭;再保持纵坐标不变,横坐标缩短到原来的一半,得到y = -cos 216x π⎛⎫++ ⎪⎝⎭;所以()cos 216g x x π⎛⎫=-++ ⎪⎝⎭令226t x k πππ=+=+,即5()12x k k Z ππ=+∈ 使函数()g x 取得最大值2,即max ()2g x = 使函数()g x 取得最大值的集合为5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【注意】取得最大值的集合为7,12x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭也可以. 【点睛】 :(1)关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a ;(2)求y =Asin (ωx +φ)+B 的值域通常用换元法; 24.(1)1()cos(2)3f x x π=-;(2)3,12⎡⎤--⎢⎥⎣⎦. 【分析】(1)由伸缩变换得1()cos()2g x x ωϕ=+,由()g x 的图像的周期为54()263T πππ=-=,解得2ω=,由()g x 图像过点(,1)3π,求得ϕ,进而得到()g x ,()f x 的解析式.(2)易得()22cos ()2cos()166h x x x ππ=----,令cos()6t x π=-,利用二次函数的性质求解. 【详解】(1)由题意1()cos()2g x x ωϕ=+, 由()g x 的图像可得:函数()g x 的周期为54()263T πππ=-=, 解得2ω=, ∴()cos )(g x x ϕ=+, 由图知()g x 图像过点(,1)3π,所以cos()13πϕ+=,则23k πϕπ=-+,k Z ∈,因为||2ϕπ<,取0k =得3πϕ=-,所以()cos()3g x x π=-,从而函数()f x 的解析式为()cos(2)3f x x π=-.(2)()()2()cos(2)2cos()636h x f x g x x x πππ=-+=---, 22cos ()2cos()166x x ππ=----,令cos()6t x π=-,由0,2x π⎡⎤∈⎢⎥⎣⎦,得,663x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1,12t ⎡⎤∈⎢⎥⎣⎦,则22132212()22y t t t =--=--,1,12t ⎡⎤∈⎢⎥⎣⎦, 当12t =时,y 有最小值32-,此时,1cos()62x π-=,63x ππ-=,即2x π=,当1t =时有最大值1-,此时cos()16x π-=,06x π-=,即6x π=.所以函数()h x 的值域为3,12⎡⎤--⎢⎥⎣⎦.【点睛】方法点睛:求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值). 25.答案见解析.【分析】若选择条件①②,(Ⅰ)根据最小正周期求出ω,根据对称中心求出ϕ,根据正弦函数的单调递增区间可求出函数()f x 的单调区间;(Ⅱ)根据正弦函数的图象可求得结果. 若选择条件①③,(Ⅰ)根据最小正周期求出ω,根据对称轴求出ϕ,根据正弦函数的单调递增区间可求出函数()f x 的单调区间;(Ⅱ)根据正弦函数的图象可求得结果.若选择②③,不能确定函数最小正周期,无法确定ω,所以无法确定函数解析式. 【详解】若选择条件①②,(Ⅰ)由函数()f x 最小正周期2π=πT ω=,得2ω=.因为()f x 图象关于点π(,0)6-对称,所以πsin[2()]06ϕ⨯-+=, 所以3k πϕπ-=,k Z ∈,所以3k πϕπ=+,k Z ∈,又已知π(0,)2ϕ∈,故π3ϕ=. 因此π()sin(2)3f x x =+. πππ2π22π,232k x k k -+≤+≤+∈Z 由,解得5,1212k x k ππππ-+≤≤+k Z ∈. 所以()f x 的单调递增区间为5ππ[π,π]()1212k k k -++∈Z . (Ⅱ)因为02x π≤≤,所以ππ4π2333x ≤+≤.当ππ2=32x +,即π12x =时,()f x 取得最大值1;当π4π2=33x +,即π2x =时,()f x 取得最小值.若选择条件①③,(Ⅰ)由函数()f x 最小正周期2π=πT ω=,得2ω=. 又函数()f x 图象关于π12x =对称,所以有πsin(2)112ϕ⨯+=±,所以62k ππϕπ+=+,k Z ∈,即3k πϕπ=+,k Z ∈,又已知π(0,)2ϕ∈,故π3ϕ=.因此π()sin(2)3f x x =+. πππ2π22π,232k x k k -+≤+≤+∈Z 由,解得5,1212k x k ππππ-+≤≤+k Z ∈. 所以()f x 的单调递增区间为5ππ[π,π]()1212k k k -++∈Z . (Ⅱ)因为02x π≤≤,所以ππ4π2333x ≤+≤.当ππ2=32x +,即π12x =时,()f x 取得最大值1;当π4π2=33x +,即π2x =时,()f x 取得最小值.若选择②③,不能确定函数最小正周期,无法确定ω,所以无法确定函数解析式.【点睛】关键点点睛:根据函数性质确定函数解析式是解题关键. 26.(1)[1,2]-; (2)1(0,]4. 【分析】 (1)由5·,46k k Z ππωπ+=∈,可得4156k ω⎛⎫=- ⎪⎝⎭,k Z ∈,结合()0,1ω∈,得23ω=,所以()42sin 22sin 636f x x x ππω⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,由30,4x π⎡⎤∈⎢⎥⎣⎦,利用正弦定理的单调性可得函数()f x 在30,4π⎡⎤⎢⎥⎣⎦上的值域;(2)令222,262k x k k Z ππππωπ-+≤+≤+∈,解得36k k x ππππωωωω-≤≤+,由函数()f x 在2,33ππ⎛⎫ ⎪⎝⎭上单调递增,可得002,,3336k k ππππππωωωω⎛⎫⎛⎫⊆-+ ⎪⎪⎝⎭⎝⎭,列不等式求解即可. 【详解】(1)由题意得:5·,46k k Z ππωπ+=∈,∴4156k ω⎛⎫=- ⎪⎝⎭,k Z ∈,∵()0,1ω∈,∴23ω=,∴()42sin 22sin 636f x x x ππω⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∵30,4x π⎡⎤∈⎢⎥⎣⎦,∴47,3666x πππ⎡⎤+∈⎢⎥⎣⎦,∴41sin ,1362x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, 故函数()f x 在30,4π⎡⎤⎢⎥⎣⎦上的值域为[]1,2-.(2)令222,262k x k k Z ππππωπ-+≤+≤+∈,解得36k k x ππππωωωω-≤≤+,∵函数()f x 在2,33ππ⎛⎫ ⎪⎝⎭上单调递增,∴002,,3336k k ππππππωωωω⎛⎫⎛⎫⊆-+ ⎪ ⎪⎝⎭⎝⎭,0k Z ∈,∴0033263k k πππωωπππωω⎧-≤⎪⎪⎨⎪+≥⎪⎩,即0031614k k ωω≤+⎧⎨+≥⎩,又212·3322πππω-≤,∴302ω<≤,∴01566k -<≤,∴00k =, ∴104ω<≤,即ω的取值范围为10,4⎛⎤⎥⎝⎦. 【点睛】本题主要考查三角函数的单调性、三角函数的图象对称性,属于中档题.函数sin()y A x ωϕ=+的单调区间的求法:(1) 代换法:①若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间;②若0,0A ω><,则利用诱导公式先将ω的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2) 图象法:画出三角函数图象,利用图象求函数的单调区间.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角和弧度制一、选择题1.若α是第一象限角,则下列各角中一定为第四象限角的是 ( ) (A) 90°-α(B) 90°+α (C)360°-α(D)180°+α2.终边与坐标轴重合的角α的集合是 ( )(A){α|α=k ·360°,k ∈Z} (B){α|α=k ·180°+90°,k ∈Z} (C){α|α=k ·180°,k ∈Z} (D){α|α=k ·90°,k ∈Z} 3.若角α、β的终边关于y 轴对称,则α、β的关系一定是(其中k ∈Z ) ( ) (A) α+β=π (B) α-β=2π(C) α-β=(2k +1)π (D) α+β=(2k +1)π 4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为 ( ) (A)3π (B)32π (C)3 (D)25.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π (B)-3π (C)6π (D)-6π*6.已知集合A ={第一象限角},B ={锐角},C ={小于90°的角},下列四个命题:①A =B =C ②A ⊂C ③C ⊂A ④A ∩C =B ,其中正确的命题个数为 ( ) (A)0个 (B)2个 (C)3个 (D)4个 二.填空题7.终边落在x 轴负半轴的角α的集合为 ,终边在一、三象限的角平分线上的角β的集合是 . 8. -1223πrad 化为角度应为 . 9.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的 倍.*10.若角α是第三象限角,则2α角的终边在 ,2α角的终边在 . 三.解答题11.试写出所有终边在直线x y 3-=上的角的集合,并指出上述集合中介于-1800和1800之间的角.12.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.13.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大最大面积是多少*14.如下图,圆周上点A 依逆时针方向做匀速圆周运动.已知A 点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.任意角的三角函数一.选择题 1.函数y =|sin |sin x x +cos |cos |x x +|tan |tan x x的值域是 ( ) (A){-1,1} (B){-1,1,3} (C) {-1,3} (D){1,3}2.已知角θ的终边上有一点P (-4a ,3a )(a ≠0),则2sin θ+cos θ的值是 ( ) (A)25(B) -25 (C) 25或 -25(D) 不确定3.设A 是第三象限角,且|sin 2A |= -sin 2A ,则2A是 ( ) (A) 第一象限角(B) 第二象限角 (C) 第三象限角 (D) 第四象限角4. sin2cos3tan4的值 ( ) (A)大于0 (B)小于0 (C)等于0 (D)不确定5.在△ABC 中,若cos A cos B cos C <0,则△ABC 是 ( )(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)锐角或钝角三角形*6.已知|cos θ|=cos θ, |tan θ|= -tan θ,则2θ的终边在 ( )(A)第二、四象限 (B)第一、三象限 (C)第一、三象限或x 轴上 (D)第二、四象限或x 轴上 二.填空题7.若sin θ·cos θ>0, 则θ是第 象限的角; 8.求值:sin(-236π)+cos 137π·tan4π -cos 133π= ; 9.角θ(0<θ<2π)的正弦线与余弦线的长度相等且符号相同,则θ的值为 ;*10.设M =sin θ+cos θ, -1<M <1,则角θ是第 象限角.三.解答题11.求函数y =lg(2cos x的定义域。

12.求:13sin 330tan()319cos()cos6906ππ︒⋅--⋅︒的值.13.已知:P (-2,y )是角θ终边上一点,且sin θ= -55,求cos θ的值.*14.如果角α∈(0,2π),利用三角函数线,求证:sin α<α<tan α.同角三角函数的基本关系式一、选择题1.已知sin α=45,且α为第二象限角,那么tan α的值等于( )(A)34(B)43- (C)43(D)43-2.已知sin αcos α=81,且4π<α<2π,则cos α-sin α的值为( )(A)23 (B)43(C) (D)±233.设是第二象限角,则sin cos αα ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ=31,π<θ<32π,则sin θ·cos θ的值为( )(A)±310(B)310 (D)5.已知sin cos 2sin 3cos αααα-+=51,则tan α的值是( )(A)±83(B)83 (C)83-(D)无法确定*6.若α是三角形的一个内角,且sin α+cos α=32,则三角形为( ) (A)钝角三角形 (B)锐角三角形 (C)直角三角形(D)等腰三角形二.填空题7.已知sin θ-cos θ=12,则sin 3θ-cos 3θ= ; 8.已知tan α=2,则2sin 2α-3sin αcos α-2cos 2α= ;9.α为第四象限角)= ; *10.已知cos (α+4π)=13,0<α<2π,则sin(α+4π)= . 三.解答题11.若sin x = 35m m -+,cos x =425mm -+,x ∈(2π,π),求tan x 。

12.化简:22sin sin cos sin cos tan 1+---x x x x x x .13.求证:tan 2θ-sin 2θ=tan 2θ·sin 2θ。

14.已知:sin α=m(|m |≤1),求cos α和tan α的值.三角函数的诱导公式一.选择题1.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是( )(A)-53 (B)53 (C)±53 (D)542.若cos100°= k ,则tan ( -80°)的值为( )(A)(D)3.在△ABC ,则△ABC 必是( ) (A)等边三角形(B)直角三角形 (C)钝角三角形 (D)锐角三角形4.已知角α终边上有一点P (3a ,4a )(a ≠0),则sin(450°-α)的值是( ) (A)-45(B)-35 (C)±35(D)±455.设A ,B ,C 是三角形的三个内角,下列关系恒等成立的是( )(A)cos(A +B )=cos C (B)sin(A +B )=sin C (C)tan(A +B )=tan C (D)sin2A B+=sin 2C *6.下列三角函数:①sin(n π+43π) ②cos(2n π+6π) ③sin(2n π+3π) ④cos[(2n +1)π-6π]⑤sin[(2n +1)π-3π](n ∈Z)其中函数值与sin 3π的值相同的是( )(A)①②(B)①③④ (C)②③⑤(D)①③⑤二.填空题 7.tan(150)cos(570)cos(1140)tan(210)sin(690)-︒⋅-︒⋅-︒-︒⋅-︒= 。

(3π-x )+sin 2(6π+x )= .9.= .*10.已知f (x )=a sin(πx +α)+b cos(πx +β),其中α、β、a 、b 均为非零常数,且列命题: f (2006) =1516-,则f (2007) = . 三.解答题11.化简23tan()sin ()cos(2)2cos ()tan(2)ππααπααπαπ-⋅+⋅---⋅-。

12. 设f (θ)=3222cos sin (2)cos()322cos ()cos(2)θπθθπθπθ+-+--+++- , 求f (3π)13. 已知cos α=13,cos(α+β)=1求cos(2α+β)的值.14.是否存在角,,22ππαβ⎛⎫∈- ⎪⎝⎭,()0,βπ∈,使等式()sin 32ππαβ⎛⎫-=- ⎪⎝⎭,()()απβ-=+同时成立若存在,求出,αβ的值;若不存在,请说明理由.正弦函数、余弦函数的图象和性质一、选择题1.下列说法只不正确的是 ( )(A) 正弦函数、余弦函数的定义域是R ,值域是[-1,1]; (B) 余弦函数当且仅当x =2k π( k ∈Z) 时,取得最大值1; (C) 余弦函数在[2k π+2π,2k π+32π]( k ∈Z)上都是减函数; (D) 余弦函数在[2k π-π,2k π]( k ∈Z)上都是减函数 2.函数f (x )=sin x -|sin x |的值域为 ( ) (A) {0}(B) [-1,1](C) [0,1](D) [-2,0]3.若a =sin 460,b =cos 460,c =cos360,则a 、b 、c 的大小关系是 ( )(A) c > a > b (B) a > b > c (C) a >c > b (D) b > c > a 4. 对于函数y =sin(132π-x ),下面说法中正确的是( ) (A) 函数是周期为π的奇函数 (B) 函数是周期为π的偶函数 (C) 函数是周期为2π的奇函数 (D) 函数是周期为2π的偶函数5.函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则它的平面图形面积是 (A) 4(B)8 (C)2π (D)4π ( ) *6.为了使函数y = sin ωx (ω>0)在区间[0,1]是至少出现50次最大值,则的最小值是 ( )(A)98π(B)1972π (C) 1992π (D) 100π二. 填空题7.函数值sin1,sin2,sin3,sin4的大小顺序是 。

8.函数y =cos(sin x )的奇偶性是 。

9. 函数f (x )=lg(2sin x +1)+的定义域是 ;*10.关于x 的方程cos 2x +sin x -a =0有实数解,则实数a 的最小值是 .三. 解答题11.用“五点法”画出函数y =12sin x +2, x ∈[0,2π]的简图. 12.已知函数y = f (x )的定义域是[0, 14],求函数y =f (sin 2x ) 的定义域.13. 已知函数f (x ) =sin(2x +φ)为奇函数,求φ的值.正切函数的性质和图象一、选择题 1.函数y =tan (2x +6π)的周期是 ( ) (A) π (B)2π (C)2π (D)4π 2.已知a =tan1,b =tan2,c =tan3,则a 、b 、c 的大小关系是 ( )(A) a <b <c (B) c <b <a (C) b <c <a (D) b <a <c 3.在下列函数中,同时满足(1)在(0,2π)上递增;(2)以2π为周期;(3)是奇函数的是 ( ) (A) y =|tanx | (B) y =cos x (C) y =tan 21x (D) y =-tanx 4.函数y =lgtan2x的定义域是 ( ) (A){x |k π<x <k π+4π,k ∈Z} (B) {x |4k π<x <4k π+2π,k ∈Z} (C) {x |2k π<x <2k π+π,k ∈Z} (D)第一、三象限 5.已知函数y =tan ωx 在(-2π,2π)内是单调减函数,则ω的取值范围是 ( ) (A)0<ω≤ 1 (B) -1≤ω<0 (C) ω≥1 (D) ω≤ -1*6.如果α、β∈(2π,π)且tan α<tan β,那么必有 ( )(A) α<β (B) α>β (C) α+β>32π (D) α+β<32π 二.填空题 7.函数y =2tan(3π-2x)的定义域是 ,周期是 ; 8.函数y =tan 2x -2tan x +3的最小值是 ; 9.函数y =tan(2x +3π)的递增区间是 ; *10.下列关于函数y =tan2x 的叙述:①直线y =a (a ∈R)与曲线相邻两支交于A 、B 两点,则线段AB 长为π;②直线x =k π+2π,(k ∈Z)都是曲线的对称轴;③曲线的对称中心是(4k π,0),(k ∈Z),正确的命题序号为 . 三. 解答题11.不通过求值,比较下列各式的大小 (1)tan(-5π)与tan(-37π) (2)tan(78π)与tan (16π)12.求函数y =tan 1tan 1x x +-的值域. 13.求下列函数y 的周期和单调区间*14.已知α、β∈(2π,π),且tan(π+α)<tan(52π-β),求证: α+β<32π.函数y =A sin(ωx +φ)的图象一、选择题1.为了得到函数y =cos(x +3π),x ∈R 的图象,只需把余弦曲线y =cos x 上的所有的点( ) (A) 向左平移3π个单位长度 (B) 向右平移3π个单位长度 (C) 向左平移13个单位长度 (D) 向右平移13个单位长度2.函数y =5sin(2x +θ)的图象关于y 轴对称,则θ= ( ) (A) 2k π+6π(k ∈Z ) (B) 2k π+ π(k ∈Z ) (C) k π+2π(k ∈Z ) (D) k π+ π(k ∈Z )3. 函数y =2sin(ωx +φ),|φ|<2π的图象如图所示,则 ( ) (A) ω=1011,φ=6π (B) ω=1011,φ= -6π (C) ω=2,φ=6π (D) ω=2,φ= -6π 4.函数y =cos x 的图象向左平移3π个单位,横坐标缩小到原来的12,纵坐标扩大到原来的3倍,所得的函数图象解析式为 ( ) (A) y =3cos(12x +3π) (B) y =3cos(2x +3π) (C) y =3cos(2x +23π) (D) y =13cos(12x +6π)5.已知函数y =A sin(ωx +φ)(A >0,ω>0)在同一周期内,当x =12π时,y max =2;当x =712π时,,y min =-2.那么函数的解析式为 ( )(A) y =2sin(2x +3π) (B) y =2sin(2x -6π) (C) y =2sin(2x +6π) (D) y =2sin(2x -3π)*6.把函数f (x )的图象沿着直线x +y =0的方向向右下方平移,得到函数y =sin3x 的图象,则( )(A) f (x )=sin(3x +6)+2 (B) f (x )=sin(3x -6)-2 (C) f (x )=sin(3x +2)+2 (D) f (x )=sin(3x -2)-2 二. 填空题7.函数y =3sin(2x -5)的对称中心的坐标为 ; 8.函数y =cos(23πx +4π)的最小正周期是 ; 9.函数y =2sin(2x +6π)(x ∈[-π,0])的单调递减区间是 ; *10.函数y =sin2x 的图象向右平移φ(φ>0)个单位,得到的图象恰好关于直线x =6π对称,则φ的最小值是 . 三. 解答题11.写出函数y =4sin2x (x ∈R )的图像可以由函数y =cos x 通过怎样的变换而得到.(至少写出两个顺序不同的变换)12.已知函数(2sin x -1)。

相关文档
最新文档