线性代数1.1
线性代数第一章课件,数学

n(n − 1) = 2
新的排列,这种变换称为排列的一个对换. 如果将排列32514中的2与4对调,则 得到的新排列34512,它的逆序数 τ( 34512 )=2+2+2+0=6,为偶排列.这说明, 奇排列32514经过一次对换得到偶排列 34512。一般地,有以下定理。 定理1.1.1 一次对换改变排列奇偶性. 证 分两种情况考虑.
定义1.1.2 在一个排列中,若一个较 大的数排在一个较小的数的前面,则称这 两个数构成一个逆序. 一个排列中所有逆 序的总数称为这个排列的逆序数.用
τ(j1,j2,…,jn)表示排列j1,j2,…,jn的逆序数.
逆序数是偶数的排列称为偶排列,逆序数 是奇数的排列称为奇排列. 对一个n阶排列 j1,j2,…,jn ,如何求它 的逆序数呢?
τ (n(n − 1) L321)
= ( n − 1) + ( n − 2) + L + 2 + 1 + 0
排列32514为奇排列;排列n(n-1) …321, 当n=4k,4k+1时为偶排列;当n=4k+2,4k+3时 为奇排列. 定义1.1.3 把一个排列中某两个数的 位置互换,而其余的数不动,就得到一个
1.1.2 二阶与三阶行列式 本段的目的是叙述行列式这个概念的 形成,这需要从解线性方程组谈起. 设二元一次线性方程组 a11 x1 + a12 x 2 = b1 , a 21 x1 + a 22 x 2 = b2 .
(1.1.6)
用消元法去解此方程组.先分别用a22和-a12 去乘(1.1.6)式的一式和二式的两端,然 后再将得到的两式相加,得
D2 =
a11
《线性代数》公式大全

《线性代数》公式大全1.向量1.1向量的加法和减法v1=(x1,y1,z1)v2=(x2,y2,z2)v1+v2=(x1+x2,y1+y2,z1+z2)v1-v2=(x1-x2,y1-y2,z1-z2)1.2向量的数量乘法v=(x,y,z),k是一个实数kv = (kx, ky, kz)1.3向量的点积v1·v2=x1x2+y1y2+z1z21.4向量的模长v,=√(x^2+y^2+z^2)2.矩阵2.1矩阵的加法和减法A = (aij),B = (bij)是两个m x n矩阵A +B = (aij + bij)A -B = (aij - bij)2.2矩阵的数量乘法A = (aij)是一个m x n矩阵,k是一个实数kA = (kaij)2.3矩阵的乘法A = (aij)是一个m x n矩阵,B = (bij)是一个n x p矩阵AB = (cij)是一个m x p矩阵,其中cij = a1j*b1i + a2j*b2i+ ... + anj*bni2.4矩阵的转置A = (aij)是一个m x n矩阵A的转置为A^T = (aij)^T = (aji)2.5矩阵的逆A为可逆矩阵,A^-1为其逆矩阵,满足AA^-1=A^-1A=I,其中I为单位矩阵3.行列式3.1二阶行列式D=,abc d, = ad - b3.2三阶行列式D=,abcdeg h i, = aeI + bfG + cdH - ceG - afH - bd3.3n阶行列式D=,a11a12 (1)a21a22...a2...........an1 an2 ... ann, = (-1)^(i+j)*Mij,其中Mij为aij的代数余子4.线性方程组4.1齐次线性方程组Ax=0,其中A为一个mxn矩阵4.2非齐次线性方程组Ax=b,其中A为一个mxn矩阵,x为一个n维列向量,b为一个m维列向量4.3线性方程组的解法4.3.1矩阵消元法通过矩阵的初等行变换将线性方程组转化为行阶梯形或最简形4.3.2克拉默法则Ax = b的解可以表示为x = (Dx1/D, Dx2/D, ..., Dxn/D),其中D 为系数矩阵A的行列式,Di为将第i列的系数替换为b后的行列式4.3.3矩阵求逆法若A为可逆矩阵,则Ax=b的解可以表示为x=A^(-1)b以上是线性代数的一些重要公式,通过理解和掌握这些公式,可以帮助我们解决线性代数相关的问题和应用。
高等数学线性代数教材目录

高等数学线性代数教材目录第一章行列式1.1 行列式的引入1.2 二阶和三阶行列式的计算1.3 行列式的性质和性质的应用1.4 行列式的性质证明第二章矩阵和向量2.1 矩阵的概念和基本运算2.2 矩阵的转置和逆2.3 向量的线性相关性和线性无关性2.4 向量组的秩和极大线性无关组第三章矩阵的运算3.1 矩阵的加法和减法3.2 矩阵的数乘3.3 矩阵的乘法3.4 矩阵的特殊类型第四章线性方程组4.1 线性方程组的概念和解的分类4.2 齐次线性方程组和非齐次线性方程组的解 4.3 线性方程组的向量表示第五章向量空间5.1 向量空间的定义和例子5.2 向量子空间和子空间的概念5.3 向量空间的线性组合和生成子空间5.4 基和维数第六章矩阵的特征值和特征向量6.1 特征值和对角化6.2 特征多项式和特征方程6.3 相似矩阵和相似对角矩阵6.4 实对称矩阵的对角化第七章线性变换7.1 线性变换的概念和性质7.2 线性变换的矩阵表示7.3 线性变换的特征值和特征向量7.4 线性变换的相似、迹和行列式第八章内积空间8.1 内积的定义和性质8.2 欧几里得空间和具有内积的实向量空间8.3 向量的正交性和正交子空间8.4 施密特正交化方法第九章广义特征值问题9.1 广义特征值问题的引入9.2 广义特征值的计算9.3 广义特征值与相似变换9.4 对称矩阵的广义特征值问题与对角化第十章特殊矩阵的标准形式10.1 对称矩阵的对角化10.2 正定矩阵和正定二次型10.3 实对称矩阵的正交对角化10.4 复数矩阵的标准型这是《高等数学线性代数》教材的目录, 包含了十个章节,每个章节中有相应的小节来详细介绍相关内容。
这本教材综合了高等数学和线性代数的知识,旨在帮助读者掌握线性代数的基本概念、理论和方法,以及应用于实际问题的能力。
希望读者通过学习这本教材,能够系统地理解和应用线性代数的知识,为今后的学习和研究打下坚实的基础。
线性代数第四版课后习题答案

线性代数第四版课后习题答案线性代数是数学的一个分支,研究向量空间及其上的线性变换。
它在许多领域中都有广泛的应用,如物理学、计算机科学、经济学等。
而《线性代数第四版》是一本经典的教材,它深入浅出地介绍了线性代数的基本概念和理论,并提供了大量的习题供读者练习。
本文将为读者提供《线性代数第四版》课后习题的答案,以帮助读者更好地理解和掌握线性代数的知识。
第一章:线性方程组1.1 习题答案:1. 解:设方程组的解为x,代入方程组得:2x + 3y + z = 74x + 2y + 5z = 43x + 4y + 2z = 5解得x = 1,y = -1,z = 2。
1.2 习题答案:1. 解:设方程组的解为x,代入方程组得:x - 2y + 3z = 12x + y + z = 23x + 4y - 5z = -1解得x = 1,y = 0,z = 0。
第二章:矩阵代数2.1 习题答案:1. 解:设矩阵A为:3 45 6则A的转置矩阵为:1 3 52 4 62.2 习题答案:1. 解:设矩阵A为:1 23 4则A的逆矩阵为:-2 13/2 -1/2第三章:向量空间3.1 习题答案:1. 解:设向量v为:123则v的范数为sqrt(1^2 + 2^2 + 3^2) = sqrt(14)。
3.2 习题答案:1. 解:设向量v为:23则v的单位向量为v/||v||,即:1/sqrt(14)2/sqrt(14)3/sqrt(14)第四章:线性变换4.1 习题答案:1. 解:设线性变换T为将向量顺时针旋转90度的变换,即:T(x, y) = (y, -x)4.2 习题答案:1. 解:设线性变换T为将向量缩放2倍的变换,即:T(x, y) = (2x, 2y)通过以上习题的答案,我们可以看到线性代数的一些基本概念和理论在实际问题中的应用。
通过解答这些习题,读者可以更好地理解和掌握线性代数的知识,提高自己的解题能力和思维能力。
线性代数第一章 矩阵

16 150 160 140
丁 25
16 180 150 150
甲乙丙丁 单价 20 50 30 25 重量 16 20 16 16
200 180 190 100 120 100 150 160 140 180 150 150
第一章 矩阵
§1.1 矩阵概念
例2. 四个城市间的单向航线如图所示.
1
4
甲 220 185 200
乙 105 120 110
第二次
两次累计:
产品
发到各商场的数量
ABC
甲 420
乙
第一章 矩阵
§1.2 矩阵的基本运算
§1.2 矩阵的基本运算
一. 矩阵的线性运算
1. 加法
例3.
产品
发到各商场的数量
ABC
甲 200 180 190
乙 100 120 100
第一次
产品
发到各商场的数量
例如A =
1 0
1 0
,B=
1 1
0 0
,
AB =
2 0
0 0
,
A2 =
1 0
1 0
= A, B2 =1 10ຫໍສະໝຸດ 0=B,(AB)2 =
4 0
0 0
,
A2B2 = AB =
2 0
0 0
,
第一章 矩阵
§1.2 矩阵的基本运算
例:
1 设A = BC, 其中B = 2 , C = [1 2 3],
2
3
若用aij表示从i市到j市航线的条数, 则上图信息可表示为
a11 a12 a13 a14
01 1 1
a21 a22 a23 a24 a31 a32 a33 a34
线性代数§1.1二阶、三阶行列式

线性代数§1.1⼆阶、三阶⾏列式本章说明与要求⾏列式的理论是⼈们从解线性⽅程组的需要中建⽴和发展起来的,它在线性代数以及其他数学分⽀上都有着⼴泛的应⽤。
在本章⾥我们主要讨论下⾯⼏个问题:(1) ⾏列式的定义;(2) ⾏列式的基本性质及计算⽅法;(3) 利⽤⾏列式求解线性⽅程组(克莱姆法则)。
本章的重点:是⾏列式的计算,要求在理解n阶⾏列式的概念,掌握⾏列式性质的基础上,熟练正确地计算三阶、四阶及简单的n阶⾏列式。
计算⾏列式的基本思路是:按⾏(列)展开公式,通过降阶来计算.但在展开之前往往先利⽤⾏列式性质通过对⾏列式的恒等变形,使⾏列式中出现较多的零和公因式,从⽽简化计算。
常⽤的⾏列式计算⽅法和技巧:直接利⽤定义法,化三⾓形法,降阶法,递推法,数学归纳法,利⽤已知⾏列式法。
⾏列式在本章的应⽤:求解线性⽅程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应⽤的条件。
本章的重点:⾏列式性质;⾏列式的计算。
本章的难点:⾏列式性质;⾼阶⾏列式的计算;克莱姆法则。
==============================================§1.1 ⼆阶、三阶⾏列式⾏列式的概念起源于解线性⽅程组,它是从⼆元与三元线性⽅程组的解的公式引出来的。
因此我们⾸先讨论解⽅程组的问题。
设有⼆元线性⽅程组()()------1 ------2ax by c dx ey f +=+=?? ⽤消元法求解:()()12:e b - ()ae bd x ce bf -=-?,ce bf x ae bd-=-, ()()21:a d - ()ae bd y af dc -=-?,af dc y ae bd-=-。
即得⽅程组的解:ce bf x ae bd af dc y ae bd -?=??-?-?=?-?。
这就是⼀般⼆元线性⽅程组的解公式。
但这个公式很不好记忆,应⽤时⼗分不⽅便。
由此可想⽽知,多元线性⽅程组的解公式肯定更为复杂。
线性代数 1.1 全排列及其逆序数

三、排列的奇偶性
逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列. 定义 把排列中两个元素位置进行对调, 称为对排列作一次对换。 定理:对换改变排列的奇偶性. 证明:先证明是相邻对换的情况,再证非 相邻对换的情况。 推论 将奇(偶)排列变成标准排列需用奇(偶)数 次对换。
第一章
行列式
§1.1 全排列及其对换
一、全排列的定义 n 个不同的元素排成一列,叫做这 n
个元素的全排列,简称排列。 例 123456 是 6 个数的全排列, 53421 是 5 个数的全排列。
二排列的逆序数
对于n 个不同的元素,规定各元素之间由小 到大为标准次序. 定义 当某两个元素的先后次序与标准次序不同 时,就说有一个逆序,一个排列中所有逆序的总 数叫做这个排列的逆序数。 求逆序数的方法: t ( p1 p2 pn ) t1 t2 tn 其中 ti 是排列中与元素 pi 相关的逆序数,即位于 pi前且比 pi 大的的元素个数。
例 (1) 求排列3412中逆序数 .
2 nn 1n 2 321
(1) t (3412) 0 0 2 2 4; 解:
(2) t (n n 1 n 2 321) 0 1 2 (n 1) 1 n(n 1) 2
线性代数第一章第二节

1.1.3 n阶行列式的定义 定义1.1.4 由n2个元素排成 n行n列,以
a11 a 21 a n1 a12 a1n a 22 a 2 n a n 2 a nn
记之,称其为 n阶行列式,它代表一个数值. 此数值是取自上式中不同行不同列的n个 元素 a1 j a2 j anj 乘积的代数和,其中
1.1.2 二阶与三阶行列式 本段的目的是叙述行列式这个概念的 形成,这需要从解线性方程组谈起. 设二元一次线性方程组 a11 x1 a12 x 2 b1 , a 21 x1 a 22 x 2 b2 .
(1.1.6)
用消元法去解此方程组.先分别用a22和-a12 去乘(1.1.6)式的一式和二式的两端,然 后再将得到的两式相加,得
定义1.1.2 在一个排列中,若一个较 大的数排在一个较小的数的前面,则称这 两个数构成一个逆序. 一个排列中所有逆 序的总数称为这个排列的逆序数.用 (j1,j2,…,jn)表示排列j1,j2,…,jn的逆序数. 逆序数是偶数的排列称为偶排列,逆序数 是奇数的排列称为奇排列.
对一个n阶排列 j1,j2,…,jn ,如何求它 的逆序数呢?设这个排列中排在j1后面比
i k1 k 2 k s j
(1.1.3)
经过i与j的对换变成
j k1 k 2 k s i (1.1.4) 由排列(1.1.3)变为排列(1.1.4)可以通 过一系列两两相邻的对换来实现.先将i依次 与 k1,k2,…,ks,j经过 s+1次相邻对换后将 (1.1.3)变为
k1 k 2 k s j i
n( n 1) 2
新的排列,这种变换称为排列的一个对换. 如果将排列32514中的2与4对调,则 得到的新排列34512,它的逆序数 ( 34512 )=2+2+2+0=6,为偶排列.这说明, 奇排列32514经过一次对换得到偶排列 34512。一般地,我们有 定理1.1.1 一次对换改变排列奇偶性.
线性代数课件1(华中科技大学)

行列式,并记作 a11 a12
(5)
a21 a22
即
D a11 a21
a12 a22
a11a22 a12a21.
二阶行列式的计算 对角线法则
主对角线 a11
副对角线 a21
a12 a11a22 a12a21.
a22
对于二元线性方程组
aa1211
x1 x1
a12 x2 a22 x2
b1 , b2 .
5 0,
同理可得
2 2 1
1 2 1
D1 1 1 3 5, D2 2 1 3 10,
0 1 1
1 0 1
1 2 2
D3 2 1 1 5, 1 1 0
故方程组的解为:
x1
D1 D
1,
x2
D2 D
2,
x3
D3 D
1.
1.1.2 n元排列的逆序与对换
一、全排列及其逆序数
问题 把 n 个不同的元素排成一列,共有几种不 同的排法?
n 个不同的元素的所有排列的种数,通常
用 Pn表示. Pn n (n 1) (n 2) 3 2 1 n!.
定义 自然数1,2,3…n按一定次序排成一 排,称为n元排列,记为 i1i2 in
排列的逆序数
我们规定各元素之间有一个标准次序, n 个 不同的自然数,规定由小到大为标准次序(或称 自然排列1234….n).
例如:4231为奇排列,则经过1次(奇次)对换变 成为标准排列(自然排列)1234
1.1.3 n阶行列式的定义
一、概念的引入
三阶行列式
a11 a12 a13 D a21 a22 a23 a11a22a33 a12a23a31 a13a21a32
线性代数1.1行列式的定义

交换一下,(注:这里并不是排列的对换,只是元素乘积
顺序的改变)得到 a1 4a3 1a2 3a5 6a4 2a6 5(2)。
我们注意到交换(1)中这两因素的位置,其行标排列
p1 ps 1 pt p 1 s pt pn (4)
再对排列(4)中的数码 pt 依次与 ps pt 1…… ps 1 这t-s数
码进行t-s次相邻对换得到排列
p1 pt ps 1 pt p 1 s pn (5)
这样排列(3)共经过 ( t-s-1 )+( t-s)=2(t-s)-1 这奇数 次相邻两数码对换完成了在(3)中对换 ps 与 pt 的目的得
同理在对(2)中交换因数 a2 3与 a3 1位置得到的 a1 4a2 3a3 1a5 6a4 2a6 5(3)中仍有
1 N 132546 N 413625
1 N 123546 N 431625
在交换(3)因数 a5 6与 a3 1 位置后得到的
a1 4a2 3a3 1a4 2a5 6a6 5(4)中有
a a a a N 4 2 3 1 14 22 33 41
- 1 N 1 3 2 4 1 4 2 3 3 2 4 1
a a a a - = a1 1a2 2a3 3a4 4
11 23 32 44
a a a a - a1 4a2 2a3 3a4 1
14 23 32 41
又
- 1 N 432516 N 213645
线性代数
•
变量之间的依存关系如果是一次
幂的关系,那么就称为线性关系,这种关
第一篇 线性代数 第一章

a12 a1n a22 a2 n 0 ann
a 11 32 Dn a11 (1) an2
a n 3 a nn
a11 Dn1 a11a22 Dn2 a11a22 ann
叫上三角行列式。
习题1.1
1.计算下列行列式:
(1) 2 1
1 1 2 1
(2)
2 x 3 y 12 0 3x 7 y 5 0
x2 4 9 2 1 3 0 1
4.解下列方程
(1) 1
x2 0
1 x2 0
0 。 1 x2
0
(2) x
1
5.写出下列行列式中元素
1 3 2 4 0 8 3 0 1 0 4 1 2 1 0 1
a12
到 a 21 用虚线连接,称该虚线为副对角线。于是二阶行列式的
值便是主对角线上两个元素之积减去副对角线上两个元素之积所得
的差,其计算规律遵循如图1-1所示的对角线法则。
a11
a12
a21 a22
图1-1
(1-1-2)右端的式子又称为二阶行列式的展开式。当所有的 aij 都是数时,行列式的值是一个具提的数值,若其中有字母出现,则 行列式的值是一个代数式。通常用字母D表示行列式。 利用二阶 行列式的概念,方程组(1-1-1)中 x , x 的分子也可以用二阶行列式表 示, b1 a12 a11 b1
(1-1-1)
用消元法消去 x2 ,得到
(a11a22 a12a21 ) x1 b1a22 b2a12
同理消去 x1 ,得到 (a11a22 a12a21 ) x2 a11b2 a21b1 当 a11a22 a12a21 0时,方程组(1-1-1)的解为
线性代数—1.1矩阵及其运算

a2n M
amn
矩阵是一个整体, 总是加一括号.
称为 mn 矩阵, 并称 mn 为矩阵的型.
• aij : 矩阵的第 i 行第 j 列的元素, 简称 (i, j) 元. • 用粗体大写字母表示矩阵, 以上矩阵记为 A (aij).
• 当标明矩阵 A 的行列数时, 表示为 Amn , 或 (aij)mn .
§1.1 矩阵及其运算
一、矩阵及其线性运算 二、矩阵的乘法运算 三、矩阵的转置运算
一、矩阵及其线性运算
❖ mn 矩阵 由 mn 个数 aij (i 1, 2, , m; j 1, 2, , n) 排成的
m 行 n 列的矩形数表
a11 a12 L
a21 M
am1
a22 M
am 2
L L
a1n
称矩阵 C (cij )mn 为矩阵 A 与 B 的乘积, 记为 C AB.
• AB 中的(i, j)元为 A 的第 i 行与 B 的第 j 列的乘积.
b1 j cij (ai1,L , ail ) M ai1b1 j L ailblj
blj
• 乘积 AB 存在时, 要求 A 的列数与 B 的行数相等.
其中 cij ai1b1 j ai2b2 j L ailblj (i 1,L , m; j 1,L , n)
• 线性变换(1)(3)的系数矩阵依次记为 A,B,C, 定义C AB.
❖ 两矩阵的乘积
设 A (aik )ml , B (bkj )ln , 记 cij ai1b1 j ai2b2 j L ailblj (i 1,L , m; j 1,L , n)
推导:
zi ai1(b11 x1 b12 x2 L b1n xn ) (ai1b11 ai2b21 L ailbl1 ) x1
2014线性代数课件-§1.1

a11 【注】2阶行列式 a21
a12 表示一个代数式。 a22
行列式记忆方法:对角线法则
主对角线 (main diagonal) 副对角线 (minor diagonal)
a11
a21
a12 a22
= a11a22-a12a21
主对角线上两元素之积-副对角线上两元素之积。
a11 x1 a12 x2 b1 对于二元线性方程组 a21 x1 a22 x2 b2 当 a11a22-a12a210时,方程组有唯一解:
a22b1 a12b2 a11b2 a21b1 x1 , x2 a11a22 a12 a21 a11a22 a12 a21
如果某个集合S中任意两个元素a, b经过某种运算得到 的结果仍属于S,就称S对这种运算封闭(closed)。 数域F对加、减、乘、除(除数不为0)运算封闭。
例1 任意一个数域都包含有理数域作为子域。 【证】设K为数域,则K至少包含元素0和1,从而 2=1+1K, 3=2+1K,…, n=(n-1)+1K, -n=0-nK, 因此K包含全体整数,即ZK(Z为整数集)。 又设a为有理数,则存在n, m(m0)Z,使 a=n/mK, 因此QK。
综合上例结论 1、任意一个数域都包含整数集作为子集。 2、任意一个数域都包含有理数域作为子域。
【注】有理数域是最小数域,复数域是最大数域。
二、2阶、3阶行列式 1、2阶行列式 用消元法解二元线性方程,其中系数都来自某数域F, a11 x1 a12 x2 b1 (1) a21 x1 a22 x2 b2 (2) (1)a22:a11a22x1+a12a22x2=b1a22 (2)a12:a12a21x1+a12a22x2=b2a12 两式相减消去x2,得 (a11a22-a12a21)x1=a22b1-a12b2 类似地,消去x1,得 (a11a22-a12a21)x2=a11b2-a21b1
线性代数 第一章 第一节 n阶行列式的定义

k
21 k 1k 1
2 k k ,
当 k 为奇数时,排列为奇排列.
23:10 24
小结
1 n 个不同的元素的所有排列种数为 n!.
2 排列具有奇偶性.
3 计算排列逆序数常用的方法有2 种. 4 n 阶全排列逆序数的范围: 最小的逆序总数: 最大的逆序总数:
23:10 23
3 2k 12k 122k 232k 3k 1k
解
2k 1 2k 1 2 2k 2 3 2k 3k 1 k
0 1
1
2
2
t 0 1 1 2 2 k 1 k 1 k
计算物理教研室201831811n阶行列式的定义111二三阶行列式的定义112n阶行列式的定义12行列式的主要性质13行列式按行列展开131按一行列展开行列式132拉普拉斯定理第一章行列式2018318一内容提要行列式是研究线性代数的一个重要工具近代被广泛运用到理工科各个领域特别在工程技术和科学研究中有很多问题需要用到行列式这个数学工具
2 2 3 1 D2 3 2 1 (1) 7, 1 2
二元一次方程组的解为:
23:10
1 2 5 2 8,
D1 8 x1 D 11 ; D 7 x2 2 . D 11
9
类似地,为了得出关于三元线性方程组:
a11 x1 a12 x2 a13 x3 b1 a21 x1 a22 x2 a23 x3 b2 a x a x a x b 3 31 1 32 2 33 3
a 21 b2
线性代数 线性方程组

变换 3: 第i 个方程 乘以 r 0
…… … … … … …
ai1 x1+ai2 x2+… +ain xn = bi …… … … … … …
aj1 x1+aj2 x2+…+ajn xn = bj …… … … … … …
第 i 个方程乘以 r−1 即返回
…… … … … … …
rai1 x1+rai2 x2+… +rain xn = rbi …… … … … … …
同解。
行阶梯形
y z =3
0=0
x = 2+z
y = 3+z
1 0 1 2
0 1 1 3 0000
行最简形
x z = 2 y z = 3
0=0
2. 行最简形矩阵:
• 首先是行阶梯形矩阵; • 其次首元所在的列除了这个首1 外其余元素都是0.
利用行最简形增广矩阵直接就可以写出解.
增广矩阵
初等行变换
行阶梯形
得到一个与原方程组有相同解集的新方程组, 它更容 易判别是否有解并方便求解. 这一过程称为等价变换 或同解变换.
消元法:
• 消元
• 回代
例5
2x y z 3
求解
x y
2
解
x y z 6
xy 2
①
②
2x y z 3
x y z 6
xy 2
y z 1 ③ +②×(- 2)
2 y z 4
② +①×(- 2) ③ +①×(- 1)
严格三角形方程组
xy 2
Байду номын сангаас
y z 1
线性代数_第一章

印证以上结论。
方法2 n个数中比i大的数有n- i个(i=1,2,…,n),若在排 列x1x2…xn中对i构成的逆序为li个,则在xnxn-1…x1中 对i构成的逆序为(n- i)-li,于是两排列中对i构成的 逆序之和为 表示 li+[(n-i)-li]= n-i (i=1,2,…,n) …… 从而 ( x1 x2 xn ) ( xn xn1 x1 ) n( n 1) ( n 1) ( n 2) 2 1 2 n( n 1) I .为所求 即 ( x n x n 1 x 1 ) 2
第1章 行列式
行列式是线性代数的一个重要组 成部分.它是研究矩阵、线性方程组、 特征多项式的重要工具.本章介绍了 n阶行列式的定义、性质及计算方 法,最后给出了它的一个简单应 用——克莱姆法则.
主要内容
1.1 1.2 1.3 1.4
n阶行列式的定义 行列式的性质 行列式按行(列)展开 克莱姆法则—行列式应用
是所有取自不同行、不同列n个元素的乘积 a1 j1 a2 j2 anjn ( j1 j2 jn ) 并冠以符号 ( 1) 的项的和.
(i) a1 j1 a 2 j2 a nj n 是取自不同行、不同列的n个元素乘积 (ii)行标按自然顺序排列,列标排列的奇偶性 ( j1 j2 jn ) 决定每一项的符号; (iii) 表示对所有的 j1 j2 jn 构成的n!个排列求和.
上三角行列式的值等于其主对角线上各元素的乘积 .
例5 计算
=-4-6+32-24-8-4
=-14
3 x1 x 2 x 3 26 例3 解线性方程组 2 x1 4 x 2 x 3 9 x1 2 x 2 x 3 16
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(7)
三角矩阵
主对角线下 (上) 方的元全为零的方阵称为 上 (下) 三角矩阵. 例如
a11 a12 a1n a11 a 22 a 2 n a 21 a 22 a a a a nn n1 n 2 nn
A 称为 n n 方阵,常称为 n 阶方阵或 n 阶矩阵,
常简记为 A= ( aij )n .
(4) 对角矩阵
主对角线上的元不全为零,其余的元全都为 零的方阵称为对角矩阵,如
a11 a22 A . a nn
主对角线
为 n 阶对角矩阵, 其中未标记出的元全为零, 即 aij = 0 , i j , i, j = 1, 2, … , n ,
础.
第一节 矩阵的概念
引例
矩阵的概念 几种特殊的矩阵
一、引例
引例 1 考试成绩表 假设我们记录 4 名学生甲、
乙、丙、丁的 3 门课程(数学、语文、英语)的期末考 引例 2 生产原料表 设有三个炼油厂以原油作 成绩. 満分为100分,期末考试成绩如表 1.1 所示. 主要原料,利用一吨原油生产的燃料油、柴油和汽油 表 1.1 期末考试成绩表 数量如表 课程 1.2 所示 ( 单位:t ): 成绩 数学 语文 英语 学生 表 1.2 生产原料表 甲 乙 燃料油 丙
线性代数的学习方法 学习线性代数所要的数学知识非常少,主要用 加、减、乘,除法几乎不用,所有的同学都在同一 个起跑线上,不会有因数学基础不好而学不下去的 情况. 线性代数的计算量大,麻烦,但不难. 线性代数的公式多,式子大,符号繁,但规律 性强,课程内容比较抽象,需要大家具备一定的抽 象思维能力,逻辑推理能力,分析问题能力和动手 解决实际问题的能力.
上三角矩阵 下三角矩阵
(ห้องสมุดไป่ตู้)
对称矩阵与反对称矩阵
在方阵 A = ( aij )n 中, 如果 aij = aji ( i , j = 1, 2,
…, n) 则称 A 为对称矩阵. 如果 A 还是实矩阵, 则 称 A 为对称矩阵. 如果 aij = -aji (i , j = 1, 2, … , n) , 则称 A 为反对称矩阵. 例如
1
. 1 n
n 阶单位矩阵 E 在矩阵代数中占有很重要的地 位, 它的作用与 “1” 在初等代数中的作用相似.
(6)
数量矩阵
主对角线上的元全相等的对角矩阵称为数 量矩阵. 例如 n 阶数量矩阵
c
c
, 其中 c 为常数. c n
为学好这门课程,要求同学们认真上好每一节 课,深刻理解每一节课的基本理论,熟练掌握每一 节课的重点内容,熟练运用知识点解题,能够收到 举一反三的效果. 要求同学们课前预习,课后复习.课堂上认真听 讲,积极思考,回答问题。 成绩计算方法 包括到课情况、课堂回答问 题情况以及作业完成情况
平时成绩占30%
90 86 95 第一炼油厂 第二炼油厂 第三炼油厂 78 80 70 0.762 0.476 0.286 92 93 96
二、矩阵的概念
定义 1.2 由 m n 个数 aij , ( i = 1 , 2 , … , m ;
j = 1 , 2 , … , n ) 排成的一个 m 行 n 列的数表
通常用大写的拉丁字母 A、B、C 等表示矩阵. 有 时为了指明矩阵的行数和列数,也可以将 m 行 n 列 的矩阵 A 记作 Am n . 例如
1 2 4 3 9 8 5 2 4 2 1 0
3×4矩阵
1 3 9 5 3
2 0 8 1 5
若一个矩阵的所有元都为零,则称这个矩阵 为零矩阵, m n 零矩阵记为 Om n ,在不会引 起混淆的情况下,也可记为 O. (3) 方阵 行数和列数相同的矩阵称为方阵.例如
a11 a12 a1n a21 a22 a2 n A . a a a nn n1 n 2
考试成绩占70%
教材
线性代数学习网址 http://210.42.35.80/G2S/Template/View.as px?action=view&courseType=0&courseId=756
第一章
矩 阵
矩阵是线性代数的一个重要的基本概念和数学工
具,广泛应用于自然科学的各个分支及经济分析、经 济管理等许多领域. 在这一章里,我们将介绍矩阵的 运算,方阵的行列式,可逆矩阵,矩阵的初等变换等 关于矩阵的基本理论. 这些内容是学习后面各章的基
5× 2 矩阵
三、几种特殊的矩阵
(1) 行矩阵和列矩阵 只有一行的矩阵称为行矩阵 (也称为行向量). 如 A = ( a11 a12 … a1n ).
只有一列的矩阵称为列矩阵 (也称为列向量).
如
a11 a21 B . a m1
(2) 零矩阵
a11 a21 a m1
a12 a22 am 2
a1n a2 n amn
称为一个 m n 矩阵. 其中 aij 称为矩阵的第 i 行第
j 列的元 ( i = 1 , 2 , … , m ; j = 1 , 2 , … , n ) .
2 1 5 1 2 3 1 3 7 2 0 7 5 3 7 2 7 4
对称矩阵
反 对 称 矩 阵
四、内容小结
1、矩阵的定义 2、几种特殊的矩阵 (1)行矩阵和列矩阵 (2)零矩阵 (3)方阵 (4)对角矩阵 (5)单位矩阵 (6)数量矩阵 (7)三角矩阵 (8)对称矩阵与反对称矩阵
对角矩阵常记为 A = diag( a11 , a22 , … , ann ). 例如
3 0 0 diag(3,1,2) 0 1 0 . 0 0 2
对角矩阵
(5) 单位矩阵
主对角线上的元全为 1 的对角矩阵称为单
位矩阵, 简记为 E 或 I . 如
1 En