第3章机器人动力学

合集下载

1第三章机器人力学分析及动力学模型

1第三章机器人力学分析及动力学模型
2
末点力与关节扭矩
末点力
fn,n+1和Nn,n+1是操作手作用 于环境的力和力矩,为方 便,定义
⎡ f n,n +1 ⎤ F=⎢ N n,n +1 ⎥ ⎦ ⎣
fn,n+1
为末点力。
驱动力/力矩
作用点:在相邻杆件之间 定义 τ=[τ 1 τ 2
3 为关节扭矩。
τ n ]T
Nn,n+1
末点力与关节扭矩的关系
δW=τ 1δq1 +
T + τ nδq n − f nT,n +1δPe − N n,n +1δφe
或 δW = τ T δq − F T δP
5
定理证明(2)
根据虚功原理,机器人处于平衡的充要 条件是对任意的符合几何约束的虚位移, 有
δW=0
注意到 δP 和 δq 的关系,则有
δW = τ δq − F Jδq = (τ − J F ) δq
1
§3.1机器人静力学
研究内容
机器人与环境接触时,界 面上将产生相互作用力和力矩。 机器人的每个关节都由一个 驱动器驱动,相应的输入关节 力矩通过杆件传送给末端执行 器作用在环境和对象上。 静力学讨论当机器人静止时 在驱动器扭矩和由它产生的施加在机器人末点的力和力矩之 间的关系,这对机器人的控制是重要的。
18
系统动能(5)
可得拉格朗日公式
∑H
j =1
n
ij
q j + ∑∑ hijk q j q k + Gi = Qi
j =1 k =1
n
n
i = 1,
, n (关节号)
式中
hijk
1 ∂H jk = − ∂q k 2 ∂qi

工业机器人第3章 工业机器人的动力学基础

工业机器人第3章 工业机器人的动力学基础
R(t ) R(t t ) R(t ) [ R( k, ) I ]R(t ) ( k, ) R(t )
(3.10)
(3.11)
式中
I
—— 3×3阶单位矩阵;
( k, ) —— 微分旋转算子,其表达式为
0 k z k y ( k , ) k z 0 k x k y k x 0
Q AQB O ARB BQ
对式(3.7)两边求其导数,得到点 Q 相对于{ A} 和 {B} 的运动速度
A
Q
,BQ 式中
之间的关系式:
A
Q AQBO ARB BQ ARB BQ
(3.8)
A
QBO
—— 坐标系{B}的原点相对于坐标系{ A} 的运动速度;
A
RB —— 旋转矩阵的导数。
3.1 牛顿-欧拉方程
牛顿欧拉方程的定义:以牛顿方程和欧拉方程为出发点,结合机 器人的速度和加速度分析而得出的一种机器人动力学算法。
建立机器人牛顿-欧拉动力学数学模型的思路:首先已知机器人 各连杆的速度、角速度及转动惯量,利用牛顿-欧拉刚体动力学 公式导出机器人各关节执行器的驱动力及驱动力矩的递推公式, 然后再由它归纳出机器人动力学的数学模型—— 机器人机械系 统的矩阵形式的运动方程。
质量分布中心,记为坐标系 {C } 。若已知以坐标系 {C }为参考系的
{C } 坐标系原点 惯性张量(可用计算方法或实验方法确定)和 { A} 的位置矢量 [ x y z ]T ,则可利用平行 (质心)相对于坐标系 C C C
{ A} 为参考系的惯性张量,即有 轴原理决定以坐标系
A
A C 2 2 I zz C I zz m( xC yC ) , I xy I xy mxC yC

第3章机器人动力学

第3章机器人动力学
τ 1 2 ... n T
若将关节力(矩)矢量看成是驱动装置的输入,在末端产生的广义力作为输出, 可以建立两者之间的关系。
令各关节的虚位移为 qi ,运动链末端操作器相应的虚位移为 D。
各关节所作的虚功之和为: w τTδq 1 q1 2 q2 ......... n qn 末端操作器所作的虚功为: w FTD fxdx fydy fzdz nxx nyy nzz
操作臂的动能可以写为:
Ek
(q, q&)
1 2
q&T
D(q)q&
D(q) 是 n n 阶的操作臂惯性矩阵。操作臂的动能 Ek 是其惯性矩阵的二次
型。由于动能 Ek 为正,因而 D(q) 是正定的矩阵。
连杆 i 具有势能为: Epi mi 0gT 0pci
式中, 0 g 是 31的重力加速度向量, 0 pci 是连杆 i 质心的位置矢量。
1 旋转关节的速度传递
ω i i 1
i ωi
i i 1
Rθ&i1
i
1
Zi
1
ω i1 i 1
i
1 i
R
i
ωi
θ&i1 i1 Zi1
vi i 1
i vi
i ωi
Pi i 1
v i1 i1
R i1 i
i vi i ωi i Pi1
2 移动关节的速度传递
ω i1 i 1
i
1 i
R
i
ωi
v i1 i1
n
操作臂所具有的势能为各连杆势能之和:
EP
i1
EPi
势能也为 q 的标量函数,记为 EP (q) 。
利用拉格朗日函数 L,系统的动力学方程(称第二类拉格朗日方程)为

第3章工业机器人运动学和动力学概要

第3章工业机器人运动学和动力学概要

第3章工业机器人运动学和动力学机器人操作臂可看成一个开式运动链,它是由一系列连杆通过转动或移动关节串联而成。

开链的一端固定在基座上,另一端是自由的,安装着工具,用以操作物体,完成各种作业。

关节由驱动器驱动,关节的相对运动导致连杆的运动,使手爪到达所需的位姿。

在轨迹规划时,最感兴趣的是末端执行器相对于固定参考系的空间描述。

为了研究机器人各连杆之间的位移关系,可在每个连杆上固接一个坐标系,然后描述这些坐标系之间的关系。

Denavit和Hartenberg提出一种通用方法,用一个4*4的齐次变换矩阵描述相邻两连杆的空间关系,从而推导出“手爪坐标系”相对于“参考系”的等价齐次变换矩阵,建立出操作臂的运动方程。

称之为D-H矩阵法。

3.1 工业机器人的运动学教学时数:4学时教学目标:理解工业机器人的位姿描述和齐次变换;掌握齐次坐标和齐次变换矩阵的运算;理解连杆参数、连杆变换和运动学方程的求解;教学重点:掌握齐次变换及运动学方程的求解教学难点:齐次变换及运算教学方法:讲授教学步骤:齐次变换有较直观的几何意义,而且可描述各杆件之间的关系,所以常用于解决运动学问题。

已知关节运动学参数,求出末端执行器运动学参数是工业机器人正向运动学问题的求解;反之,是工业机器人逆向运动学问题的求解。

3.1.1 工业机器人位姿描述1.点的位置描述在选定的指教坐标系{A}中,空间任一点P的位置可用3*1的位置矢量表示,其左上标代表选定的参考坐标系。

2.点的齐次坐标如果用四个数组成4*1列阵表示三维空间直角坐标系{A}中点P,则该列阵称为三维空间点P的齐次坐标,如下:必须注意,齐次坐标的表示不是惟一的。

我们将其各元素同乘一个非零因子后,仍然代表同一点P,即其中:,,。

该列阵也表示P点,齐次坐标的表示不是惟一的。

3.坐标轴方向的描述用i、j、k分别表示直角坐标系中X、Y、Z坐标轴的单位向量,用齐次坐标来描述X、Y、Z轴的方向,则有,,从上可知,我们规定:4*1列阵中第四个元素为零,且,则表示某轴(某矢量)的方向。

第03章 机器人的运动学和动力学

第03章 机器人的运动学和动力学

教案首页课程名称农业机器人任课教师李玉柱第3章机器人运动学和动力学计划学时 3教学目的和要求:1.概述,齐次坐标与动系位姿矩阵,了解平移和旋转的齐次变换;2.机器人的运动学方程的建立与求解*;3.机器人的动力学*重点:1.机器人操作机运动学方程的建立及求解;2.工业机器人运动学方程3.机器人动力学难点:1. 机器人动力学方程及雅可比矩阵基本原理思考题:1.简述齐次坐标与动系位姿矩阵基本原理。

2.连杆参数及连杆坐标系如何建立?3.机器人动力学方程及雅可比矩阵基本原理是什么?第3章机器人运动学和动力学教学主要内容:3.2 齐次坐标与动系位姿矩阵3.3 齐次变换3.4 机器操作机运动学方程的建立与求解3.5 机器人运动学方程3.6 机器人动力学本章将主要讨论机器人运动学和动力学基本问题。

先后引入了齐次坐标与动系位姿矩阵、齐次变换,通过对机器人的位姿分析,介绍了机器人运动学方程;在此基础上有对机器人运动学方程进行了较为深入的探讨。

3.1 概述机器人,尤其是关节型机器人最有代表性。

关节型机器人实质上是由一系列关节连接而成的空间连杆开式链机构,要研究关节型机器人,必须对运动学和动力学知识有一个基本的了解。

分析机器人连杆的位置和姿态与关节角之间的关系,理论称为运动学,而研究机器人运动和受力之间的关系的理论则是动力学。

3.2 齐次坐标与动系位姿矩阵3.2.1 点的位置描述在关节型机器人的位姿控制中,首先要精确描述各连杆的位置。

为此,先定义一个固定的坐标系,其原点为机器人处于初始状态的正下方地面上的那个点,如图3-1(a)所示。

记该坐标系为世界坐标系。

在选定的直角坐标系{A}中,空间任一点P的位置可以用3×1的位置向量A P表示,其左上标表示选定的坐标系{A},此时有A P=XYZ P P P ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦式中:P X、P Y、P Z—点P在坐标系{A}中的三个位置坐标分量,如图3-1(b)。

3.2.2 齐次坐标将一个n维空间的点用n+1维坐标表示,则该n+1维坐标即为n维坐标的齐次坐标....。

机器人的动力学

机器人的动力学

机器人的动力学是研究机器人运动和力学特性的学科。

它涉及了描述机器人运动、力和力矩之间关系的原理和方法。

机器人动力学的主要内容包括以下几个方面:
运动学:机器人运动学研究机器人的位置、速度和加速度之间的关系。

它涉及描述机器人末端执行器(如机械臂)的位姿和运动轨迹,以及描述机器人关节的运动参数。

动力学:机器人动力学研究机器人在外部作用力或力矩下的运动行为。

它涉及描述机器人的质量、惯性、力和力矩之间的关系,以及机器人的运动响应和稳定性。

控制:机器人动力学与机器人控制密切相关。

动力学模型可以用于设计机器人控制算法,以实现所需的运动、力量和精度。

力觉传感:机器人动力学可以应用于力觉传感技术。

力觉传感器可以用于测量机器人末端执行器的外部力和力矩,以实现机器人与环境的交互、力量控制和安全操作。

动力学模拟和仿真:动力学模型可以用于机器人动力学的模拟和仿真。

通过在计算机中建立机器人动力学模型,可以预测机器人在特定任务和环境中的运动行为和性能。

机器人动力学的研究对于机器人设计、控制和运动规划等方面都具有重要意义。

它可以帮助优化机器人的运动性能、提高机器人的精度和效率,并为机器人在各种应用领域中的安全操作和协作提供基础。

《机器人动力学》课件

《机器人动力学》课件

机器人动力学有助于优化机器人的设 计和性能,提高机器人的运动性能和 作业能力。
安全性和稳定性
通过机器人动力学的研究,可以预测 机器人在不同环境和操作条件下的行 为,从而避免潜在的危险和保证机器 人的安全稳定运行。
机器人动力学的发展历程
初始阶段
早期的机器人动力学研究主要关注于简单的机械臂模型,采用经典力学理论进行分析。
刚体动力学是研究刚体在力作用下的运动规律的科学。刚体动力学建模
是研究刚体运动过程中力和运动状态之间的关系。
02
牛顿-欧拉法
牛顿-欧拉法是一种基于牛顿运动定律和欧拉方程的刚体动力学建模方
法。通过这种方法,可以建立刚体的运动方程,描述刚体的运动状态。
03
拉格朗日法
拉格朗日法是一种基于拉格朗日方程的刚体动力学建模方法。这种方法
《机器人动力学》ppt 课件
目录
Contents
• 机器人动力学概述 • 机器人动力学的基本原理 • 机器人动力学建模 • 机器人控制中的动力学应用 • 机器人动力学研究的挑战与展望 • 机器人动力学实验与案例分析
01 机器人动力学概述
定义与特点
定义
机器人动力学是研究机器人运动过程中力和运动状态之间关系的学科。它主要关注机器人在操作物体 、环境交互以及自身运动过程中产生的力和扭矩,以及这些力和扭矩如何影响机器人的运动状态。
在实际应用中的表现。
06 机器人动力学实验与案例分析
实验一:刚体动力学实验
总结词
理解刚体动力学基本原理
详细描述
通过实验一,学生将学习刚体动力学 的基本原理,包括刚体的运动学和动 力学特性。实验将通过演示刚体在不 同条件下的运动,帮助学生理解刚体 动力学的概念和应用。

机器人动力学

机器人动力学

机器人动力学机器人动力学是机器人领域中的一个重要研究方向,它主要研究机器人的运动学和动力学行为。

机器人动力学涉及到机器人的运动、力学、控制等方面知识,对于机器人的设计、运动控制和任务完成等都有着重要的影响。

本文将从机器人动力学的基本概念、运动学和动力学模型、以及应用场景方面进行阐述。

一、机器人动力学的基本概念机器人动力学是机器人技术中的一个重要分支领域,它主要研究机器人在运动过程中的力学行为及其控制。

机器人动力学的基础是牛顿运动定律和动力学原理,通过建立机器人的运动学和动力学模型,来描述机器人在不同力场中的运动过程。

二、机器人动力学的运动学模型机器人的运动学描述了机器人末端执行器在空间中的位置和姿态随时间的变化规律。

机器人的运动学模型可以分为正解和逆解两个方向。

正解通过已知机器人关节角度或长度,来求解机器人末端执行器的位置和姿态。

逆解则是通过已知机器人末端执行器的位置和姿态,来求解机器人关节角度或长度。

三、机器人动力学的动力学模型机器人的动力学描述了机器人在运动时所受到的力和力矩,以及机器人关节的运动学参数和动力学参数之间的关系。

机器人的动力学模型可以分为正解和逆解两个方向。

正解通过已知机器人关节角度、速度和加速度,来求解机器人末端执行器的力和力矩。

逆解则是通过已知机器人末端执行器的力和力矩,来求解机器人关节角度、速度和加速度。

四、机器人动力学的应用场景机器人动力学在许多实际应用中发挥着重要作用。

例如,在工业自动化领域,机器人动力学模型可用于控制机器人的姿态和位置,以完成各种生产任务。

在医疗领域,机器人动力学模型可用于辅助手术和康复训练等。

此外,机器人动力学模型还可应用于空间探索、军事作战、环境清理等领域。

总结机器人动力学是机器人技术中的一个重要研究方向,它研究机器人在运动过程中的力学行为和控制方法。

通过建立机器人的运动学和动力学模型,可以描述机器人在不同力场中的运动过程,并应用于工业自动化、医疗领域、空间探索等各个领域。

第3章 工业机器人静力学及动力学分析

第3章 工业机器人静力学及动力学分析

l2s12

l1s12

l2s12

(3-15)
[例3-1] 解(续)
• 已知端点速度为:
V

vx
v
y


1 0
因此,由式(3-14)可得:


12


J 1V

1 l1l2s2
l2c12 l1c1 l2c12
l2s12 1
y
1
x
2
y

2
(3-6) (3-7)
式(3-6)可简写为:
dX=Jd
(3-8)
式中:
dX ddyx;
d

d1
d
2

• 我们将J称为图3-1所示二自由度平面关节 型工业机器人的速度雅可比,它反映了关
节空间微小运动d与手部作业空间微小位
y1 f1(x1, x2 , x3, x4 , x5, x6 )

y2

f2 (x1, x2 , x3, x4 , x5, x6 )
(3-1)
y6 f6 (x1, x2 , x3, x4 , x5, x6 )
可写成: Y=F(X)
将其微分,得:
dy1

f1 x1
)
l2sin(1 2 )
l 2 c os (1

2)

12


ll11csoins11

l2sin(1 l2c(1
2 )1 2 )1
l2sin(1 2 )2 l2cos(1 2 )2
• 动力学逆问题对实现工业机器人实时控 制是相当有用的。

机器人的动力学分析与优化

机器人的动力学分析与优化

机器人的动力学分析与优化第一章介绍机器人技术的不断发展给人们带来了便利和效率,但机器人的动力学问题一直困扰着研究人员。

动力学问题涉及到机器人的运动、力学和控制方面,为了解决这一难题,科学家们开始对机器人进行动力学分析和优化。

本文将深入探讨机器人的动力学分析与优化技术。

第二章动力学分析机器人的动力学分析是针对机器人系统的力学,通过建立机器人的数学模型,运用牛顿-欧拉法、拉格朗日方程等力学原理进行机器人的运动分析,得到机器人的动力学模型。

根据机器人的运动特征和控制方式,动力学分析一般分为正运动学和逆运动学分析。

正运动学分析是指给定机器人的各关节的位姿参数,得到机器人各个部位的坐标和朝向等位置信息的运动学问题。

逆运动学分析是指根据机器人预期的位姿任务,反向计算出机器人各关节的位姿参数。

动力学分析过程中,需要关注机器人的质量参数和其运动状态的描述参数等,掌握机器人的力学特性,并进行系统的力学分析。

第三章动力学优化动力学优化是对机器人的动态行为进行优化的过程,目的是提高机器人的控制性能、运动精度、效率和稳定性等,可根据机器人的控制目标、任务要求和性能指标等进行动力学优化设计,以满足相应的应用需求。

机器人的动力学优化需要考虑多个方面的因素,例如,助力器件和驱动器件的设计,运动过程中的能量分配和分配过程的最优化等,通过运用数学模型和优化算法,提高机器人的性能指标,实现机器人的最优化设计。

动力学优化设计应当考虑机器人的应用环境、性能需求以及其它相关因素,是机器人发展的重要研究方向。

第四章动力学应用机器人动力学分析及优化可应用于各种机器人系统,包括普通工业机器人、协作机器人、服务机器人、医疗机器人等。

在工业生产和生活领域,这些机器人的应用越来越普遍,优化机器人的动力学参数,有助于提高其有效性和合理性。

以智能家居为例,机器人通过高精度的动力学分析,掌握家居环境的信息,通过优化设计,提高其移动速度、精确性和准确度,以满足更多家庭环境的需求。

机器人动力学

机器人动力学

机器人动力学机器人动力学是机器人学的一门子领域,主要研究的是机器人系统的动作行为方面的问题,与机械结构和电气控制等方面紧密联系。

机器人动力学的发展和计算机的出现密不可分,其历史可以追溯到上世纪八十年代。

机器人动力学的研究内容主要涉及机器人系统动作行为动态建模、控制、优化与仿真,包括系统动力学与控制、机器人控制体系、学习与生物动力学、以及机器人系统仿真分析技术等。

系统动力学与控制主要研究机器人系统在动作行为变化过程中的物理特性,如建立机器人系统的动力学模型、设计机器人的控制算法,利用系统动力学的理论分析机器人的运动学特性,以及进行控制系统调试与优化等工作。

机器人控制体系研究通过机器人感知、计算、控制、规划、实施等环节,构建机器人控制系统,可以实现机器人智能化控制。

学习与生物动力学研究机器人智能化控制技术,可以实现动力学模型的自适应变化,学习机器人的运动规律,以及协调自然运动行为的研究。

机器人系统仿真分析技术研究机器人系统的复杂性,构建仿真系统,以模拟机器人运动行为在不同环境中的变化情况,掌握并优化机器人运动行为,以及开展精准分析等工作。

随着计算机技术和机器人技术的不断发展,机器人动力学研究也发生了很大变化,从传统的计算机指令系统开发转变为新的机器人智能化控制系统,使机器人动力学的发展取得了长足的进步。

未来机器人动力学研究将围绕智能化控制、动力学特性优化以及自主机器人系统建模与控制等研究方向发展,机器人动力学也将进一步发展,这将为机器人技术的未来应用研发发展提供基础和支持。

机器人动力学研究与应用对智能机器人的创新应用具有重要的意义,它为机器人技术的发展提供了技术保障。

未来,机器人动力学的研究将越来越受到人们的关注,机器人技术的应用也将受益于机器人动力学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
PB 0
,旋转矩阵为
A B
R
,任一点
P
在坐标系中的描述
A
P

B
P
AP
A PB 0

A B
R
B
P
速度:A vP

A vB0

A B
R
B
v
P
S
AωB
A RBP
B
加速度:AvP

A vB0

A B
R
B
v
P
2S
AωB
A B
RBvP

S
AωB
A RBP S

B
相对于固定参考系

A
移动,即
A B
R
固定不变,则
AωB AωB 0
简化为:
A vP

A v BO

A B
R
B
v
P
A vP

A v BO

A B
R
B
v
P
(3) 如果 vP

A B
R
B
v
P

S(
A
ω
B
)
A B
R
B
P
A vP

A B
R
B
v
P
2S
AωB
A B
RBvP

S(
A
ωB
)
A B
R
B
P

S(
AωB )S
AωP
A RBP
B
角速度矢量是自由矢量,记坐标系 B 相对 A 的转动角速度为 AωB , C 相对 B 的转动角
速度 B ωC ,则 C 相对 A 的转动角速度 AωC
AωC

AωB

A B
R
B
转换公式类似。平行轴定理可以表示成以下矢量形式:
AI C I m(PCT PC I3 PC PCT )
式中, I3 是 3 3 的单位阵, PC [xC yC zC ]T 。
惯性张量实质上代表刚体质量分布相对于某一坐标系的二阶矩,具有以下性质: 1) 所有惯性矩恒为正,而惯性积可正可负。
常根据工作台坐标系来确定。
图3-1 机器人的坐标系
3.1.2 工具的定位
计算工具坐标系 T 相对于工作台坐标系 S 的变换矩阵 TST
TST BST 1 WBT WTT
(3-1)
方程(3-1)在某些机器人系统中称为WHERE函数,用它可计算手臂的位 置。对于图3-1中情况,WHERE的输出是轴销相对于工作台顶角处的位姿。
B
AωB
S
AωB
A RBP
B
(1) 若坐标系 A 固定不动,而刚体与 B 固接在一起,则
B P const
B vP B vP 0
简化为:
A vP

A vB0

S(
A
ω
B
)
A B
R
B
P
A vP

A v BO

S(
A
ω
B
)
A B
R
B
P

S(
A
ω
B
)S(
A
ω
B
)
A B
R
B
P
(2)
如果运动坐标系
2) 当坐标系(参考系)的方位改变时, I 0 不变。
3) 惯性张量的特性值是刚体相应的主惯性矩,其相应的特征矢量分别是 惯性主轴。由于机器人操作臂或者运动腿的几何形状及结构组成都比较复 杂,一般是使用测量装置(如惯性摆)来测量每个连杆的惯性矩。
3.1.4 连杆运动的传递
设有两个坐标系:参考系 A 和运动坐标系 B 。 B 相对于 A 的位置矢量为
ωC
微分得:
A ωC

AωB

A B
R
BωC
S
AωB
A B
R BωC
下面利用Denavit-Hartenberg的连杆参数表示方法,依次递推出机 器人操作臂或者步行机器人运动腿各连杆的速度和加速度。
系定义,即 BwT N0T 。 (4) 工具坐标系 T :工具坐标系 T 附于机器人所夹持工具的末端。当手部没有
夹持工具时,工具坐标系 T 的原点位于机器人的指端之间。工具坐标系通常根
据腕部坐标系来确定。
(5) 目标坐标系 G :目标坐标系 G 是机器人移动工具时对工具位置的描述。特
指在机器人运动结束时,工具坐标系应当与目标坐标系重合。目标坐标系 G 通
它来执行的。有时称它为任务坐标系、世界坐标系或通用坐标系。工作台坐标
系通常根据基坐标系确定,即 BST 。
(3) 腕部坐标系 w :腕部坐标系 w 附于操作臂的末端连杆。这个固连在机器
人末端连杆上的坐标系也可以称为坐标系 N 。大多数情况,腕部坐标系 w
的原点位于操作臂手腕上,它随着操作臂的末端连杆移动。它相对于基坐标
机器人引论 第3章 机器人动力学
第3章 机器人动力学
3.1 动力学分析基础 3.2 机器人的静力分析 3.3 机器人动力学方程
3.1 动力学分析基础
3.1.1 机器人的坐标系
(1) 基本坐标 B :基本坐标 B 位于操作臂的基座上。它仅是赋予坐标系 0 的另一个名称。因为它固连在机器人的静止部位,所以有时称为连杆 0。 (2) 工作台坐标系 S :工作台坐标系 S 的位置与任务相关。对机器人系统的 用户来说,工作台坐标系 S 是一个通用坐标系,机器人所有的运动都是相对于
3.1.3 惯性张量和惯性矩阵
绕轴x、y和z的质量惯性矩分别为
Ixx
( y2 z2 )dv
v
( y2 z2 )dm
m
Iyy
(z2 x2 )dv
v
(z2 x2 )dm
m
Izz
(x2 y2 )dv
v
(x2 y2 )dm
AI


I
xx
I xy
I xz
Ixy I yy I yz

I
xz

I yz
I zz

I 0 表示刚体相对于原点的惯性矩: I0 I xx I yy I zz
惯性张量与坐标系的原点和方位的选择有关。坐标轴平移或旋转后,惯性张量
和惯性矩阵的各个元素会发生变化。设坐标系 C 的原点设在刚体的质心,坐标
系 A 的各轴与 C 平行,根据平行轴理论,刚体相对于两坐标系的惯性矩和惯性
积存在以下关系:
AI zz C I zz m(xc2 yc2 ) AI xy C I xy mxC yC
式中, xc , yc 和 zc 是刚体质心 AC 在 A 中的坐标。其余各惯性矩和惯性积的坐标
m
混合矩(称为惯性积):
Ixy v xydv m xydm I yz v yzdv m yzdm Izx v zxdv m zxdm
相对于给定的坐标系 A ,可以用以上 6 个量组成一个矩阵 AI 来表示物体的
质量分布特征,称为惯性张量。它可以被看成是对一个物体惯量的广义度量, 和选取的坐标系有关。如果我们选取坐标系的方位,使得各惯性积为零,则 相对于这一坐标系,惯性张量是对角型。而此坐标系的各轴叫惯性主轴,相 应的惯性矩叫主惯性矩。
相关文档
最新文档