第十章机器人静力学与动力学.ppt

合集下载

机器人静力学动力学和运动学的关系

机器人静力学动力学和运动学的关系

机器人静力学动力学和运动学的关系
机器人静力学动力学和运动学是机器人学的基础课程,它们组成了机器人系统的核心技术理念。

机器人的设计和操作的的前提是,对机器人的运动学准确理解、识别和控制。

静力学是关于探测并分析机器人机构在给定载荷和速度情况下的内部力和外部力的研究,是问动力学和运动学问题的关键课程。

静力学分析将机械设计中所涉及的每一块部件的物理定位、定位精度和力学性能都正确的刻画出来。

它的结果对驱动系统和控制系统的规划、设计和把握机械系统的运动有重要的作用。

动力学是研究机械系统的运动轨迹的学科,主要应用于机械系统运动学的研究,包括系统运行过程中的受力、受力状态、动力以及动力如何作用于机械系统等。

动力学分析有助于优化计算机机械系统的动作不仅能够满足性能要求,而且还能满足动力要求,保证机械系统在运动状态时能够顺畅而又安全地完成动作。

运动学是研究机械系统如何运动的学科,通过对机械系统各个部件的角度位置、插值、运动速度的实时控制、位置控制以及运动控制等实现机械系统的目标姿态,其结果构成了机械系统最优的运动,可以实现高效的动作给机器人的运动提供强有力的支持。

机器人静力学动力学和运动学的关系如何?从宏观上看,静力学作为机器人系统的基础,分析了机械系统内部每一块部件的物理定位、定位精度和力学性能;动力学作为对机器系统运动学的研究而深入探索;而运动学直接负责调整机器人的运动,帮助机器人实现最优的姿态,实现高效的动作。

因此,机器人静力学、动力学和运动学三者有着紧密的联系,其共同完成了机器人系统的构建和动作感知控制。

工业机器人的力学分析

工业机器人的力学分析

第!!卷!第"期#$%&!!!’$&"!!!!!平!原!大!学!学!报()*+’,-)./0’12*,’*’0#3+4052!!!!!667年8月!(9:;&!667工业机器人的力学分析姬清华!平原大学机电工程学院"河南新乡<7"66"#!!摘!要!随着机电一体化技术的迅速发展!工业机器人在工业生产中的地位越来越重要!本文从工业机器人的力学分析入手!分别作了静力学和动力学的分析研究!为工业机器人手部及运动各构件提供了力学的分析原理及方法"关键词!工业机器人#静力学#动力学#力矩中图分类号!5/!<!W !!!文献标识码!,!!文章编号!=66>?"@<<!!667#6"?6==8?6!!!收稿日期!!667?6"?6>作者简介!姬清华$=@A 8%&!男!河南新乡人!主要从事机电一体化及数控加工方面的研究"!!随着工业机器人技术的发展"工业机器人的力学分析变得至关重要$工业机器人力学分析主要包括静力学分析和动力学分析"它们是工业机器人操作机设计%控制器设计和动态仿真的基础$P 静力学分析静力学分析是研究操作机在静态工作条件下"手臂的受力情况$P &P 静力平衡方程如图=所示"为开式链手臂中单个杆件的受力情况$杆件)通过关节)和)N =分别与杆件)U =和)N =相连接"以)关节的回转轴线和)N =关节回转轴线为2)U =和2)坐标分别建立两个坐标系)U =和)$令5)U =")表示)U =杆作用在杆上的力"5)")N =表示)杆作用在)N =杆上的力"则U 5)")N =表示)N =杆作用在)杆上的力"*)为)杆的重心"重力<1作用在*)上"于是杆件)的力平衡方程为&5)U =")N 5)N =")N <)1K 6)K ="!"’"#若以5)")N =代替5)N =")"则有&5)U =")U 5)")N=N <)1K 6!=#!!又令;)U =为)U =杆作用于)杆上的力矩"U ;)")N =为)N =杆作用于)杆的力矩"则力矩平衡方程为;)U =")U ;)")N=U !&)")N =N &)"*)#V 5)U =")N !U &)"*)#V U 5)")N =K 6!!)K ="!"’"!!#式中"第三项为5)U =")对重心取矩"第四项为U 5)")N =对重心取矩$若工业机器人操作机由#个杆件构成"则由式图=!杆件的受力分析!=#和式!!#可列出!#个方程"两式共涉及力和力矩!#g !个"因此"一般需结出两个初始条件方程才能有解$在工业机器人作业过程中"最直接受影响的是操作机手部与环境之间的作用力和力矩"故通常假设这两个量为已知"以使方程有解$从施加在操作机手部的力和力矩开始"依次从末杆件到机座求出所施加的力和力矩"将式!=#和式!!#合并并变成从前杆到后杆的递推公式"即5)U =")K 5)")N=U <)1;)U =")K ;)")N =N !&)U =")N &)"*)#V 5)U =")U !&)"*)V 5)")N =#!!)K ="!"’"#P &N 关节力和关节力矩为了使操作机保持静力平衡"需要确定驱动器对相应杆件的输入力和力短与其所引起的操作机(8==( 万方数据手部力和力矩之间的关系!令*)为驱动元件)的第)个驱动器的驱动力或驱动力矩"并假设关节处无摩擦"则有当关节是移动副时"如图!所示"*)应与该关节的作用力5)U =")在2)U =上的分量平衡"即*)K -O)U =5)U=")式中-)U =为)U =关节轴的单位向量!上式表明驱动器的输入力只与5)U =")在2)U =轴上的分量平衡"其他方向的分量由约束力平衡"约束力不作功!当关节是转动副时"*)表示驱动力距"它与作用力矩;)U =")在2)U =轴上的分量相平衡"即*)K -O)U =;)U=")图!!移动关节上的关节力N 动力学分析动力学分析是研究操作机各主动关节驱动力与手臂运动的关系"从而得出工业机器人动力学方程!目前已提出了多种动力学分析方法"这里仅就用牛顿欧拉方程建立工业机器人动力学方程作简要介绍!图"!杆件动力学方程的建立!!动力学方程可以用两个方程表达#一个用以描述质心的移动"另一个描述质心的转动!前者称为牛顿运动方程"后者称为欧拉运动方程!取工业机器人手臂的单个杆件作为自由体"其受力分析如图"所示!图中(*)为杆件)相对于固定坐标系的质心速度"+)为杆件)的转动角速度!因为固定坐标系是惯性参考系"所以将杆件)的惯性力加入到静力学方程式$=%中"于是有牛顿运动方程#5)U =")U 5)")N=N <)1U <)W (*)K 6)K ="!"&"#$"%作用在杆件)上的惯性矩是该杆件的瞬时角动量对时间的变化率!令+)为角速度向量"B )为杆件)质心处的惯量"于是角动量为B )+)!因为惯量随杆件方位的变化而变化"所以角动量对时间的导数不仅包含B )W +)"而且包含因B )的变化而引起的变化+)V B )+)"即陀螺力矩"上述两项加到静力学力矩平衡式$!%中"得;)U =")U ;)")N =N &)"*)V 5)")N =U &)U ="*)V 5)U =")U B W +)U +)V B )+)K 6)K ="!"&"#$<%公式$"%和$<%是单个杆件的动力学特性关系式"若将工业机器人的:个杆件均列出相应的上述两个方程"即得到工业机器人完整的动力学方程组的基本形式#牛顿’欧拉方程!!!参考文献!!="徐元昌#陶学恒&工业机器人!["&北京$中国轻工业出版社#=@@@&!!"陈小川#刘晓冰&虚拟制造体系及其关键技术!("&计算机辅助设计与制造#=@@@#%=6&&!""盛晓敏#邓朝晖&先进制造技术!["&北京$机械工业出版社#!66<&!<"邱士安&机电一体化技术!["&西安$西安电子科技出版社#!66<&【责任编校!李东风】@"@"’-.()(45B %*$’")*(!"U 474#_K +)"2?$,’$C "*0$#)*$+$#DX +"*8&)*$+X #1)""&)#1H "I $&8<"#8’5%)#1.3$#6#)("&7)8."9)#:)$#1"!"#$#<7"66"40)#$%@7(#1’*##_C G BG B ;F E J C II ;T ;%$J M ;:G$O [;H B E G F E :C H D "G B ;F $K $GE J J %C ;IC :C :I 9D G F L BE T ;K ;H $M ;M $F ;E :IM $F ;C M J $FG E :G &5B C D E F G CH %;E :E %L c ;D O F $M M ;H B E :C H D "I C D H 9D D ;D O F $MG B ;D G E G C H D E :II L :E M C H D D ;J E F E G ;%L E :I$O O ;F D G B ;G B ;$F C ;D $O E :E %L c C :Q E F M M $T ;M ;:G E :I H $M J$:;:G $O F $K $G D &A %.:41/(#F $K $G (D G E G C H D (I L :E M C H D (M $T ;M ;:G )A ==) 万方数据工业机器人的力学分析作者:姬清华, JI Qing-hua作者单位:平原大学,机电工程学院,河南,新乡,453003刊名:平原大学学报英文刊名:JOURNAL OF PINGYUAN UNIVERSITY年,卷(期):2005,22(3)被引用次数:2次1.邱士安机电一体化技术 20042.盛晓敏;邓朝晖先进制造技术 20043.陈小川;刘晓冰虚拟制造体系及其关键技术 1999(10)4.徐元昌;陶学恒工业机器人 19991.陈登瑞六自由度机械手本体结构关键技术研究[学位论文]硕士 20062.张烈霞工业机器人运动及仿真研究[学位论文]硕士 2006本文链接:/Periodical_pydxxb200503036.aspx。

试论述机器人静力学、动力学、运动学的关系。

试论述机器人静力学、动力学、运动学的关系。

试论述机器人静力学、动力学、运动学的关系。

静力学、动力学和运动学是机器人学中的三大重要分支,也是机器人机械系统设计和分析的基础。

它们之间具有千丝万缕的联系,彼此间互相依赖。

首先,让我们来看一下静力学。

静力学是研究机器人静止物体,尤其是机器人结构的运动学性质的一门学科,是分析机器人结构内力、力矩、力矩惯性矩阵并确定机器人所处的动力学状态的研究对象。

它主要研究包括机械系统的结构分析、运动学分析、力学模型建立、力学计算等,并在此基础上为动力学分析和机械动力学分析提供有力的依据。

其次,动力学是研究机器人在实际环境中的运动过程的一门学科。

动力学研究的基础是静力学,它考察机器人结构在其运动过程中会受到的外力和内力;不同类型的外力会造成机器人总体运动有所不同,但机械系统本质上也具有力学性质,所以运动特性的研究依赖于动力学以及机器人结构的力学属性。

最后,运动学可以被定义为研究在静力学的基础上运动物体末端相对位姿和状态的研究。

它主要是分析机器人结构的全局位置变换、及其所服从的动力学控制。

它通过对机器人运动路径及时间建模和控制,从而实现相应的机器人系统功能。

机器人静力分析与动力学课件

机器人静力分析与动力学课件

平衡状态
机器人在静力分析中处于静止或匀速 运动状态,此时力和力矩的平衡使得 机器人的位置和姿态保持不变。
机器人在工作过程中需要承受的外部 负载,包括重力、外部作用力等。
机器人静力分析方法
有限元分析(FEA)
边界元分析(BEM)
刚体动力学
静力分析在机器人设计中的应用
01
02
03
结构优化
负载能力评估
正运动学模型
根据机器人关节参数,计算机器人末端执行器的位置和姿态。
逆运动学模型
已知机器人末端执行器的位置和姿态,反求机器人关节参数。
雅可比矩阵
描述机器人末端执行器速度与关节速度之间的映射关系。
运动学在机器人设计中的应用
机器人的工作空间分析
1
机器人的运动规划
2
机器人的控制策略
3
04
机器人轨迹规划
CHAPTER
机器人静力分析与 动 力学课件
contents
目录
• 机器人静力分析 • 机器人动力学 • 机器人运动学 • 机器人轨迹规划 • 机器人传感器与感知
01
机器人静力分析
CHAPTER
静力分析基本概念
静力分析
在机器人设计中,静力分析是评估机 器人在静态负载下的性能,主要关注 力和力矩的平衡。
静态负载
轨迹规划基本概念
轨迹
轨迹规划
根据任务需求和机器人运动学、动力 学等约束条件,规划出机器人从起始 点到目标点的最优或次优运动轨迹。
机器人轨迹规划方法
基于运动学的方法 基于动力学的方法 基于人工智能的方法
轨迹规划在机器人控制中的应用
工业机器人
01
服务机器人
02

试论述机器人静力学,动力学,运动学的关系

试论述机器人静力学,动力学,运动学的关系

试论述机器人静力学,动力学,运动学的关系
机器人学是一门研究机器人的运动、力学和控制的学科。

其中,机器人的静力学、动力学和运动学是机器人学中的三个重要分支,它们之间存在着密不可分的关系。

静力学是研究机器人在静止状态下的力学特性,主要包括机器人的力学结构、质心位置、静态稳定性等。

在机器人的设计和控制中,静力学是非常重要的,因为只有在机器人的静态稳定性得到保证之后,机器人才能进行安全和可靠的运动。

静力学的研究成果,可以为机器人的控制系统提供重要的参考依据。

动力学是研究机器人在运动状态下的力学特性,主要包括机器人的动力结构、速度、加速度、惯性等。

在机器人的控制和规划中,动力学是一个非常重要的研究方向,因为只有了解机器人的动态特性,才能更加有效地控制机器人的运动。

动力学的研究成果,可以为机器人的控制系统和运动规划提供重要的参考依据。

运动学是研究机器人运动的几何特性和空间关系的学科,主要包括机器人的位置、朝向、运动轨迹等。

在机器人的控制和规划中,运动学是非常重要的研究方向,因为只有了解机器人的运动特性,才能更加有效地控制机器人的运动。

运动学的研究成果,可以为机器人的运动规划和控制系统提供重要的参考依据。

综上所述,机器人的静力学、动力学和运动学之间存在着密不可分的关系。

在机器人的设计、控制和运动规划中,这三个分支相互作用,相互影响,共同推动了
机器人技术的不断发展。

机器人静力学,动力学,运动学的关系

机器人静力学,动力学,运动学的关系

机器人静力学,动力学,运动学的关系
机器人的静力学、动力学和运动学是机器人技术研究中三个重要领域,它们之间存在
着相互关联,协同工作,构成了机器人技术的核心。

首先,机器人静力学是指机器人操作过程中机械结构在不变的平衡状态下运动学位置
及实时运动状态估计分析,被誉为机器人外部力分析和内力传递分析的基础学科。

它主要
通过建立机器人机械结构模型,利用关节形变、外力以及内力等物理变量,计算求解机器
人的内外力特性、机构的端部间的平衡、受力特性、稳定性及物体约束特性等。

其次,机器人动力学是指机器人的运动发生时,所做动力学建模、分析及控制的研究,因此它探讨的是关节力学、碰撞识别等方面的有关问题,它主要是要求在运动过程中求解
系统运动参数或者特征值,实现机器人动态分析与控制,研究动力学模型对机器人系统动
态性能的影响。

最后,机器人运动学是指动作规划及机器人运动控制之间相关问题的研究,通过研究
机器人通过方向轮,电机和关节的作用实现有用运动的方法,涉及关节角度、运动轨迹、
几何关系、姿态成份的工程化方法。

它是对机器人机械结构分析和动力学建模的补充,探
讨机器人各关节及机构动作之间相互关系,以及机器人运动要求下,机器人运动解的计算
及实现方法,使得机器人拥有大量的姿态组合,增加机器人的全局适应性。

由此可以看出,机器人的静力学、动力学和运动学形成了一个完整的研究体系,它们
相互交织,共同工作,它们提供了对机器人运动的有效把握,从而实现机器人的运动目标。

因此,机器人的静力学、动力学和运动学十分重要,它们是实现机器人运动控制的基础,
也将在机器人研究中发挥重要作用。

机器人静力学动力学

机器人静力学动力学

• 质心速度
.
.
..
x2 l1 cos1 1 l2 cos(1 2 )(12 )
.
.
..
y2 l1 sin1 1 l2 sin(1 2 )(12 )
• 质心速度:
v22
.
y
2
2
.
x22
.
.
..
.
.
..
l12 12 l22 (12 21 2 22 ) 2l1l2 cos2 (12 1 2 )
JT
例题 二自由度平面关节机器人,知端点力,略摩擦、重
力,求关节力矩。 1 0 2 90 F [FX , FY ]T
解:
J
l1s1 l2 s12
l1c1
l2c12
l2 s12
l 2 c12
JT
l1s1 l2 s12 l2 s12
l1c1 l2c12
l 2 c12
1
关节虚位移
q1
q
2
q
qq43
q5
q6
虚位移原理:
W 1q1 2q2 F1 x F2 y F3 z F4
W Tq F TP
W 0
W Tq F TP Tq F T Jq ( J T F )T q 0
( J T F )T 0
JTF
雅可比转置矩阵
• 三、静力学两类问题: • 1、 正向静力学—知各关节驱动力(力矩),求手部
端点能输出的力(力矩) 。
• 2、 逆向静力学—知手部端点作用力(力矩),求关 节需施加的力(力矩)。
• 机器人通常是逆向力学问题。
• §4—2 机器人动力学
• 一、动力学两类问题: • 1、 正向动力学—知各关节驱动力(力矩),求末端

机器人静力分析与动力学(共44张PPT)

 机器人静力分析与动力学(共44张PPT)
• 1.关节空间和操作空间
• n个自由度操作臂的末端位姿X由n个关节变量所决定,这 n个关节变量也叫做n维关节矢量q,所有关节矢量q构成 了关节空间。末端执行器的作业是在直角坐标空间中进行 的,即操作臂末端位姿X是在直角坐标空间中描述的,因 此把这个空间叫做操作空间。运动学方程X=X(q)就是关 节空间向操作空间 的映射;而运动学逆解那么是由映射 求其在关节空间中的原象。在关节空间和操作空间操作臂 动力学方程有不同的表示形式,并且两者之间存在着一定 的对应关系。
2.3 机器人动力学方程
• 机器人动力学的研究有牛顿-欧拉(NewtonEuler) 法、拉格朗日(Langrange)法、高斯 (Gauss)法、凯恩(Kane)法及罗伯逊-魏登堡 (Roberon-Wittenburg) 法等。本节介绍动力 学研究常用的牛顿-欧拉方程和拉格朗日方 程。
出来的特性,如快速响应性、跟随误差、 3 机器人动力学方程
3所示,杆i通过关节i和i+1分别与杆i–1和i+1相连接,建立两个坐标系{i–1}和{i }。 机器人各关节的驱动装置提供关节力和力矩,通过连杆传递到末端执行器,克服外界作用力和力矩。
稳定性等。取决与机构的刚度、驱动的力 本节介绍动力学研究常用的牛顿-欧拉方程和拉格朗日方程。
2.3.3 平面关节机器人动力学分析
故进行动力学分析时,通常进行以下简化: 7 分别用拉格朗日动力学及牛顿力学推导题2. 机器人雅可比矩阵(简称雅可比)揭示了操作空间与关节空间的映射关系。 本节介绍动力学研究常用的牛顿-欧拉方程和拉格朗日方程。 关节驱动力和力矩与末端执行器施加的力和力矩之间的关系是机器人操作臂力控制的根底。 本节介绍动力学研究常用的牛顿-欧拉方程和拉格朗日方程。 而运动学逆解那么是由映射求其在关节空间中的原象。 欧拉方程表征了力、力矩、惯性张量和加速度之间的关系。 而运动学逆解那么是由映射求其在关节空间中的原象。 4 简述空间分辨率的根本概念。 3所示,杆i通过关节i和i+1分别与杆i–1和i+1相连接,建立两个坐标系{i–1}和{i }。 2 简述用拉格朗日方法建立机器人动力学方程的步骤。 机器人雅可比矩阵(简称雅可比)揭示了操作空间与关节空间的映射关系。 取决与机构的刚度、驱动的力和力矩、控制器的运算速度和精度、控制算法的计算效率等。 5 机器人的稳态负荷的研究包括哪些内容?

第十章.动量定理哈工大理论力学课件ppt

第十章.动量定理哈工大理论力学课件ppt

m1
l 2
cos
2m1
l
cos
m2
2l
cos
5 2
m1
2m2
l
cos
p
p
2 x
p
2 y
1 2
5m1
4m2 l
cos
p,
x
px ,
cos
p,
y
py
p
p
§11-1 动量与冲量
例10-1
曲柄OA的动量 pOA m1vE
大小: pOA m1vE m1l 2
方向:与 vE 方向一致,垂直 于OA并顺着ω的方向
Fx e
dp
F
e
dt
dpy
dt
Fy e
dpz
dt
Fz e
三、动量守恒定理
1、如果在上式中
F
e
0 ,则 有 p p0
常矢量
结论
其中:p0 为质点系初始瞬时的动量
在运动过程中,如作用于质点系的所有外力的矢量和始终等 于零,则质点系的动量保持不变。这就是质点系的动量守恒 定理
lim t0
K t
Q(v2
v1
)W
P1
P2
R

R (W P1 P2 )Q(v2 v1)
静反力 R'(W P1 P2 ) , 动反力 R''Q(v2 v1)
计算 R时'' ,常采用投影形式
Rx '' Q(v2x v1x ) Ry '' Q(v2 y v1y )
与 R'相' 反的力就是管壁上受到的流体作用的动压力.
解:取火炮和炮弹(包括炸药)为研究对象

河北联合大学轻工学院机器人基础PPT静力学与运动学

河北联合大学轻工学院机器人基础PPT静力学与运动学
0
f3
0
0 f3 3 R 3 f3
式中,旋转变换矩阵为
0 3
c12 R s12
s12 c12
机器人研究所
12 机器人研究所
15:33
机器人研究所
第1节 机器人静力学
1. 连杆的受力和平衡方程
例题1:2自由度平面机器人末端对外施加的作用力 为F3,求各关节驱动力矩。 力雅可比与速 解: 度雅可比是转 1 l1s1 l2 s12 l1c1 l2c12 0 τ f3 置的关系! l2c12 2 l2 s12 力雅可比矩阵 T J
广义力矢量作用下对于坐标系{A}的虚位移(微分运 动矢量) AD,在坐标系{B}内的虚位移为BD,有如 下关系
T d RT T δ 0
R S p d T R δ
T
B A RT A D 0
B A RT S B pA0 B D B T AR
机器人研究所
机器人研究所
10 机器人研究所
第1节 机器人静力学
1. 连杆的受力和平衡方程
例题1:2自由度平面机器人末端对外施加的作用力 为F3,求各关节驱动力矩。 解:
1 l1s2 f x l1c2 f y l2 f y 2 l2 f y
写成矩 阵形式
1 l1s2 0 2
F T AD BF T B D 将 BD 带入,
A
B B A R S B pA0 A R A T F BF T B 0 AR
15:33
机器人研究所
机器人研究所
24 机器人研究所

静力学和动力学分析PPT课件

静力学和动力学分析PPT课件

25
动力学普遍方程 的补充:
A
问题的引出
M
m1g m2g
O
BF
m3g
MA
m1g m2g
O
2021/3/12
B m3g
问题1:系统在图示位 置平衡,用什么方法求 F与M的关系?
问题2:系统中OA杆匀 角速转动,求在图示位 时,力偶M的大小用什 么方法?
2266
设:质点系中第i个质点的质量为mi;作用在其上的主动力Fi; 约束力FNi. 质点的惯性力为FIi
或者称为动势)
2、当主动力部分为有势力时
Qj
2021/3/12
V
(q1, q
j
, qk ) Q'j
d T dt q j
T q j
Qj
( j 1, 2,
,k)
d T dt q j
T q j
V q j
d dt
T q j
(T V ) q j
0
d L dt q j
L q j
0
2021/3/12
7
对力雅可比矩阵的补充说明:
2021/3/12
8
虚功方程力雅可比分析:
2021/3/12
9
2.2.3 机器人静力计算
机器人操作臂静力计算可分为两类问题: (1) 已知外界环境对机器人手部的作用力F,(即手部端点力 F-F′),利用式(2.20)求相应的满足静力平衡条件的关节驱动力 矩τ。 (2) 已知关节驱动力矩τ,确定机器人手部对外界环境的作用 力或负载的 质量。 第二类问题是第一类问题的逆解。逆解的关系式为
24
2.3 机器人动力学方程
机器人动力学的研究有牛顿-欧拉(Newton-Euler) 法、拉格 朗日(Langrange)法、高斯(Gauss)法、凯恩(Kane)法及罗伯 逊-魏登堡(Roberon-Wittenburg) 法等。本节介绍动力学研 究常用的牛顿-欧拉方程和拉格朗日方程。

机器人静力学,动力学,运动学的关系

机器人静力学,动力学,运动学的关系

机器人静力学,动力学,运动学的关系机器人静力学、动力学和运动学是机器人研究领域的三个重要分支。

它们相互交叉,彼此受益,共同构成了机器人技术的完整体系。

静力学,又称静态学,是研究物体在力学作用下的运动状态和形状变化的学科。

静力学的概念先由古希腊哲学家亚里士多德提出,是研究物体在力学作用下其位置改变和力学状态的学科,它是机器人学的基础理论,它可以帮助我们了解机器人的结构装配、控制方式、总体运动规律及机器人的力学响应等。

动力学是研究物体动力运动的活动特性及受力特性的学科,其主要研究内容是计算物体运动的轨迹、受力特性和作用力等。

它是机器人技术重要的理论基础,可以用来设计机器人运动控制系统,例如驱动机构控制、坐标系变换和轨迹规划等,帮助提高机器人的运动性能和精度。

机器人运动学是研究机器人运动空间及运动规律的学科,其主要研究内容包括机器人的轨迹定义、关节运动学、反向运动学等,它可以帮助分析机器人系统的性能、识别机器人的失效原因,为机器人运动控制设计提供理论支撑。

机器人静力学、动力学和运动学紧密相互联系,它们是机器人技术的三个重要分支。

静力学可以提供机器人的运动规律,动力学则提供机器人从静态到动态运动的转归,运动学可以分析机器人的运动规律。

由于三者相互交叉,彼此受益,它们共同构成了机器人技术的完整体系。

机器人静力学、动力学和运动学的研究不断发展,它们在各种领域的应用也在不断拓展,如机器人制造、积木机器人、服务机器人、智能机器人等,其作用日益凸现。

未来,编程、控制、传感等设计将继续优化,将有助于构建更加完善可靠的系统、更加灵活多样的机器人。

总之,机器人静力学、动力学和运动学之间有着密不可分的联系,它们共同构成了一个完整的机器人技术体系。

随着未来机器人技术的发展,它们将发挥更大的作用,为人类更多的工作和生活带来更多的便利。

机器人静力学、动力学、运动学的关系

机器人静力学、动力学、运动学的关系

机器人静力学、动力学、运动学的关系
机器人静力学、动力学、运动学关系的研究是机器人的重要方向。

在物理学和机械工程领域,静力学、动力学和运动学是所研究内容的三大运动类科学,它们都是分析机器人的重要工具。

静力学是由斯特拉森于1847年创立的科学,用于分析机器人的力和运动条件,包括结构、几何形状、约束、重量等参数,通过分析得出机器人的运动方程及相关系数。

动力学是文德斯于1903年创立的科学,是利用牛顿力学解决机器人运动学问题的方法,可以根据静力学分析得出来的机器人结构和参数,实现求出机器人的运动参数,如移动轨迹、运动速度、加速度和旋转角度等。

运动学是根据动力学的原理描述机器人的姿态和运动特性的科学,可以用算法建模去模拟机器人的运动轨迹,以及基于视觉、惯性测量等感知系统,实时估计机器人的位姿,计算其在运动时合适的力和速度参数。

机器人静力学、动力学和运动学的研究是研究机器人的基础。

从理论上讲,静力学和动力学的研究可以为机器人提供自然环境下的运动算法,运动学则可以针对特定环境中的机器人进行更精确的解析,从而让机器人的运动更加准确、稳定和可控。

综上所述,我们可以得出总结:机器人静力学、动力学和运动学是机器人研究中不可割舍的重要组成部分,它们分析机器人的运动参数及相关力,为机器人运动提供重要的技术支撑,是实现精确、稳定的机器人运动的坚实基础。

机器人技术课件:工业机器人静力计算及动力学分析共43页文档

机器人技术课件:工业机器人静力计算及动力学分析共43页文档
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
Байду номын сангаас
机器人技术课件:工业机器人静力计 算及动力学分析
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯

第十章 机器人静力学与动力学

第十章 机器人静力学与动力学

上式也可直接用虚功原理求得。
13
10.2 机器人动力学概述
一、研究目的: 1、合理地确定各驱动单元(以下称关节)的电机功率。 2、解决对伺服驱动系统的控制问题(力控制) 在机器人处于不同位置图形(位形)时,各关节的有 效惯量及耦合量都会发生变化(时变的),因此,加于各 关节的驱动力也应是时变的,可由动力学方程给以确定。 二、机器人动力学研究的问题可分为两类: 1 、给定机器人的驱动力(矩),用动力学方程求解机器 人(关节)的运动参数或动力学效应(即已知 , 求 , 和 ,称为动力学正问题)。 2 、给定机器人的运动要求,求应加于机器人上的驱动力 和 ,求 , 称为动力学逆问题 )。 (矩)(即已知 ,
T T
9
由机器人运动微分关系可知, pJq ,则有
J Q 0 q
T T
因为 q
i
是独立坐标,则 q 0 ,所以有
JT Q
式中 J ——是速度分析时引出的雅可比矩阵,其元素为相应 的偏速度。 上式是针对操作机的关节力和执行器参考点 P e 间所产生的 力和力矩之间的关系式。 该式表明关节空间和直角坐标空间广义力可以借助于雅可比 矩阵 J 进行变换。这种变换关系,也可推广到任两杆间固联直 角坐标系中的广义力变换,这时应将关节空间与直角坐标空间 的雅可比矩阵,点广义力; Q F , F , F , M , M , M e x e y e z e x e y e z
T 为各关节位移; n
y z
于是,操作机的总虚功是:
W qQp
根据虚功原理,若系统处于平衡,则总虚功(虚功之和)为0, 即:
q Q p 0
10.3 二杆机器人的拉格朗日方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

p xe , ye , ze ,x ,y ,z T 为末端点位移;
于是,操作机的总虚功是:
W
T
q
T
Q
p
根据虚功原理,若系统处于平衡,则总虚功(虚功之和)为0,
即:
T
q
T
Q
p
0
9
由机器人运动微分关系可知, p J q ,则有 J T QT q 0
因为 qi 是独立坐标,则 q 0 ,所以有 JTQ
0
M
v
M z ry rx 0 0 0 1 M w
上式也可直接用虚功原理求得。
13
10.2 机器人动力学概述
一、研究目的:
1、合理地确定各驱动单元(以下称关节)的电机功率。 2、解决对伺服驱动系统的控制问题(力控制)
在机器人处于不同位置图形(位形)时,各关节的有 效惯量及耦合量都会发生变化(时变的),因此,加于各 关节的驱动力也应是时变的,可由动力学方程给以确定。
所应提供的关节力或关节力矩,记作 i ,其大小为
i k Fi
kMi
3
当忽略杆件自重时 Gi ,上式可简记为 :
i
Fi
i
R i 1
M
i i
r i
i
R i 1
0
F
i 1 i 1
i
Ri
1
M
i i 1
若以 i0 表示不计重力的关节力或力矩值,对于转动关节 则有 :
n
i i0 ki (r i,C j G j ) j i
第十章 机器人静力学和动力学
静力学和动力学分析,是机器人操作机设计和动态性能分 析的基础。特别是动力学分析,它还是机器人控制器设计、 动态仿真的基础。
机器人静力学研究机器人静止或缓慢运动式,作用在机器 人上的力和力矩问题。特别是当手端与环境接触时,各关节 力(矩)与接触力的关系。
机器人动力学研究机器人运动与关节驱动力(矩)间的动 态关系。描述这种动态关系的微分方程称为动力学模型。由 于机器人结构的复杂性,其动力学模型也常常很复杂,难以 用于机器人实时控制。然而高质量的控制应当基于被控对象 的动态特性,因此,如何合理简化机器人动力学模型,使其 适合于实时控制的要求,是机器人动力学研究追求的目标。
界对象的力和力矩,为了和输入关节力矩 故应取负值。
i
一起进行运算,
8
利用虚功原理建立静力平衡方程,令
1, , i , , n T 为各关节驱动力;
Q Fex , Fey , Fez , Mex , Mey , Mez T 为末端点广义力;
q q1,, qi ,, qn T 为各关节位移;
Fi Fi1 Gi
M i M i1 ri F i1 rCi Gi

Fii
R F i
i 1
i1 i1
R0i Gi0
Mii
R M i
i 1
i1 i1
rii
R F i
i 1
i1 i1
rCii
R0i Gi0
式中 Gi0 mi g ( mi 为杆 Li 的质量)。
求出 F i和 M i在 zi轴上的分量,就得到了关节力和扭矩, 它们就是在忽略摩擦之后,驱动器为使操作机保持静力平衡
10
例2 如图,操作机的手爪正在持板手扭某一螺栓,手爪上 方 联接一测力传感器可测六维力向量(力和力矩)。试确定测力传 感器和扭动板手时力和力矩的关系。
11
解:
设在测力传感器上置坐标系 Sf ( Of uvw ),在螺栓上置坐 标系 S ( O xyz ) 。在图示瞬间,两坐标系彼此平行。因为刚 体的无限小位移(平移和转动)可表示为六维向量,故对二者的 微位移可分别表示为:
12
前式也可以从前图直观求得。
设 P 为相应于 q 的关节广义力向量, Q 为相应于 p 的 末端广义力向量,则可得:
Fx 1 0 0 0 0 0 Fu
Fy
0
1
0
0
0
0
Fv
Q
Fz
M x
0 0
0 rz
1 ry
0 1
0 0
0 0
Fw
Mu
J
T
P
M
y
rz
0
rx
0
1
式中 ri,Cj ——是自 Oi 到杆 L j 的质心 C j 的向径。
4
例1 求两杆操作机的静关节力矩(坐标系与结构尺寸如图)。 解:设已知
5
6
7
二、操作机的静力平衡
设有操作机如图所示,每个关节都作用有关节力矩i (广
义驱动力,指向 zi 的正向),在末端执行器的参考点 Pe 处
将产生力 F e 和力矩 M e 。由于 F e 、M e 是操作机作用于外
1.拉格朗日方程法:通过动、势能变化与广义力的关系,建 立机器人的动力学方程 。代表人物 R.P.Paul、J.J.Uicker、 J.M.Hollerbach等。计算量O(n4),经优化O(n3),递推O(n)。
2.牛顿—欧拉方程法:用构件质心的平动和相对质心的转动 表示机器人构件的运动,利用动静法建立基于牛顿—欧拉方程 的动力学方程。代表人物Orin, Luh(陆养生)等。计算量O(n)。
二、机器人动力学研究的问题可分为两类: 1、给定机器人的驱动力(矩),用动力学方程求解机器
人(关节)的运动参数或动力学效应(即已知 , 求 , 和 ,称为动力学正问题)。
2、给定机器人的运动要求,求应加于机器人上的驱动力
(矩)(即已知 , 和,求 , 称为动力学逆问题 )。 14
三、动力学研究方法:
1
10.1 机器人静力学
一、杆件之间的静力传递
在操作机中,任取两连杆
Li,Li1 。设在杆
Li
上的
1
Oi 1

作用有力矩 M i1和力 F i1;在杆 Li 上作用有自重力 G〔i 过质
心 Ci );ri 和 rCi 分别为由 Oi 到 Oi1 和 Ci 的向径。
F i1
M i1
2
按静力学方法,把这些力、力矩简化到 Li 的固联坐标系 oi xi yi zi ,可得:
p x, y, z,x , y ,z
q u, v, w,u ,v ,w
由于两坐标系的坐标轴平行,于是可以得到:
u 1 0 0 0 rz ry x
v
0
1
0
rz
0
rx
y
w 0 0 1
q
u
0
0
0
ry 1
rx 0
0 z
0
x
J
p
v
0
0
0
0
1
0
y
w 0 0 0 0 0 1 z
式中 J ——是速度分析时引出的雅可比矩阵,其元素为相应 的偏速度。
上式是针对操作机的关节力和执行器参考点 Pe 间所产生的 力和力矩之间的关系式。
该式表明关节空间和直角坐标空间广义力可以借助于雅可比 矩阵 J 进行变换。这种变换关系,也可推广到任两杆间固联直 角坐标系中的广义力变换,这时应将关节空间与直角坐标空间 的雅可比矩阵,换作直角坐标空间的雅可比矩阵。
相关文档
最新文档