1.1 教案(第1课时)
下学期高一数学第一章解三角形全章教案 必修5
下学期高一数学第一章解三角形全章教案1.1第1课时 正弦定理(1)教学目标(1)要求学生掌握正弦定理及其证明;(2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点正弦定理的推导及其证明过程. 教学过程 一.问题情境在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢?探索1 我们前面学习过直角三角形中的边角关系,在Rt ABC ∆中,设90C =︒,则sin a A c =, sin b B c =, sin 1C =, 即:sin a c A =, sin b c B =, sin c c C =, sin sin sin a b cA B C==. 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法1 若C 为锐角(图(1)),过点A 作AD BC ⊥于D ,此时有sin AD B c =,sin ADC b=,所以sin sin c B b C =,即sin sin b c B C =.同理可得sin sin a cA C=, 所以sin sin sin a b cA B C ==. 若C 为钝角(图(2)),过点A 作AD BC ⊥,交BC 的延长线于D ,此时也有sin AD B c =,且sin sin(180)AD C C b =︒-=.同样可得sin sin sin a b cA B C==.综上可知,结论成立.证法 2 利用三角形的面积转换,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111sin sin sin 222ABC S ab C ac B bc A ∆===,每项同除以12abc 即得:sin sin sin a b cA B C==.探索4 充分挖掘三角形中的等量关系,可以探索出不同的证明方法.我们知道向量也是解决问题的重要工具,因此能否从向量的角度来证明这个结论呢?在ABC ∆中,有BC BA AC =+.设C 为最大角,过点A 作AD BC ⊥于D (图(3)),于是BC AD BA AD AC AD ⋅=⋅+⋅.设AC 与AD 的夹角为α,则0||||cos(90)||||cos BA AD B AC AD α=⋅⋅︒++⋅,其中 ,当C ∠为锐角或直角时,90C α=︒-; 当C ∠为钝角时,90C α=-︒. 故可得sin sin 0c B b C -=,即sin sin b cB C=. 同理可得sin sin a cA C =. 因此sin sin sin a b c A B C==. 四.数学运用 1.例题:例1.在ABC ∆中,30A =︒,105C =︒,10a =,求b ,c .解:因为30A =︒,105C =︒,所以45B =︒.因为sin sin sin a b cA B C==, 所以sin 10sin 45102sin sin 30a B b A ︒===︒,sin 10sin1055256sin sin 30a C c A ︒===+︒.因此, b ,c 的长分别为102和5256+.例2.根据下列条件解三角形: (1)3,60,1b B c ==︒=; (2)6,45,2c A a ==︒=.解:(1)sin sin b cB C =,∴sin 1sin 601sin 23c B C b ⨯︒===, ,60b c B >=,∴C B <,∴C 为锐角, ∴30,90C A ==,∴222a b c =+=.(2)sin sin a cA C=,∴sin 6sin 453sin 22c A C a ⨯===,∴60120C =或, ∴当sin 6sin 756075,31sin sin 60c B C B b C =====+时,; ∴当sin 6sin1512015,31sin sin 60c B C B b C =====-时,; 所以,31,75,60b B C =+==或31,15,120b B C =-==.说明:正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题. 练习:在ABC ∆中,30a =,26b =,30A =︒,求c 和,B C .说明:正弦定理可以用于解决已知两角和一边求另两边和一角的问题. 2.练习: (1)在ABC ∆中,已知8b c +=,30B ∠=︒,45C ∠=︒,则b = ,c = . (2)在ABC ∆中,如果30A ∠=︒,120B ∠=︒,12b =,那么a = ,ABC ∆的面积是 .(3)在ABC ∆中,30bc =,1532ABC S ∆=,则A ∠= . (4)课本第9页练习第1题. 五.回顾小结:1.用两种方法证明了正弦定理:(1)转化为直角三角形中的边角关系;(2)利用向量的数量积.2.初步应用正弦定理解斜三角形. 六.课外作业:课本第9页练习第2题;课本第11页习题1.1第1、6题§1.1.1第2课时 正弦定理(2)教学目标(1)掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形; (2)熟记正弦定理2sin sin sin a b cR A B C===(R 为ABC ∆的外接圆的半径)及其变形形式.教学重点,难点利用三角函数的定义和外接圆法证明正弦定理. 教学过程 一.问题情境上节课我们已经运用两种方法证明了正弦定理,还有没有其他方法可以证明正弦定理呢? 二.学生活动学生根据第5页的途径(2),(3)去思考. 三.建构数学证法1 建立如图(1)所示的平面直角坐标系,则有(cos ,sin )A c B c B ,(,0)C a ,所以ABC ∆的面积为1sin 2ABC S ac B ∆=.同理ABC ∆的面积还可以表示为1sin 2ABC S ab C ∆=及1sin 2ABC S bc A ∆=,所以111sin sin sin 222ab C ac B bc A ==. 所以sin sin sin a b c A B C==. 证法2 如下图,设O 是ABC ∆的外接圆,直径2BD R =.(1)如图(2),当A 为锐角时,连CD ,则90BCD ∠=︒,2sin a R D =.又D A ∠=∠,所以2sin a R A =.(2)如图(3),当A 为钝角时,连CD ,则90BCD ∠=︒,2sin a R D =.又180A D ∠+∠=︒,可得sin sin(180)sin D A A =︒-=,所以2sin a R A =.(3)当A 为直角时,2a R =,显然有2sin a R A =.所以不论A 是锐角、钝角、直角,总有2sin a R A =.同理可证2sin b R B =,2sin c R C =.所以2sin sin sin a b cR A B C===. 由此可知,三角形的各边与其所对角的正弦之比是一个定值,这个定值就是三角形外接圆的直径. 由此可得到正弦定理的变形形式:(1)2sin ,2sin ,2sin a R A b R B c R C ===; (2)sin ,sin ,sin 222a b cA B C R R R===;(3)sin sin sin ::::A B C a b c =. 四.数学运用1.例题:例1.根据下列条件,判断ABC ∆有没有解?若有解,判断解的个数. (1)5a =,4b =,120A =︒,求B ; (2)5a =,4b =,90A =︒,求B ;(3)106a =,203b =45A =︒,求B ; (4)202a =203b =45A =︒,求B ;(5)4a =,33b =,60A =︒,求B . 解:(1)∵120A =︒,∴B 只能是锐角,因此仅有一解. (2)∵90A =︒,∴B 只能是锐角,因此仅有一解.(3)由于A 为锐角,而210632=,即A b a sin =,因此仅有一解90B =︒.(4)由于A 为锐角,而22032022031062>>=,即sin b a b A >>,因此有两解,易解得60120B =︒︒或.(5)由于A 为锐角,又1034sin 605<︒=,即sin a b A <,∴B 无解. 例2.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.解:令sin ak A=,由正弦定理,得sin a k A =,sin b k B =,sin c k C =.代入已知条件,得sin sin sin cos cos cos A B C A B C==,即tan tan tan A B C ==.又A ,B ,C (0,)π∈,所以A B C ==,从而ABC ∆为正三角形.说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角? (2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断.例3.某登山队在山脚A 处测得山顶B 的仰角为35︒,沿倾斜角为20︒的斜坡前进1000米后到达D 处,又测得山顶的仰角为65︒,求山的高度(精确到1米). 分析:要求BC ,只要求AB ,为此考虑解ABD ∆. 解:过点D 作//DE AC 交BC 于E ,因为20DAC ∠=︒, 所以160ADE ∠=︒,于是36016065135ADB ∠=︒-︒-︒=︒. 又352015BAD ∠=︒-︒=︒,所以30ABD ∠=︒. 在ABD ∆中,由正弦定理,得sin 1000sin13510002()sin sin 30AD ADB AB m ABD ∠︒===∠︒.在Rt ABC ∆中,sin 35235811()BC AB m =︒=︒≈. 答:山的高度约为811m .例4.如图所示,在等边三角形中,,AB a =O 为三角形的中心,过O 的直线交AB 于M ,交AC 于N ,求2211OM ON +的最大值和最小值. 解:由于O 为正三角形ABC 的中心,∴3AO =, 6MAO NAO π∠=∠=,设MOA α∠=,则233ππα≤≤,αβπβ-αACBD在AOM ∆中,由正弦定理得:sin sin[()]6OM OAMAO ππα=∠-+, ∴6sin()6OM πα=+,在AON ∆中,由正弦定理得:6sin()6ON πα=-,∴2211OM ON +22212[sin ()sin ()]66a ππαα=++-22121(sin )2a α=+, ∵233ππα≤≤,∴3sin 14α≤≤,故当2πα=时2211OM ON +取得最大值218a, 所以,当α=2,33or ππ时23sin 4α=,此时2211OM ON +取得最小值215a . 例5.在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:AB BDAC DC=. 证明:设BAD α∠=,BDA β∠=,则CAD α∠=,180CDA β∠=︒-.在ABD ∆和ACD ∆中分别运用正弦定理,得sin sin AB BD βα=,sin(180)sin AC DC βα︒-=, 又sin(180)sin ββ︒-=,所以AB AC BD DC =,即AB BDAC DC=. 2.练习:(1)在ABC ∆中,::4:1:1A B C =,则::a b c = ( D )A .4:1:1 B .2:1:1 CD(2)在ABC ∆中,若sin :sin :sin 4:5:6A B C =,且15a b c ++=,则a = , b = ,c = . 五.回顾小结:1.了解用三角函数的定义和外接圆证明正弦定理的方法; 2.理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. 六.课外作业:课本第9页练习第3题;课本第11页习题1.1第2、8题.§1.1.2 第3课时 余弦定理(1)教学目标(1)掌握余弦定理及其证明;(2)使学生能初步运用余弦定理解斜三角形. 教学重点,难点(1)余弦定理的证明及其运用;(2)能灵活运用余弦定理解斜三角形. 教学过程 一.问题情境 1.情境:复习正弦定理及正弦定理能够解决的两类问题. 2.问题:在上节中,我们通过等式BC BA AC =+的两边与AD (AD 为ABC ∆中BC 边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理,还有其他途径将向量等式BC BA AC =+数量化吗?二.学生活动如图,在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵BC AB AC +=∴()()AC AC AB BC AB BC ⋅=+⋅+22cos 2a B ac c +-=, 即B ac a c b cos 2222-+=;同理可证:A bc c b a cos 2222-+=, C ab b a c cos 2222-+=. 三.建构数学 1. 余弦定理上述等式表明,三角形任何一边的平方等于其他两边平方的和,减去这两边与它们夹角的余弦的积的两倍.这样,我们得到余弦定理. 2.思考:回顾正弦定理的证明,尝试用其他方法证明余弦定理.方法1:如图1建立直角坐标系,则(0,0),(cos ,sin ),(,0)A B c A c A C b .所以2222222222(cos )(sin )cos sin 2cos 2cos a c A b c A c A c A bc A b b c bc A=-+=+-+=+-同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=注:此法的优点在于不必对A 是锐角、直角、钝角进行分类讨论.方法2:若A 是锐角,如图2,由B 作BD AC ⊥,垂足为D ,则cos AD c A =,所以即A bc c b a cos 2222-+=,类似地,可以证明当A 是钝角时,结论也成立,而当A 是直角时,结论显 然成立.同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=.图1 图2 3.余弦定理也可以写成如下形式:bc a c b A 2cos 222-+= , ac b c a B 2cos 222-+=, acc b a C 2cos 222-+=.4.余弦定理的应用范围:利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在ABC ∆中,(1) 已知3b =,1c =,060A =,求a ;A BCcab(2) 已知4a =,5b =,6=c ,求A (精确到00.1).解:(1)由余弦定理,得2222202cos 31231cos607a b c bc A =+-=+-⨯⨯⨯=,所以 a =(2)由余弦定理,得222222564cos 0.752256b c a A bc +-+-===⨯⨯, 所以,041.4A ≈.例2. ,A B 两地之间隔着一个水塘,现选择另一点C ,测得182,CA m =126,CB m =063ACB ∠=,求,A B 两地之间的距离(精确到1m ). 解:由余弦定理,得所以,168()AB m ≈答:,A B 两地之间的距离约为168m .例3.用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<.证:当C 为锐角时,cos 0C >,由余弦定理,得222222cos c a b ab C a b =+-<+,即 222a b c +>.同理可证,当C 为钝角时,222a b c +<.2.练习:书第15页 练习1,2,3,4 五.回顾小结:1.余弦定理及其应用2.正弦定理和余弦定理是解三角形的两个有力工具,要区别两个定理的不同作用,在解题时正确选用;六.课外作业:书第16页1,2,3,4,6,7题§1.1.2 第4课时 余弦定理(2)教学目标(1)能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题. 教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题,牢固掌握两个定理,应用自如. 教学过程 一.问题情境1.正弦定理及其解决的三角形问题(1)已知两角和任一边,求其它两边和一角;(2)已知两边和其中一边的对角,求另一边的对角,从而进一步其它的边和角. 2.余弦定理及其解决的三角形问题 (1)已知三边,求三个角;(2)已知两边和他们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在长江某渡口处,江水以5/km h 的速度向东流,一渡船在江南岸的A 码头出发,预定要在0.1h 后到达江北岸B 码头,设AN 为正北方向,已知B 码头在A 码头的北偏东015,并与A 码头相距1.2km .该渡船应按什么方向航行?速度是多少(角度精确到00.1,速度精确到0.1/km h )?解:如图,船按AD 方向开出,AC 方向为水流方向,以AC 为一边、AB 为对角线作平行四边形ABCD ,其中 1.2(),50.10.5()AB km AC km ==⨯=.在ABC ∆中,由余弦定理,得2221.20.52 1.20.5cos(9015) 1.38BC =+-⨯⨯-≈, 所以 1.17()AD BC km =≈. 因此,船的航行速度为1.170.111.7(/)km h ÷=.在ABC ∆中,由正弦定理,得 0sin 0.5sin 75sin 0.41281.17AC BAC ABC BC ∠∠==≈, 所以 024.4ABC ∠≈所以 00159.4DAN DAB NAB ABC ∠=∠-∠=∠-≈.答:渡船应按北偏西09.4的方向,并以11.7/km h 的速度航行.例2. 在ABC ∆中,已知sin 2sin cos A B C =,试判断该三角形的形状.解:由正弦定理及余弦定理,得222sin ,cos sin 2A a a b c C B b ab+-==, 所以 22222a a b c b ab+-=,整理得 22b c =因为0,0b c >>,所以b c =.因此,ABC ∆为等腰三角形.例3.如图,AM 是ABC ∆中BC 边上的中线,求证:22212()2AM AB AC BC =+-.证:设AMB α∠=,则0180AMC α∠=-.在ABM ∆中,由余弦定理,得2222cos AB AM BM AM BM α=+-.在ACM ∆中,由余弦定理,得22202cos(180)AC AM MC AM MC α=+--.因为01cos(180)cos ,2BM MC BC αα-=-==, 所以2222122AB AC AM BC +=+,因此, 22212()2AM AB AC BC =+-. 例4.在ABC ∆中,BC a =,AC b =,,a b 是方程02322=+-x x 的两个根,且2cos()1A B +=,求:①角C 的度数; ②AB 的长度; ③ABC S ∆.解:①1cos cos(())cos()2C A B A B π=-+=-+=- ∴120C =;②由题设:232a b ab ⎧+=⎪⎨=⎪⎩,∴2222cos AB AC BC AC BC C =+-⋅⋅120cos 222ab b a -+=ab b a ++=22102)32()(22=-=-+=ab b a , 即10AB =;③ABC S ∆11133sin sin120222222ab C ab ===⋅⋅=.2.练习:(1)书第16页 练习1,2,3,4DCBA(2)如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =, 60BDA ∠=, 135BCD ∠=, 求BC 的长.(3)在ABC ∆中,已知()()()456::::b c c a a b +++=,求ABC ∆的最大内角;(4)已知ABC ∆的两边,b c 是方程2400x kx -+=的两个根,的面积是2cm ,周长是20cm ,试求A 及k 的值; 五.回顾小结:1.正弦、余弦定理是解三角形的有力工具,要区别两个定理的不同作用,在解题时正确选用;2.应用正弦、余弦定理可以实现将“边、角相混合”的等式转化为“边和角的单一”形式; 3.应用余弦定理不仅可以进行三角形中边、角间的计算,还可以判断三角形的形状. 六.课外作业:书第17页5,8,9,10,11题§1.3正弦定理、余弦定理的应用(1)教学目标(1)综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;(2)体会数学建摸的基本思想,掌握求解实际问题的一般步骤;(3)能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力. 教学重点,难点(1)综合运用正弦定理、余弦定理等知识和方法解决一些实际问题; (2)掌握求解实际问题的一般步骤. 教学过程 一.问题情境 1.复习引入复习:正弦定理、余弦定理及其变形形式, (1)正弦定理、三角形面积公式:R CcB b A a 2sin sin sin ===; B acC ab A bc S ABC sin 21sin 21sin 21===∆.(2)正弦定理的变形:①C R c B R b A R a sin 2,sin 2,sin 2===;②RcC R b B R a A 2sin ,2sin ,2sin ===; ③sin sin sin ::::A B C a b c =.(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=.二.学生活动引导学生复习回顾上两节所学内容,然后思考生活中有那些问题会用到这两个定理,举例说明.三.建构数学正弦定理、余弦定理体现了三角形中边角之间的相互关系,在测量学、运动学、力学、电学等许多领域有着广泛的应用.1.下面给出测量问题中的一些术语的解释:(1)朝上看时,视线与水平面夹角为仰角;朝下看时,视线与水平面夹角为俯角. (2)从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角.(3)坡度是指路线纵断面上同一坡段两点间的高度差与其水平距离的比值的百分率.道路坡度100%所表示的可以这样理解:坡面与水平面的夹角为45度.45度几乎跟墙壁一样的感觉了. (4)科学家为了精确地表明各地在地球上的位置,给地球表面假设了一个坐标系,这就是经纬度线.2.应用解三角形知识解决实际问题的解题步骤:①根据题意作出示意图;②确定所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案. 四.数学运用 1.例题:例1.如图1-3-1,为了测量河对岸两点,A B 之间的距离,在河岸这边取点,C D ,测得85ADC ∠=,60BDC ∠=,47ACD ∠=,72BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离(精确到1m ).解:在ADC ∆中,85ADC ∠=,47ACD ∠=,则48DAC ∠=.又100DC =,由正弦定理,得()sin 100sin 85134.05sin sin 48DC ADC AC m DAC ∠==≈∠.在BDC ∆中,60BDC ∠=,72BCD ∠=, 则48DBC ∠=.又100DC =, 由正弦定理,得()sin 100sin 60116.54sin sin 48DC BDC BC m DBC ∠==≈∠.在ABC ∆中, 由余弦定理,得3233.95≈, 所以 ()57AB m ≈答,A B 两点之间的距离约为57m .本例中AB 看成ABC ∆或ABD ∆的一边,为此需求出AC ,BC 或AD ,BD ,所以可考察ADC ∆和BDC ∆,根据已知条件和正弦定理来求AC ,BC ,再由余弦定理求AB .引申:如果A ,B 两点在河的两岸(不可到达),试设计一种测量A ,B 两点间距离的方法.可见习题1.3 探究拓展 第8题.例2.如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测出该渔轮在方位角为45,距离为10n mile 的C 处,并测得渔轮正沿方位角为105的方向,以9/n mile h 的速度向小岛靠拢,我海军舰艇立即以21/n mile h 的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到0.1,时间精确到1min ). 解:设舰艇收到信号后x h 在B 处靠拢渔轮,则21AB x =,9BC x =,又10AC =,()45180105120ACB ∠=+-=.由余弦定理,得2222cos AB AC BC AC BC ACB =+-⋅∠,即()()222211092109cos 120x x x =+-⨯⨯∠.化简,得2369100x x --=,解得()()240min 3x h ==(负值舍去).由正弦定理,得图1-3-1图1-3-2sin 9sin12033sin 2114BC ACB x BAC AB x ∠∠===, 所以21.8BAC ∠≈,方位角为4521.866.8+=.答 舰艇应沿着方向角66.8的方向航行,经过40min 就可靠近渔轮.本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A 到B 与渔轮从C 到B 的时间相同,所以根据余弦定理可求出该时间,从而求出AB 和BC ;再根据正弦定理求出BAC ∠. 例3.如图,某海岛上一观察哨A 在上午11时测得一轮船在海岛北偏东3π的C 处,12时20分测得轮船在海岛北偏西3π的B 处,12时40分轮船到达海岛正西方5km 的E 港口.如果轮船始终匀速前进,求船速. 解:设ABE θ∠=,船的速度为/km h υ,则43BC υ=,13BE υ=. 在ABE ∆中,153sin sin 30υθ=,15sin 2θυ∴=. 在ABC ∆中,()43sin120sin 180AC υθ=-, 4415sin 2033233322AC υθυυ⋅⋅∴===. 在ACE ∆中,22520202525cos150333υ⎛⎫⎛⎫⎛⎫=+-⨯⨯⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 22540077525100933υ=++=,293υ∴=, ∴船的速度93/km h υ=. 2.练习:书上P20 练习1,3,4题.五.回顾小结:1.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.2.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.六.课外作业: 书上P21页习题1.3 第2,3,4题.§1.3 正弦定理、余弦定理的应用(2)教学目标(1)能熟练应用正弦定理、余弦定理解决三角形等一些几何中的问题和物理问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦、余弦定理及相关的三角公式解决这些问题;(3)通过复习、小结,使学生牢固掌握两个定理,应用自如.教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题。
北师大版八年级上册数学1.1第1课时认识勾股定理教案1
1. 1研究勾股定理第 1 课时认识勾股定理1.研究勾股定理,进一步发展学生的推理能力;2.理解并掌握直角三角形三边之间的数目关系. ( 要点、难点 )一、情境导入如下图的图形像一棵枝叶旺盛、姿态优美的树,这就是有名的毕达哥拉斯树,它由若干个图形构成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说此中的神秘吗?二、合作研究研究点一:勾股定理的初步认识【种类一】直接利用勾股定理求长度如图,已知在△ABC 中,∠ACB=90°, AB=5cm, BC= 3cm, CD⊥ AB 于点D,求 CD的长.分析:先运用勾股定理求出AC 的长,11再依据 S△ABC=2AB·CD=2AC·BC,求出 CD的长.解:∵△ ABC 是直角三角形,∠ACB=90°, AB= 5cm, BC=3cm,∴由勾股定理得222222AC = AB - BC= 5 - 3 = 4 ,∴ AC= 4cm. 又11AC·BC∵S ABC=AB·CD=AC·BC,∴CD=△22AB4×3 12(cm) ,故 CD的长是12==cm.555方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,这个规律也称“弦高公式”,它常与勾股定理联合使用.【种类二】勾股定理与其余几何知识的综合运用如图,已知 AD是△ ABC的中线.求2222证: AB +AC= 2(AD + CD) .分析:结论中波及线段的平方,所以可以考虑作AE⊥ BC于点 E,在△ ABC中结构直角三角形,利用勾股定理进行证明.证明:如图,过点 A 作 AE⊥BC 于点 E.在 Rt △ACE、 Rt△ ABE和 Rt△ ADE中, AB2=22222222AE + BE,AC= AE+ CE,AE= AD- ED,∴2222222 AB + AC= (AE + BE) + (AE + CE) = 2(AD- ED2) + (DB - DE)2+ (DC+ DE)2= 2AD2-22222ED+ DB-2DB·DE+ DE+ DC+2DC·DE+2222DE= 2AD+DB+ DC+ 2DE(DC- DB).又∵ AD22是△ ABC 的中线,∴ BD= CD,∴ AB + AC=22222AD+ 2DC= 2(AD + CD) .方法总结:结构直角三角形,利用勾股定理把需要证明的线段联系起来.一般地,波及线段之间的平方关系问题时,往常沿着这个思路去剖析问题.【种类三】分类议论思想在勾股定理中的应用在△ ABC中, AB= 20,AC= 15,AD 为 BC边上的高,且 AD= 12,求△ ABC 的周长.分析:应试虑高AD在△ABC内和△ABC外的两种情况.解:当高 AD在△ ABC内部时,如图①.在 Rt △ ABD中,由勾股定理,得22 BD= AB-222=162,∴ BD= 16;在 Rt △ ACDAD=20 -12中,由勾股定理,得2222-CD= AC- AD= 15122= 81,∴ CD=9. ∴BC= BD+ CD= 25,∴△ABC的周长为25+20+ 15= 60.当高 AD在△ ABC外面时,如图② . 同理可得 BD= 16,CD=9. ∴BC= BD-CD= 7,∴△ABC的周长为 7+20+ 15= 42. 综上所述,△ABC的周长为 42 或 60.方法总结:题中未给出图形,作高结构直角三角形时,易遗漏钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情况,忽略高AD在△ ABC外的情况.研究点二:利用勾股定理求面积如图,以Rt△ ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中△ ABE 的面积为 ________,暗影部分的面积为 ________.1分析:由于 AE= BE,所以 S△ABE=2AE·BE 122222= AE. 又由于AE+ BE = AB,所以 2AE =2212129AB ,所以 S△=4AB=4× 3=4;同理可得ABES△AHC+121222 S△BCF=4A C+4BC. 又由于AC+BC=212121 AB ,所以暗影部分的面积为4AB +AB =24212999AB=×3=2.故填、.242方法总结:求解与直角三角形三边相关的图形面积时,要联合图形想方法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.三、板书设计勾股定理:直角三角形两直角边的平方和等于斜边的平方.假如用 a,b,c 分别表示直角三角形的两直角边和斜边,那么a2+b2= c2.让学生领会数形联合和由特别到一般的思想方法,进一步发展学生的说理和简单推理的意识及能力;进一步领会数学与现实生活的密切联系.在研究勾股定理的过程中,体验获取成功的快乐;经过介绍勾股定理在中国古代的研究,激发学生热爱祖国的悠长文化历史,激励学生奋发学习.。
2019-2020学年新外研版高一英语课时教案:必修1 Unit 1 1.1 Starting out教学设计(1)
Unit 1 A New StartPeriod 1 Starting Out & Understanding Ideas教学设计本节课是高中英语第一册Unit 1 A New Start的引入和阅读部分,这个单元是刚刚步入高中阶段的开始,所以是初高中的过渡,要让学生逐渐适应高中阶段的节奏和生活。
在start out(引入)部分,通过引导学生去谈论自己第一天在校园中的感受,经历以及对新校园的印象,来消除学生的陌生感。
在understanding ideas(阅读)部分,需要培养学生的预测能力,总结概括文章主旨大意的能力和寻找细节能力。
后两个能力是高考考查的重点,因此要引起重视。
1.语言能力目标本课时对于学生语言能力的要求主要在于:1)能够组织语言简单描述自己的感受和观点;2)能够通过阅读文章,快速获取细节信息,整合文本并对文章主旨大意进行概括。
2.思维品质目标:通过谈论自己高中第一天的经历和学习孟浩的经历,培养起对新学校的认同感,对新生活的期待感,树立良好的自信心。
1.重点(1)能够勇敢开口,和同学们分享自己的感受和想法;(2)学习如何快速获取文章信息;2. 难点(1)开口说;(2)整合文章信息并概括文章主旨大意。
Part 1. Start outStep 1 Lead-inWatch the video and answer the questions:1)What do these students do at school?2)How is this school different from your school?Step 2 Questionnaire1)Ask students to finish the questionnaire by themselves;2)Ask students to share their answers with classmates.Tips:For the first question, students can express themselves like this:On my first day at senior high, I felt very excited/happy/nervous... because...For the forth question, students can express themselves like this:About my new school, I like the campus/my teachers/my classmates...most because...Part 2. Understanding ideasStep 1. Activity 1 & 2 on page 2.Look at the title of the passage and the pictures. Tick what you think is mentioned in the passage.The school campusA new teacherSchool subjectsA new timetableAn embarrassing momentNew friendsTips:Some students may think all of the subjects above will be mentioned in the passage, but after reading, they will find just No 1, 2 and 5 are mentioned. But it doesn’t matters.Step 2. Activity 4 on page 4.Task 1. Complete Meng Hao’s experiences with expressions from the passage.Task 2. Find expressions from the passage that show Meng Hao’s feelings at each stage of the day.Tips:Task 1 requires students to find information from the passage quickly and Task 2 requires students to find and integrate information.For task 2, students should use some adjectives to describe Meng Hao’s feelings, then find some detailed information to support.Step 3. Activity 3 on page 4.Choose the best description of Meng Hao’s first day at senior high.Tips:This is about the main idea of the passage.Step 4. What’s your understanding of the saying “Well begun, half done”?Step 5. What happened on your first day at senior high? What do you think of your experiences? Share your experiences with the class.Step 6. Homework.。
部编版道德与法治六年级下册 学会尊重 第1课时 教案
使学生懂得尊重他人的重要性,掌握尊重他人的方法。
教学过程
教学环节
教师活动
学生活动
设计意图
导入新课
一、课件出示,故事连个
1.观看思考:这则故事告诉我们一个什么道理?
认真观看
思考回答
齐读课题
引发学生思考:什么是尊重。
讲授新课
联系生活,畅谈尊重
活动一:每个人都应得到尊重
1.课堂导入:说说我最尊重的人;请同学们分享自己在生活中最尊敬的人是谁。2.出示教材图片,引导学生辨析这样的普通人值得尊重吗;分组讨论:如果社会中每一个人都得到尊重,社会会发生什么样的变化。3.阅读教材相关链接,了解国家也尊重和保障人权。
2.“讲道理”先生说“好脾气”先生的做法是不尊重自己?他说的有道理吗?为什么?
3.如果“好脾气”先生还是老样子.过于注重自己形象,过度维护自己你觉得以后还会发生什么事情?
4.面对冒犯和侮辱,“好脾气”先生可以怎么做,来转变这样的境遇?请大家小组内讨论一下。
5.小结:尊重自己,并不意味排斥他人给予你的正确的建议。如果为了维护形象而无原则无底线,那也是不尊重自己的表现。
9.看来,尊重自己与接受别人的批评是不矛盾的。如果过于爱面子,输不起、说不得,就是过度维护自己。所以,尊重自己,就应该懂得适度维护自己。(板书:适度维护)
10.以下哪些行为属于“尊重自己”哪些属于“过度维护自己”?说说你的理由。
出示书本第七页“活动园”内容
四、总结升华。
学生结合自己的生活体验交流讨论。
(1)指学生读。
(2)同学们,从这段心灵独白中你看出刘菲是用什么样的眼光看待自己的?
(3)你觉得刘菲是一个尊重自己的人吗?为什么?
(4)你有什么好建议能帮助刘菲走出困境,让她发现更好的自己吗?请在小组内轻声讨论讨论,给她留言
1.1锐角三角函数第1课时正切(教案)
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
-正切表的使用:学会查找和利用正切表解决实际问题,这是进行进一步三角函数学习的基础。
-正切函数性质的探索:了解正切函数的周期性、奇偶性等性质,为学习其他三角函数性质打下基础。
举例:通过具体的直角三角形图形,引导学生理解正切值是如何计算的,以及如何判断正切值的正负。
2.教学难点
-正切概念的内化:学生需要将正切概念从具体的直角三角形中抽象出来,内化为一般的数学定义。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正切函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对正切的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂上,我们探讨了锐角三角函数中的正切概念。我发现学生们对于正切的定义和应用有着不错的理解和接受度,但在具体的计算和应用中,还存在一些困难。这让我意识到,在今后的教学中,我需要更加注重以下几个方面:
1.1锐角三角函数第1课时正切(教案)
一、教学内容
《人教版八年级下册数学》第十章“锐角三角函数”第1课时“正切”。本节课主要内容包括以下部分:
1.理解正切的概念:通过对直角三角形的观察,引导学生发现锐角与对边、邻边的比值关系,引出正切函数的定义。
道德与法治五年级下册-1 读懂彼此的心 第1课时 (教案)
教学设计
1.活动:我的不愉快
家长只知道让我写作业
家长不允许我出去玩
家长不尊重我的意见
家长不能理解我喜欢的东西
家长干涉我的隐私
家长对我不信任
思考:你知道这些“不愉快”是什么造成的吗?
2.活动:“孩子,你听我说”
作家龙应台在《亲爱的安德烈》中这样说到:
细细琢磨下上面那段话,再回想下平常家长们说的话及他们的日常为我们做的事情,大家对刚才的问题——这些“不愉快”是什么造成的——有没有新的认识呢?
3.小讨论:
你认为是“我”变了,还是爸爸妈妈变了呢?
4.矛盾大侦探
(1)你也有和爸爸妈妈发生过矛盾吗、产生过不愉快吗?是什么样的事情?
(2)你知道为什么和会和父母发生这样的矛盾、不愉快吗?
讲解:在成长的过程中,我们的心理逐渐发生了变化,很多事有了自己的想法。
我们希望能自己作决定,有时会把家人的关心看作是干涉,甚至在明知他们讲的话有道理时,故意与他们作对。
5.倾听长辈的声音
(1)问问长辈,请他们说说我们现在与小时。
1.1 等腰三角形 第1课时 教案
一、情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得到的△ABC有什么特点?二、合作探究探究点一:全等三角形的判定和性质【类型一】全等三角形的判定如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CDB.AB=ACC.∠B=∠CD.∠BAD=∠CAD解析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.A.∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B.∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C.∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D.∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);故选B.方法总结:判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.要注意AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【类型二】全等三角形的性质如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是()A.∠1=∠2 B.AC=CAC.∠D=∠B D.AC=BC解析:由△ABC≌△CDA,并且AB=CD,AC和CA是公共边,可知∠1和∠2,∠D和∠B是对应角.全等三角形的对应角相等,对应边相等,因而前三个选项一定正确.AC和BC不是对应边,不一定相等.∵△ABC≌△CDA,AB=CD,∴∠1和∠2,∠D和∠B是对应角,∴∠1=∠2,∠D=∠B,∴AC和CA是对应边,而不是BC,∴A、B、C正确,错误的结论是D.故选D.方法总结:本题主要考查了全等三角形的性质;根据已知条件正确确定对应边、对应角是解决本题的关键.探究点二:等边对等角【类型一】运用“等边对等角”求角的度数如图,AB=AC=AD,若∠BAD=80°,则∠BCD=()A.80°B.100°C.140°D.160°解析:先根据已知和四边形的内角和为360°,可求∠B+∠BCD+∠D的度数,再根据等腰三角形的性质可得∠B=∠ACB,∠ACD=∠D,从而得到∠BCD的值.∵∠BAD=80°,∴∠B+∠BCD+∠D=280°.∵AB=AC =AD,∴∠B=∠ACB,∠ACD=∠D,∴∠BCD=280°÷2=140°,故选C.方法总结:求角的度数时,①在等腰三角形中,一定要考虑三角形内角和定理;②有平行线时,要考虑平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补;③两条相交直线中,对顶角相等,互为邻补角的两角之和等于180°.【类型二】分类讨论思想在等腰三角形求角度中的运用等腰三角形的一个角等于30°,求它的顶角的度数.解析:本题可根据等腰三角形的性质和三角形内角和定理求解,由于本题中没有明确30°角是顶角还是底角,因此要分类讨论.解:①当底角是30°时,顶角的度数为180°-2×30°=120°;②顶角即为30°.因此等腰三角形的顶角的度数为30°或120°.方法总结:已知的一个锐角可以是等腰三角形的顶角,也可以是底角;一个钝角只能是等腰三角形的顶角.分类讨论是正确解答本题的关键.探究点三:三线合一【类型一】利用等腰三角形“三线合一”进行计算如图,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°.求∠ACB和∠BAC的度数.解析:根据等腰三角形三线合一的性质可得AE⊥BC,再求出∠CDE,然后根据直角三角形两锐角互余求出∠DCE,根据角平分线的定义求出∠ACB,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC.解:∵AB=AC,AE平分∠BAC,∴AE⊥BC.∵∠ADC=125°,∴∠CDE=55°,∴∠DCE=90°-∠CDE =35°.又∵CD平分∠ACB,∴∠ACB=2∠DCE=70°.又∵AB=AC,∴∠B=∠ACB=70°,∴∠BAC=180-(∠B +∠ACB)=40°.方法总结:利用等腰三角形“三线合一”的性质进行计算,有两种类型:一是求边长,求边长时应利用等腰三角形的底边上的中线与其他两线互相重合;二是求角度的大小,求角度时,应利用等腰三角形的顶角的平分线或底边上的高与其他两线互相重合.【类型二】利用等腰三角形“三线合一”进行证明如图,△ABC中,AB=AC,D为AC上任意一点,延长BA到E使得AE=AD,连接DE,求证:DE⊥BC.解析:作AF∥DE,交BC于点F.利用等边对等角及平行线的性质证明∠BAF=∠F AC.在△ABC中由“三线合一”得AF⊥BC.再结合AF∥DE可得出结论.证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠F AC=∠ADE.∴∠BAF=∠F AC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.作业设计1.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A. BD=CE B. AD=AE C. DA=DE D. BE=CD2.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°3.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B. 20 C. 16 D.以上答案均不对4.如图,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,则∠BDC的度数是()A.60°B.70°C.75°D.80°5.已知等腰三角形的两边长分别是3和5,则该三角形的周长是()A. 8 B. 9 C.10或12D.11或136.如图,给出下列四组条件:①AB DE BC EF AC DF===,,;②AB DE B E BC EF=∠=∠=,,;③B E BC EF C F∠=∠=∠=∠,,;④AB DE AC DF B E==∠=∠,,.其中,能使ABC DEF△≌△的条件共有()A.1组 B.2组C.3组 D.4组7.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A. 7 B.11 C.7或11D.7或108.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°二.填空题(共10小题)9.已知等腰三角形的一个内角为80°,则另两个角的度数是_________ .10.如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD=_________ .第10题 第11题 第12题 第13题11.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,则∠B=_________ °.12.如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,则∠A=________°.13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD=_________.14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,则∠BAC=_________°.第14题 第15题 第16题 第17题 第18题15.如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为_____.16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC的度数为_________.17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,则∠C=_________ .18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP,CP=CF,则∠EPF= _________ 度.三.解答题(共5小题)19.已知:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.20.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE.21.如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,由哪两个条件可以判定AB=AC?(用序号写出所有的情形)(2)选择(1)小题中的一种情形,说明AB=AC.23.(1)如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=D B+EC是否成立?为什么?(2)如图,若点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜想线段DE、DB、EC之间有何数量关系?证明你的猜想.。
1.1 锐角三角函数 第1课时(教案)-北师大版数学九下
第1节锐角三角函数第1课时正切1.经历探索直角三角形中边角之间关系的过程.2.理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明.3.能够运用tan A,sin A,cos A表示直角三角形中两边的比.4.能够根据直角三角形中的边角关系进行简单的计算.1.经历三个锐角三角函数的探索过程,确信三角函数的合理性,体会数形结合的数学思想.2.在探索锐角三角函数的过程中,初步体验探索、讨论、验证对学习数学的重要性.1.通过锐角三角函数概念的建立,使学生经历从特殊到一般的认识过程.2.让学生在探索、分析、论证、总结获取新知识的过程中体验成功的喜悦,从解决实际问题中感悟数学的实用性,培养学生学习数学的兴趣.【重点】1.理解锐角三角函数的意义.2.能利用三角函数解三角形的边角关系.【难点】能根据直角三角形的边角关系进行简单的计算1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tan A表示直角三角形中两直角边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.3.理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系.1.体验数形之间的联系,逐步学习利用数形结合思想分析问题和解决问题.提高解决实际问题的能力.2.体会解决问题的策略多样性,发展实践能力和创新精神.1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.【重点】1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系.【难点】理解正切的意义,并用它来表示生活中物体的倾斜程度、坡度等.【教师准备】多媒体课件.【学生准备】1.自制4个直角三角形纸板.2.复习直角三角形相似的判定和直角三角形的性质.导入一:课件出示:你知道图中建筑物的名字吗?是的,它就是意大利著名的比萨斜塔,是世界著名建筑奇观,位于意大利托斯卡纳省比萨城北面的奇迹广场上,是奇迹广场三大建筑之一,也是意大利著名的标志之一,它从建成之日起便由于土层松软而倾斜.【引入】应该如何来描述它的倾斜程度呢?学完本节课的知识我们就能解决这个问题了.[设计意图]创设新颖、有趣的问题情境,以比萨斜塔的倾斜程度激发学生的学习兴趣,从而自然引出课题,并且为学生探究梯子的倾斜程度埋下伏笔.导入二:课件出示:四个规模不同的滑梯A,B,C,D,它们的滑板长(平直的)分别为300cm,250cm,200cm,200cm;滑板与地面所成的角度分别为30°,45°,45°,60°.【问题】四个滑梯中哪个滑梯的高度最高[设计意图]利用学生所熟悉的滑梯进行引导,使学生有亲切感,滑梯与课本中引用梯子比较类似,学生的探究思路会比较顺畅.(一)探究新知请同学们看下图,并回答问题.探究一:问题1课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?小组讨论后展示结果:1组:梯子AB较陡.我们组是借助量角器量倾斜角,发现∠ABC>∠EFD,根据倾斜角越大,梯子就越陡,可以得到梯子AB较陡.师:哪组还有不同的判定方法?2组:我们也是认为梯子AB较陡.我们组是分别计算AC与BC的比,ED与FD的比,发现前者的比值大,根据铅直高度与水平宽度的比越大,梯子就越陡,可以得到梯子AB较陡.3组:我们组的方法和1组的大致相同,借助倾斜角来判断,不过不是测量,我们是过E作EG∥AB 交FD于G,就可以清晰比较∠ABC与∠EFD的大小了.4组:我们组发现这两架梯子的高度相同,水平宽度越小,梯子就越陡,所以我们也认为梯子AB较陡.探究二:问题2课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?学生会类比问题1给出的四种判断方法,只要说得合理即可.问题3课件出示:在下图中,梯子AB和EF哪个更陡?你是怎么判断的?多给学生思考和讨论的时间.代表发言:AB和EF的倾斜度一样.由于两个直角三角形的两直角边的比值相等,再加上夹角相等,可以判定两个直角三角形相似,根据相似三角形的对应角相等,可以证明两个倾斜角相等,所以AB和EF的倾斜度一样.教师引导:我们发现当直角三角形的两直角边的比值相等时,梯子的倾斜度一样,请大家判断一下在问题2与问题3中,两直角边的比值与倾斜度有什么关系?请继续探究下面的问题.问题4课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?教师引导:我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,可能就比较困难了.能不能从上面的探究中得到什么启示呢生讨论后得出:思路1:梯子EF较陡,因为∠EFD>∠ABC,根据倾斜角越大,梯子就越陡.思路2:梯子EF较陡,因为>,根据铅直高度与水平宽度的比越大,梯子就越陡.师生共同总结:在日常的生活中,我们判断哪个梯子更陡,应该从梯子AB 和EF 的倾斜角大小,或垂直高度和水平宽度的比的大小来判断.做一做:请通过计算说明梯子AB 和EF 哪一个更陡呢?生独立解答,代表展示:∵==,==,<,∴梯子EF 比梯子AB 更陡.[设计意图]通过探究逐层深入的问题,让学生经历由简单到复杂、由特殊到一般的探究过程,既对已学知识和生活经验进行了回味和运用,也让学生的思想逐步向本节课的中心“两直角边之比”靠近.[知识拓展]梯子的倾斜程度的判定方法:(1)梯子的倾斜程度和倾斜角有关系,倾斜角越大,梯子就越陡.(2)梯子的倾斜程度和铅直高度与水平宽度的比有关系,铅直高度与水平宽度的比越大,梯子就越陡.(二)再探新知课件出示:【想一想】如图所示,小明想通过测量B 1C 1及AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系生很容易得出两个三角形相似.由生说明理由:∵∠B 2AC 2=∠B 1AC 1,∠B 2C 2A =∠B 1C 1A =90°,∴Rt△AB 1C 1∽Rt△AB 2C 2.(2)和有什么关系?由于Rt△AB 1C 1∽Rt△AB 2C 2,所以有=.(3)如果改变B 2在梯子上的位置呢?由此你得出什么结论?生先独立思考后分组讨论.生得出结论:改变B 2在梯子上的位置,铅直高度与水平宽度的比始终相等.想一想:现在如果改变∠A 的大小,∠A 的对边与邻边的比值会改变吗?生讨论得出:∠A 的大小改变,∠A 的对边与邻边的比值会改变.∠A 的对边与邻边的比只与∠A 的大小有关系,而与它所在直角三角形的大小无关.【总结提升】由于直角三角形中的锐角A 确定以后,它的对边与邻边的比也随之确定,因此我们有如下定义:如图所示,在Rt△ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之比便随之确定,这个比叫做∠A 的正切(tangent ),记作tan A ,即tan A =.当锐角A变化时,tan A的值也随之变化.能力提升:如果∠A+∠B=90°,那么tan A与tan B有什么关系?生讨论得出结论:tan A=,即任意锐角的正切值与它的余角的正切值互为倒数.【议一议】前面我们讨论了梯子的倾斜程度,在课本图1-3中,梯子的倾斜程度与tan A有关系吗?学生思考后,统一答案:tan A的值越大,梯子越陡.(反之,梯子越陡,tan A的值越大)[设计意图]此环节的设计是为了突出概念的形成过程,帮助学生理解概念.通过让学生参与、动手操作,让学生学会由特殊到一般、数形结合及函数的思想方法,提高学生分析问题和解决问题的能力.[知识拓展]正切的注意事项:(1)tan A是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”.(2)tan A没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比.(3)tan A不表示“tan”乘以“A”.(4)初中阶段,我们只学习直角三角形中锐角的正切.(教材例1)如图所示表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?想一想:要判断哪个自动扶梯比较陡,只需求出什么即可?生思考后得出:比较甲、乙两个自动扶梯哪一个陡,只需分别求出tanα,tanβ的值进行比较大小即可,正切值越大,扶梯就越陡.要求学生独立解答,代表展示:解:甲梯中,tanα==.乙梯中,tanβ==.因为tanα>tanβ,所以甲梯更陡.[设计意图]通过对例题的解答让学生初步学会运用“正切”这一数学工具判断梯子的倾斜程度,同时规范学生的解题步骤,培养良好的解题习惯.课件出示:如图所示,有一山坡在水平方向上每前进100m就升高60m,那么山坡的坡度(即tanα)就是: i=tanα==.结论:坡面与水平面的夹角(α)称为坡角,坡面的铅直高度与水平宽度的比称为坡度(或坡比),tanα=,即坡度等于坡角的正切.[设计意图]正切在日常生活中的应用很广泛,通过正切刻画梯子的倾斜程度及坡度的数学意义,密切数学与生活的联系,使学生明白学习数学就是为了更好地应用数学,为生活服务.[知识拓展]坡度与坡面的关系:坡度越大,坡面越陡.(1)正切的定义:tan A=.(2)梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系):tan A的值越大,梯子越陡.(3)坡度(或坡比)的定义:i=tanα=.1.在Rt△ABC中,∠C=90°,AB=13,AC=12,则tan A等于()A.B. C. D.解析:∵在Rt△ABC中,∠C=90°,AB=13,AC=12,∴BC=5,∴tan A=.故选B.2.如图所示,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()A.B.C.D.解析:认真读图,在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值,由图可得tan∠AOB=.故选B.3.(2014·温州中考)如图所示,在△ABC中,∠C=90°,AC=2,BC=1,则tan A的值是.解析:tan A==.故填.4.河堤横断面如图所示,堤高BC=5m,迎水坡AB的坡度是1∶(坡度是坡面的铅直高度BC与水平宽度AC之比),则AB的长是.解析:在Rt△ABC中,BC=5,tan A=1∶,∴AC=5,∴AB==10(m).故填10m.第1课时(1)正切的定义:tan A=.(2)梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系):tan A的值越大,梯子越陡.(3)坡度(或坡比)的定义:i=tanα=.一、教材作业【必做题】1.教材第4页随堂练习第1,2题.2.教材第4页习题1.1第1,2题.【选做题】教材第4页习题1.1第3,4题.二、课后作业【基础巩固】1.如图所示,在Rt△ABC中,∠C=90°,AC=6,BC=8,则tan A的值为()A. B. C. D.2.小明沿着坡度为1∶2的山坡向上走了1000m,则他升高了()A.500mB.200mC.500mD.1000m3.已知斜坡的坡度为i=1∶5,如果这一斜坡的高度为2m,那么这一斜坡的水平距离为m.【能力提升】4.(2015·山西中考)如图所示,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B.C.D.5.如图所示,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A'B'C',使点B'与C重合,连接A'B,则tan∠A'BC'的值为.6.如图所示,在锐角三角形ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tan B的值.7.某商场为方便顾客使用购物车,准备将滚动电梯的坡面坡度由1∶1.8改为1∶2.4(如图所示).如果改动后电梯的坡面长为13m,求改动后电梯水平宽度增加部分BC的长.【拓展探究】8.如图所示,在△ABC中,AB=AC,BD是AC边上的中线,若AB=13,BC=10,试求tan∠DBC的值.【答案与解析】1.D(解析:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴tan A===.故选D.)2.B(解析:设铅直高度为x m,∵坡度为1∶2,∴水平宽度为2x m,由勾股定理得x2+(2x)2=10002,解得x=200.∴他升高了200m.故选B.)3.10(解析:∵斜坡的坡比是1∶5,∴=.∴=,∴斜坡的水平距离为=10m.故填10.)4.D(解析:如图所示,连接AC,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan B==.故选D.)5.(解析:如图所示,过A'作A'D⊥BC',垂足为D.在等腰直角三角形A'B'C'中,易知A'D是底边上的中线,∴A'D=B'D=.∵BC=B'C',∴tan∠A'BC'===.故填.)6.解:如图所示,过点A作AH⊥BC于H,∵S=27,∴×9×AH=27,∴AH=6.∵AB=10,∴BH===8,∴tan△ABCB===.7.解:在Rt△ADC中,AD∶DC=1∶2.4,AC=13,由AD2+DC2=AC2,得AD2+(2.4AD)2=132,∴AD=±5(负值不合题意,舍去),∴DC=12.在Rt△ABD中,∵AD∶BD=1∶1.8,∴BD=5×1.8=9,∴BC=DC-BD=12-9=3(m).答:改动后电梯水平宽度增加部分BC的长为3m.8.解:如图所示,过点A,D分别作AH⊥BC,DF⊥BC,垂足分别为点H,F.∵BC=10,AH⊥BC,AB=AC,∴BH=5.∵AB=13,∴AH==12,在Rt△ACH中,AH=12,易知AH∥DF,且D为AC中点,∴DF=AH=6,∴BF=BC=,∴在Rt△DBF中,tan∠DBC==.本节课是三角函数部分的第一节概念教学,教学内容比较抽象,学生不易理解.为此结合初中学生身心发展的特点,运用实验教学、直观教学,唤起和加深学生对教学内容的体会和了解,并培养和发展学生的观察、思维能力,这是贯彻“从生动的直观到抽象的思维,并从抽象的思维到实践”的认识规律,能使学生学习数学的过程成为积极的、愉快的和富有想象的过程,使学习数学的过程不再是令人生畏的过程.概念教学由学生熟悉的实例入手,引导学生观察、分析、动手、动脑、动口多种感官参与,并组织学生积极参与小组成员间合作交流.通过由特殊到一般、具体到抽象的探索过程,紧紧围绕着函数概念,引出正切概念,再通过相应的典型题组练习巩固概念.并且在教学过程中,注重了阶段性的反思小结,使学生能够及时总结知识和方法.本节课的开放性还不够,探究梯子倾斜程度时,学生的一些奇思妙想没有给予展示机会.第一个环节内容设计多了一些,所以导致后面的教学处理上稍显仓促.对第一个环节的处理力求更加简洁,并大胆放手让学生去探索、去发现,真正让学生成为学习的主人.随堂练习(教材第4页)1.解:能.tan C====.2.解:根据题意,得AB=200,BC=55,则AC===5,所以山的坡度为=≈0.286.习题1.1(教材第4页)1.解:∵BC===12,∴tan A==,tan B==.2.解:∵tan A==,BC=3,∴AC=BC=.4.tan A=.学生学习时首先通过情境题了解本节课学习的主要任务,做到有的放矢,然后利用“由一般到特殊”的数学思想,通过三个探究活动逐步得出梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系),在探究的过程中可以通过自主探究与合作交流的方式抓住重点,突破难点.学生在运用正切解决问题时,一定要注意其前提条件——在直角三角形中,找准直角是解题的关键.而有些题目需要作辅助线构造直角三角形,也可以通过角度的转化进行求解,同时还要注意数形结合思想的运用.如图所示,设计建造一条道路,路基的横断面为梯形ABCD,设路基高为h,两侧的坡角分别为α,β.已知h=2m,α=45°,tanβ=,CD=10m.求路基底部AB的宽.〔解析〕如图所示,过D,C分别作下底AB的垂线,垂足分别为E,F.在Rt△ADE和Rt△BCF中,可根据h的长以及坡角的度数或坡比的值,求出AE,BF的长,进而可求得AB的值.解:如图所示,过D作DE⊥AB于E,过C作CF⊥AB于F,∴DE∥CF.∵四边形ABCD为梯形,∴AB∥CD,∴EF=CD=10m.∴四边形DCFE为矩形.在Rt△ADE中,α=45°,DE=h=2m,∴CF=DE=h=2m.在Rt△BCF中,tanβ=,CF=2m,∴BF=2CF=4(m).故AB=AE+EF+BF=AE+CD+BF=2+10+4=16(m).答:路基底部AB的宽为16m.[解题策略]此题主要考查了坡度问题的应用,求坡度、坡角问题通常要转换为解直角三角形的问题,必要时应添加辅助线,构造出直角三角形.。
1.1.1走进生物学实验室(第1课时)(教案)2024-2025学年苏教版七年级生物上册
目镜越长,镜;
4.粗准焦螺旋:一般调节,转动时镜筒升降范围大;
5.细准焦螺旋:精细调节;
6.转换器:调换物镜;
7.镜臂:连接作用;
8.载物台:放玻片;
9.压片夹:固定玻片;
10.遮光器:调节光线强弱;
11.通光孔:光线通过
学生在教师引导下回答问题。
【小结】
1.显微镜有连接、支持、稳定作用的结构有什么?
2.有放大作用的结构是什么?
3.能调节光线强弱的结构是什么?
4.使物像更加清晰的结构是什么?
学生思考并回答问题。
环节三
新知探究:
使用光学显微镜
【提出问题】怎么正确使用显微镜?
学生阅读书本,了解显微镜的使用步骤。
动手操作,观察。小组之间竞赛,看谁的操作规范,并指出不足或操作易错点。
第1节走进生物学实验室(第1课时)
◆教学目标
1.通过观察,说出显微镜的基本结构和功能。(生命观念)
2.能使用显微镜观察临时装片,初步具有科学探究的能力。(科学探究)
3.安全使用常用实验器具,具备爱护实验器具的意识,养成科学实验的良好习惯。(态度责任)
◆教学重难点
【教学重点】
识别显微镜的结构,尝试使用显微镜。
4.制作、放置标本
5.粗调节:调节粗准焦螺旋,先从显微镜的一侧注视着物镜缓慢下降,直到接近标本。左眼注视目镜,使镜筒缓缓上升,直到看清物像。
提问:在调节粗准焦螺旋使物镜下降时,为什么要从显微镜的一侧注视着物镜?
(避免损伤物镜或压碎玻片标本。)
6.细调节:调节细准焦螺旋,使看到的物像更加清晰。
提问:
①通过显微镜观察到的汉字与装片上的相比,在方向上有什么不同?
七年级数学上册 第一章《1.1生活中的立体图形》教案 (新版)北师大版
1.1生活中的立体图形(第1课时)〖教学目的:〗〖知识与技能目标:〗1.经历从现实世界中抽象出图形的过程,感受图形世界的丰富多彩.2.在观察、摸索、讨论中直观认识立体图形,了解球体、柱体、锥体的特征;〖过程与方法:〗1.通过一系列活动,培养学生的语言表达能力、总结归纳能力、实际动手能力及探索发现能力。
2.过程中,建立一种互相了解合作的新型师生关系。
〖情感态度与价值观:〗1.通过直觉增进学生的理解力,使他们获得成功的体验.2.激发学生对丰富的图形世界的兴趣,好奇心,初步形成积极参与活动,主动与他人合作交流的意识。
〖教学重点、难点:〗重点:直观认识规则的立体图形,正确区分各类立体图形。
难点:1、找出各个立体图形的个性特征及它们之间的联系,进而掌握对图形认知、归纳的方法。
2、研究正多面体的顶点数、棱数和面数之间的关系,得出欧拉公式。
〖课前准备:〗学生阅读材料《晶体--自然界的多面体》〖教学方法:〗引导发现法〖教具准备:〗一辆玩具小公交车、一架玩具小飞车、笔筒〖教学过程:〗Ⅰ.创设现实情景,引入新课今天,我准备了“一架直升机”,带领同学们插上想像的翅膀去飞行,我们飞向了祖国的蓝天,飞呀、飞呀,我们飞到了一座现代化大城市的上空,翻开课本看第一章的第1页的彩图,这个城市多漂亮啊,我们在欣赏这个城市的美景时,不妨用数学的眼光观察一下,这个美丽的城市也是我们数学世界——丰富的图形世界,你能从中发现哪些熟悉的图形?大家先看这辆车是由哪些立体图形组成的?Ⅱ.根据现实情景,讲授新课1.从生活中发现熟悉的几何体。
[议一议](1)图中有茶杯,笛子,笔筒中的笔杆是圆柱形状,提球的网把球放进去上面一部分是圆锥的形状,书架上的小帽子是圆锥的形状。
(2)圆柱和圆锥的相同点是底面都是圆的,不同点是圆柱有上下两个底面都是圆的,而圆锥只有下底面,最上面只是一个顶点。
(3)笔筒的形状我们把它叫棱柱,老师,对不对?(4)地球是一个球体,与它形状类似的有足球。
【中小学资料】安徽省马鞍山市七年级地理上册 1.1 地球和地球仪(第1课时)教案 (新版)新人教版
地球和地球仪
解地理课学习的地理内容有很大作用。
通过序言部分的讨论激发学生学通过了解人类对地球的认识过程,感受前人勇于探索的精神,明
用事实引导学生从生活出发去观察地理现象,
]
升华到申,可以得出太阳是球形的的结论;
地球卫星照片──确证地球是个球体记忆技巧:
认识地球仪。
了解赤道、纬线、纬度的定义,能够在地图、地球
地球仪、地图
是,人们仿照地球的形状,并且按照一定的
教师点拨:地轴只是一个假想的轴,和地球仪上的线
线和纬线有个全
°纬线──赤道。
(名师整理)数学七年级上册第一章第1课《正数和负数》省优质课一等奖教案
1.1《正数和负数》教学设计(第1课时)教学目标知识与技能:借助生活中的实例理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。
过程与方法:1.体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。
2.能结合具体情境出现并提出数学问题,并解释结果的合理性。
情感态度与价值观:乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。
教学重、难点重点:体会负数引入的必要性和有理数应用的广泛性, 能应用正负数表示生活中的具有相反的意义的量。
难点:能应用正负数表示生活中的具有相反的意义的量,养成把数学应用于生活实际问题的习惯。
教学方法:采用“现象──问题──目标”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念教学过程:一、创设情境教师出示图片说明自然数的产生、分数的产生.接着出示问题问题1 天气预报:滨州市冬季某天的温度为-3~3℃,它的确切含义是什么?这一天我市的温差是多少?问题 2 2.2010年我国花生产量比去年增长 1.8%油菜产量比去年增长-2.7%,这里的增长-2.7%代表什么意思?两个问题中的-3、-2.7%是我们以前没有学过的新数,这说明随着生活和劳动的发展我们以前学过的数,已经不够用了,需要引进新的数。
来服务我们的生活。
从而导入新课学生活动学生理解数的符号的产生的好处,学生思考-3~3℃、增长-2.7%。
各是什么意思?设计意图通过此活动,激发学生参与课堂教学的热情,使学生进入问题情境,让其感受到引入数学符号的必要性,引入新课。
二、自主学习(一)出示本节课的学习目标1、通过生活中实例认识到引入负数的必要性。
2、知道什么是负数,零,正数。
3、会判断一个数是正数?还是负数?4、能用正数、负数表示实际生活中具有相反意义的量(二)、出示本节课的自学提纲1、.知识点1:正数、负数的概念--------阅读教材第2页,像3、2、0.5、1.8%这样比0大的数叫正数,根据需要,有时在正数前面加上“+”,如+5,。
九年级化学1.1 物质的变化和性质教案
第一单元走进化学世界课题1物质的变化和性质第1课时物质的变化【学习目标】1.知识与技能:(1)了解物理变化和化学变化的概念。
(2)知道物理变化和化学变化的区别和联系。
(3)能判断日常生活中一些物质的变化。
2.过程与方法:(1)初步学会运用观察、实验等方法获取信息,初步学会用比拟、分类、归纳、概括的方法对获取的信息进行加工。
(2)能主动与他人交流、讨论,清楚地表达自己的观点。
3.情感态度与价值观:(1)通过对生活中物质变化的分析,体会化学就在你我身边。
(2)通过观察和实验,增强学生对化学现象的好奇心,激发他们学化学的兴趣。
(3)体会、观察和思考是学习化学的根本素养之一。
【学习重点】理解化学变化与物理变化。
【学习难点】化学变化与物理变化的区别和联系。
情景导入生成问题1.导语:雪是如何形成的?这个过程中有没有新物质产生?雪的形成与蜡烛的燃烧这两个变化有何不同?2.由学生对本节课的学习目标进行解读。
合作探究生成能力知识模块化学变化和物理变化阅读课本P6~P8“实验1-1〞的内容,完成课本P7的表格。
提出问题:水在一定条件下可以变成水蒸气或冰,钢铁制品在潮湿的地方会生锈,煤、木材和柴草可以在空气中燃烧而发光、发热等等。
从化学的角度看,物质的这些变化有什么本质区别呢?探究实验:实验1:水的沸腾;实验2:胆矾研碎;实验3:胆矾溶液和氢氧化钠溶液反响;实验4:石灰石和盐酸反响。
投影:这四个实验的视频。
学生:观察,进一步比拟实验现象。
课堂讨论交流展示生成新知全班讨论并展示探究成果,反思交流。
(小组派代表发言)行为提示:教会学生怎么交流。
先对学,再群学。
充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展)。
在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间。
检测反响达成目标一、当堂检测二、课后提升三、家庭作业《精英新课堂》完成学生用书的“夯根底分点练〞局部完成学生用书的“生能力整合练〞局部稳固知识:记忆《速记宝典》中的本课知识《名师测控》完成学生用书的“根底闯关〞局部完成学生用书的“能力提升〞局部稳固知识:记忆《提分宝典》中的本课知识第1课时物质的变化1.物理变化:没有新物质生成的变化。
1.1第1课时等腰三角形的性质(教案)
3.数学建模:通过解决实际问题,让学生学会运用等腰三角形的性质建立数学模型,提高解决实际问题的能力。
4.数学抽象:使学生能够从具体实例中抽象出等腰三角形的性质,培养数学抽象思维能力。
5.数学运算:在论证等腰三角形性质的过程中,训练学生的运算能力和严谨的数学态度。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了等腰三角形的定义、性质和判定方法。同时,我们也通过实践活动和小组讨论加深了对等腰三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在上完这节等腰三角形的性质课程后,我进行了深入的思考。首先,我发现学生们对于等腰三角形的定义和性质的理解总体上是到位的。他们在课堂上能够积极参与,通过实际操作和小组讨论,对等腰三角形的性质有了直观的感受。
1.1第1课时等腰三角形的性质(教案)
一、教学内容
本节课选自八年级数学下册第五章“三角形”,第1课时“等腰三角形的性质”。教学内容主要包括以下三个方面:
1.等腰三角形的定义:两边相等的三角形称为等腰三角形,相等的两边称为腰,另一边称为底。
2.等腰三角形的性质:
a.等腰三角形的两底角相等。
b.等腰三角形的底边上的中线(即底边的中点到对角的线段)等于底边的一半,并且垂直于底边。
1.讨论主题:学生将围绕“等腰三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
1.1孟德尔的豌豆杂交实验(一)(第1课时)(导学案)
第1章遗传因子的发现第1节孟德尔的豌豆杂交实验(一)第1课时【学习目标】1.说出用豌豆作遗传实验材料容易成功的原因。
2.理解人工异花传粉的基本操作。
3.描述孟德尔的一对相对性状的杂交实验。
4.对分离现象做出的假设。
【学习重点】1.孟德尔的一对相对性状的杂交实验。
2.对分离现象做出的解释。
【学习难点】对分离现象做出的解释。
学习任务一豌豆用作遗传实验材料的优点和方法【自主梳理】阅读教材P25,完成以下内容:1. 豌豆用作遗传实验材料的优点(1)豌豆花是两性花,豌豆是自花传粉植物,而且是闭花受粉。
自然状态下一般都是纯种。
(2)豌豆植株还具有易于区分的性状。
且能稳定地遗传给后代。
2.人工异花传粉的一般步骤:花未成熟时去雄→套袋→待去雄花的雌蕊成熟时,采集另一植株的花粉并传粉→将采集到的花粉涂(撒)在去雄花的雄蕊的柱头上,再套袋。
(1)去雄应该在花蕾期时期进行。
避免自花传粉。
(2) 该过程中进行两次套袋的目的是避免外来花粉的干扰。
3.一种生物的同一种性状的不同表现类型,叫作相对性状。
4.自交:相同基因型个体之间的交配,植物的自花传粉,同株异花传粉均属于自交。
5.杂交:遗传因子组成不同的个体间的相互交配。
【合作探究】1.把一瓶蓝墨水和一瓶红墨水倒在一起,混和液是什么颜色?【答案】混和液是另外一种颜色,再也无法分出蓝色和红色。
2.19世纪下半叶十分整行的是什么遗传观点?按照这种观点。
按照这种观点,当红花豌豆与白花豌豆杂交后,子代的豌豆花会是什么颜色?【答案】融合遗传按照融合遗传的观点,双亲的遗传物质会在子代体内发生混合,子代表现出介于双亲之间的性状,即红色和白色的混合色粉色。
3.你同意上述观点吗?你的证据有哪些?【答案】不同意。
因为自然界的遗传现象并不是融合遗传的结果。
例如,红花豌豆与白花豌豆杂交后,其后代仍出现红花或白花;再例如,人的性别遗传说明控制男女性别的遗传物质没有发生混合。
4.是谁冲破了这个错误观点的束缚”。
高中数学 第2章 基本初等函数(1)(1.1 指数与指数幂的运算 第1课时)示范教案 新人教A版必修
某某省青龙满族自治县逸夫中学高中数学必修1第2章 基本初等函数〔1〕-1.示X 教案〔1.1 指数与指数幂的运算 第1课时〕本章教材分析教材把指数函数、对数函数、幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,从而让学生体会建立和研究一个函数模型的基本过程和方法,学会运用具体的函数模型解决一些实际问题.本章总的教学目标是:了解指数函数模型的实际背景,理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算;理解指数函数的概念和意义,掌握f(x)=a x 的符号及意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质〔单调性、值域、特别点〕,通过应用实例的教学,体会指数函数是一种重要的函数模型;理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用;通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x 的符号及意义,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质〔单调性、值域、特殊点〕;知道指数函数y=a x 与对数函数y=log a x 互为反函数〔a >0,a≠1〕,初步了解反函数的概念和f -1(x)的意义;通过实例了解幂函数的概念,结合五种具体函数y=x,y=x 2,y=x 3,y=x -1,y=x 21的图象,了解它们的变化情况.本章的重点是三种初等函数的概念、图象及性质,要在理解定义的基础上,通过几个特殊函数图象的观察,归纳得出一般图象及性质,这种由特殊到一般的研究问题的方法是数学的基本方法.把这三种函数的图象及性质之间的内在联系及本质区别搞清楚是本章的难点.教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情境创设.在学习对数函数的图象和性质时,教材将它与指数函数的有关内容作了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想.建议教学中重视知识间的迁移与互逆作用.教材对反函数的学习要求仅限于初步的知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生的学习负担.通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能.教材安排了“阅读与思考〞的内容,有利于加强数学文化的教育,应指导学生认真研读.2.1 指数函数2.1.1 指数与指数幂的运算整体设计我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫. 本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,表达数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.2.掌握根式与分数指数幂的互化,渗透“转化〞的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.重点难点教学重点:(1)分数指数幂和根式概念的理解.(2)掌握并运用分数指数幂的运算性质.(3)运用有理指数幂性质进行化简、求值.教学难点:(1)分数指数幂及根式概念的理解.(2)有理指数幂性质的灵活应用.课时安排3课时教学过程第1课时指数与指数幂的运算(1)导入新课思路 1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算. 推进新课提出问题(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?(2)如x4=a,x5=a,x6=a根据上面的结论我们又能得到什么呢?(3)根据上面的结论我们能得到一般性的结论吗?(4)可否用一个式子表达呢?活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题②的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维. 讨论结果:(1)假设x2=a,那么x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,假设x3=a,那么x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.(2)类比平方根、立方根的定义,一个数的四次方等于a,那么这个数叫a的四次方根.一个数的五次方等于a,那么这个数叫a的五次方根.一个数的六次方等于a,那么这个数叫a的六次方根.(3)类比(2)得到一个数的n次方等于a,那么这个数叫a的n次方根.(4)用一个式子表达是,假设x n=a,那么x叫a的n次方根.教师板书n次方根的意义:一般地,如果x n=a,那么x叫a的n次方根(n-throot),其中n>1且n∈N*.可以看出数的平方根、立方根的概念是n次方根的概念的特例.提出问题(1)你能根据n次方根的意义求出以下数的n次方根吗?(多媒体显示以下题目).①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?(3)问题〔2〕中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?(4)任何一个数a的偶次方根是否存在呢?活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题〔2〕中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:〔1〕因为±2的平方等于4,±2的立方等于8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.〔2〕方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零.〔3〕一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.〔4〕任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n 次方根的性质:①当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用n a -表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).②n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.③负数没有偶次方根;0的任何次方根都是零.上面的文字语言可用下面的式子表示:a 为正数:⎪⎩⎪⎨⎧±.,,,n n a n a n a n a n 次方根有两个为的为偶数次方根有一个为的为奇数 a 为负数:⎪⎩⎪⎨⎧.,,,次方根不存在的为偶数次方根只有一个为的为奇数n a n a n a n n 零的n 次方根为零,记为n 0=0.可以看出数的平方根、立方根的性质是n 次方根的性质的特例.思考根据n 次方根的性质能否举例说明上述几种情况?活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,4次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题. 解答:答案不唯一,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为527-527-也表示方根,它类似于n a 的形式,现在我们给式子n a 一个名称——根式. 根式的概念: 式子n a 叫根式,其中a 叫被开方数,n 叫根指数. 如327-中,3叫根指数,-27叫被开方数.思考n n a 表示a n 的n 次方根,等式n n a =a 一定成立吗?如果不一定成立,那么n n a 等于什么? 活动:教师让学生注意讨论n 为奇偶数和a 的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理. 〔如33)3(-=327-=-3,44)8(-=|-8|=8〕.解答:根据n 次方根的意义,可得:(n a )n =a.通过探究得到:n 为奇数,n na =a.n 为偶数,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a因此我们得到n 次方根的运算性质: ①(n a )n=a.先开方,再乘方〔同次〕,结果为被开方数. ②n 为奇数,n n a =a.先奇次乘方,再开方〔同次〕,结果为被开方数.n 为偶数,n n a =|a|=a,⎩⎨⎧<-≥.0,,0,a a a a 先偶次乘方,再开方〔同次〕,结果为被开方数的绝对值.应用示例思路1例1求以下各式的值: (1)33)8(-;(2)2)10(-;(3)44)3(π-;(4)2)(b a -(a>b).活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求以下各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数. 解:(1)33)8(-=-8; (2)2)10(-=10; (3)44)3(π-=π-3; (4)2)(b a -=a-b(a>b).点评:不注意n 的奇偶性对式子n n a 的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.变式训练求出以下各式的值: (1)77)2(-; (2)33)33(-a (a≤1); (3)44)33(-a .解:(1)77)2(-=-2, (2)33)33(-a (a≤1)=3a -3,(3)44)33(-a =⎩⎨⎧<-≥-.1,33,1,33a a a a点评:此题易错的是第(3)题,往往忽视a 与1大小的讨论,造成错解.思路2例1以下各式中正确的选项是( ) (1)44a =a; (2)62)2(-=32-;(3)a 0=1; (4)105)12(-=)12(-.活动:教师提示,这是一道选择题,此题考查n 次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.解:(1)44a =a,考查n 次方根的运算性质,当n 为偶数时,应先写n n a =|a|,故此题错. (2)62)2(-=32-,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为62)2(-=32,故此题错.(3)a 0=1是有条件的,即a≠0,故此题也错.(4)是一个正数的偶次方根,根据运算顺序也应如此,故此题正确.所以答案选(4).点评:此题由于考查n 次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心. 例223++223-=_________活动:让同学们积极思考,交流讨论,此题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路. 解:223+=2)2(221++=2)21(+=2+1. 223-=122)2(2+-=2)12(-=2-1. 所以223++223-=22.点评:不难看出223-与223+形式上有些特点,即是对称根式,是B A 2±形式的式子,我们总能找到办法把其化成一个完全平方式.思考上面的例2还有别的解法吗?活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是+,一个是-,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.另解:利用整体思想,x=223++223-,两边平方得x 2=3+22+3-22+2(223+)(223-)=6+222)22(3-=6+2=8,所以x=22.点评:对双重二次根式,特别是B A 2±形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对B A B A 22-±+的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.变式训练 假设12a -a 2+=a-1,求a 的取值X 围.解:因为12a -a 2+=a-1,而12a -a 2+=2)1(-a =|a-1|=a-1,即a-1≥0,所以a≥1.点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.知能训练(教师用多媒体显示在屏幕上)1.以下说法正确的选项是( )n a 表示(以上n >1且n∈N *).答案:C2.化简以下各式: (1)664;(2)42)3(-;(3)48x ;(4)636y x ;(5)2y)-(x .答案:(1)2;(2)9;(3)x 2;(4)|x|y ;(5)|x-y|.407407-++=__________. 解:407407-++ =2222)2(252)5()2(252)5(+•-++•+ =22)25()25(-++=5+2+5-2- =25.答案:25拓展提升 问题:n n a =a 与(n a )n =a 〔n >1,n∈N 〕哪一个是恒等式,为什么?请举例说明.活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n 次方根的定义.通过归纳,得出问题结果,对a 是正数和零,n 为偶数时,n 为奇数时讨论一下.再对a 是负数,n 为偶数时,n 为奇数时讨论一下,就可得到相应的结论.解答:①〔n a 〕n =a 〔n >1,n∈N 〕.如果x n =a 〔n >1,且n∈N 〕有意义,那么无论n 是奇数或偶数,x=n a 一定是它的一个n 次方根,所以〔n a 〕n =a 恒成立.例如:〔43〕4=3,33)5(-=-5. ②n n a =⎩⎨⎧.|,|,,为偶数当为奇数当n a n a当n 为奇数时,a∈R ,n n a =a 恒成立. 例如:552=2,55)2(-=-2. 当n 为偶数时,a∈R ,a n ≥0,n n a 表示正的n 次方根或0,所以如果a≥0,那么n n a 443=3,40=0;如果a <0,那么n n a =|a|=-a,如2(-3)=23=3. 即〔n a na 〕n =a 〔n >1,n∈N 〕是恒等式,n n a =a 〔n >1,n∈N〕是有条件的.点评:实质上是对n 次方根的概念、性质以及运算性质的深刻理解.课堂小结学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上. n =a,那么x 叫a 的n 次方根,其中n >1且n∈N *.用式子n a 表示,式子n a 叫根式,其中a 叫被开方数,n 叫根指数.(1)当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用-n a 表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).(2)n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.(3)负数没有偶次方根.0的任何次方根都是零.2.掌握两个公式:n 为奇数时,(n a )n =a,n 为偶数时,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a 作业课本P 59习题2.1A 组 1.补充作业:1.化简以下各式: (1)681;(2)1532-;(3)48x ;(4)642b a .解:(1)681=643=323=39; (2)1532-=1552-=32-; (3)48x =442)(x =x 2; (4)642b a =622)|(|b a •=32||b a •.2.假设5<a<8,那么式子22)8()5(---a a 的值为__________.分析:因为5<a<8,所以22)8()5(---a a =a-5-8+a=2a-13.答案:2a-13. 3.625625-++=__________.分析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式, 不难看出625+=22)(3+=3+2. 同理625-=22)(3-=3-2.所以625++625-=23. 答案:23设计感想学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式n a 的讲解要分n 是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学.。
1.1 孟德尔的豌豆杂交实验(一)(第1课时)(解析版)
第1节孟德尔的豌豆杂交实验(一)第1课时分离定律的发现(基础+提升+情境训练,3层提升)1.下列对孟德尔选用豌豆作为遗传实验材料的原因的叙述,错误的是( )A.豌豆是自花传粉植物,在自然状态下一般都是纯种B.豌豆花是单性花,花比较大,杂交时容易操作C.豌豆具有一些稳定的、容易区分的性状D.豌豆花在未开放时就完成受粉解析:B 豌豆自花传粉,这样避免了外来花粉的干扰,在自然状态下一般都是纯种,A正确;豌豆花比较大,杂交时容易操作,但豌豆花是两性花,B错误;豌豆具有一些稳定的、容易区分的性状,易于进行观察,C正确;豌豆花是两性花,在花未开放时,它的花粉会落到同一朵花的雌蕊的柱头上,从而完成受粉,D正确。
2.(2023·江门高一期中)在进行豌豆杂交实验时,为避免其自花传粉,孟德尔采取的措施是( )①花蕾期,不去雄蕊②花蕾期,去雄蕊③去雄后,套上纸袋④去雄后,不套纸袋⑤待花成熟时,采集另一株植物的花粉涂在雌蕊的柱头上⑥待花成熟时,拿开纸袋任其在自然状况下传粉受精A.②④⑥B.①③⑥C.②③⑤D.②③⑥解析:选C 本题主要考查豌豆作为遗传学实验材料的优势。
由于豌豆是自花传粉、闭花受粉,在开花前(花蕾期)已完成受精作用,所以必须在花蕾期对母本进行去雄,①错误、②正确;去雄后需套上纸袋,防止外来花粉的干扰,③正确、④错误;待花成熟时,采集另一株植物的花粉涂在去雌蕊的柱头上完成杂交过程,⑤正确;杂交实验需采集另一株植物的花粉涂在去雌蕊的柱头上,⑥错误。
所以②③⑤正确。
3.(2023·四川内江资中二中月考)下列关于遗传学基本概念的叙述,正确的是( ) A.豌豆和玉米在自然条件下分别发生自交和杂交B.子一代显现出的性状就是显性性状,未显现出的性状为隐性性状C.对于植物而言,不只有自花传粉属于自交,有些异花传粉也属于自交D.表现显性性状的个体自交,后代一定表现显性性状解析:选C。
豌豆花是两性花,其传粉方式是自花传粉、闭花受粉,自然条件下通常发生自交;玉米是雌雄同株异花植物,自然条件下可以发生自交和杂交,A错误。
部编版《道德与法治》九年级上册1.1《坚持改革开放》教案
第一单元富强与创新第一课踏上强国之路第1课时坚持改革开放知识目标(1)认识我国基本的经济制度。
(2)知道市场在资源配置中的决定性地位,推动了经济社会的发展。
能力目标通过改革开放取得的成就,理解改革开放解放和发展了生产力,激发经济建设的活力,是强国之路、富民之路。
情感态度与价值观目标感受身边的变化,了解中国共产党领导全国各族人民实行改革开放和发展社会主义市场经济给国家、社会带来的巨大变化,增强对“中国奇迹”的自豪感。
重点:改革开放对我国经济社会发展的重要意义。
难点:理解改革开放,理解让一切创造社会财富的源泉充分涌流。
教法:情景设置,引导讲解。
学法:自学、合作探究。
(一)情景导入生成问题1.播放歌曲《走进新时代》,屏幕滚动歌词。
2.教师针对歌词,设置问题:(1)时事考察:党的十九大的召开确定了我国走进了什么“新时代”?指导思想是什么?(2)改革开放是从什么时候开始的?3.教师引言:从1978年的改革开放使中国逐渐摆脱贫困,“改革开放富起来”,再到党的十八大、十九大的召开,中国改革的进一步深化,“中国巨轮号”劈波斩浪,创造了一个又一个奇迹,解释中国奇迹,改革无疑是第一个关键词,……让我们聚焦经济改革,聚焦改革开放。
(二)自主学习梳理新知知识点一改革开放促发展1.中国共产党团结带领中国人民进行改革开放新的伟大革命,极大激发广大人民群众的__创造性__,极大解放和发展__社会生产力__,极大增强社会发展活力。
2.我国逐步确立了__公有制__为主体、__多种所有制经济__共同发展的基本经济制度,形成了多种所有制经济__平等竞争__、__相互促进__的新格局。
3.改革开放对我国经济社会发展的意义表现在哪些方面?知识点二中国腾飞谱新篇4.40年来,中国人民坚持改革开放,找到了一条使国家强盛、人民富裕的正确道路,即__中国特色社会主义道路__。
5.中国的腾飞证明,__改革开放__是决定当代中国命运的__关键抉择__。
1.1单项式 一等奖创新教案
1.1单项式一等奖创新教案整式的加减4.1 整式第1课时单项式教学目标1.能说出单项式及单项式的次数、系数的概念,并会找出单项式的系数、次数. 2.能用单项式表示实际问题中的数量关系. 教学重难点重点:理解单项式及单项式的系数、次数的概念. 难点:能够准确地判断一个代数式是否是单项式,能迅速而准确地确定一个单项式的系数和次数. 教学过程导入新课列代数式:1.如果小亮家的电冰箱平均每天的耗电量为m千瓦时,那么n天的耗电量为千瓦时. 2.某物品包装箱的形状是长方体,如果包装箱的宽和高都是a cm,长是b cm,那么它的体积是________. 3.为了保护环境,促进生态平衡,某地计划逐年增加植树造林的面积.如果第一年植树造林a 公顷,第二年比第一年增加了%,那么第二年比第一年的植树造林的面积增加了_________公顷. 答案:1.mn 2. 3.10%a 探究新知探究一:单项式试说出下列各式的数字因数和字母. mn,,10%a,n. 提出问题:你发现了以上各式包含哪些运算?有什么共同运算?通过特征的描述,引导学生概括单项式的概念,从而引出课题:单项式,并板书归纳得出单项式的概念,然后教师补充:单独一个数或一个字母也是单项式,如a,5. 巩固练习:下列各式中哪些是单项式?答案:x,0,2,0.72a,,π, . 加强学生对不同形式的单项式的直观认识. 探究二:单项式的系数和次数以为例让学生说出它们的因数是什么,从而引出单项式系数的概念并板书,接着让学生说出字母因数是什么,各字母的指数分别是多少,从而引出单项式次数的概念并板书. 单项式中的数字因数叫做这个单项式的系数. 所有字母的指数的和叫做这个单项式的次数. 巩固练习:单项式5ah32πRabc (1+25%)m系数次数答案:系数:5 2π 1 1+25% 次数:4 1 3 1 学生完成后教师讲解注意事项. (1)系数包括前面的符号.例如,5xy 的系数是5,而不是5. (2)当单项式的系数是1或1时,“1”省略不写,例如abc的系数是1.当字母指数是1时,指数省略不写,如y的指数是1不是0. (3)希腊字母π是一个特殊字母,它表示一个确定的常数(圆周率). 例用代数式表示,并指出它们的系数和次数. (1)某商店8月份的营业额为m万元,9月份的营业额比8月份增加了%,9月份的营业额为多少万元?(2)某品牌的汽车原价为a元/辆,现按九折出售.如果一周内销售了这种汽车b辆,那么这周的销售额为多少元?(3)一个长方体形状的零件,它的底面边长分别是a cm和b cm,高是h cm,这个零件的体积是多少立方厘米?学生交流解答后教师点拨:(1)(1+%)m,它的系数是1+%,次数是1. (2)0.9ab,它的系数是0.9,次数是2. (3)abh,它的系数是1,次数是3. 课堂练习1. 用单项式填空,并指出它们的系数和次数. (1)每包书有12册,n包书有_____册;(2)底边长为a,高为h的三角形的面积是_____;(3)一个长方体的长和宽都是a,高为h,它的体积是_____;(4)一台电视机原价为a元,现按原价的九折出售,这台电视机现在_的售价为____;(5)一个长方形的长为0.9,宽为a,面积是____. 2.判断下列各说法是否正确,将错误的改正过来. (1)单项式的系数是0,次数是2. ()(2)单项式的系数是2,次数是10 . ()(3)单项式的系数是,次数是n+1 . ()3.若是关于x,y 的单项式,系数为6,次数是3,则a=,b= . 4.写出一个含有x,y,而且系数是4,次数是4的单项式. 参考答案1.(1)12n 12 一次(2)ah 二次(3) 1 三次(4)0.9a 0.9 一次(5)0.9a 0.9 一次 2.(1)×系数是1,次数是3. (2)×系数是27 ,次数是3. (3)√ 3. 6 2 4.解:,或. 课堂小结1.单项式中的数字与字母之间是相乘关系. 2.单独一个数或一个字母也是单项式. 3.单项式的系数包括它的符号,x的系数是1. 4.当系数是1或1时,“1”通常省略不写. 5.当字母的指数是1时,指数省略不写,如y的指数是1. 布置作业教材第124页习题A组第1,2,3题. 板书设计第四章整式的加减4.1 整式第1课时单项式一、单项式的定义_____ 二、单项式的系数三、单项式的次数教学反思___ ______教学反思____________ 教学反思。
《第1课 小小科学家》教案
《第1课小小科学家》教案一、教学目标1.做滚小球实验,并能有所发现。
2.认识到不仅科学家能做科学研究,小学生已能做实验。
3.知道科学家是发现大自然奥秘的人。
二、教学重难点1.教学重点认识科学家的工作;知道科学家是发现大自然奥秘的人。
2.教学难点通过滚小球实验,并能有所发现。
三、教学方法讲授法、提问法、实验法、观察法、讨论法四、教学课时1课时五、教学过程(一)引入新课请同学们跟着老师一起朗读第一单元第一课《小小科学家》。
(板书:1.1 小小科学家)(二)新课讲解1.同学们,你们知道这些科学家的工作吗?板书:科学家的工作:研究黑猩猩、研究水稻、采集岩石标本、观察星空、做实验等。
2.说说你们还知道科学家的哪些工作?3.做滚小球实验。
(1)实验1实验步骤:在桌上铺一块有刻度标记的绒布,将斜坡架在绒布的一端,先将小球从斜坡上的第一刻度滚下,记下在绒布上停止的位置,再将小球依次从斜坡上的第二、第三刻度滚下,已记下在绒布上停止的位置,比较它们的远近。
结论:小球从第三刻度位置滚下要比第二刻度滚下滚得远;从第二刻度位置滚下要比第一刻度滚下滚得远。
小球离桌面越高,滚得越远。
(2)实验2实验步骤:在桌上铺一块有刻度标记的绒布,将斜坡架在绒布的一端,将钢珠、泡沫球、空心小球依次从斜坡的同一刻度滚下,记下它们在绒布上停止时的位置,比较它们的远近。
结论:在同一刻度,钢珠比空心小球滚得远;空心小球比泡沫球滚得远。
师:400多年前,伽利略已曾在斜坡上滚过小球。
4.科学家已经找到许多问题的答案,你们知道是什么问题吗?例如大树是怎么长高的;闪电是怎么发生的。
5.科学家还有很多问题没有完全找到答案,例如地球里面有什么?有没有外星人?6.作业布置课程同步达标与技能拓展,P1.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1等腰三角形
第1课时三角形的全等和等腰三角形的性质
1.复习全等三角形的判定定理及相关
性质;
2.理解并掌握等腰三角形的性质定理
及推论,能够运用其解决简单的几何问
题.(重点,难点)
一、情境导入
探究:如图所示,把一张长方形的纸按
照图中虚线对折并减去阴影部分,再把它展
开得到的△ABC有什么特点?
二、合作探究
探究点一:全等三角形的判定和性质
【类型一】全等三角形的判定
如图,已知∠1=∠2,则不一定
能使△ABD≌△ACD的条件是()
A.BD=CD
B.AB=AC
C.∠B=∠C
D.∠BAD=∠CAD
解析:利用全等三角形判定定理ASA,
SAS,AAS对各个选项逐一分析即可得出答
案.A.∵∠1=∠2,AD为公共边,若BD=
CD,则△ABD≌△ACD(SAS);B.∵∠1=∠2,
AD为公共边,若AB=AC,不符合全等三
角形判定定理,不能判定△ABD≌△ACD;
C.∵∠1=∠2,AD为公共边,若∠B=∠C,
则△ABD≌△ACD(AAS);D.∵∠1=∠2,AD
为公共边,若∠BAD=∠CAD,则
△ABD≌△ACD(ASA);故选B.
方法总结:判定两个三角形全等的一般
方法有:SSS、SAS、ASA、AAS.要注意AAA、
SSA不能判定两个三角形全等,判定两个三
角形全等时,必须有边的参与,若有两边一
角对应相等时,角必须是两边的夹角.
变式训练:见《学练优》本课时练习“课
堂达标训练“第2题
【类型二】全等三角形的性质
如图,△ABC≌△CDA,并且AB
=CD,那么下列结论错误的是()
A.∠1=∠2 B.AC=CA
C.∠D=∠B D.AC=BC
解析:由△ABC≌△CDA,并且AB=CD,AC和CA是公共边,可知∠1和∠2,∠D和∠B是对应角.全等三角形的对应角相等,对应边相等,因而前三个选项一定正确.AC和BC不是对应边,不一定相等.∵△ABC≌△CDA,AB=CD,∴∠1和∠2,∠D和∠B是对应角,∴∠1=∠2,∠D =∠B,∴AC和CA是对应边,而不是BC,∴A、B、C正确,错误的结论是D.故选D.
方法总结:本题主要考查了全等三角形的性质;根据已知条件正确确定对应边、对应角是解决本题的关键.
变式训练:见《学练优》本课时练习“课堂达标训练”第1题
探究点二:等边对等角
【类型一】运用“等边对等角”求角的度数
如图,AB=AC=AD,若∠BAD =80°,则∠BCD=()
A.80°B.100°
C.140°D.160°
解析:先根据已知和四边形的内角和为360°,可求∠B+∠BCD+∠D的度数,再根据等腰三角形的性质可得∠B=∠ACB,∠ACD=∠D,从而得到∠BCD的值.∵∠BAD=80°,∴∠B+∠BCD+∠D=280°.∵AB=AC=AD,∴∠B=∠ACB,∠ACD =∠D,∴∠BCD=280°÷2=140°,故选C.
方法总结:求角的度数时,①在等腰三角形中,一定要考虑三角形内角和定理;②有平行线时,要考虑平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补;③两条相交直线中,对顶角相等,互为邻补角的两角之和等于180°.
变式训练:见《学练优》本课时练习“课堂达标训练”第4题
【类型二】分类讨论思想在等腰三角形求角度中的运用
等腰三角形的一个角等于30°,求它的顶角的度数.
解析:本题可根据等腰三角形的性质和三角形内角和定理求解,由于本题中没有明确30°角是顶角还是底角,因此要分类讨论.
解:①当底角是30°时,顶角的度数为180°-2×30°=120°;
②顶角即为30°.
因此等腰三角形的顶角的度数为30°或120°.
方法总结:已知的一个锐角可以是等腰三角形的顶角,也可以是底角;一个钝角只能是等腰三角形的顶角.分类讨论是正确解答本题的关键.
变式训练:见《学练优》本课时练习“课
后巩固提升”第2题
探究点三:三线合一
【类型一】利用等腰三角形“三线合一”进行计算
如图,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°.求∠ACB和∠BAC的度数.
解析:根据等腰三角形三线合一的性质可得AE⊥BC,再求出∠CDE,然后根据直角三角形两锐角互余求出∠DCE,根据角平分线的定义求出∠ACB,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC.
解:∵AB=AC,AE平分∠BAC,∴AE ⊥BC.∵∠ADC=125°,∴∠CDE=55°,∴∠DCE=90°-∠CDE=35°.又∵CD平分∠ACB,∴∠ACB=2∠DCE=70°.又∵AB=AC,∴∠B=∠ACB=70°,∴∠BAC=180-(∠B+∠ACB)=40°.
方法总结:利用等腰三角形“三线合一”的性质进行计算,有两种类型:一是求边长,求边长时应利用等腰三角形的底边上的中线与其他两线互相重合;二是求角度的大小,求角度时,应利用等腰三角形的顶角的平分线或底边上的高与其他两线互相重合.
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
【类型二】利用等腰三角形“三线合一”进行证明
如图,△ABC中,AB=AC,D为AC上任意一点,延长BA到E使得AE=AD,连接DE,求证:DE⊥BC.
解析:作AF∥DE,交BC于点F.利用等边对等角及平行线的性质证明∠BAF=∠F AC.在△ABC中由“三线合一”得AF⊥BC.再结合AF∥DE可得出结论.
证明:过点A作AF∥DE,交BC于点F.
∵AE=AD,∴∠E=∠ADE.
∵AF∥DE,∴∠E=∠BAF,∠F AC=∠ADE.
∴∠BAF=∠F AC.
又∵AB=AC,∴AF⊥BC.
∵AF∥DE,∴DE⊥BC.
方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.
变式训练:见《学练优》本课时练习“课后巩固提升”第9题
三、板书设计
1.全等三角形的判定和性质
2.等腰三角形的性质:等边对等角
3.三线合一:在等腰三角形的底边上
的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.
本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高.。