数学必修2立体几何第一章全部教(学)案

合集下载

北师大版高中数学必修2第一章《立体几何初步》简单几何体

北师大版高中数学必修2第一章《立体几何初步》简单几何体

9
问题4: 如图所示:把矩形 问题 如图所示 把矩形ABCD绕着其一边 绕着其一边 把矩形 AB所在的直线在空间中旋转一周,则矩形的 所在的直线在空间中旋转一周, 所在的直线在空间中旋转一周 其它三条边在旋转的过程中所形成的曲面围 成的几何体会是什么呢? 成的几何体会是什么呢?
C
B
A
D
10
四、圆柱的结构特征
27
2、棱柱的分类:棱柱的底面可以是三角形、四 、棱柱的分类:棱柱的底面可以是三角形、 边形、五边形、 边形、五边形、 …… 我们把棱柱按照底面多边 形边数的多少,可分三棱柱、四棱柱、 形边数的多少,可分三棱柱、四棱柱、五棱 柱、……
三棱柱 四棱柱
五棱柱
28
3、棱柱的表示法(下图 、棱柱的表示法 下图 下图)
相邻侧面的公共边叫做棱柱的侧棱。 相邻侧面的公共边叫做棱柱的侧棱。 侧面与底的公共顶点叫做棱柱的顶点。 侧面与底的公共顶点叫做棱柱的顶点。
24
底面
侧面 侧棱 顶点
底 面
25
观察下列几何体并思考:棱柱(1), 一、 观察下列几何体并思考:棱柱(1), (3)与棱柱(2)的不同之处? 与棱柱(2)的不同之处? 的不同之处
1、定义:以矩形的一边所在直线为 、定义: O1 旋转轴,把它在空间中旋转一周后, 旋转轴,把它在空间中旋转一周后,其余 三边旋转形成的曲面所围成的几何体叫做 圆柱。 圆柱。
矩形
O
圆柱的轴。 (1)旋转轴叫做圆柱的轴。 )旋转轴叫做圆柱的轴 (2) 垂直于轴的边旋转而成 ) 的圆面叫做圆柱的底面 圆柱的底面。 的圆面叫做圆柱的底面。 (3)由平行于轴的边旋转而 ) 成的曲面叫做圆柱的侧面 圆柱的侧面。 成的曲面叫做圆柱的侧面。 (4)无论旋转到什么位置不 ) 11 垂直于轴的边都叫做圆柱的母线 圆柱的母线。 垂直于轴的边都叫做圆柱的母线。

新课标人教A版高中数学必修二第一章《简单空间几何体的外接球问题》教学设计

新课标人教A版高中数学必修二第一章《简单空间几何体的外接球问题》教学设计

简单空间几何体的外接球问题教学设计一、教学内容解析本节课是在全面学习了立体几何中的空间几何体之后,对空间中简单多面体与球相结合的综合问题的研究,是建立在学生熟练掌握平面几何的相关知识,类比得到空间几何体的一些结论,其中涉及到长方形外接圆的半径,三角形外接圆的半径的求法,需要学生充分发挥空间想象能力,在球中构建直角三角形求外接圆的半径。

本节课较全面的总结了多面体的外接球问题,既有对简单问题的快速便捷处理方法,又有对常见考法的系统探究,是属于中高考复习备考方法,策略的研究案例。

二、教学目标设置知识与技能:1、掌握与长方体有关的外接球问题2、理解用定义法和截面性质解决空间几何体的外接球问题。

过程与方法:通过类比平面的相关知识,建立空间感,运用外接球的定义求解外接球的半径。

情感、态度、价值观:充分发挥学生的空间想象能力,通过体会外接球半径的探索过程,正确地拓展已学知识,适时地建立模型归纳所学内容,从而完善地建立知识模块体系。

三、学生学情分析多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点,在近几年的高考题中都有出现。

球经常和其它空间几何体相结合出题,以选择题或填空题的形式出现。

在平时学习中,学生已经掌握了正方体、长方体的外接球,了解了补形法,但对一般三棱锥的外接球相关问题的求解仍有困难,主要是因为不善于抓住几何体的结构特征,不能正确回归外接球定义,寻找球心和半径。

四、教学过程设计(一)、新课引入1、图片展示:生活中的球,并让学生回答球的定义,及球心的定义.2、学生活动:展示长方形外接圆的求法学生思考:1、在矩形ABCD中,AB=8,BC=6,将矩形ABCD沿AC折成一个二面角,使B-AC-D为60。

,则四面体ABCD的外接球的半径为( ).【注】:在空间中,如果一个顶点与一个简单几何体的所有顶点距离都相等那么这个顶点就是简单几何体的外接球的球心。

(根据球的定义确定球心)【注】:小发现:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是外接球的球心设计意图:通过图片展示先让学生回顾球及球心的定义,通过平面图形和立体图形的对比过度得到利用定义确定球心的方法。

人教版高一数学必修2(B版)全册完整课件

人教版高一数学必修2(B版)全册完整课件

1.1.6 棱柱、棱锥、棱台和球的表面积
实习作业
1.2.2 空间中的平行关系
本章小结
ห้องสมุดไป่ตู้
第二章 平面解析几何初步
2.1.2 平面直角坐标系中的基本公式
2.2.2 直线方程的几种形式
2.2.4 点到直线的距离
2.3.2 圆的一般方程
2.3.4 圆与圆的位置关系
2.4.2 空间两点的距离公式
阅读与欣赏
笛卡儿
人教版高一数学必修2(B版)全册完 整课件
1.1.6 棱柱、棱锥、棱台和球 的表面积
人教版高一数学必修2(B版)全册完 整课件
1.1.7 柱、锥、台和球的体积
人教版高一数学必修2(B版)全册完 整课件
后记
第一章 立体几何初步
人教版高一数学必修2(B版)全册完 整课件
1.1 空间几何体
1.1.1
构成空间几何体的基本元素
人教版高一数学必修2(B版)全册完 整课件
1.1.2 棱柱、棱锥和棱台的结 构特征
人教版高一数学必修2(B版)全册完 整课件
人教版高一数学必修2(B版)全册 完整课件目录
0002页 0040页 0102页 0185页 0223页 0295页 0343页 0365页 0411页 0460页 0490页 0520页 0548页 0570页 0601页 0603页
第一章 立体几何初步
1.1.2 棱柱、棱锥和棱台的结构特征
1.1.4 投影与直观图
1.1.3 圆柱、圆锥、圆台和球
人教版高一数学必修2(B版)全册完 整课件
1.1.4 投影与直观图
人教版高一数学必修2(B版)全册完 整课件
1.1.5 三视图

高中数学必修2——立体几何平行和垂直(教案)

高中数学必修2——立体几何平行和垂直(教案)

立体几何平行和垂直知识讲解知识点1 点、线、面一、平面的基本性质二、空间直线的位置关系1.位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.2.平行公理平行于同一条直线的两条直线互相平行.3.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4.异面直线所成的角(或夹角)(1)定义:设ba,是两条异面直线,经过空间中任一点O作直线bbaa//',//',把'a与'b所成的锐角(或直角)叫做异面直线a与b所成的角.I,,Pl P l且且三、直线与平面的位置关系llAα//l知识点2 线线垂直判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。

三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。

推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭注意:⑴三垂线指AO PO PA ,,都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理⑵要考虑a 的位置,并注意两定理交替使用。

知识点3 线面垂直定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直其中直线l 叫做平面α的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。

直线l 与平面α垂直记作:α⊥l 。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

知识点4 面面垂直两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。

高中数学必修二全部教学设计案例

高中数学必修二全部教学设计案例

1103 问题 5.观察下列图形,谈谈自己的感觉; 用一张硬纸板折一下,检验一下自己的感觉。
1104 四、分层反馈练习 1.两条直线相交有几个交点? 2.两个平面相交会出现什么?
1105
1106
第 5 页,共 29 页
2011-8-1
教学设计案例
整理:mengxueliang
3.几个点可以确定一条直线? 4.能找到一个四边形,使它们的对角线不相交吗? 五、延伸拓展迁移 问题 6.从一个圆锥的底部圆周上一点出发在圆锥的表面上走一圈仍回到出发点,请你设计最短的路 线?
第 2 页,共 29 页 2011-8-1
教学设计案例
整理:mengxueliang
目录
第一章
引言
学习立体几何初步的准备(一课时) 1
空间几何体
1.1
空间几何体的结构
柱、锥、台、球的结构特征(第一课时) 简单几何体的结构特征(第二课时)
1.1.1 1.1.2
1.2
空间几何体的三视图和直观图
空间几何体的三视图(第一课时) 空间几何体的直观图(第二课时)
问题 1:学生观察(1)—(16)这些实物图片,思考: (1)—(16)这些实物具有什么样的几何结 构特征? 如何把这 16 个实物分为两类?分类的标准是什么?
第 4 页,共 29 页 2011-8-1
教学设计案例
整理:mengxueliang
(学生观察思考,发现这些物体可分为两类. 其中(2),(5),(7),(9),(13),(14),(15),(16) 具有相同的特 点:组成几何体的每个面都是平面图形,并且都是平面多边形;(1),(3),(4),(6),(8),(10),(11),(12)具有 相同的特点:组成它们的面不全是平面图形.) 活动 1 想一想,我们应该给上述两大类几何体取个什么名称才好呢? 1.由若干个平面多边形围成的几何体叫做多面体。围成多面体的各个多边形叫做多面体的面。相邻两 个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 (学生每人拿出一个学具正方体进行比划,了解多面体的面、棱、顶点) 2.由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直 线叫做旋转体的轴。 (学生每人拿出一个学具圆柱进行观察,思考交流旋转体的轴及形成旋转体的平面图形) 三、问题解决展示 问题 2.下图中的几何体,我们从正面、从左面、从上面看到的图形分别是什么?你能画出来吗? (学生画图)

《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体--把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征 1。

棱柱1。

1棱柱—-有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1。

2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1。

4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则,222sin sin sin 1αβγ++=222cos cos cos 2αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2。

1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的母线截面(轴截面)是全等的矩形.2。

北师大版高中数学必修2第一章《立体几何初步》直线与平面平行的性质

北师大版高中数学必修2第一章《立体几何初步》直线与平面平行的性质

下面我们来证 明这一结论. 明这一结论.
7
探研新知
已知:如图,a∥α, 已知:如图,a∥α, α∩β= a ⊂β,α∩β=b。 求证:a∥b。 求证:a∥b。 证明:∵α∩β= 证明:∵α∩β=b,∴b⊂α ∴b⊂ a∥α,∴a与 无公共点, ∵ a∥α,∴a与b无公共点, ∵a⊂ ∴a∥b。 ∵a⊂β,b⊂β,∴a∥b。 我们可以把这个结论作定理来用. 我们可以把这个结论作定理来用.
b a
b c a α γ d δ β
15
例题示范 有一块木料如图, 例2:有一块木料如图,已知棱BC平行于面 (1)要经过木料表面 A′C′(1)要经过木料表面A′B′C′D′ 内的 一点P和棱BC将木料锯开,应怎样画线?(2)所 BC将木料锯开 一点P和棱BC将木料锯开,应怎样画线?(2)所 画的线和面AC有什么关系? AC有什么关系 画的线和面AC有什么关系? :(1 过点P EF∥B’C , 解:(1)过点P作EF∥B C’, 分别交棱A B , D 于点 于点E 分别交棱A’B’,C’D’于点E, 连接BE CF, BE, F。连接BE,CF,则 D1 E EF,BE,CF就是应画的线 就是应画的线。 EF,BE,CF就是应画的线。
结合实例(教室内的有关例子)得出结论: 结合实例(教室内的有关例子)得出结论: 如果一条直线与平面平行, 如果一条直线与平面平行,这条直线不会 与这个平面内的所有直线都平行, 与这个平面内的所有直线都平行,但在这个 平面内却有无数条直线与这条直线平行。 平面内却有无数条直线与这条直线平行。
5
探研新知 探究2.如果一条直线与一个平面平行, 2.如果一条直线与一个平面平行 探究2.如果一条直线与一个平面平行,那么这条 直线与这个平面内的直线有哪些位置关系? 直线与这个平面内的直线有哪些位置关系?

北师大版高中数学必修2第一章.1三视图课件(33张)

北师大版高中数学必修2第一章.1三视图课件(33张)

横看成岭侧成峰,远近高低各不同。 不识庐山真面目,只缘身在此山中。
——苏轼《题西林壁》
作业布置
1、家庭作业:
P18
A组 T1、T2、T3
2、预习作业: P16 §3.2 由三视图还原成实物图
思考交流
观察下图所示的几何体,你能画出它的三视图吗?
俯视
主视图
左视图
左视
主视
俯视图
欢迎大家批评指正! 谢 谢 指 导!
北师大版高中数学 必修2 第一章
§3 三 视 图
新课引入
前面 侧面 上面
建国70周年阅兵视频
探究新知
在立体几何中,一般从三个方向研究物体
1、从正前方研究物体的正投影图 —— 主视图 也称为正视图
2、从正左方研究物体的正投影图 —— 左视图 也称为侧视图
3、从正上方研究物体的正投影图 —— 俯视图
俯视图
北师大版高中数学必修2第一章.1三视 图课件 (33张 )(公 开课课 件)
圆台

俯 主视图 左视图
俯视图
同一物体放置的位置或者观察的角 度不同,所画的三视图可能不同。
北师大版高中数学必修2第一章.1三视 图课件 (33张 )(公 开课课 件)
北师大版高中数学必修2第一章.1三视 图课件 (33张 )(公 开课课 件)
主视
练习4、画出下面几何体的三视图.
主视图
左视图
俯视图
主视
挑战自我
下图是一个工业轴 解:该物体由两个长方体和一个 承架的模型,请说出它 半圆柱拼接,并挖去了三个 的生成方式,并画出它 圆柱(形成通孔)而形成.
的三视图(通孔)。
主视图
左视图
俯视
左视

北师大版高中数学必修2第一章《立体几何初步》空间直线与直线的位置关系

北师大版高中数学必修2第一章《立体几何初步》空间直线与直线的位置关系
12
知识探究( ):等角定理 知识探究(三):等角定理
思考1:在平面上, 思考1:在平面上,如果一个角的两边与 1:在平面上 另一个角的两边分别平行, 另一个角的两边分别平行,那么这两个 角的大小有什么关系? 角的大小有什么关系?
13
思考2: 如图,四棱柱ABCD--A′B′C′D′ ABCD-思考2: 如图,四棱柱ABCD--A′B′C′D′
北师大版高中数学必修2第一 北师大版高中数学必修 第一 章立体几何初步
1
法门高中姚连省制作
一、教学目标 1、知识与技能:( )了解空间中两条直线的位置关系; :(1)了解空间中两条直线的位置关系; 、知识与技能:( (2)理解异面直线的概念、画法,培养学生的空间想象能 )理解异面直线的概念、画法, ;(3)理解并掌握公理4;( ;(4)理解并掌握等角定理; 力;( )理解并掌握公理 ;( )理解并掌握等角定理; (5)异面直线所成角的定义、范围及应用。 )异面直线所成角的定义、范围及应用。 2、过程与方法:( )师生的共同讨论与讲授法相结合; :(1)师生的共同讨论与讲授法相结合; 、过程与方法:( (2)让学生在学习过程不断归纳整理所学知识。 )让学生在学习过程不断归纳整理所学知识。 3、情感与价值: 3、情感与价值:让学生感受到掌握空间两直线关系的必要 提高学生的学习兴趣。 性,提高学生的学习兴趣。 教学重点、 二、教学重点、难点 重点: 、异面直线的概念; 、公理4及等角定理 及等角定理。 重点:1、异面直线的概念;2、公理 及等角定理。 难点:异面直线所成角的计算。 难点:异面直线所成角的计算。 三、学法与教法 1、学法:学生通过阅读教材、思考与教师交流、概括,从 、学法:学生通过阅读教材、思考与教师交流、概括, 而较好地完成本节课的教学目标。 、教法: 而较好地完成本节课的教学目标。2、教法:探究交流法 四、教学过程

最新新课标人教版高中数学必修2全册导学教案学案同步练习课堂巩固【附答案](可编辑)名师优秀教案

最新新课标人教版高中数学必修2全册导学教案学案同步练习课堂巩固【附答案](可编辑)名师优秀教案

新课标人教版高中数学必修2全册导学教案学案同步练习课堂巩固【附答案](可编辑)新课标人教版高中数学必修2全册导学教案学案同步练习课堂巩固【附答案]第一章立体几何初步一、知识结构二、重点难点重点:空间直线,平面的位置关系。

柱、锥、台、球的表面积和体积的计算公式。

平行、垂直的定义,判定和性质。

难点:柱、锥、台、球的结构特征的概括。

文字语言,图形语言和符号语言的转化。

平行,垂直判定与性质定理证明与应用。

第一课时棱柱、棱锥、棱台【学习导航】知识网络学习要求1.初步理解棱柱、棱锥、棱台的概念。

掌握它们的形成特点。

2.了解棱柱、棱锥、棱台中一些常用名称的含义。

3.了解棱柱、棱锥、棱台这几种几何体简单作图方法4.了解多面体的概念和分类.【课堂互动】自学评价棱柱的定义:表示法:思考:棱柱的特点:.【答】棱锥的定义:表示法:思考:棱锥的特点:.【答】3.棱台的定义:表示法:思考:棱台的特点:.【答】4.多面体的定义:5.多面体的分类:?棱柱的分类?棱锥的分类?棱台的分类【精典范例】例1:设有三个命题: 甲:有两个面平行,其余各面都是平行四边形所围体一定是棱柱; 乙:有一个面是四边形,其余各面都三角形所围成的几何体是棱锥;丙:用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台。

以上各命题中,真命题的个数是 (A)A.0B. 1C. 2D. 3 例2:画一个四棱柱和一个三棱台。

【解】四棱柱的作法:?画上四棱柱的底面----画一个四边形;?画侧棱-----从四边形的每一个顶点画平行且相等的线段;?画下底面------顺次连结这些线段的另一个端点互助参考7页例1?画一个三棱锥,在它的一条侧棱上取一点,从这点开始,顺次在各个侧面画出与底面平行的线段,将多余的线段檫去.互助参考7页例1点评:1被遮挡的线要画成虚线2画台由锥截得思维点拔:解柱、锥、台概念性问题和画图需要:1.准确地理解柱、锥、台的定义2.灵活理解柱、锥、台的特点:例如:棱锥的特点是:?两个底面是全等的多边形;?多边形的对应边互相平行;?棱柱的侧面都是平行四边形。

第一章“立体几何初步”教材与教法分析

第一章“立体几何初步”教材与教法分析

第一章:“立体几何初步”教材与教法分析房山区教进修学校中学数学教研室张吉一、课标内容与要求1. 立体几何初步(约18课时)(1)空间几何体①利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。

②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。

③通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。

④完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。

⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

(2)点、线、面之间的位置关系①借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理。

◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

◆公理2:过不在一条直线上的三点,有且只有一个平面。

◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

◆公理4:平行于同一条直线的两条直线平行。

◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。

②以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。

通过直观感知、操作确认,归纳出以下判定定理。

◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。

◆一个平面过另一个平面的垂线,则两个平面垂直。

通过直观感知、操作确认,归纳出以下性质定理,并加以证明。

人教A版高中数学必修2《一章 空间几何体 1.2.1 中心投影与平行投影》优质课教案_17

人教A版高中数学必修2《一章 空间几何体 1.2.1 中心投影与平行投影》优质课教案_17

1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图一、教材分析在上一节认识空间几何体结构特征的基础上,本节来学习空间几何体的表示形式,以进一步提高对空间几何体结构特征的认识.主要内容是:画出空间几何体的三视图.比较准确地画出几何图形,是学好立体几何的一个前提.因此,本节内容是立体几何的基础之一,教学中应当给以充分的重视.画三视图是立体几何中的基本技能,同时,通过三视图的学习,可以丰富学生的空间想象力.“视图”是将物体按正投影法向投影面投射时所得到的投影图.光线自物体的前面向后投影所得的投影图称为“正视图”,自左向右投影所得的投影图称为“侧视图”,自上向下投影所得的投影图称为“俯视图”.用这三种视图即可刻画空间物体的几何结构,这种图称之为“三视图”.教科书从复习初中学过的正方体、长方体……的三视图出发,要求学生自己画出球、长方体的三视图;接着,通过“思考”提出了“由三视图想象几何体”的学习任务.进行几何体与其三视图之间的相互转化是高中阶段的新任务,这是提高学生空间想象力的需要,应当作为教学的一个重点.三视图的教学,主要应当通过学生自己的亲身实践,动手作图来完成.因此,教科书主要通过提出问题,引导学生自己动手作图来展示教学内容.教学中,教师可以通过提出问题,让学生在动手实践的过程中学会三视图的作法,体会三视图的作用.对于简单几何体的组合体,在作三视图之前应当提醒学生细心观察,认识了它的基本结构特征后,再动手作图.教材中的“探究”可以作为作业,让学生在课外完成后,再把自己的作品带到课堂上来展示交流.值得注意的问题是三视图的教学,主要应当通过学生自己的亲身实践、动手作图来完成.另外,教学中还可以借助于信息技术向学生多展示一些图片,让学生辨析它们是平行投影下的图形还是中心投影下的图形.二、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

人教B版高中数学必修二《第一章 立体几何初步 1.1 空间几何体 1.1.2 棱柱、棱锥和棱台的结构特征》_8

人教B版高中数学必修二《第一章 立体几何初步 1.1 空间几何体 1.1.2 棱柱、棱锥和棱台的结构特征》_8

《空间几何体的结构(一)》教学设计1、章节内容:本章学习空间几何体。

课时安排为8课时,本章重点是认识空间几何体的结构特征,画出空间几何体的三视图、直观图,培养空间想象能力、几何直观能力、运用图形语言进行交流的能力。

由空间图形说出其结构特征,由结构特征想象出空间几何体,进行空间图形与其三视图的相互转化。

1.1节安排两课时,学生通过观察图片认识空间几何体;1.2安排两课时,学生可以在平面上画出空间几何体的三视图、直观图;1.3安排两个课时,学生可以了解空间几何体的表面积和体积的计算方法,并能计算简单组合体的表面积与体积,后面一节“实习作业”,一节习题课,本章教学层层递进,学生可以深刻体会空间几何体图形来自于生活实际,又为研究实际物体图形服务。

《空间几何体的结构(一)》是人教版A版新课程高一数学必修2第一章第一节第一课时,这一章是是立体几何学习初步,教师在教学时要层层递进,逐步培养学生的空间立体感。

2、教学理念和教学思路:我觉得新课程标准重在培养学生的动手动脑能力,重在知识的形成过程,而且《空间几何体的结构》是新课程立体几何部分的起始课程,重在逐步培养学生的空间立体感,所以本节教学应加强几何直观的教学,通过实物结合,得出空间几何体的概念。

同时,通过学生激趣学习、类比学习,增强学生参与数学学习的意愿。

其次,在学生学习过程中能够经历观察、归纳、分类、抽象、概括这一过程,提高学生自主学习、分析问题和解决问题的能力,培养学生合作学习的意识.3、教材及学生学情分析:空间几何体是新课程立体几何部分的起始课程,新课标改变以往立体几何先研究点、直线、平面,再研究由它们构成的几何体,而改为从对空间几何体的整体观察入手,再研究组成空间几何体的点、直线和平面.这样设计巧妙解决了立体几何入门难的问题,强调几何直观,淡化几何论证,可以激发学生学习立体几何的兴趣.笨节为空间几何体第一课时,本节内容学生在初中数学课程“空间与图形”已有所涉及,但高中阶段要求不同,素材更为丰富,学习的深度和概括程度加大.教学时要领会新课标的意图,加强几何直观的训练,在引导学生直观感受空间几何体结构特征的同时,学会类比,学会推理,学会说理.本节在教学中学生容易出现以下问题:一是在归纳总结几何体的结构特征时,不能从现实生活空间中抽象出空间图形。

2023年高中数学必修2课程教案

2023年高中数学必修2课程教案

2023年高中数学必修2课程教案教案是实现教学目标的安排性和决策性活动。

教案以安排和布局支配的形式,对怎样才能达到教学目标进行创建性的决策,以解决怎样教的问题。

下面我给大家带来关于中学数学必修2课程教案,便利大家学习中学数学必修2课程教案1一、学问点归纳(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征1.1棱柱——有两个面相互平行,其余各面都是四边形,并且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体叫做棱柱。

1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

2.2圆锥——以直角三角形的始终角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。

3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。

平行投影分为正投影和斜投影。

2.三视图——正视图;侧视图;俯视图;是视察者从三个不同位置视察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。

4.斜二测法:在坐标系中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。

(三)空间几何体的表面积与体积1、空间几何体的表面积①棱柱、棱锥的表面积:各个面面积之和②圆柱的表面积③圆锥的表面积④圆台的表面积⑤球的表面积⑥扇形的面积公式 (其中表示弧长,表示半径)2、空间几何体的体积①柱体的体积②锥体的体积③台体的体积④球体的体积二、练习与巩固(1)空间几何体的结构特征及其三视图1.下列对棱柱说法正确的是( )A.只有两个面相互平行B.全部的棱都相等C.全部的面都是平行四边形D.两底面平行,且各侧棱也平行2.一个等腰三角形绕它的底边所在的直线旋转360。

福清一中高一数学必修2第一章第一节(3)教学设计

福清一中高一数学必修2第一章第一节(3)教学设计
必修2系列微课选题设计表
微课序号
立体几何初步(3)
总序号
必修2-003
讲稿设计
方肇飞
课件制作
方肇飞
主讲人
方肇飞
审核
李勇
微课标题
神奇的视觉效果应用----简单几何体的直观图
知识来源
学科:数学适合年级:高二
课程标准章节:必修2立体几何初步(2)直观图
北师大教材章节:必修2第一章第2节(直观图)
重点难点
掌握斜二测画法的规则,能用斜二测画法画出水平放置的平面图形和空间几何体的直观图.
好,我们是否已学会了斜二测作图的方法和步骤了呢?下面请你独立完成一道练习:怎样画底面是正三角形,且顶点在底面上的投影是底面中心的三棱锥?(请暂停微课)
第14张PPT
10秒以内
6.微小结:
空间几何体的直观图的作法:
1.斜二测画法:画多边形.
2.数学软件:画圆形.
空间几何体的直观图的特点:
1.保持平行关系和竖直关系不变.
教学类型
知识讲授型
设计思路
1.以实例导学,激发学生提出问题、解决问题的兴趣.2.回归起点,从熟悉的知识引出斜二测画法的背景.3.提出问题,而不是直接讲授,给学生更多思考的时间,深刻体会斜二测画法的原则,再立即应用.4.让学生思考从平面到立体的作图规则,得出结论.5.通过小结、课堂训练和诊断来巩固所学知识技能,使学生获得学习成功的愉悦.
第5-9张PPT
320秒以内
4.类比推理,不断探究:
让我们再来尝试空间几何体的直观图的画法。思考:对于柱、锥、台等几何体的直观图,可用斜二测画法或椭圆模板画出一个底面,我们能否再用一个坐标确定底面外的点的位置?(提出问题,让学生进行思维的升华,引出例题)

面面垂直关系的判定2

面面垂直关系的判定2

■肖擀林中学北师大版高一数学必修2《立体几何初步》教学案第一章第六课《垂直关系》第二课时《面面垂直的判定》主备课人:闫瑞审稿人:张娟授课人:___________授课时间:_____ 学生编号:_______ 姓名: _____ 第学习小组(一)学习目标1明白“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;2、知道两个平面垂直的判定定理,能利用此定理判断平面和平面的垂直关系。

(二)重点难点面面垂直的判定定理及其应用(三)学习过程1、方向探究将书打开直立在水平桌面上,书脊和书的各页面与桌面是什么关系?2、预习探究(1)两个平面有哪些位置关系?(借助长方体模型思考)(2)阅读课本37页“问题提出”,解释下列概念:半平面、二面角、二面角的平面角、直二面角。

3、合作探究(1)如何定义两平面垂直?(面面垂直的定义)(2)观察教室内现有物体,找出两个平面互相垂直的例子(3)如何判定两个平面互相垂直?(借助长方体模型思考)(4)面面垂直的判定定理是什么?如何用符号语言和图形语言来表示?4、运用探究(1)已知直线PA 垂直于圆0所在的平面,A 为垂足,AB 为圆0的直径,C 是圆周上异于A 、B 的一点。

探究1、四面体P-ABC 的四个面的形状是怎样的? 探究2、有哪些直线和平面垂直?探究3、有哪些平面相互垂直?求证:平面PAC_平面PBC(2)课本39页练习2: 2、3、45、课外延伸[2013.课标全国U ]已知m,n 为异面直线,m _平面:,n _平面一:。

直线丨满 足丨—m,l — n,l 二:,丨二,贝q ( )A.〉// B 且丨 〃aB. a _ 1且丨_ 1C. a 与B 相交,且交线垂直于1D. a 与B 相交,且交线平行于1 &课外作业布置P42 习题1-6A 组6 I 「' jlin High School北师大版高一数学必修2《立体几何初步》 教学案pE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:空间几何体1.1.1柱、锥、台、球的结构特征(一)一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学过程:一、创设情景,揭示课题1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态?2. 提问:小学与初中在平面上研究过哪些几何图形?在空间围上研究过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.二、讲授新课:1. 教学棱柱、棱锥的结构特征:①提问:举例生活中有哪些实例给我们以两个面平行的形象?②讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?③定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.→列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.④分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.表示:棱柱ABCDE-A’B’C’D’E’⑤讨论:埃及金字塔具有什么几何特征?⑥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高. →讨论:棱锥如何分类及表示?⑦讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.2. 教学圆柱、圆锥的结构特征:①讨论:圆柱、圆锥如何形成?②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.→列举生活中的棱柱实例→结合图形认识:底面、轴、侧面、母线、高. →表示方法③讨论:棱柱与圆柱、棱柱与棱锥的共同特征?→柱体、锥体.④观察书P2若干图形,找出相应几何体;举例:生活中的柱体、锥体.3.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)2.棱柱的何两个平面都可以作为棱柱的底面吗?3.课本P8,习题1.1 A组第1题。

4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?3. 小结:几何图形;相关概念;相关性质;生活实例四、巩固深化练习:课本P7 练习1、2(1)(2)课本P8 习题1.1 第2、3、4题五、归纳整理由学生整理学习了哪些容六、布置作业课本P8 练习题1.1 B组第1题课外练习课本P8 习题1.1 B组第2题七、板书设计1.1.1柱、锥、台、球的结构特征(一)棱柱的结构特征例1棱锥的结构特征练习棱台的结构特征小结八、课后反思1.1.1柱、锥、台、球的结构特征(二)一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点:让学生感受大量空间实物及模型,概括出台体、球体的结构特征.教学难点:柱、锥、台、球的结构特征的概括.三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学过程:(一)复习准备:1. 结合棱柱、棱锥、圆柱、圆锥的几何图形,说出:定义、分类、表示、2. 结合棱柱、棱锥、圆柱、圆锥的几何图形,说出各几何体的一些几何性质?(二)讲授新课:1. 教学棱台与圆台的结构特征:①讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?②定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.→列举生活中的实例结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.讨论:棱台的分类及表示?圆台的表示?圆台可如何旋转而得?③讨论:棱台、圆台分别具有一些什么几何性质?棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.④讨论:棱、圆与柱、锥、台的组合得到6个几何体. 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系?(以台体的上底面变化为线索)2.教学球体的结构特征:①定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体.→列举生活中的实例结合图形认识:球心、半径、直径.→球的表示.②讨论:球有一些什么几何性质?③讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)3. 教学简单组合体的结构特征:①讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢?②定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体.→列举生活中的实例4. 练习:圆锥底面半径为1cm cm,其中有一个接正方体,求这个接正方体的棱长. (补充平行线分线段成比例定理)三、巩固练习:1. 练习:书P8 A组 1~4题.2. 已知长方体的长、宽、高之比为4∶3∶12,对角线长为26cm, 则长、宽、高分别为多少?3. 棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高4. 若棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高.四、课堂小结学习了柱、锥、台、球的定义、表示;性质;分类.五、作业布置课本P9习题2、3补充:观察身边有哪些事物具有柱、台、锥、球的结构特征?六、板书设计1.1.1柱、锥、台、球的结构特征(一)棱柱的结构特征例1棱锥的结构特征练习棱台的结构特征小结七、课后反思1.2.1 空间几何体的三视图(1课时)一、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观(1)提高学生空间想象力(2)体会三视图的作用二、教学重点、难点重点:画出简单组合体的三视图难点:识别三视图所表示的空间几何体三、学法与教学用具1.学法:观察、动手实践、讨论、类比2.教学用具:实物模型、三角板四、教学思路(一)创设情景,揭开课题1. 引入:从不同角度看庐山,有古诗:“横看成岭侧成峰,远近高低各不同。

不识庐山真面目,只缘身在此山中。

”对于我们所学几何体,常用三视图和直观图来画在纸上. “横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),什么叫三视图?你能画出空间几何体的三视图吗?三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;2. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?我们这节课来进一步学习空间几何体特别是简易组合体的三视图。

二、讲授新课:1. 教学中心投影与平行投影:①投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。

人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。

②中心投影:光由一点向外散射形成的投影。

其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形.③平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影.→讨论:点、线、三角形在平行投影后的结果.2. 教学柱、锥、台、球的三视图:①定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图②讨论:三视图与平面图形的关系?→画出长方体的三视图,并讨论所反应的长、宽、高③结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果. →正视图、侧视图、俯视图.③试画出:棱柱、棱锥、棱台、圆台的三视图.④讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

⑤讨论:根据以上的三视图,如何逆向得到几何体的形状.(试变化以上的三视图,说出相应几何体的摆放)3. 教学简单组合体的三视图:①画出教材P16 图(2)、(3)、(4)的三视图.②从教材P16思考中三视图,说出几何体.4.三视图与几何体之间的相互转化。

(1)投影出示图片(课本P10,图1.2-3)请同学们思考图中的三视图表示的几何体是什么?(2)你能画出圆台的三视图吗?(3)三视图对于认识空间几何体有何作用?你有何体会?教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

5.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

相关文档
最新文档