云南省高中数学学业水平测试题分类汇编汇总
云南省普通高中学业水平考试数学试卷精编(2011-2018)
云南省历年会考真题(2011—2018)目录云南省2011年6月普通高中学业水平考试 (1)云南省2012年1月普通高中学业水平考试 (5)云南省2012年1月普通高中学业水平考试 (9)云南省2012年7月普通高中学业水平考试 (11)云南省2013年1月普通高中学业水平考试 (15)云南省2013年1月普通高中学业水平考试 (19)云南省2013年7月普通高中学业水平考试 (21)云南省2014年1月普通高中学业水平考试 (27)云南省2014年1月普通高中学业水平考试 (31)云南省2014年7月普通高中学业水平考试 (33)云南省2014年7月普通高中学业水平考试 (36)云南省2015年1月普通高中学业水平考试 (36)云南省2015年7月普通高中学业水平考试 (40)云南省2016年1月普通高中学业水平考试 (46)云南省2016年7月普通高中学业水平考试 (50)云南省2017年1月普通高中学业水平考试 (55)云南省2017年7月普通高中学业水平考试 (59)云南省2018年1月普通高中学业水平考试 (64)正视侧视俯视【考试时间:2011年7月1日上午8:30 — 10:10,共100分钟】云南省2011年6月普通高中学业水平考试数学试卷【考生注意】考试用时100分钟,必须在答题卡上指定位置按规定要求作答,答在试卷上一律无效。
参考公式: 如果事件A 、B 互斥,那么()()()P A B P A P B +=+. 球的表面积公式:24S R π=,其中R 表示球的半径.柱体的体积公式:V Sh =,其中是柱体的底面积,h 是柱体的高.锥体的体积公式:13V Sh =,其中是锥体的底面积,h 是锥体的高. 选择题(共54分)一、选择题:本大题共18个小题,每小题3分,共54分。
在每小题给出的四个选项中,只有一项符合题目要求,请在答题卡相应的位置上填涂。
1. 已知集合{}{}1,2,3,4,1,3,5,M N M N ==集合则等于IA. {2}B. {2,3}C. {1,,3 }D. {1,2,3,4,5}2. 如图所示,一个空间几何体的正视图和侧视图都是边长为2的等边三角形,俯视图是一个圆,那么这个几何体的体积..为A.3. 在平行四边形ABCD 中, AB AD +等于uu u ruuu rA. AC uuu rB. BD uuu rC. DB uuu rD. AC uuu r4. 已知向量 a b 、r r,=2, (3,4)a b =rr, a r与b r的夹角等于30︒,则a b ⋅r r等于 A. 5C.D. 5. 为了得到函数cos 3x y =的图象,只需把函数cos y x =图象上所有的点的A. 横坐标伸长到原来的3倍,纵坐标不变B. 横坐标缩小到原来的13倍,纵坐标不变C. 纵坐标伸长到原来的3倍,横坐标不变D. 纵坐标缩小到原来的13倍,横坐标不变6. 已知一个算法,其流程图如右图所示,则输出结果是 A. 3 B. 9C. 27D. 817. 两条直线210x y ++=与210x y -+=的位置关系是 A. 平行 B. 垂直C. 相交且不垂直D. 重合8. 若AD 为∆ABC 的中线,现有质地均匀的粒子散落在∆ABC 内,则粒子落在△ABD 内的概率等于A. 45B. 34C. 12D. 239. 计算sin 240︒的值为A. B. 12-C. 1210. 在△ABC 中,A B C ∠∠∠、、所对的边分别是2、3、4,则cos B ∠的值为A. 78B.1116 C. 14D. 14-11. 同时掷两个骰子,则向上的点数之积是3的概率是A.136B.121C.221D.11812.已知直线的点斜式方程是21)y x -=+,那么此直线的倾斜角为A.6π B.3π C.23π D.56π 13. 函数()32f x x =-的零点所在的区间是A. ()2,0-B. (0,1)C. (1,2)D. (2,3)14. 已知实数x 、y 满足0044x y x y ≥⎧⎪≥⎨⎪+≥⎩,则z x y =+的最小值等于A. 0B. 1C. 4D. 5(第6题)15. 已知函数()f x 是奇函数,且在区间[]1,2上单调递减,则()[]2,1f x --在区间上是 A. 单调递减函数,且有最小值()2f - B. 单调递减函数,且有最大值()2f -C. 单调递增函数,且有最小值()2fD. 单调递增函数,且有最大值()2f16. 已知等差数列{}n a 中,242,6a a ==,则前4项的和4S 等于 A. 8 B. 10 C. 12 D. 1417. 当输入a 的值为2,b 的值为3-时,右边的程序运行的结果是 A .-2 B .-1 C .1 D .218. 若一个圆的圆心在直线2y x =上,在y 轴上截得的弦的长度等于2,且与直线0x y -相切,则这个圆的方程可能..是 A. 2220x y x y +--= B. 22240x y x y +++=C. 2220x y +-=D. 2210x y +-=非选择题(共46分)二、 填空题:本大题共4个小题,每小题4分,共16分。
云南省普通高中学业水平考试数学参考试卷
云南省普通高中学业水平考试数学参考试卷一、选择题(本大题共22小题,每小题3分,共66分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应的位置上填涂).1. 设集合}2,1,0{=M ,}1,0{=N ,则=⋂N M ( )}2.{A }1,0.{B }2,0.{C }2,1,0.{D2已知i 为虚数单位,设z=2-i,则复数z 在复平面内对应的点位于( )A. 第一象限B.第二象限C.第三象限D.第四象限3.下列各式正确的是( )632.πππ=⋅A 332.e e B = 15lg 2lg .=+C3ln 2ln 6ln .=D 4. 函数)62sin(2π-=x y 的最小正周期是( ) π4.A π2.B π.C 2.πD5.下列函数中,在),0(+∞上是减函数的是( )x y A 1.= 1.2+=x y B x y C 2.= ⎩⎨⎧≤-=>==)0()0(.x x y x x y y D6.已知)(x f 在(2 , 5)上是减函数,)5,2(,21∈∀x x ,若21x x <,则下列正确的是( ) )()(.21x f x f A <)()(.21x f x f B = )()(.21x f x f C > D. 以上都可能 7. 设,31cos sin =+αα则α2sin =( ) 91.-A 94.-B 98.-C 1.-D8. 已知i 是虚数单位,若复数z=(i -2)(2i +1),则=z ( )5.A 3.B 4.C5.D 9. 已知x a )21(=,x b 21log =,2x c =,当)21,0(∈x 时,下列不等式正确的是( )c b a A <<. a c b B <<. c a b C <<. b a c D <<.10. 在ABC ∆中,内角C B A ,,的对边分别为c b a ,,.若8,3,7===c b a ,则C 的余弦值等于( )81.A 71.B 81.-C 71.-D 11. 下列函数,图像关于原点对称的是( )x x f A lg )(.= x x f B 3)(.=)1lg()(.2x x x f C ++= 2)(.x x f D =12. 已知向量),,3(),1,2(λ==b a 且b a ⊥,则λ等于( )A. -6B.623.C 23.-C 13. 不等式x x32≥的解集是( ) []3,0.A ),3[]0,.(+∞-∞ B )3,0.(C ),3()0,.(+∞-∞ D14. 在正方体1111D C B A ABCD -中,点P 是线段1BC 上任意一点,则( ).DP AD A ⊥1.C B AP B 1.⊥DP AC C ⊥1. C B P A D 11.⊥ 15. 已知),2(ππα∈,2tan -=α,则αcos =( ) 53.-A 52.-B 55.-C 552.-D16. 化简MN PN PM +-所得结果是( )MP A . NP B . 0.C MN D .17. =-+︒︒75tan 175tan 1( )33.A 3.B 33.-C 3.-D18. 某公司有男、女职工1900人,有关部门按男、女比例用分层随机抽样的方法,从该公司全体职工中抽取n 人进行调查研究,如果抽到女职工27人,那么n 等于( )57.A 64.B 67.C77.D 19. 已知n m b x a x x f ,,6))(()(---=是方程0)(=x f 的两根,若n m b a <<,,则( ) n b a m A <<<. b n m a B <<<. n b m a C <<<. b n a m D <<<.20. 在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )43.A 85.B 21.C 41.D 21. 已知1052==b a ,则=+b a 11( )A.1B.2 21.C 51.D22. 已知 .0,0>>y x 若 1=+y x ,则 xy y x 2+的最小值为( ) 22.A 322.+B 6.C 10.D二、填空题:本大题共4小题,每小题4分,共16分.请把答案写在答题卡的位置上.23. 已知P(-3,4)是角α的终边上的一点,则角α的正弦值等于 .24. 已知),3,2(),1,2(-=-=CB AB = .25. 经过随机抽样获得100辆汽车经过某一雷达测速去的时速(单位:km/h ),并绘制成如图所示的频率分布直方图,其中这100辆汽车时速的范围是],80,30[数据分组为)40,30[,)50,40[,)60,50[,)70,60[,]80,70[.设时速达到或超过60km/h 的汽车有x 辆,则x 等于 .26. 已知A,B 是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为 .三、解答题:(本大题共3小题,共18分,解答应写出文字说明,证明过程或演算步骤).27. (本小题5分)一台设备由两大部件构成,在设备运转中,一天之内各部件需要调整的概率分别为0.1,0.2.假设各部件的状态相互独立.(1)求一天之内恰有一个部件需要调整的概率;(2)求一天之内至少有一个部件需要调整的概率.28. (本小题满分6分)如图,在四棱锥ABCD S -中,四边形ABCD 为矩形,AD SD ⊥,AB SD ⊥,AD=2,AB=4.32=SD .(1)证明:平面SDB平面ABCD; (2)求SA与平面SDB所成角的正弦值.。
云南省2023-2024学年高二下学期期末普通高中学业水平考试数学试卷
云南省2023-2024学年高二下学期期末普通高中学业水平考试数学试卷一、单选题1.已知集合S ={1,2}集合T ={1,2,3}则S T I 等于( ) A .{}1B .{}2C .{}1,2D .{}1,2,32.已知i 为虚数单位,设复数121i,3i z z =-=+,则12z z +=( ) A .1B .4C .iD .4i3.已知,,a b c 都是实数.若a b >,则( ) A .c c a b > B .ac bc > C .a b c c> D .a c b c ->-4.函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的最小正周期是( )A .4πB .2πC .πD .π25.已知函数()f x x =,则()2f x =( ) A .2xB .xC .2D .16.函数2x y =的最小值为( ) A .0B .1C .2D .37.下列函数中,在()0,∞+上单调递增的是( ) A .2y x =-B .1y x=C .3x y =D .1,11,1x x y x x -≥⎧=⎨-<⎩8.不等式()60x x -…的解集为( )A .{0}x x <∣B .{6}x x >∣C .{0xx ∣…或6}x … D .{}06xx ∣剟 9.PM MN +=u u u u r u u u u r( )A .0rB .NP u u u rC .NM u u u u rD .PN u u u r10.在ABC V 中,内角,,A B C 的对边分别是,,a b c .若2,3,4a b c ===,则cos B =( )A .1116B .712 C .25-D .59-11.已知i 为虚数单位,则复数26i z =--在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限12.在ABC V 中,内角,,A B C 的对边分别是,,a b c ,若111,sin ,sin 63a A B ===,则b =( )A .6B .4C .3D .213.已知平面向量()()1,2,2,a b x ==r r .若a b r r ∥,则实数x 的值是( )A .4B .1C .1-D .4-14.下列函数中,是偶函数的为( )A .()ln f x x =B .()3f x x =C .()sin f x x =D .()e e x xf x -=+15.已知sin 5cos αα=,则tan α=( )A .3B .5C .7D .916.cos cos sin sin αβαβ+=( )A .()cos αβ-B .()cos αβ+C .()sin αβ-D .()sin αβ+17.如图,在正方体1111ABCD A B C D -中,异面直线1BC 与11B D 所成的角等于( )A .π6B .π4C .π3D .π218.设1cos sin 2αα-=,则sin2α=( )A .38B .34C .12D .1819.某单位有职工500人,其中女职工300人,男职工200人.现按男女比例,采用分层随机抽样的方法,从该单位职工中抽取25人进行相关调查研究,则应抽取该单位女职工( )A .10人B .12人C .13人D .15人20.已知0,0a b >>.若1ab =,则lg lg a b +=( )A .0B .1C .2D .321.某同学通过摸球的方式选择参加学校组织的社会实践活动.摸球规则如下:在一个不透明的袋子中有10个大小质地完全相同的球,其中2个红球,8个黄球.该同学从这个袋子中随机摸出1个球.若摸出的球是红球,则参加社区植树;若摸出的球是黄球,则参加社区卫生大扫除.该同学参加社区植树的概率为( )A .15B .14C .13D .1222.为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度二、填空题23.已知()1,2P 是角α终边上的一点,则角α的正切值是.24.一商场门口有个球形装饰品.若该球的半径为1米,则该球的表面积为平方米. 25.已知0a >,则9a a+的最小值是. 26.某校为了解今年春季学期开学第一周,高二年级学生参加学校社团活动的时长,有关部门随机抽查了该校高二年级100名同学,统计他们今年春季学期开学第一周参加学校社团活动的时长,并绘制成如图所示的频率分布直方图.其中这100名同学今年春季学期开学第一周参加学校社团活动的时长(单位:小时)范围是[]2,12,数据分组为[)[)[)[)[]2,4,4,6,6,8,8,10,10,12.这100名同学中,今年春季学期开学第一周参加学校社团活动的时长不少于6小时的人数为人.三、解答题27.甲、乙两名同学进行投篮练习,已知甲命中的概率为0.7,乙命中的概率为0.8,且甲、乙两人投篮的结果互不影响,相互独立.甲、乙两人各投篮一次,求下列事件的概率: (1)甲、乙两人都命中; (2)甲、乙两人至少有一人命中.28.如图,在四棱锥P ABCD -中,四边形ABCD 是矩形,,PD DA PD AB ⊥⊥.(1)证明:PD BD ⊥;(2)若π2,3AD DAP ∠==,三棱锥D PBC -PA 与平面PBD 所成角的正弦值.29.已知常数,,a b c 满足a b c >>,且()20,a b c f x ax bx c ++==++.(1)证明:0a >且ca是()f x 的一个零点;(2)若(),m ∞∞∃∈-+,使得()f m a =-,记()1136c T f f m a ⎛⎫=+⋅+ ⎪⎝⎭,下列结论:0,0,0T T T <=>,你认为哪个正确?请说明理由.。
云南省高一上学期期末学业水平考试数学试题(解析版)
一、单选题1.已知集合,,则( ) {}2,3,4A ={}1,3,5B =A B = A . B .C .D .∅{}3{2,4}{1,2,3,4,5}【答案】B【分析】利用交集的定义直接求解即可.【详解】∵集合,,∴. {}2,3,4A ={}1,3,5B ={}3A B ⋂=故选:B .2.设,则“”是“”的( ) x ∈R 1x >2x x >A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】解不等式得的范围,依据小范围推出大范围的原则判定充分必要条件. 2x x >x 【详解】由,解得或,2x x >0x <1x >故由能够推出;由不能够推出, 1x >2x x >2x x >1x >故“”是“”的充分不必要条件, 1x >2x x >故选:A .3.已知则( ) ()()πcos ,2422,2x x f x f x x ⎧≤⎪=⎨⎪->⎩()3f =A .BCD .【答案】C【分析】根据自变量应用分段函数,再由特殊角求解函数值即可. 【详解】 ()()π3212cos 24f f ====故选:C.4.设,,则a ,b ,c 的大小关系为( ) a = 1.12b =2log 3c =A . B . b a c >>c b a >>C . D .b c a >>a b c >>【答案】A【分析】根据指数对数函数单调性计算,,,得到答案. 2a =2b >2c <【详解】,,,故.2a == 1.122b =>22log 3log 42c =<=b a c >>故选:A5.已知集合,集合,下列图象能建立从集合A 到集合B 的函数关{}04A x x =≤≤{}02B x x =≤≤系的是( )A .B .C .D .【答案】D【分析】存在点使一个与两个对应,A 错误;当时,没有与之对应的,B 错误;x y 24x <≤y y 的范围超出了集合的范围,C 错误;选项D 满足函数关系的条件,正确,得到答案. B 【详解】对选项A :存在点使一个与两个对应,不符合,排除; x y 对选项B :当时,没有与之对应的,不符合,排除; 24x <≤y 对选项C :的范围超出了集合的范围,不符合,排除; y B 对选项D :满足函数关系的条件,正确. 故选:D6.在中,已知( )ABC A πsin 4A ⎛⎫-= ⎪⎝⎭πcos 4A ⎛⎫+= ⎪⎝⎭A B . C .D 【答案】A 【分析】由结合诱导公式求解即可. 2πππ=44A A ⎛⎫++- ⎪⎝⎭【详解】. ππππcos cos sin 4244A A A ⎡⎤⎛⎫⎛⎫⎛⎫+=+-=--=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选:A.7.已知函数的图象与函数的图象关于直线对称,则函数的单()y f x =e x y =y x =()243y f x x =-+调递增区间为( )A .B .C .D .(),1-∞(),2-∞()2,+∞()3,+∞【答案】D【分析】由题意,函数与互为反函数,求得,然后根据复合函数单调性的性质()y f x =e x y =()f x 得出答案.【详解】由题意,函数与互为反函数,则,()y f x =e x y =()ln f x x =所以,()()2243ln 43y f x x x x =-+=-+由,解得或,即函数的定义域为或, 2430x x -+>1x <3x >{|1x x <3}x >令,243u x x =-+当时,单调递减;当时,单调递增, 1x <u 3x >u 又在上单调递增,ln y u =(0,)+∞所以的单调递增区间为.()243y f x x =-+()3,+∞故选:D.8.数学可以刻画现实世界中的和谐美,人体结构、建筑物、国旗、绘画、优选法等美的共性与黄金分割相关,古希腊的毕达哥拉斯学派发现了黄金分割常数约0.618,该值也可用三角函数2sin18m =︒( )=A .2 B .C .D .122-12-【答案】C【分析】根据同角三角函数关系和诱导公式,二倍角公式化简求值即可.sin2162sin182cos18==︒⨯︒︒. ()2sin216sin 12sin362sin362sin36380sin 636︒︒︒===︒+-︒︒=-︒故选:C.二、多选题9.下列说法正确的是( )A .若点在第三象限,则α是第二象限角()tan ,cos P ααB .角θ的终边与圆心在原点、半径为r 的圆的交点为()cos ,sin r r θθC (其中r 为半径)2π3r D .钟表时针走过2小时,则时针转过的角的弧度数为3π【答案】ABC【分析】由三角函数在各象限的符号可判断A ;由三角函数的定义可判断B ;由弧长公式可判断C ;由任意角的概念可判断D.【详解】若点在第三象限,则,则α是第二象限角,故A 正确; ()tan ,cos P ααtan 0,cos 0αα<<设角θ的终边与圆心在原点、半径为r 的圆的交点坐标为,由三角函数的定义可知,(),x y ,则,即交点坐标为,故B 正确; cos ,sin y xr rθθ==cos ,sin x r y r θθ==()cos ,sin r r θθ,则弧长为,故C 正确; 2π32π3r 钟表时针走过2小时,则时针转过的角的弧度数为,故D 错误.π3-故选:ABC.10.已知a ,,且,则下列不等式成立的是( ) R b ∈0ab >A .B .C .D .2a b+≥222a b ab +≤2b aa b+≥22ab a ba b +≤+【答案】BC【分析】根据不等式的性质结合基本不等式判断各选项即可确定正误.【详解】对于A ,因为,故当时,不等式不成立,故A 不正确; 0ab >0,0a b <<2a b+≥对于B ,因为,所以恒成立,当且仅当时,等号成立,故B 正确;0ab >222a b ab +≤a b =对于C ,因为,所以,则,当且仅当时,等号成立,故0ab >0,0a b b a >>2b a a b +≥=a b =C 正确;对于D ,因为,所以,当时满足,但,此时222a b ab +≥()24a b ab +≥0,0a b <<0ab >0a b +<,故D 不正确. 22a b aba b+≤+故选:BC.11.将函数的图象向左平移个单位长度,得函数的图())2sin sin 1f x xx x ωωω=+-π4ω()g x 象,若在区间内恰有两个最值(即最大值和最小值),则ω可能的取值为( )()g x π0,2⎛⎫ ⎪⎝⎭A .1B .C .D .7653136【答案】CD【分析】化简,然后根据图像变换得出,根据()π2sin 26f x x ω⎛⎫=- ⎪⎝⎭()π2sin 23x g x ω⎛⎫+ ⎪=⎝⎭得出,最后根据正弦函数性质得出,通过计算得π0,2x ⎛⎫∈ ⎪⎝⎭πππ2,π333x ωω⎛⎫+∈+ ⎪⎝⎭3ππ22π5π3ω<+≤出范围,判断即可. ω【详解】())2sin sin 12cos 2f xx x xx x ωωωωω-=+-=, 1π22cos 22sin 226x x x ωωω⎫⎛⎫=-=-⎪ ⎪⎪⎝⎭⎭向左平移个单位长度,得到函数, π4ω()πππ2sin 22sin 2463x x g x ωωω⎡⎤⎛⎫⎛⎫+-=+ ⎪ ⎪⎢⎥⎝=⎭⎝⎭⎣⎦因为,所以,π0,2x ⎛⎫∈ ⎪⎝⎭πππ2,π333x ωω⎛⎫+∈+ ⎪⎝⎭因为在内恰有两个最值,()g x π0,2⎛⎫⎪⎝⎭所以,解得,故C 、D 满足. 3ππ22π5π3ω<+≤71366ω<≤故选:CD.12.德国著名数学家狄利克雷第一个引入了现代函数的概念,是解析数论的创始人,狄利克雷函数就以其名命名,其解析式为,狄利克雷函数的发现改变了数学家们对“函数是()1,0,x D x x ⎧=⎨⎩是有理数是无理数连续的”的认识,也使数学家们更加认可函数的对应说定义,关于函数有以下四个命题,其中()D x 真命题是( ) A .函数是奇函数 B ., ()D x ,R ∃∈x y ()()()D xy D x D y =+C .函数是偶函数 D .,,()()D D x R x ∀∈Q a ∈()()D a x D a x +=-【答案】BCD【分析】选项A :若是有理数,可得,可知不是奇函数;选项B :当x ()()2D x D x +-=()D xC :分两种情况讨论得,由偶函数的定义判x y ==R,(())1x D D x ∀∈=断;选项D :分两种情况讨论,若是有理数,得;若是无理数,得x ()()1D a x D a x +=-=x .()()0D a x D a x +=-=【详解】若是有理数,则也是有理数,可得,则不是奇函数,故x x -()()112D x D x +-=+=()D x A 错误;当,,,此x y =()0D xy D D ===()0D x D ==()0D D y ==时,故B 正确;()()()D xy D x D y =+若是有理数,则;若是无理数,,则x ()1,(())(1)1D x D D x D ===x ()0,(())(0)1D x D D x D ===,又,则,因此,所以函数是R,(())1x D D x ∀∈=R x -∈(())1D D x -=(())(())D D x D D x -=()()D D x 偶函数,故C 正确;若是有理数,,则均是有理数,故;若是无理数,x Q a ∈,a x a x +-()()1D a x D a x +=-=x Q a ∈,则均是无理数,故,所以,,,a x a x +-()()0D a x D a x +=-=R x ∀∈Q a ∈()()D a x D a x +=-,故D 正确. 故选:BCD.三、填空题13.定义:角与都是任意角,若满足,则称α与β“广义互余”,已知,若αβπ2αβ+=1sin 2θ=-角与角 “广义互余”,则角___________.(写出满足条件的一个角的值即可) ϕθϕ=ϕ【答案】(答案不唯一) 2π3【分析】根据“广义互余”定义及特殊角三角函数值,求解即可. 【详解】因为,所以或, 1sin 2θ=-π2π6k θ=-+7π2π,Z 6k k θ=+∈根据“广义互余”定义, , π2θϕ+= 所以或, 2π2π3k ϕ=-()2π2πZ 3k k ϕ=--∈可取等,答案不唯一. 2π3ϕ=故答案为:. 2π314.已知是定义在上的奇函数,当时,,则___________.()f x R 0x >()12f x x -=()4f -=【答案】##-0.512-【分析】根据奇函数的定义,结合已知函数解析式求解即可. 【详解】因为为定义在上的奇函数, ()f x R 所以.()()1214442f f --=-=-=-故答案为:.12-15.小明在学习在二分法后,利用二分法研究方程在(1,3)上的近似解,经过两次3410x x -+=二分后,可确定近似解所在的区间为___________. 0x 【答案】3,22⎛⎫⎪⎝⎭【分析】设,计算,,,,得到答案.()341f x x x =-+()10f <()30f >()20f >302f ⎛⎫< ⎪⎝⎭【详解】设,则,,()341f x x x =-+()114120f =-+=-<()333431160f =-⨯+=>,;,, 1322+=()288110f =-+=>12322+=32713610288f ⎛⎫=-+=-< ⎪⎝⎭故近似解所在的区间为.0x 3,22⎛⎫⎪⎝⎭故答案为:3,22⎛⎫⎪⎝⎭四、双空题 16.已知是定义在区间的函数,则函数的零点是___________;若方()1610f x x x=+-()0,∞+()f x 程有四个不相等的实数根,,,,则___________. ()()0f x m m =>1x 2x 3x 4x 1234x x x x +++=【答案】 2,8 20 【分析】解方程,即可求得函数的零点;将方程四16()100f x x x=+-=()y f x =()()0f x m m =>个不相等的实数根问题转化为利用二次方程根与系数的关系,可得结论; 【详解】由题意可知,令,即,解得或, 16()100f x x x=+-=210160x x -+=2x =8x =故函数在内的零点为和;()0,∞+28方程有四个不相等的实数根,, ()()0f x m m =>123,,x x x 4x 即为与的四个交点的横坐标, ()()0,,y f x x ∞=∈+y m =方程即,,即, ()()0f x m m =>|0|161x m x+-=()0,x ∈+∞2|1016|x x mx -+=当即时,方程可转化为即; ()0f x ≥210160x x -+≥21016x x mx -+=2(10)160x m x -++=当时,方程可转化为即; 210160x x -+<21016x x mx -+=-2(10)160x m x --+=故要有四个实数根,则两种情况都有两个不同的实数根, 不妨设为的两根,则,14,x x 2(10)160x m x -++=1410x x m +=+则为的两根,则, 23,x x 2(10)160x m x --+=2310x x m +=-则; 1234101020x x x x m m +++=-++=故答案为: 2,8; 20.五、解答题17.从①,②,③,这三个条件中任选101x A xx ⎧⎫-=<⎨⎬+⎩⎭11222xA x ⎧⎫⎪⎪⎛⎫=<<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭{}2log (1)1A x x =+<一个,补充在下面的问题横线处,并进行解答.问题:已知集合___________,集合. {}221B x a x a =-≤≤+(1)当时,求,;12a =-A B ⋃()R A B ð(2)若,求实数a 的取值范围.A B B ⋃=【答案】(1),.512A B x x ⎧⎫⋃=-≤<⎨⎬⎩⎭(){}R 01A B x x ⋂=<<ð(2) []0,1【分析】(1)若选①:先根据分式不等式的解法求解出集合,代入的值求解出集合,然后根A a B 据集合的运算求解;若选②:先根据指数函数的单调性求解出集合,代入的值求解出集合,A a B 然后根据集合的运算求解;若选③:先根据对数函数的单调性求解出集合,代入的值求解出集A a 合,然后根据集合的运算求解;B (2)根据得到,由此列出关于的不等式组,求解出的取值范围.A B B ⋃=A B ⊆a a 【详解】(1)若选①:因为, ()(){}{}10110111x A xx x x x x x ⎧⎫-=<=+-<=-<<⎨⎬+⎩⎭当时,,12a =-502B x x ⎧⎫=-≤≤⎨⎬⎩⎭因为,所以,{}11A x x =-<<512A B x x ⎧⎫⋃=-≤<⎨⎬⎩⎭又因为或,所以.R {B x x =<ð52-0}x >(){}R 01A B x x ⋂=<<ð若选②:,{}11111121122222x x A x x x x -⎧⎫⎧⎫⎪⎪⎪⎪⎛⎫⎛⎫⎛⎫=<<=<<=-<<⎨⎬⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎪⎪⎪⎩⎭⎩⎭当时,,12a =-502B x x ⎧⎫=-≤≤⎨⎬⎩⎭因为,所以,{}11A x x =-<<512A B x x ⎧⎫⋃=-≤<⎨⎬⎩⎭又因为或,所以.R {B x x =<ð52-0}x >(){}R 01A B x x ⋂=<<ð若选③:,{}{}{}{}222log (1)1log (1)log 201211A x x x x x x x x =+<=+<=<+<=-<<当时,,12a =-502B x x ⎧⎫=-≤≤⎨⎬⎩⎭因为,所以,{}11A x x =-<<512A B x x ⎧⎫⋃=-≤<⎨⎬⎩⎭又因为或,所以.R {B x x =<ð52-0}x >(){}R 01A B x x ⋂=<<ð(2)由(1)可知,, {}11A x x =-<<因为,所以,故,A B B ⋃=A B ⊆B ≠∅所以,解得:,21211221a a a a -≤-⎧⎪+≥⎨⎪-≤+⎩01a ≤≤故实数的取值范围为.a []0,118.人脸识别技术在各行各业的应用改变着人类的生活,所谓人脸识别,就是利用计算机分析人脸视频或者图像,并从中提取出有效的识别信息,最终判别对象的身份,在人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用测量距离的方式有曼哈顿距离和余弦距离.若二维空间有两个点,,则曼哈顿距离为:,余弦相似度为:()11,A x y ()22,B x y ()1212,d A B xx y y =-+-()cos ,A B =()1cos ,A B -(1)若,,求A ,B 之间的曼哈顿距离和余弦距离;()1,2A -34,55B ⎛⎫⎪⎝⎭(),d A B (2)已知,,,若,,()sin ,cos M αα()sin ,cos N ββ()sin ,cos Q ββ-()1cos ,5M N =()2cos ,5M Q =求的值tan tan αβ【答案】(1),1451(2) 3-【分析】(1)根据公式直接计算即可.(2)根据公式得到,,计算得到答案.1sin sin cos cos 5αβαβ+=2sin sin cos cos 5αβαβ-=【详解】(1), ()3414,12555d A B =--+-=,故余弦距离等于 ()34cos ,55A B ==()1cos ,1A B -=(2)()cos ,M N =;1sin sin cos cos 5αβαβ=+=()cos ,M Q =+2sin sin cos cos 5αβαβ=-=故,,则. 3sin sin 10αβ=1cos cos 10αβ=-sin sin tan tan 3cos cos αβαβαβ==-19.给定函数,,.()12xf x ⎛⎫= ⎪⎝⎭()241g x x x =-++x ∈R (1)在同一直角坐标系中画出函数和的图象;()f x ()g x(2),用表示,中的最大者,记为,试判断x ∀∈R ()M x ()f x ()g x ()()(){}max ,M x f x g x =()M x 在区间的单调性. (],a -∞【答案】(1)答案见解析(2)答案见解析【分析】(1)根据指数函数与一元二次函数的图像得出答案;(2)根据图像结合的定义得出其单调性,即可分类讨论的范围得出答案.()M x a 【详解】(1),图象如图所示,()f x ()g x(2)由(1)及的定义得,在单调递减,在单调递增,在单调递()M x ()M x (],0-∞[]0,2[)2,+∞减所以当时,在单调递减,0a ≤()M x (],a -∞当时,在单调递减,在单调递增,02a <≤()M x (],0-∞[]0,a 当时,在单调递减,在单调递增,在单调递减.2a >()M x (],0-∞[]0,2[]2,a 20.小美同学用“五点法”画函数在某一个周期内的图象时,列()()sin 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭表并填入了部分数据,如下表.x ωϕ+0 2π π 32π 2πx 3π56π ()sin A x ωϕ+0 3 -3 0(1)请将上表数据补充完整并求出函数的解析式;()f x (2)若,求函数的单调递增区间: ()16g x f x π⎛⎫++ ⎪⎝⎭=()g x(3)若,求不等式成立的x 的取值集合. ()16g x f x π⎛⎫++ ⎪⎝⎭=()52g x ≥【答案】(1)表格答案见解析, ()π3sin 26f x x ⎛⎫=- ⎪⎝⎭(2)单调递增区间为, ,36k k ππππ⎡⎤-++⎢⎥⎣⎦k ∈Z (3) 3x k x k k πππ⎧⎫≤≤+∈⎨⎬⎩⎭Z ,【分析】(1)根据五点法列式求得解析式参数; (2)写出解析式,由整体法求单调区间;()g x (3)由整体法解不等式.【详解】(1)根据表中已知数据可得,由得,再由解得3A =12π5ππ263ω⨯=-2ω=ππ232ϕ⨯+=,所以. π6ϕ=-()π3sin 26f x x ⎛⎫=- ⎪⎝⎭表格数据补全如下:x ωϕ+0 2π π 32π 2πx 12π3π712π 56π 1312π ()sin A x ωϕ+0 3 0 -3 0(2)由题意, ()13sin 2166g x f x x ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭由,,解得,,222262k x k πππππ-+≤+≤+k ∈Z 36k x k ππππ-+≤≤+k ∈Z 所以函数的单调递增区间为,, ()g x ,36k k ππππ⎡⎤-++⎢⎥⎣⎦k ∈Z (3)由,即, ()53sin 2162g x x π⎛⎫=++ ⎪⎝⎭≥1sin 262x π⎛⎫+≥ ⎪⎝⎭所以,解得,, 5222666k x k πππππ+++≤≤3k x k πππ≤≤+k ∈Z 所以不等式成立的x 的取值集合为. 3x k x k k πππ⎧⎫≤≤+∈⎨⎬⎩⎭Z ,21.2022年10月31日下午,长征五号B 运载火箭点火起飞,成功将中国空间站的第二个实验舱“梦天实验舱”送入预定轨道,发射任务取得圆满成功.作为“空间站舱段运输专列”,长征五号B 运载火箭是我国目前近地轨道运载能力最大的火箭,具有强大的“爆发力”和“带货能力”.在不考虑空气阻力的条件下,火箭的最大速度v (单位:)可用公式进行计算,其中(单km/s 0ln M v v m=0v 位:)是喷流相对速度,m (单位;吨)是火箭(除推进剂外)的质量,M (单位;吨)是推km/s 进剂和火箭质量的总和,称为总质比.已知X 型火箭的喷流相对速度为2. M mkm/s (1)已知X 型火箭的质量约为115吨,推进剂的质量约为736吨,利用给出的参考数据求X 型火箭的最大速度; (2)经过材料更新和技术改进,X 型火箭的喷流相对速度提高到了原来的2倍,总质比变为原来的14,若要使火箭的最大速度至少增加1,求在材料更新和技术改进前总质比的最小整数值. km/s 参考数据:,,.ln 6.4 1.86≈ln 7.42≈0.51.64e 1.65<<【答案】(1)4km/s (2)27【分析】(1)将,,代入计算即可;02v =115m =115736851M =+=(2)由题意,经过材料更新和技术改进后,X 型火箭的喷流相对速度为4,总质比为,km/s 4M m 要使火箭的最大速度至少增加1,则需,解不等式即可. km/s 4ln 2ln 14M M m m-≥【详解】(1)由题意,,,,02v =115m =115736851M =+=所以, 0851ln 2ln 2ln 7.44115M v v m ===≈所以X 型火箭的最大速度约为4.km/s (2)由题意,经过材料更新和技术改进后,X 型火箭的喷流相对速度为4,总质比为, km/s 4M m 要使火箭的最大速度至少增加1,则需, km/s 4ln 2ln 14M M m m -≥所以,整理得, 22ln ln 14M M m m ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦≥2ln 116M m ≥所以,则, 0.5e 16M m ≥0.516e M m≥由参考数据知,,所以,0.51.64e 1.65<<0.526.2416e 26.4<<所以材料更新和技术改进前总质比的最小整数值为27.22.设是函数定义域内的一个子集,若存在,使得成立,则称是A ()y f x =0x A ∈()00f x x =0x 的一个“不动点”,也称在区间上存在不动点,例如的“不动点”满足()f x ()f x A ()21g x x =-,即的“不动点”是.设函数,.()00021g x x x =-=()g x 01x =()()12log 426x x f x a -=+⋅-[]1,2x ∈(1)若,求函数的不动点;2a =()f x (2)若函数在上不存在不动点,求实数的取值范围.()f x []1,2a 【答案】(1)4log 6(2)()4,+∞【分析】(1)根据不动点的定义求解方程即可得函数的不动点;()f x (2)若函数在上不存在不动点,则转化为方程在上无解,整体换()f x []1,214262x x x a -+⋅-=[]1,2元再进行参变分离即可列不等式得实数的取值范围,再检验其是否满足对数函数的定义域即可.a 【详解】(1)根据题目给出的“不动点”的定义,可知:当时,,2a =()()12log 4226x x f x x -=+⋅-=得,所以,所以,4262x x x +-=46x =[]4log 61,2x =∈所以函数在上的不动点为.()f x []1,2x ∈4log 6(2)根据已知,得在区间上无解,()12log 426x x a x -+⋅-=[]1,2所以在上无解,14262x x x a -+⋅-=[]1,2令,,所以, 2x t =[]2,4t ∈262a t t t +-=即在区间上无解, 21602a t t ⎛⎫+--= ⎪⎝⎭[]2,4所以在区间上无解, 612a t t-=-[]2,4设,所以在区间上单调递增, ()6g t t t=-()g t []2,4故 ()51,2g t ⎡⎤∈-⎢⎥⎣⎦所以或,所以或, 5122a ->112a -<-3a <-4a >又因为在区间上恒成立,14260x x a -+⋅->[]1,2所以在区间上恒成立, 2226x x a -<-[]1,2所以,则12a-<-2a >综上,实数a 的取值范围是.()4,+∞。
云南省2023年1月普通高中学业水平考试数学试卷(含答案)
云南省2023年1月普通高中学业水平考试数学试卷(含答案)一、选择题1. 设函数f(x)=2x^2-3x+1,求f(-1)的值。
A) -3 B) -1 C) 1 D) 32. 已知函数y=kx+b是向上凸的抛物线,且经过点(1,2)和(2,5),则k和b的值分别是:A) k=3, b=-1 B) k=-1, b=3 C) k=3, b=1 D) k=-1, b=-33. 数列{a_n}的公式是a_1=1,a_n=a_{n-1}+2n-1(n≥2),则a_5的值是:A) 9 B) 11 C) 13 D) 154. 已知圆心为O,半径为r的圆,点A(2,3)、B(5,6)、C(3,8)都在这个圆上,求圆的方程。
A) (x-3)^2 + (y+2)^2 = 16 B) (x-3)^2 + (y+2)^2 = 5 C) (x+3)^2 + (y-2)^2 = 16 D) (x+3)^2 + (y-2)^2 = 5二、填空题1. 设集合A={-2, -1, 0, 1, 2},集合B={x | x>0},则集合A∪B 的基数是__。
2. 已知圆心为O,半径为r的圆,点A(2,3)、B(5,6)、C(3,8)都在这个圆上,则弦AB的长是__。
3. 动点P在y轴上且O是坐标原点,P到直线l:2x-y=3的距离为__。
三、解答题1. 已知函数y=2cos(πx-π/2)的图象是曲线C,求C的对称轴方程。
2. 设集合A={-2, -1, 0, 1, 2},集合B={x | x≥0},则集合A∩B 是一个__集。
3. 已知四面体ABCD,其底面是等腰直角梯形ABCD,底面AB=CD=a,高h,四面体表面积为__。
四、应用题1. 小明每天花费a元乘公交车上学,每天花费b元乘地铁上学,如果小明每周上学5天,且他每天乘坐公交车和地铁的总花费是40元,写出小明的每天乘坐公交车和地铁的方程。
2. 一批猴子团结合作,7只猴子每天干完活后剩余2个香蕉,11只猴子每天干完活后剩余1个香蕉,写出所有可能的香蕉总数。
云南高中数学会考试题分类汇编
【2016.1】已知集合 M {0, 1, 2, 3} , N {1,3, 4} ,那么 M N 等于( A. {0}
Y
A. 单调递增,且有最小值 f (1) C. 单调递减,且有最小值 f ( 2)
B. {0,1}
C. {1,3}
—1—
D. {0,1, 2,3, 4}
—2—
【2014.7】15. 已知函数 f ( x ) x ,则下列说话正确的是( A. f ( x ) 为奇函数,且在 0, 上是增函数 C. f ( x ) 为偶函数,且在 0, 上是增函数 17. 函数 f ( x )
3
)
【2016.7.17】 定义: 对于函数 f ( x ) , 在使 f ( x ) M 成立的所有常数 M 中, 我们把 M 的最大值叫做函数 f ( x ) 的下确界.例如函数 f ( x ) x 4 x 的下确界是-4,则函数的下确界是( A. -2 (三)指数和对数的运算 【2015.18】 log 5 5 _________ . D.非奇非偶函数 【2015.7.6】 log 2 三、零点 【2011.1】函数 f x log 2 x 2 x 6 的零点所在的大致区间是( A. ,1 2
云南省高中历年学业水平考试数学试卷考点、考题分类汇编
必修模块一 一、集合 【2011.1】设集合 M {1} , N {1,2} , P {1,2,3} ,则 ( M N ) P ( A. {1} 【2011.7】 A. {2} B. {3} C. {1,2} )
【2016.7】设集合 M {1, 2, 3, 4,5, 6} , N {2, 4, 6} ,则 M N 等于( A. {2, 4,5, 6} 二、函数 B. {4,5, 6}
2024年高中数学学业水平考试分类汇编专题01集合与常用逻辑用语
专题01集合与常用逻辑用语考点一:集合的概念1.(2023·江苏)对于两个非空实数集合A 和B ,我们把集合{},,x x a b a A b B =+∈∈∣记作A B *.若集合{}{}0,1,0,1A B ==-,则A B *中元素的个数为()A .1B .2C .3D .4【答案】C【详解】{}{}0,1,0,1A B ==-,则{}0,1,1A B *=-,则A B *中元素的个数为3故选:C考点二:集合间的基本关系1.(2023春·福建)已知全集为U ,M N M ⋂=,则其图象为()A .B .C .D .【答案】A【详解】全集为U ,M N M ⋂=,则有M N ⊆,选项BCD 不符合题意,选项A 符合题意.故选:A考点三:集合的基本运算1.(2023·北京)已知全集{}1,2,3,4U =,集合{}1,2A =,则U A =ð()A .{}1,3B .{}2,3C .{}1,4D .{}3,4【答案】D【详解】因为{1,2,3,4},{1,2}U A ==,所以{}3,4U A =ð;故选:D.2.(2023·河北)设集合{}2,3,4M =,{}3,4,5N =,则M N ⋂=()A .{}2B .{}5C .{}3,4D .{}2,3,4,5【答案】C【详解】根据列举法表示的集合可知,由{}2,3,4M =,{}3,4,5N =,利用交集运算可得{}3,4M N ⋂=.故选:C3.(2023·山西)已知集合{}1216=≤<∣x A x,{53}=-<≤∣B x x ,则A B = ()A .{54}xx -<<∣B .{53}-<≤∣x x C .{03}xx ≤≤∣D .{34}xx ≤<∣【答案】C【详解】解:因为1216x ≤<,即04222x ≤<,所以04x ≤<,所以{}{}|1216|04xA x x x =≤<=≤<,因为{|53}B x x =-<≤所以{}|03A B x x =≤≤ 故选:C4.(2023·江苏)已知集合{}{}2,0,2,0,2,4A B =-=,则A B = ()A .{}0,2B .{}2,2,4-C .{}2,0,2-D .{}2,0,2,4-【答案】A【详解】集合{}{}2,0,2,0,2,4A B =-=,则{}0,2A B =I .故选:A5.(2023春·浙江)已知全集{2,4,6,8,10}U =,集合{2,4}A =,{1,6,8}B =,则()U B A ⋂=ð()A .{2,4}B .{6,8,10}C .{6,8}D .{2,4,6,8,10}【答案】C【详解】因为全集{2,4,6,8,10}U =,集合{2,4}A =,所以{}6,8,10U A =ð,因为{1,6,8}B =,所以(){}6,8U A B = ð,故选:C6.(2023春·湖南)已知集合{}0,1A =,{}1,2,3B =,则A B = ()A .{}1B .{}1,2C .{}0,1D .{}1,2,3【答案】A【详解】由题意得A B = {}1,故选:A7.(2023·广东)设集合{}012M =,,,{}1,0,1N =-,则M N ⋃=()A .{}0,1B .{}0,1,2C .{}1,0,1,2-D .{}1,0,1-【答案】C【详解】因为集合{}012M =,,,{}1,0,1N =-,因此,{}1,0,1,2M N ⋃=-.故选:C.8.(2023春·新疆)已知集合{}{}1,0,1,0,1,2A B =-=,则A B = ()A .{}1,0,1,2-B .{}0,1C .{}1,0,1-D .{}1,1,2-【答案】B【详解】因为集合{}{}1,0,1,0,1,2A B =-=,所以A B = {}0,1.故选:B9.(2022春·天津)已知集合{}1,3A =,{}2,3,4B =,则A B ⋂等于()A .{}1B .{}3C .{}1,3D .{}1,2,3,4【答案】B【详解】集合{}1,3A =,{}2,3,4B =,则A B ⋂等于{}3.故选:B10.(2022·山西)已知集合{1U =,2,3,4},{1A =,3},{1B =,4},则()U A B ⋂=ð()A .{2,3}B .{3}C .{1}D .{1,2,3,4}【答案】B【详解】集合{1U =,2,3,4},{1A =,3},{1B =,4},则{}2,3U C B =,{}3U A C B ⋂=故选:B11.(2022春·辽宁)已知集合{}2,4A =,{}2,3B =,则A B ⋃=().A .{2}B .{2,3}C .{2,4}D .{2,3,4}【答案】D【详解】解:因为{}2,4A =,{}2,3B =,所以{}2,3,4A B = 故选:D12.(2022春·浙江)已知集合{}0,1,2A =,{}1,2,3,4B =,则A B = ()A .∅B .{}1C .{}2D .{}1,2【答案】D【详解】∵{}0,1,2A =,{}1,2,3,4B =,∴{}1,2A B = .故选:D.13.(2022秋·浙江)已知集合P ={0,1,2},Q ={1,2,3},则P ∩Q =()A .{0}B .{0,3}C .{1,2}D .{0,1,2,3}【答案】C【详解】 P ={0,1,2},Q ={1,2,3}∴P ∩Q ={1,2};故选:C.14.(2022春·浙江)已知集合{}{}0,1,2,3,4,1,1,2,3,5A B ==-,则A B = ()A .{}1,5-B .{}1,3C .{}1,2,3D .{}1,0,1,2,3,4,5-【答案】C【详解】由题意中的条件有{1,2,3}A B ⋂=.故选:C15.(2022秋·福建)已知集合{}{}2,0,1,0,1,2A B =-=,则A B = ()A .{}0,1B .{}2,0,1-C .{}0,1,2D .{}2,0,1,2-【答案】A【详解】解:因为集合{}{}2,0,1,0,1,2A B =-=,所以{}0,1A B = ,故选:A.16.(2022秋·广东)已知集合{}0,2,3M =,{}1,3N =,则M N ⋃=()A .{}3B .{}0,1,2C .{}0,1,2,3D .{}0,2,3,1,3【答案】C【详解】依题意M N ⋃={}0,1,2,3.故选:C17.(2022春·贵州)已知集合{}{}1,2,1,3A B ==,则A B = ()A .{}1B .{}2C .{}3D .∅【答案】A【详解】由{}{}1,2,1,3A B ==得,A B = {}1.故选:A.18.(2021·北京)已知集合{}1,4,5A =,{}1,2,3B =,则A B ⋃=()A .{}1,2,3B .{}1,2,3,4C .{}2,3,4,5D .{}1,2,3,4,5【答案】D【详解】{}{}{}1,4,51,2,31,2,3,4,5A B ⋃⋃==.故选:D.19.(2021春·天津)已知集合{}1,2A =,{}1,2,3B =,则A B ⋃等于()A .∅B .{}3C .{}1,2D .{}1,2,3【答案】D【详解】因为{}1,2A =,{}1,2,3B =,则{}1,2,3A B = .故选:D.20.(2021春·河北)已知集合{}1,0,1M =-,{}0,1N =,则M N ⋂=()A .{}0,1B .{}0C .{}1D .{}1,0,1-【答案】A【详解】 集合{}1,0,1M =-,{}0,1N =,{}0,1M N ∴= ,故选:A .21.(2021秋·吉林)设集合{}1,2A =,{}2,3,4B =,则A B = ()A .{}1,2,3,4B .{}1,2C .{}2,3,4D .{}2【答案】D【详解】因为{}1,2A =,{}2,3,4B =,所以{2}A B = ,故选:D22.(2021·吉林)已知集合{}1,0,1,2A =-,{}2,1,2B =-,则A B = ()A .{}1B .{}2C .{}1,2D .{}2,0,1,2-【答案】C【详解】集合{}1,0,1,2A =-,{}2,1,2B =-,则A B = {}1,2.故选:C23.(2021春·浙江)设集合{}1,2,3A =,{}2,3,4B =,则A B = ()A .{}1,3B .{}2,3C .{}1,4D .{}2,4【答案】B【详解】由题意可得{}2,3A B ⋂=.故选:B.24.(2021秋·浙江)已知集合{4,5,6},{3,5,7}A B ==,则A B = ()A .∅B .{5}C .{4,6}D .{3,4,5,6,7}【答案】B【详解】因为{4,5,6},{3,5,7}A B ==,所以{}5A B = .故选:B.25.(2021春·福建)已知集合{}1,3A =-,{}1,0B =-,则A B = ()A .{}1,0,3-B .{}1,0-C .{}1-D .∅【答案】C【详解】由已知{1}A B ⋂=-.故选:C .26.(2021秋·福建)已知集合{}0,1A =,{}1,0B =-,则A B ⋃=()A .{}1,0-B .{}0,1C .{}1,1-D .{}1,0,1-【答案】D【详解】因为{}0,1A =,{}1,0B =-,所以A B ⋃={}1,0,1-,故选:D27.(2021秋·河南)已知全集{1,2,3,4,5,6}U =,集合{1,3,5}A =,则U A =ð()A .{1,3,5}B .{2,4,6}C .{3,4,5}D .{1,3,4,5}【答案】B【详解】由题意U A =ð{2,4,6}.故选:B .28.(2021·湖北)设集合{}1,2,3,4,5A =,{}2,4,6,8B =,则A B = ()A .∅B .{}2C .{}2,4D .{}2,4,8【答案】C【详解】因为集合{}1,2,3,4,5A =,{}2,4,6,8B =,所以A B = {}2,4,故选:C29.(2021秋·广东)设全集U ={}12345,,,,,A ={}12,,则U A =ð()A .{} 12345,,,,B .{} 2345,,,C .{} 345,,D .{} 34,【答案】C【详解】解:因为{}12345U =,,,,,{}12A =,所以{}U 3,4,5A =ð故选:C30.(2021春·贵州)已知集合{}{}1101A B =-=,,,,则A B = ()A .{0}B .{1}C .{2}D .∅【答案】B【详解】集合{}{}1101A B =-=,,,,则{1}A B ⋂=,故选:B考点四:充分条件与必要条件1.(2023·北京)已知a ,b ∈R ,则“0a b ==”是“0a b +=”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【详解】如果0a b ==,则有0a b +=,是充分条件;如果0a b +=,则有a b =-,但不能推出0a b ==,比如1,1,0a b a b ==-+=,不是必要条件;所以“0a b ==”是“0a b +=”的充分不必要条件;故选:A.2.(2023·河北)设,a b R ∈,则“a b >”是“33a b >”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【详解】∵函数()3f x x =在(),-∞+∞上单调递增,∴当a b >时,()()f a f b >,即33a b >,反之亦成立,∴“a b >”是“33a b >”的充分必要条件,故选C.3.(2023春·浙江)设x ∈R ,则“|1|1x -<”是“22x x <”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【详解】由|1|1x -<得02x <<,由22x x <得02x <<,所以“|1|1x -<”是“22x x <”的充要条件,故选:C4.(2023春·福建)“1x =”是“21x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【详解】由1x =可得1x =±,由21x =可得1x =±,所以“1x =”是“21x =”的充要条件.故选:C.5.(2023春·湖南)设p :四棱柱是正方体,q :四棱柱是长方体,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详解】正方体是特殊的长方体,而长方体不一定是正方体,所以p 是q 的充分不必要条件.故选:A.6.(2022·山西)如果不等式1-<x a 成立的充分不必要条件是1322x <<;则实数a 的取值范围是()A .13,22⎛⎫ ⎪⎝⎭B .13,22⎡⎤⎢⎥⎣⎦C .13,,22∞∞⎛⎫⎛⎫-⋃+ ⎪ ⎪⎝⎭⎝⎭D .13,,22∞∞⎛⎤⎡⎫-⋃+ ⎪⎥⎢⎝⎦⎣⎭【答案】B【详解】1-<x a ,解得:11a x a -<<+,所以11a x a -<<+成立的充分不必要条件是1322x <<,故13<<22x x ⎧⎫⎨⎬⎩⎭是{}1<<1+x a x a -的真子集,所以1123+1>2a a -≤⎧⎪⎪⎨⎪⎪⎩或11<23+12a a -≥⎧⎪⎪⎨⎪⎪⎩,解得:1322a ≤≤,故实数a 的取值范围是13,22⎡⎤⎢⎥⎣⎦.故选:B7.(2022春·浙江)设a ,b 是实数,则“a b >”是“a b >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【详解】对于a b >,比如1,3a b ==-,显然13a b =<=,不能推出a b >;反之,如果a b >,则必有0,a a a b b >∴=>≥;所以“a b >”是“a b >”的必要不充分条件;故选:B.8.(2021·北京)设a R ∈,则“1a =”是“21a =”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【详解】当1a =时,21a =,充分性成立;反过来,当21a =时,则1a =±,不一定有1a =,故必要性不成立,所以“1a =”是“21a =”的充分而不必要条件.故选:A9.(2021秋·吉林)设x ,R y ∈,则“1x >”是“0x >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详解】若1x >可以得出0x >,但0x >得不出1x >,所以“1x >”是“0x >”的充分不必要条件,故选:A10.(2021春·浙江)“4x =”是“22x x =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【详解】解:若4x =,则422416==,即22x x =成立,故充分性成立;显然2x =时22224==,即22x x =,故由22x x =推不出4x =,故必要性不成立;故“4x =”是“22x x =”的充分不必要条件;故选:A11.(2021秋·浙江)若,a b ∈R ,则“14ab ≥”是“2212a b +≥”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详解】解:当14ab ≥,由于,a b ∈R ,22112242a b ab +≥≥⨯=,故充分性成立;当,a b ∈R ,不妨设1,1a b =-=,2212a b +≥成立,114ab =-≥不成立,故必要性不成立.故“14ab ≥”是“2212a b +≥”的充分不必要条件.故选:A.12.(2021湖北)已知:02p x <<,:13q x -<<,则p 是q 的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分不必要条件【答案】A【详解】由:02p x <<,可得出:13q x -<<,由:13q x -<<,得不出:02p x <<,所以p 是q 的充分而不必要条件,故选:A.13.(2021秋·广西)“0x =”是“20x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【详解】若0x =,则0x =,若20x =,则0x =,则“0x =”是“20x =”的充要条件,故选:C.考点五:全称量词与存在量词1.(2023·河北)设命题p :R α∀∈,sin 1α≥-,则p 的否定是()A .R α∃∈,sin 1α≤-B .R α∃∈,sin 1α<-C .R α∀∈,sin 1α≤-D .R α∀∈,sin 1α<-【答案】B【详解】由题意可知,含有一个量词命题的否定将∀改为∃,并否定结论即可,所以命题p :R α∀∈,sin 1α≥-的否定为“R α∃∈,sin 1α<-”.故选:B2.(2023·江苏)命题“x ∀∈R ,210x x ++>”的否定为()A .x ∀∈R ,210x x ++≤B .x ∃∈R ,210x x ++≤C .x ∃∈R ,210x x ++<D .x ∃∈R ,210x x ++>【答案】B【详解】由题意x ∀∈R ,210x x ++>,否定是x ∃∈R ,210x x ++≤【答案】B【详解】由题意得“x ∃∈R ,210x x ++<”的否定是x ∀∈R ,210x x ++≥,故选:B4.(2023春·新疆)命题“2 0,250x x x ∃>++>”的否定是()A .2 0,250x x x ∀>++≤B .2 0,250x x x ∀≤++>C .2 0,250x x x ∃>++≤D .2 0,250x x x ∃≤++>【答案】A【详解】因为命题“2 0,250x x x ∃>++>”是特称量词命题,故其否定是“2 0,250x x x ∀>++≤”.故选:A5.(2022春·天津)命题“x ∃∈R ,21x x +≥”的否定是()A .x ∃∈R ,21x x +<B .x ∃∈R ,21x x +≤C .x ∀∈R ,21x x +<D .x ∀∈R ,21x x +≤【答案】C【详解】命题“x ∃∈R ,21x x +≥”的否定为“x ∀∈R ,21x x +<”.故选:C6.(2022春·辽宁)如果命题p :()3,x ∀∈+∞,29x >,则p ⌝为().A .p ⌝:()3,x ∃∈+∞,29x >B .p ⌝:()3,x ∀∈+∞,29x <C .p ⌝:()3,x ∃∈+∞,29x ≤D .p ⌝:()3,x ∀∈+∞,29x ≤【答案】C【详解】解:命题p :()3,x ∀∈+∞,29x >,是全称命题,所以p ⌝为:p ⌝:()3,x ∃∈+∞,29x ≤故选:C7.(2022春·浙江)命题“2,210x R x x ∀∈-+>”的否定为()A .2000,210x R x x ∃∈-+>B .2,210x R x x ∀∈-+≥C .2,210x R x x ∀∈-+≤D .2000,210x R x x ∃∈-+≤【答案】D【详解】命题“2,210x R x x ∀∈-+>”的否定为“2000,210x R x x ∃∈-+≤”【答案】C【详解】对于全称量词命题“x M ∀∈,()p x ”,其否定为存在量词命题“x M ∃∈,()p x ⌝”,因此,命题“x ∀∈R ,2210x x -+≥”的否定为“x ∃∈R ,2210x x -+<”,故选:C.。
云南省高中学业水平测试数学试卷
云南省高中学业水平测试数学试卷篇一:云南省20XX年1月普通高中学业水平考试数学试题及答案篇二:20XX年1月云南省普通高中数学学业水平考试及参考答案云南省20XX届普通高中学业水平考试数学试题选择题(共51分)一、选择题:本大题共17个小题,每小题3分,共51分。
1.已知集合A.{2,5}b.{1,3,4,6}c.{1,4}D.{2,3,5}2.某几何体的正视图与侧视图都是边长为1的正方形,且体积为1,则该几何体的俯视图可以是5.要得到函数的图象,只需将函数的图象6.已知一个算法的流程图如右图所示,则输出的结果是A.3b.11c.43D.1717.样本数据:2,4,6,8,10的标准差为A.40b.8c.D.8.将一枚质地均匀的骰子抛掷1次,出现的点数为偶数的概率是9.在矩形AbcD中,A.2b.3中,A,b,c所对的边长分别是c.D.410.在11.如图,在中,D是Ab边上的点,且,连结cD。
现随机丢一粒豆子在内,则它落在阴影部分的概率是12.已知数列则这个数列的第四项是13.若函数存在零点,则实数a的取值范围是14.下列直线方程中,不是圆的切线方程的是15.已知函数A.奇函数c.既是奇函数又是偶函数的奇偶性为b.偶函数D.非奇非偶函数16.设,则下列不等式中正确的是17.若正数的取值范围是非选择题(共49分)二、填空题:本大题共5个小题,每小题4分,共20分。
18.19.某校学生高一年级有600人,高二年级有400人,高三年级有200人,现采用分层抽样的方法从这三个年级中抽取学生54人,则从高二年级抽取的学生人数为人。
20.若实数x,y满足约束条件的最小值是21.已知某个样本数据的茎叶图如下,则该样本数据的平均数是三、解答题:本大题共4个小题,第23、24、25各7分,第26题8分,共29分。
23.已知函数(1)求函数的最小正周期及函数取最小值时x的取值集合;(2)画出函数在区间上的简图。
云南高中会考数学试卷
云南高中会考数学试卷篇一:云南省_年7月普通高中学业水平考试数学试卷及答案云南省_年7月普通高中学业水平考试数学试卷选择题(共51)一.选择题(本题共_个小题,每个小题3分,共51分,在每个小题给出的四个选项中,只有一项符合题目要求的,请在答题卡相应位置填涂.) 1. 已知全集U?R,集合A?{_|_?2},则CUA?()A. {_|_?1}B. {_|_?1}C. {_|_?2}D. {_|_?2} 2. 已知某几何体的直观图如右下图,该几何体的俯视图为( B)AoBC3.已知向量a与b的夹角为60,且|a|?2,|b|?2,则a?b?()A. 2B.C. 2D.1 24.在下列函数中,为偶函数的是()23A. y?lg_B. y?_C. y?_D. y?_?1225.已知圆_?y?2_?3?0的圆心坐标及半径分别为()A. (?_)0)2 D. (?1,与0)2B. (_)C. (1,与6. log2?log27?() 7_ D. ? _A. -2B. 2C.7.如图1是某校举行歌唱比赛时,七位评委为某位选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的中位数和平均数依次为()A. 87,86B. 83,85C. 88,85D. 82,8678988. cos_.5?sin_.5?()2o2o2 3 7 80 3A._B.C. ?D. ?__1图19.已知等差数列an中,a1?4,a2?6,则S4?()A. _B. _C. 28D. 40 _.把十进制数34化为二进制数为()A. 1__0B. 1_1_C. 1__1D. 1__0_.某大学有A.B.C三个不同的校区,其中A校区有4_0人,B校区有3_0人,C 校区有_人,采用按校区分层抽样的方法,从中抽取9_人参加一项活动,则 A.B.C 校区分别抽取() A. 4_人.3_人._人B. 350人.3_人.250人 C. 250人.3_人.350人D. _人.3_人.4_人 _.为了得到函数y?sin(3_?)的图象,只需要把函数y?(_?)的图象上的所有点() 661倍,纵坐标不变 31倍,横坐标不变 ?A. 横坐标伸长为原来的3倍,纵坐标不变B. 横坐标缩短为原来的C. 纵坐标伸长为原来的3倍,横坐标不变D. 纵坐标缩短为原来的2_.如果二次函数f(_)?_?m_?m?3有两个不同零点,那么实数m的取值范围是() ?2)?(6,??) B. (?2,6) C. (2,6)D. [?2,6] A. (??,o_.若f(cos_)?cos3_那么f(sin70)的值为()A. _B.C. ?D.__2非选择题(共49分)二.填空题(本大题共5个小题,每小题4分共_分,请把答案写在答题卡相应的位置上.)????_.已知向量a?(1,2),b?(_,1),若a?b,则_?; ?1]上的最小值为 _.函数f(_)?()在区间[?2,?_?1?_.已知_,y满足约束条件?y?1,则目标函数z?3_?y的最大值为;?_?y?1?0?_.有甲.乙.丙.丁4个同学,从中任选2个同学参加某项活动,则所选 2人中一定含有甲的概率为___; _.设等比数列{an}的前n项和为Sn,已知a1?2,S3?_,若an?0,则公比q?三.解答题(本大题共4个小题共29分,解答应写出文字说明.证明过程或演算步骤.) 23.(本小题满分6分)已知函数f(_)??_?_?1,_?1.??_?1,_?1(1)在给定的直角坐标系中作出函数f(_)的图象; (2)求满足方程f(_)=4的_值.24.(本小题满分7分)如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在平面,且PA=AB=_,设点C为⊙O上异于A.B的任意一点. (1)求证:BC⊥平面PAC;(2)若AC=6,求三棱锥C-PAB的体积.325.(本小题满分7分)在锐角?ABC中,内角A.B.C所对的边分别是a.b.c,若C?45,b?sinB?(1)求c的值; (2)求sinA的值.26.(本小题满分9分)已知圆_?y?5与直线2_?y?m?0相交于不同的A.B两点,O为坐标原点. (1)求m的取值范围;(2)若OA⊥OB,求实数m的值.422o.云南省_年7月普通高中学业水平考试数学参考答案一.选择题1~5 DBABC6~_ BAACD _~_ ABCDB _._ AD 二.填空题_. _._._.三.解答题 23.解:(1)图像如图示.(2)当_≥1时,_-1=4,解得_=5当_ 1时, -_+1=4,解得_=-3 ∴满足方程f(_)=4的_值为5或-3. 24.(1)证明:∵ PA⊥平面ABC,BC平面ABC,∴ BC⊥PA 又AB是⊙O的直径,∴ BC⊥AC而AC∩PA=A ∴ BC⊥平面PAC.(2)解:VC-PAB=VP-ABC= S△ABC_PA=__6_8__=80.. _.25.解:(1)由正弦定理得,∴ c ===5.(2) 在锐角△ABC中,由sinB=得,cosB=,∴sinA=sin(B+C)=sinBcosC+cosBsinC=(=.26解:(1) 联立消去变量y得,5_2-4m_+m2-5=0……(_),由圆_2+y2=5与直线2_-y-m=0相交于不同的A.B两点得,△ 0,即_m2-_(m2-5) 0,解得-5 m 5,∴ m的取值范围为(-5,5) (2) 设A(_1,y1),B(_2,y2),由OA⊥OB得_1_2+y1y2=0,由y1=2_1-m,y2=2_2-m,∴ y1y2=(2_1-m)(2_2-m)=4_1_2-2m(_1+_2)+m2∴_1_2+y1y2=5_1_2-2m(_1+_2)+m2= 0又_1,_2是方程(_)的两根, ∴_1+_2=,_1_2=5篇二:_年云南高中,数学会考真题云南省_年7月普通高中学业水平考试数学试卷选择题(共51)一.选择题(本题共_个小题,每个小题3分,共51分,在每个小题给出的四个选项中,只有一项符合题目要求的,请在答题卡相应位置填涂.)1. 已知全集U?R,集合A?{_|_?2},则CUA?()A. {_|_?1}B. {_|_?1}C. {_|_?2}D. {_|_?2}2. 已知某几何体的直观图如右下图,该几何体的俯视图为()AoBC 3.已知向量a与b的夹角为60,且|a|?2,|b|?2,则a?b?()A. 2B. C. 2D. 1 24.在下列函数中,为偶函数的是()23A. y?lg_B. y?_ C. y?_ D. y?_?1_5.已知圆_?y?2_?3?0的圆心坐标及半径分别为()A. (?_)0)2 D. (?1,与0)2B. (_)C. (1,与6. log24?log27?() 7_ D. ? _A. -2B. 2 C.7.如图1是某校举行歌唱比赛时,七位评委为某位选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的中位数和平均数依次为() A. 87,86B. 83,8578C. 88,85D. 82,86 892 3 7 80 38. cos_.5?sin_.5?() 2o2o图1A._B. C. ? D. ? _2_9.已知等差数列an中,a1?4,a2?6,则S4?()A. _B. _ C. 28 D. 40_.把十进制数34化为二进制数为()A. 1__0B. 1_1_ C. 1__1 D. 1__0_.某大学有A.B.C三个不同的校区,其中A校区有4_0人,B校区有3_0人,C 校区有_人,采用按校区分层抽样的方法,从中抽取9_人参加一项活动,则 A.B.C 校区分别抽取()A. 4_人.3_人._人B. 350人.3_人.250人C. 250人.3_人.350人D. _人.3_人.4_人_.为了得到函数y?sin(3_??)的图象,只需要把函数y?(_?)的图象上的所有点() 661倍,纵坐标不变 31倍,横坐标不变3?A. 横坐标伸长为原来的3倍,纵坐标不变 B. 横坐标缩短为原来的 C. 纵坐标伸长为原来的3倍,横坐标不变 D. 纵坐标缩短为原来的_.一个算法的程序框图如图2,当输入的_的值为-2时,输出的y值为()A. -2B. 1C. -5D. 3_.已知?为第二象限的角,sin??3,则tan??() 5A. 3443B.C. ?D. ? 4334_.在半径为1的圆中有封闭曲线围成的阴影区域,若在圆中随机撒一粒豆子,它落在阴影区域内的概率为1,则阴影区域的面积为() 4?A. 3_3B.C.D. 444?4?2_.如果二次函数f(_)?_?m_?m?3有两个不同零点,那么实数m的取值范围是()?2)?(6,??) B. (?2,6) C. (2,6)D. [?2,6] A. (??,o_.若f(cos_)?cos3_那么f(sin70)的值为()2A. _B. C. ? D. __非选择题(共49分)二.填空题(本大题共5个小题,每小题4分共_分,请把答案写在答题卡相应的位置上.)????_.已知向量a?(1,2),b?(_,1),若a?b,则_?.?1]上的最小值为_.函数f(_)?()在区间[?2,?_?1?_.已知_,y满足约束条件?y?1,则目标函数z?3_?y的最大值为 .?_?y?1?0?_.有甲.乙.丙.丁4个同学,从中任选2个同学参加某项活动,则所选 2人中一定含有甲的概率为._.设等比数列{an}的前n项和为Sn,已知a1?2,S3?_,若an?0,则公比q?.三.解答题(本大题共4个小题共29分,解答应写出文字说明.证明过程或演算步骤.)23.(本小题满分6分) __?_?1,_?1已知函数f(_)??. ?_?1,_?1?(1)在给定的直角坐标系中作出函数f(_)的图象;(2)求满足方程f(_)?4的_值.24.(本小题满分7分)如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在平面,且PA?PB?_,设点C为⊙O上异于A.B的任意一点.(1)求证:BC?平面PAC;(2)若AC?6,求三棱锥C?PAB的体积.325.(本小题满分7分)在锐角?ABC中,内角A.B.C所对的边分别是a.b.c,若C?45,b?sinB?(1)求c的值;(2)求sinA的值.26.(本小题满分9分)已知圆_?y?5与直线2_?y?m?0相交于不同的A.B两点,O为坐标原点.(1)求m的取值范围;(2)若OA?OB,求实数m的值.4_o. 55篇三:_贵州省高中数学会考试卷扫描版 _贵州省高中数学会考试卷扫描版。
云南省高中学业水平考试数学试卷
正视图 侧视图云南省普通高中学业水平考试数学试卷【考试时间:100分钟】[考生注意]:考试用时100分钟,必须在答题卡上指定位置按规定要求作答,答在试卷上一律无效.选择题(共57分)一、选择题:本大题共19个小题,每小题3分,共57分。
在每小题给出的四个选项中,只有一项符合题目要求,请在答题卡相应的位置上填涂。
1.已知集合{}{}2,1,,0==N x M ,若{}2=⋂N M ,则=⋃N M ( ) A .{}2,1,,0x B .{}2,1,0,2 C .{}2,1,0 D .不能确定2.一个空间几何体的正视图与侧视图为全等的正三角形,俯视图是一个半径为1的圆,那么这个几何体的体积为( )A. 23πB.2πC.3πD.3.函数()f x =( ). (,0][8,)A -∞+∞ . [0,8]B . (,0)(8,)C -∞+∞ . (0,8)D 4.如果向量()1,2a =, ()4,3b =,那么2a b -等于( )A . ()9,8B . ()7,4--C . ()7,4D . ()9,8--5. 为了得到函数1cos 3y x ⎛⎫=- ⎪⎝⎭的图象,只需把函数cos y x =图象上所有的点( ) A.向左平行移动13π个单位 B.向左平行移动13个单位C.向右平行移动13π个单位D.向右平行移动13个单位6. 阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出y的值为( )A. 2B. 7C. 8D. 1287. 秦九韶是我国南宋时期杰出的数学家,在他的著作《数书九章》 中提出了在多项式求值方面至今仍然是比较先进的计算方法——秦九韶算法。
利用这种算法计算多项式5432()54321f x x x x x x =+++++当0.2x =时的值,需要进行的乘法运算的次数为( ). 5A . 6B . 8C . 10D8.不等式 26x x ≥+的解集为( ). [2,3]A - . [3,2]B - . (,2][3,)C -∞-+∞ . (,3][2,)D -∞-+∞ 9. 函数()ln 1f x x =-的零点所在的区间为 ().2,3A B.()3,4 C.()0,1 D.()1,210. 一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从中抽出一个容量为28的样本,那么应抽出的男运动员的人数为( ). 10A 人 . 12B 人 . 14C 人 . 16D 人11.已知直线的点斜式方程是12y x +=-,那么此直线的斜率为( )A. 14 B. 13 C.12 D. 112.某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,则他等待时间不多于 30 分钟的概率为( )1.2A 1.3B 1.4C 1.6D 13.设等差数列{}n a 中,若124,6,a a == ,则4S =( )A. 18B. 21C.28D.4014. 设实数,x y 满足221x y x y x +≤⎧⎪≤⎨⎪≥-⎩,则2z x y =+的最小值为. 3A - 1. 2B - . 0C . 2D 15. 三个数60.70.70.7, 6, log 6的大小关系正确的是( )60.70.7. 0.7log 66 A << 60.70.7. log 60.76 B <<0.760.7. log 660.7C << 60.70.7. 0.76 log 6D <<16. 下列函数中,是奇函数的是( )3. A y x = . 1B y x =+ . x C y e = . lg D y x =17. 若1sin cos 4αα=,则sin 2α等于( ) 1. 8A 1. 4B 1. 2C . 1D 18.溶液酸碱度是通过 pH 刻画的。
2018年云南省高中数学学业水平测试题分类汇编.Word版含答案
2018年云南省高中数学学业水平测试题分类汇编.考点1:集合的交、并、补与元素集合间的关系.1.设集合{},8,6,5,3=A 集合{},8,7,5,=B ,则B A 等于 ( ){}8,5).A ( {}8,6,3).B ( {}8,6,3).C ( {}8,7,6,5,3).D (2.已知全集{},3,2,1=U 集合{},1=M 则全集U 中M 的补集为 ( ) {}1).A ( {}2,1).B ( {}3,1).C ( {}3,2).D (3. 已知集合{},5,3,1=M {},1=N 则下列关系中正确的是 ( ) M N A ∈).( M N B ∉).( M N C =).( M N D ⊂)( 4. 已知全集{},5,4,3,2,1=U 集合{},5,4=M 则=M C U ( ) {}5).A ( {}5,4).B ( {}3,2,1).C ( {}5,4,3,2,1).D (5. 已知集合{},4,3,1=A {},6,4,1=B ,那么B A = ( ) {}5,2).A ( {}6,4,3,1).B ( {}4,1).C ( {}5,3,2).D (6.已知全集R U =,集合{}2|>=x x A ,则=A C U ( ){}1|).≤x x A ( {}1|).<x x B ( {}2|).<x x C ( {}2|).≤x x D ( 7.已知集合{},3,2,1,0=M {},4,3,1=N 那么=N M ( ) {}0).A ( {}1,0).B ( {}3,1).C ( {}4,3,2,1,0).D (8.设集合{},6,5,4,3,2,,1=M 集合{},6,4,2=N 则=N M ( ) {}6,5,4,2).A ({}6,5,4).B ({}6,5,4,3,2,1).C ( {}6,4,2).D (考点2:三视图及其与空间几何体的表面积、体积9.如图所示,一个空间几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积为( )π3).A ( π4).B ( π5).C ( π6)D (10.有一个几何体的三视图如图所示,这个几何体是一个( ))A (棱台俯视图侧视图正视图俯视图侧视图正视图)C (棱柱 )D (圆台11.有一个几何体的三视图如下图所示,这个几何体是一个( ))A (棱台)B (棱椎 )C (棱柱 )D (圆椎12. 如图所示,一个空间几何体的正视图和侧视图都是全等的等腰三角形,俯视图是一个圆,那么这个几何体是( ))A (正方体 )B (圆椎 )C (圆柱 )D (半球13.某几何体的正视图与侧视图都是边长为1的正方形,且体积为1,则该几何体的俯视图可以是( )DCBA111111114.已知某几何体的直观图如下图,则该几何体的俯视图为( )DCBA15.一个空间几何体的正视图与侧视图为全等的正三角形,俯视图是一个半径为1的圆,那么这个几何体的体积为( )π32).A ( π2).B (π33).C ( π3)D ( 16.若一几何体的三视图如右图所示,则这个几何体可以是( )俯视图侧视图正视图俯视图侧视图正视图俯视图侧视图正视图侧视图正视图)B (空心圆柱 )C (圆 )D (圆椎考点3:平面向量(向量的加法、减法、数乘运算与坐标表示) 17.在平行四边形ABCD 中,=++CD AC AB ( ))A (AC )B (BD )C (DB )D (AD18. 已知向量a 、b ,b a b a 与,3||,4||==的夹角等060,则)()2(b a b a -⋅+等于( ))A (4- )B (4 )C (2- )D (219.设向量)1,1(01==OB OA ),,(,则向量OB OA ,的夹角为( ))A (o 30 )B (o 45 )C (o 60 )D (o 9020.在ABC ∆中,M 是BC 边上的中点,则向量AM 等于( ))A (AC AB - )B ()(21AC AB - )C (AC AB + )D ()(21AC AB + 21. .设向量)1,1(01==OB OA ),,(,则||AB 等于( ))A (1 )B (2 )C (2 )D (522. 在ABC ∆中,M 是BC 边上的中点,则AC AB +等于( ))A (AM 21)B (AM )C (AM 2 )D (MA 23. 在平行四边形ABCD 中,AC 与BD 交于点M ,则CM AB +=( ))A (MB )B (MB )C (DB )D (BD24. .已知向量)3,2(1,6--==CD AC ),(,则向量=AD ( ))A ()2,4(- )B ()4,8( )C ()4,2(- )D ()4,8(--25.在矩形ABCD 中,=-==||,1||,3||BC BA BC AB 则 ( ))A (2 )B (3 )C (32 )D (426.已知向量a 与b 的夹角为060,且,2||,2||==b a 则b a ⋅=( ))A (2 )B (22 )C (2 )D (2127. 已知向量)(2,1=a ,)1,x b (=,若b a ⊥,则=x . 28.已知向量θθθtan ,),cos ,1(),2,(sin 则且b a b a ⊥=-=的值为( ))A (2 )B (2- )C (21 )D (21- 29.已知AD 是ABC ∆的一条中线,记向量b AC a AB ==,,则向量AD 等于( ))A ()(21b a +- )B ()(21b a + )C ()(21b a - )D ()(21a b -30. 已知向量)(2,1=a ,)1-,x b (=,若b a ⊥,则实数x 的值为( ))A (2- )B (1 )C (1- )D (231如图,在ABC ∆中,M 是BC 边上的中点,若AC AB +=AM λ,则实数λ= .考点4:三角函数的图象变换32.已知函数)7cos(31π+=x y 的图象为C ,为了得到函数)7cos(31π-=x y 的图象只需把C 上的所有的点( ))A (向右平行移动7π个单位长度 )B (向左平行移动7π个单位长度)C (向右平行移动72π个单位长度 )D (向左平行移动72π个单位长度 33.为了得到函数x y 31sin =的图象,只需把函数x y sin =图象上所有的点( ))A (横坐标伸长到原来的3倍,纵坐标不变 )B (横坐标缩小到原来的31倍,纵坐标不变)C (纵坐标伸长到原来的3倍,横坐标不变 )D (纵坐标缩小到原来的31倍,横坐标不变34.要得到函数)3sin π+=x y (的图象,只需将函数x y sin =的图象( ))A (向左平移6π )B (向右平移6π )C (向左平移3π )D (向右平移3π 35. 为了得到函数)(63sin π+=x y 的图象,只需把函数)(6sin π+=x y 图象上所有的点MCBA( ))A (横坐标伸长为原来的3倍,纵坐标不变 )B (横坐标缩短为到原来的31倍,纵坐标不变)C (纵坐标伸长为原来的3倍,横坐标不变 )D (纵坐标缩短到原来的31倍,横坐标不变36.已知函数R x x x y ∈+=,cos sin . (1)求函数)(x f 的最小正周期和最大值;(2)函数)(x f y =的图象可由x y sin =的图象经过怎样的变换得到?考点5:算法之程序框图、算法语言 37.已知一个算法,果是( ))A (7 )B (9 )C (11 )D (1338.当输入的x 值为3时,下边的程序运行的结果等于( ))A (3- )B (3 )C ( )D (39.已知一个算法,其流程图如下图所示,若输入4,3==b a ,则输出的结果是 .x 输出值是 . 其流程图如图,,则输出的结果是( ))A (10 )B (11 )C (8 )D (942. 已知一个算法,其流程图如图,则输出的结果是( ))A (2 )B (5 )C (25 )D (2643. 已知一个算法,其流程图如图,则输出的结果是( )3)A ( )B (1143)C ( )D (17144. 一个算法的程序框图如图,当输入的x 的值为2-时,输出的y 值为( ))A (2- )B (1 )C (5- )D (345.运行右图的程序框图,则输出a 的值是图,若输的值考点6:直线的方程、直线与直线的位置关系47.过点)3,1(-P ,且平行于直线0142=+-y x 的直线方程为)B (0142=+-y x)C (072=+-y x )D (052=--y x48.已知直线的点斜式方程是21-=+x y ,那么此直线的斜率为( ))A (41)B (31 )C (21)D (149.直线01=++y x 的倾斜角是( ))A (1- )B (4π-)C (4π)D (43π 50.斜率为,2-在y 轴的截距为3的直线方程是( ))A (032=++y x )B (032=+-y x )C (03-2=-y x )D (032=-+y x51.直线012=+-y x 与直线)1(21+=-x y 的位置关系是( ))A (平行 )B (垂直 )C (相交但不垂直 )D (重合52.直线l 过点)2,3(且斜率为4-,则直线l 的方程是( ))A (0114=-+y x )B (0144=-+y x )C (054=+-y x )D (0104=-+y x53.经过点)0,3(B ,且与直线052=-+y x 垂直的直线方程是( ))A (062=--y x )B (032=+-y x )C (032=-+y x )D (032=--y x54.已知直线l 过点)7,0(,且与直线24+-=x y 平行,则直线l 的方程为( ))A (74--=x y )B (74-=x y )C (74+-=x y )D (74+=x y考点7:圆的方程55.过点)2,2(-M 以及圆0522=-+x y x 与圆222=+y x 交点的圆的方程是( ))A (02141522=--+x y x )B (02141522=+-+x y x )C (02141522=-++x y x )D (02141522=+++x y x56.圆03222=--+x y x 的圆心坐标及半径为( ))A (20,1-)与( )B (30,1)与( )C (20,1)与( )D (30,1-)与( 57.圆心为点)0,1(,且过点)1,1(-的圆的方程为 . 考点8:直线与圆的位置关系58.已知直线l 过点点)3,4(P ,圆25:22=+y x C ,则直线l 与圆的位置关系是( ))A (相交 )B (相切 )C (相交或相切 )D (相离59. 已知直线l 过点点)1,3(P ,圆4:22=+y x C ,则直线l 与圆C 的位置关系是( ))A (相交 )B (相切 )C (相交或相切 )D (相离60.直线0=-y x 被圆122=+y x 截得的弦长为( ))A (2 )B (1 )C (4 )D (261.下列直线方程中,不是圆522=+y x 的切线方程的是( ))A (032=++y x )B (052=--y x )C (052=+-y x )D (052=+-y x62.已知圆C :02422=+-++a y x y x ,直线03:=--y x l ,点O 为坐标原点. (1)求过圆C 的圆心且与直线l 垂直的直线m 的方程;(2)若直线l 与圆C 相交于点M 、N 两点,且ON OM ⊥,求实数a 的值.:x ε直线1:=x l 与圆C :0222=-+y y x 的位置关系是 .63.已知圆522=+y x 与直线02=--m y x 相交于不同的A 、B 两点,O 为坐标原点. (1)求m 的取值范围;(2)若OB OA ⊥,求实数m 的值.64.已知圆C :012822=+-+y y x 和直线02:=++m y mx l . (1)当m 为何值时,直线l 与圆C 相切,(2)若直线l 与圆C 相交于A 、B 两点,且22||=AB ,求直线l 的方程.考点9:几何概型64.一个长、宽分别为3和1的长方形内接于圆(如下图),质地均匀的粒子落入图中(不计边界),则落在长方形内的概率等于( ))A (π3 )B (3π)C (π43)D (π 65.在如图以O 为中心的正六边形上随机投一粒黄豆,则这粒黄豆落到阴影部分的概率为( ))A (61)B (31)C 21 )D (3266.如图,在边长为2的正方形内有一内切圆,现从正形内任取一点P,则点P 在圆内的概率为( ))A(44π- )B (π4)C (4π)D (πAB AD 31=,67.如图,在ABC ∆中,D 是AB 边上的点,且连接CD .现随机丢一粒豆子在ABC ∆内,则它落在阴影部分的概率是( ))A (41)B (31)C (21 )D (3268.如图,在半径为1的圆中有封闭曲线围城的阴影区域,若在圆中随机撒一粒豆子,它落在阴影区域内的概率为π41,则阴影区域的面积为( ))A (43 )B (41 )C (π41 )D (π4369.如图,向圆内随机掷一粒豆子(豆子的大小忽略不计),则豆子恰好落在圆的内接正方形中的概率是( ))A (π3 )B (π2)C (π4 )D (5π71.已知两个同心圆的半径之比为1:2,若在大圆内任取一点P ,则点P 在小圆内的概率为( )(第66题)(第67题)(第68题))A (21 )B (31 )C (41)D (81考点10:古典概型72.甲、乙等5名同学按任意次序排成一排,甲站中间且乙不站两边的概率为( ))A (201 )B (101 )C (52 )D (54 73.先后抛掷一枚质地均匀的硬币,则两次均正面向上的概率为( ))A (41 )B (21 )C (43 )D (174.同时抛掷两枚质地均匀的硬币,则两枚硬币均正面向上的概率为( ))A (41 )B (21 )C (43 )D (175.三个函数:x y x y x y tan ,sin ,cos ===,从中随机抽出一个函数,则抽出的函数是偶函数的概率为( ) )A (31 )B (0 )C (32 )D (176.一个口袋中装有大小相同、质地均匀的两个红球和两个白球,从中任意取出两个,则这两个球颜色相同的概率是 .77.将一枚质地均匀的骰子抛掷1次,出现的点数为偶数点的概率为( ))A (1 )B (21 )C (31 )D (6178.有甲、乙、丙、丁4个同学,从中任选2个同学参加某项活动,则所选2人中一定含有甲的概率为 .79.同时掷两枚质地均匀的硬币,则至少有一枚出现正面的概率是( ))A (1 )B (43 )C (21 )D (4180.小王从装有2双不同手套的抽屉里,随机地取出2只,取出的手套都是左手的概率是( ))A (61 )B (52)C (51 )D (31考点11:函数的零点81.函数23)(x x f x -=的零点所在的区间是( ))A ()1,0( )B ()0,1(- )C ()2,1( )D ()1,2(--82.函数1)(-=x x f 的零点是( ))A (0 )B (1- )C ()0,0( )D ()0,1(83.函数1+=x y 的零点是( ))A (0 )B (1 )C ()0,0( )D ()0,1(-84. .函数632)(-+=x x f x 的零点所在的区间是( ))A ()1,0( )B ()2,1( )C ()3,2( )D ()0,1(-85.若函数a x x x f 32)(2++=存在零点,则实数a 的取值范围是( ))A ()31,(-∞ )B (),31(+∞ )C ( ⎝⎛⎥⎦⎤∞-31, )D ()⎢⎣⎡∞+,3186.如果二次函数3)(2+++=m mx x x f 有两个不同的零点,那么实数m 的取值范围是( ))A (),6()2,(+∞⋃--∞ )B ()6,2(- )C ()6,2( )D ([]6,2-87.函数1ln )(-=x x f 的零点所在的区间为( ))A ()3,2( )B ()4,3( )C ()1,0( )D ()2,1(88.下列图象表示的函数能用二分法求零点的是( )考点12:三角函数89.计算:0225sin 的值为( ))A (22 )B (22- )C (23-)D (21- 90.已知函数2)cos (sin 2123x x y --=. (1)求它的最小正周期和最大值; (2)求它的递增区间.90.在ABC ∆中,已知21cos =A ,则=A ( ) )A (030 )B (060 )C (0120 )D (015091.若,2tan =α则α2cos 等于( ))A (53- )B (53 )C (54- )D (5492.计算:000015cos 45cos 15sin 45sin -的值为 . 93.已知函数,1cos sin 2)(-=x x x f (1)求)4(πf 的值及)(x f 的最小正周期;(2)求)(x f 的最大值和最小值.94.下列函数中,以2π为最小正周期的是( ) 2sin)x y A =( )B (x y sin = )C (x y 2sin = )D (x y 4sin = 95.花简=-)sin(x π 96.已知函数x x x f 22sin cos )(-=. (1)求)4(πf 的值及)(x f 的最大值;(2)求)(x f 的递减区间.97. 若3tan =θ,则θ2cos 等于( ))A (54)B (53 )C (54- )D (53-98.已知扇形的圆心角为6π,弧长为32π,则该扇形的面积为 .99.已知)2,0(),cos ,(sin ),1,1(π∈==x x x b a(1)若b a //,求x 的值;(2)若函数b a x f ⋅=)(,当x 为何值时,)(x f 取得最大值,并求出这个最大值..100:已知函数x x f cos )(=,则下列等式正确的是( ))A ()()(x f x f =-π )B ()()(x f x f =+π)C ()()(x f x f =- )D ()()2(x f x f -=-π 101.=0390cos ( ))A (23 )B (22 )C (21 )D (21- 102. 已知函数).62sin(2)(π+=x x f .(1)求函数)(x f 的最小正周期及函数)(x f 取最小值时x 的取值集合;(2)画出函数)(x f 在区间⎥⎦⎤⎢⎣⎡-121112ππ,上的简图.103.=-02025.22sin 5.22cos ( ))A (22 )B (21 )C (22-)D (21- 104.已知α为第二象限的角,53sin =α,则=αtan ( ))A (43 )B (34 )C (34- )D (43- 105.若x x f 3cos )(cos =,那么)70(sin 0f 的值为 ))A (23-)B (23 )C (21- )D (21106.已知α为第二象限的角,54sin =α,则α2sin 的值为 . 107.已知函数.,cos sin )(R x x x x f ∈+= (1)求函数)(x f 的最小正周期和最大值;(2)函数)(x f y =的图象可由x y sin =的图象经过怎样的变换得到? 108.4cos4sinππ的值为( ))A (21)B (22 )C (42 )D (2109.已知函数)221cos(2)(π+=x x f ,则)(x f 是 ( ))A (最小正周期为π4的奇函数)B (最小正周期为π4的偶函数 )C (最小正周期为2π的奇函数)D (最小正周期为2π的奇函数 110.已知0tan <x ,且0cos sin >-x x ,那么角x 是( ))A (第一象限的角 )B (第二象限的角)C (第三象限的角 )D (第四象限的角考点12:解三角形(正弦定理、余弦定理、三角形面积公式)111.在ABC ∆中,B A ∠∠、、C ∠所对的边长分别是53、、7,则C ∠cos 的值为( ))A (3015 )B (3015- )C (42215 )D (70359112.在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,若0135=A ,030=B ,2=a ,则b 等于( ))A (1 )B (2 )C (3 )D (2113. 在ABC ∆中,B A ∠∠、、C ∠所对的分别是a 、b 、c ,其中4=a ,3=b ,060=∠C ,则ABC ∆的面积为( ))A (3 )B (33 )C (6 )D (36114. 在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,且030=A ,045=B ,3=a ,则b 等于( ))A (2 )B (22 )C (23 )D (24115. 在ABC ∆中,ac c a b 3222=--,则∠B 的大小为( ))A (030 )B (060 )C ( 0120 )D (0150116.在锐角ABC ∆中,内角内角A 、B 、C 的对边分别为a 、b 、c ,若045=C ,54=b ,552sin =B . (1)求c 的值; (2)求A sin 的值117. 在ABC ∆中,a 、b 、c 分别是角A 、B 、C 所对的边,且2=a ,2=b ,045=A ,则角B 等于( ))A (030 )B (060 )C (030或0150 )D (060或0120118. 在ABC ∆中,内角内角A 、B 的对边分别为a 、b ,若060=A ,3=a ,030=B ,则b = . 119. 在ABC ∆中,(1)若三边长a 、b 、c 依次成等差数列,4:3sin :sin =B A ,求角C 的度数; (2)若22)(c a b BC BA --=⋅,求B cos 的值.考点13:线性规划120.已知实数x 、y 满足⎪⎩⎪⎨⎧≥+≥≥3300y x y x ,则y x Z +=的最小值等于( ))A (0 )B (1 )C (2 )D (3121.若实数x 、y 满足约束条件⎪⎩⎪⎨⎧≥+≤≤02-221y x y x ,则y x Z 3+=的最大值等于 .122. 若实数x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥+≤0203y x y x x ,则y x Z -=2的最小值是 .123.已知x 、y 满足条件⎪⎩⎪⎨⎧≥-+≤≤0111y x y x ,则y x Z +=3的最大值为 .124. 若实数x 、y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+02y y x y x ,则目标函数y x Z -=2的最大值是 .125. 已知x 、y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+001y x y x ,则x y Z -=的最大值为( ))A (1 )B (0 )C (1- )D (2-126.两个非负实数x 、y 满足33≤+y x ,则y x Z +=的最小值为 . 考点14:函数(三要数、奇偶性、单调性、基本初等函数及其应用) 127.函数31)(-+=x x x f 的定义域是( ))A ([)+∞-,1 )B ((]1,-∞- )C ([)+∞,3 )D ([]3,1- 128.若函数3)12)(x m x f -=(是冥函数,则=m . 129.关于x 的二次函数m x m mx x f 41)1(2)(2+++=的图象与x 轴没有公共点,则m 的取值范围是 (用区间表示).130.一个圆柱形容器的底部直径是cm 6,高是cm 10,现以每秒s cm /2的速度向容器内注入某种溶液.(1)求容器内的溶液的高度x 关于注入溶液的时间ts 的函数关系; (2)求此函数的定义域和值域.131.设3.055,3.0,1===c b a ,则下列不等式中正确的是( ))A (c b a >> )B (c a b >> )C (b a c >> )D (b c a >>132.已知函数||)(x x f =,则下列说法正确的是( ) )A ()(x f 是奇函数,且在),(∞+0上是增函数 )B ()(x f 是奇函数,且在),(∞+0上是减函数 )C ()(x f 是偶函数,且在),(∞+0上是增函数 )D ()(x f 是偶函数,且在),(∞+0上是减函数 133.函数)10(log )(≠>=a a x x f a 且在区间[]8,2上的最大值为6,则=a . 134.某城市有一条长为km 49的地铁新干线,市政府通过多次价格听证,规定地铁运营公司按以下函数关系收费,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<≤<≤<≤<≤<≤<=)4936(,7)3625(,6)2516(,5)169(,4)94(,3)40(,2x x x x x x y ,其中y 为票价(单位:元),x 为里程(单位:km 元). (1) 某人若乘坐该地铁km 5,该付费多少元?(2) 甲、乙两人乘坐该地铁分别为km 25、km 49,谁在各自的行程内每km 得价格较低?135.已知函数3)(x x f -=,则下列说法中正确的是( ) )A ()(x f 为奇函数,且在),(∞+0上是增函数 )B ()(x f 为奇函数,且在),(∞+0上是减函数 )C ()(x f 为偶函数,且在),(∞+0上是增函数 )D ()(x f 为偶函数,且在),(∞+0上是减函数 136.函数x y x 2log 2+=在区间[]4,1上的最大值是 .137.某商场的一种商品每件进价为10元,据调查知每日销售量m (件)与销售单件x (元)之间的函数关系为,70x m -=7010≤≤x .设该商场日销售这种商品的利润为元)(y . (单件利润=销售单价-进价;日销售利润=单件利润⨯日销售量) (1)求函数)(x f y =的解析式;(2)求该商场销售这种商品的日销售利润的最大值.138.偶函数)(x f 在区间[]1,2--上单调递减,则函数)(x f 在区间[]2,1上( ))A (单点递增,且有最小值)1(f )B (单点递增,且有最大值)1(f )C (单点递减,且有最小值)2(f )D (单点递减,且有最大值)2(f139.函数)3(log )5.0-=x x f (的定义域是 ( ))A ([)+∞,4 )B ((]4,∞-)C (()+∞,3)D ((]4,3140.在直角梯形ABCD 中,DC AB //,BC AB ⊥,且,2,4===CD BC AB 点M 为线段AB 上的一动点,过点M 作直线AB a ⊥.令x AM =,记梯形位于直线a左侧部分的面积)(x f S =.(1)求函数)(x f 的解析式; (2)作出函数)(x f 的图象.141.已知函数2)(+=mx x f ,当[]2,0∈x 时,0)(>x f 都成立,则m 的取值范围是 .142.下列函数中,为偶函数的是 ( ))A (x y lg = )B (2x y = )C (3x y = )D (1+=x y143.函数 x x f )21()(=在区间[]1,2--上的最小值为 .144.已知函数⎩⎨⎧<-≥+=.0),4(,0),4()(x x x x x x x f 则)(x f 的奇偶性为( )aDCBMA)A (奇函数 )B (偶函数 )C (既是奇函数又是偶函数 )D (非奇非偶函数145.已知函数⎩⎨⎧<+-≥-=1,11,1)(x x x x x f .(1)在给定的直角坐标系中作出函数)(x f 的图象;(2)求满足方程4)(=x f 的x 的值.146.54log 5log 3log 232+⋅的值为( ) )A (25 )B (52 )C (2 )D (21147.已知)(x f 是定义在R 上的偶函数,且在区间(]0,∞-上为减函数,则)1(f 、)2(-f 、)3(f 的大小关系是( ))A ()3()2()1(f f f >-> )B ()3()1()2(f f f >>- )C ()2()3()1(-<<f f f )D ()3()2()1(f f f <-<148. 已知函数⎩⎨⎧≥-<=.5),1(,5,2)(x x f x x f x ,那么)6(f 的值为 .149.2016年,某厂计划生产25吨至45吨的某种产品,已知生产该产品的总成本y (万元)与总产量x (吨)之间的关系可表示为.902102+-=x x y (1)求该产品每吨的最低生产成本;(2)若该产品每吨的出厂价为6万元,求该厂2016年获得利润的最大值.150.下列函数中,在区间)0(∞+,上为增函数的是( ))A (x⎪⎭⎫⎝⎛31 )B (x y 3log = )C (x y 1= )D (x y cos =151.定义:对于函数)(x f ,在使M x f ≥)(成立的所有常数M 中,我们把M 的最大值叫做函数)(x f 的下确界,例如函数x x x f 4)(2+=的下确界是4-,则函数)0(||2)(2≠+=x x x x g 的下确界是 ( ))A (2- )B (22 )C (2 )D (23-152.已知函数)0,()(≠+=a b a bax xx f 为常数,且满足条件:x x f f ==)(,1)2(有唯一解. (1)求函数)(x f 的解析式; (2))]3([-f f 的值.考点15:数列(等差数列、等比数列及其简单应用)153.已知等比数列{}n a 中, 2,1641=-=a a ,则数列{}n a 的前4项的和4S 等于( ))A (20 )B (20- )C (10 )D (10-154.已知数列{}n a 中,)2(43,1,322121≥-===--n a a a a a n n n . (1)求3a 的值;(2)证明: {}1--n n a a ()2≥n 是等比数列; (3)求数列{}n a 的通项公式.155.已知数列{}n a 满足:)2(14,2111≥+==-n a a a n n . (1)求321a a a ++;(2)令31+=n n a b ,求证数列{}n b 是等比数列;(3)求数列{}n b 的前n 项和n T .156.已知数列{}n a 是公比为实数的等比数列, 且9,151==a a ,则3a 等于( ))A (2 )B (3 )C (4 )D (5157. .已知正项数列{}n a 的前n 项和为n S , 且)()1(41*2N n a S n n ∈+=. (1)求21,a a ;(2)求证:数列{}n b 是等差数列;(3)令19-=n n a b ,问数列{}n b 的前多少项的和最小?最小值是多少?158. 已知递增等比数列{}n a 满足:14432=++a a a 且13+a 是42,a a 的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的前n 项和为n S ,求使63<n S 成立的正整数n 的最大值.159.已知数列{}n a 的首项12,111+==+nn a a a 又,则这个数列的第四项是( ) )A (711 )B (511 )C (1121 )D (6 160.已知等比数列{}n a 中,16,241==a a . (1)求公比q ;(2)若数列{}n b 为等差数列,且满足332285,1a b a b =-=,求数列{}n b 的通项公式;(3求数列{}n n b a ⋅的前n 项和n T .161.已知等差数列{}n a 中,6,421==a a ,则=4S ( ))A (18 )B (21 )C (28 )D (40162.设等比数列{}n a 的前n 项和为n S ,已知14,231==S a ,若0>n a ,则公比=q . 163. 若等差数列{}n a 中,6,251==a a ,则公差d 等于 ( ))A (3 )B (2 )C (1 )D (0164.已知数列{}n a 中,为常数)m c m ca a a n n ,(,311+==+. (1)当1,1==m c 时,求数列数列{}n a 的通项公式n a ; (2)当1,2-==m c 时,证明:数列数列{}1-n a 为等比数列; (3在(2)的条件下,记n n n n b b b S a b +⋅⋅⋅++=-=21,11,证明:1<n S .165.设等差数列{}n a 前n 项和为n S ,若58215a a a -=+,则=9S ( ))A (18 )B (36 )C (45 )D (60166. 在等比数列{}n a 中,已知0>n a ,,1082=a a 则=5a .考点16:基本不等式(①ab b a 2≥+;②22⎪⎭⎫⎝⎛+≤b a ab )167.若,0<x 则xx 1+的最大值为( ) )A (4- )B (3- )C (2- )D (1-168.已知,0>ab 则baa b +的最小值为( ) )A (1 )B (2 )C (2 )D (22169.若正数a 、b 满足8++=b a ab ,则ab 的取值范围是( ))A (]16,1( )B ()16,4[ )C (]16,4[ )D (),16[+∞考点17:抽样方法、统计、进位制、秦九韶算法、辗转相除法(更相减损术)170.某单位有甲、乙、丙三个部门,分别有职员27人、63人、和81人,现按分层抽样的方法从各部门中抽取组建一个代表队参加上级部门组织的某项活动;其中乙部门抽取7人,则该单位共抽取 人.171.甲、乙两位射击选手10次射击所的成绩,经计算得各自成绩的标准差分别为92.1,29.1==乙甲和S S ,则 成绩稳定.172.化二进制数为十进制数:=)(2101 .173.如图是运动员在某个赛季得分的茎叶图,则该运动员的平均分为 .174.如图是运动员在某个赛季得分的茎叶图,则该运动员得分的中位数是( ))A (2 )B (3 )C (22 )D (23175.已知1)(2345+++++=x x x x x x f ,用秦九韶算法计算)3(f 的值时,首先计算的最内层括号内一次多项式1v 的值是( ))A (1 )B (2 )C (3 )D (4176.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n 的样本,其中A 种型号产品有16件,那么此样本的容量=n .177.已知一组数据如图所示,则这组数据的中位数是( ) )A (5.27 )B (5.28 )C (27 )D (28178.样本数据:2,4,6,8,10的标准差为( ))A (40 )B (8 )C (102 )D (22179.某学校学生高一年级有600人,高二年级有400人,高三年级有200人,现采用分层抽样的方法从这三个年级中抽取54人,则从高三年级抽取的学生人数为 人. 180.已知某个样本数据的茎叶图如下,则该样本数据的平均数 是 .181.如图是某个学校举行歌唱比赛时七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和去掉一个最低分后,所剩数据的中位数和平均数依次是( ) )A (86,87 )B (85,83 )C (85,88)D (86,82182.把十进制数34化为二进制数位( ))A (101000 )B (100100 )C (100001 )D (100010183.某大学有A 、B 、C 三个不同校区,其中A 校区有4000人,B 校区有3000人,C 校区有2000人,采用分层抽样的方法,从中抽取900人参加一项活动,则A 、B 、C 校区分别抽取( ))A (人人,人200300,400 )B (人人,人250300,350 )C (人人,人350300,250 )D (人人,人400300,200 184.某校有男生450人,女生500人,现用分层抽样的方法从全校学生中抽取一个容量为95的样本,则抽出的男生人数是( ))A (45 )B (50 )C (55 )D (60185.有一个容量为100的样本,其频率分布直方图如图所示.根据样本的频率分布直方图可得,样本数据落在区间]12,10[内的频数是( ))A (9 )B (18)C (27 )D (38186.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队的平均每场进球数为 3.2,全年比赛进球个数的标准差为3;乙队的平均每场进球数为1.8,全年比赛进球个数的标准差为0.3,.下列说法正确的个数为( )①甲队的技术比乙队好 ②乙队发挥比甲队稳定 ③甲队的表现时好时坏)A (0 )B (3 )C (2 )D (1187.某人从一鱼池中捕得120条鱼,做了记号之后,再放回池中,经过一定时间后,再从该鱼池中捕得100条鱼,结果发现有记号的鱼为10条(假定鱼池中鱼的数量既不减少,也不增加),则鱼池中大约有鱼( ))A (条120 )B (条1000 )C (条130 )D (条1200188. 把二进制数)(2101化为十进制数位 . 考点18:立体几何(线线、线面、面面关系)189.如图,在正方体1111D C B A ABCD 中,E 、F 分别为1AD 、1CD 的中点.(1)求证:ABCD EF平面//;(2)求两异面直线BD 与1CD 所成角的大小.FED 1C 1B 1A 1DCA190.如图,在长方体1111D C B A ABCD -中,,1==AD AB 21=AA .(1)求证:ABCD C A 平面//11;(2)求1AC 与平面ABCD 所成角的正切值.191.如图所示,在三棱椎ABC P -中,E 、F 分别为AC 、BC 的中点.(1)求证:PAB EF 平面//;(2)若CB CA PB PA ==,,求证:PC AB ⊥.192. 如图,在正方体1111D C B A ABCD -中,E 、F 分别为1DD 、1CC 的中点.(1)求证:1BD AC ⊥;(2)1//BFD AE 平面.193. 如图,在正方体1111D C B A ABCD -中,E 为1DD 的中点.(1)证明:AC BD ⊥1;D 1C 1B 1A 1DCBAFED 1C 1B 1A 1DCAED 1C 1B 1A 1DCP(2)证明:ACE BD 平面//1.194.如图,AB 是ʘO 所在平面外一点,PA 垂直与ʘO 所在的平面,且,10==AB PA 设点C 为ʘO 上异于A 、B 的任意一点. (1)求证:PAC BC 平面⊥;(2)若6=AC ,求三棱锥PAB C -的体积.195.如图,在四棱锥ABCD P -中,底面是正方形,ABCD PD 平面⊥,且AD PD =.(1)求证:CD PA ⊥;(2)求异面直线PA 与BC 所成角的大小.196. 如图,在正方体1111D C B A ABCD -中,E 、F 别为AD 、AB 的中点.(1)求证:11//D CB EF 平面; (2)求证:1111D CB C CAA 平面平面⊥.FED 1C 1B 1A 1D CBA。
2022年云南省高中学业水平考试数学考题分类汇编以及知识点穿插
云南省高中学业水平考试数学考题分类汇编(7月~1月)一、集合旳基本运算(并集、交集、补集) 知识点:1、并集:由集合A 和集合B 旳元素合并在一起构成旳集合,假如碰到反复旳只取一次。
记作:A ∪B2、交集:由集合A 和集合B 旳公共元素所构成旳集合,假如碰到反复旳只取一次记作:A ∩B3、补集:就是作差。
(注意端点与否选用)4、集合{}n a a a ,...,,21旳子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空旳真子有2n–2个.(n 为元素个数) 例题【.7题1】已知全集1,2,3U,集合1M ,则全集U 中M 旳补集为( ) A. {1} B.{1,2} C.{1,3} D.{2,3}【.1题1】设集合{1,2,3}M =,{1}N =,则下列关系对旳旳是( ) A.N M ∈ B. N M ∉ C. N M = D. N M ≠⊂【.7题1】已知全集{}5,4,3,2,1=U ,集合{}5,4=M ,则)(=M C UA. {}5B. {}5,4C. {}3,2,1D. {}5,4,3,2,1【.1题1】已知集合{1,3,4},{1,4,6}A B ==,那么A B =( ) A. {2,5} B. {1,3,4,6} C.{1,4} D. {2,3,5}【.7题1】已知全集U R =,集合{|2}A x x =>,则U C A =( ) A. {|1}x x ≤ B. {|1}x x < C. {|2}x x < D. {|2}x x ≤【.1题1】已知集合{}0,1,2,3M =,{}1,3,4N =,那么MN 等于( )A.{}0B.{}0,1C.{}1,3D.{}0,1,2,3,4二、已知几何体旳三视图求表面积,体积 知识点:1、长方体旳对角线长2222c b a l ++=;正方体旳对角线长a l 3=2、球旳体积公式: 334 R v π=; 球旳表面积公式:24 R S π= 3、柱体、锥体、台体旳体积公式:柱体V =S h (S 为底面积,h 为柱体高); 锥体V =Sh 31(S 为底面积,h 为柱体高)台体V =31(S ’+S S'+S )h (S ’, S 分别为上、下底面积,h 为台体高)例题:【.7题2】有一种几何体旳三视图如图所示,这个几何体是一种( ) A. 棱台 B.棱锥 C.棱柱D.圆台【.1题2】有一种几何体旳三视图如下图所示,这个几何体是一种( ) 主视图侧视图俯视图正视图1111111DC BA A.棱台 B.棱锥C.棱柱D.圆柱【.7题2】 如图所示,一种空间几何体旳正视图和侧视图都是全等旳等腰三角形,俯视图是一种圆,那么这个几何体是( )A.正方体B.圆锥C.圆柱D.半球【.1题2】某几何体旳正视图与侧视图边长为1旳正方形,且体积为1,则该几何体旳俯视图可以是( )【.7题2】已知某几何体旳直观图如右下图,该几何体旳俯视图为( )【.1题12】一种空间几何体旳正视图与侧视图为全等旳正三角形,俯视图是一种半径为1旳圆,那么这个几何体旳体积为( )A . 23π B . 2π C . 33π D . 3π三、向量运算(几何法则、数量积等)知识点:1、平面向量旳概念:()1在平面内,具有大小和方向旳量称为平面向量.()2向量可用一条有向线段来表达.有向线段旳长度表达向量旳大小,箭头所指旳方向表达向量旳方向.()3向量AB 旳大小称为向量旳模(或长度),记作AB . ()4模(或长度)为0旳向量称为零向量;模为1旳向量称为单位向量. ()5与向量a 长度相等且方向相反旳向量称为a 旳相反向量,记作a -. ()6方向相似且模相等旳向量称为相等向量.2、实数与向量旳积旳运算律:设λ、μ为实数,那么 (1) 结合律:λ(μa )=(λμ)a;(2)第一分派律:(λ+μ)a =λa +μa;(3)第二分派律:λ(b a +)=λa+λb .3、向量旳数量积旳运算律:(1) a ·b =b ·a(互换律);(2)(λa )·b = λ(a ·b )=λa ·b =a·(b λ);(3)(b a +)·c = a ·c +b ·c .4、平面向量基本定理:假如1e、2e是同一平面内旳两个不共线向量,那么对于这一平面内旳任历来量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e.不共线旳向量1e 、2e叫做表达这一平面内所有向量旳一组基底.5、坐标运算:(1)设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→数与向量旳积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点旳坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)6、平面两点间旳距离公式:(1) ,A B d =||AB AB AB =⋅=(2)向量a 旳模|a |: ||a = (3)、平面向量旳数量积:θcos →→→→⋅=⋅b a b a(4)、向量()()2211,,,y x b y x a ==→→旳夹角θ7、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x(2)、两个非零向量垂直 02121=+⇔⊥→→y y x x b a例题:【.7题3】设向量(1,0),(1,1)OA OB ==,则向量,OA OB 旳夹角为( ) A.30︒ B.45︒ C. 60︒ D.90︒【.7题4】ABC ∆中,M 是BC 边旳中点,则向量AM 等于( ) A.AB AC - B.1()2AB AC - C. AB AC + D. 1()2AB AC +【.1题3】已知向量)0,1(OA =,)1,1(OB =则|AB|等于( )A.1 C.2【.7题3】在平行四边形ABCD 中,AC 与BD 交于点M ,则=+CM AB ( ) cos θ=A. MBB. BMC. DBD. BD【.7题7】在ABC ∆中,M 是BC 旳中点,则AC AB +等于( )A.AM 21B.AMC.AM2 D .MA【.1题3】已知向量(6,1),(2,3)AC CD ==--,则向量AD =( )A. (4,2)-B. (8,4)C. (2,4)-D. (8,4)--【.1题9】在矩形ABCD 中,||3AB =,||1BC =,则||BA BC -=( )A. 2B. 3C.D. 4【.7题3】已知向量a 与b 旳夹角为60o ,且||2a =,||2b =,则a b ⋅=( )A. 2B.C. D.12【.7题18】已知向量(12)a =,,(1)b x =,,若a b ⊥,则x = .【.1题6】已知向量a =()sin ,2θ-, b =()1,cos θ,且a ⊥b ,则tan θ旳值为( )A .2B . 2-C . 12D . 12-【.1题15】已知AD 是ABC ∆旳一条中线,记向量AB =a ,AC =b ,向量AD 等于( )A . ()12a b -+ B . ()12a b + C . ()12a b - D . ()12a b --四、三角函数图像变换、周期性、单调性 知识点:1、特殊角旳三角函数值:2、同角三角函数基本关系式:1cos sin 22=+αα ααcos tan = 3、诱导公式:(奇变偶不变,符号看象限)1、 诱导公式一:2、 诱导公式二:3、诱导公式三:()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k ()()().tan tan ,cos cos ,sin sin αααααα-=-=--=- ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+4、诱导公式四:5、诱导公式五:6、诱导公式六:()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=- .sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+sin cos ,2cos sin .2πααπαα⎛⎫-= ⎪⎝⎭⎛⎫-= ⎪⎝⎭4、两角和与差旳正弦、余弦、正切:)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C : βαβαβsin sin cos cos )cos(+=-a)(βα+T :βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T :βαβαβαtan tan 1tan tan )tan(+-=-5、辅助角公式:sin cos a x b x +sin()x φ=+6、二倍角公式:(1)、α2S :αααcos sin 22sin =α2C :ααα22sin cos 2cos -=1cos 2sin 2122-=-=αα α2T :ααα2tan 1tan 22tan -=(2)、降次公式(降幂升角):(多用于研究性质)ααα2sin 21cos sin =212cos 2122cos 1sin 2+-=-=ααα212cos 2122cos 1cos 2+=+=ααα7、在ααααcot ,tan ,cos ,sin ====y y y y 四个三角函数中只有αcos =y 是偶函数,其他三个是寄函数。
云南省高中学业水平考试数学考题分类汇编以及知识点穿
A. B. C. D.
【2015.1题1】已知集合 ,那么 ()
A. B. C. D.
【2015.7题1】已知全集 ,集合 ,则 ()
A. B. C. D.
【2016.1题1】已知集合 , ,那么 等于()
A. B. C. D.
二、已知几何体的三视图求表面积,体积
知识点:
1、特殊角的三角函数值:
的角度
的弧度
—
—
2、同角三角函数基本关系式:
3、诱导公式:(奇变偶不变,符号看象限)
1、诱导公式一:2、诱导公式二:3、诱导公式三:
4、诱导公式四:5、诱导公式五: 6、诱导公式六:
4、两角和与差的正弦、余弦、正切:
: :
: :
: :
5、辅助角公式:
6、二倍角公式:(1)、 :
A.2 B. C. D.
【2015.7题18】已知向量 , ,若 ,则 .
【2016.1题6】已知向量a= ,b= ,且a b,则 的值为()
A.2B. C. D.
【2016.1题15】已知AD是 的一条中线,记向量 a, b,向量 等于()
A. B. C. D.
四、三角函数图像变换、周期性、单调性
【2015.7题2】已知某几何体的直观图如右下图,该几何体的俯视图为()
【2016.1题12】一个空间几何体的正视图与侧视图为全等的正三角形,俯视图是一个半径为1的圆,那么这个几何体的体积为()
A. B. C. D.
三、向量运算(几何法则、数量积等)
知识点:
1、平面向量的概念:
在平面内,具有大小和方向的量称为平面向量.
7、重要结论:(1)、两个向量平行: ,
2022年云南省普通高中学业水平考试数学试卷
云南省7月一般高中学业水平考试数学试卷考试用时100分钟,必须在答题卡上指定位置按规定要 求作答,答在试卷上一律无效. 参照公式:球旳表面积公式:24S R π=,体积公式:343V R π=,其中R 表达球旳体积. 柱体旳体积公式:V Sh =,其中S 表达柱体旳底面面积,h 表达柱体旳高. 锥体旳体积公式:13V Sh =,其中S 表达锥体旳底面面积,h 表达锥体旳高. 假如事件A 、B 互斥,那么()()()P A B P A P B =+.选择题(共51分)一、选择题:本大题共17个小题,每题3分,共51分。
在每题给出旳四个选项中,只有一项符合题目规定,请在答题卡对应旳位置上填涂。
1.设集合M={1,2,3,4,5}集合N={2,4,6}则M ∩N= ( )A.{2,4}B.{4}C.{1,2,3}D.{2}2.下图像表达旳函数能用二分法求零点是DCBA主视左视图3.若一种几何体旳三视图如图所示,则这个几何体可以是 ( )A.圆柱B.空心圆柱C.圆D.圆锥 4.线性回归方程∧∧∧+=ax b y 表达旳直线必然通过定点( )A.(0,0)B.(x ,0)C.(0,y )D.()y x ,5.4cos 4sin ππ 旳值为( )A.21 B.22 C.42D. 26.已知直线l 过点)7,0(,且与直线24+-=x y 平行,则直线l 旳方程为 ( )A.74--=x yB.74-=x yC.74+-=x yD.74+=x y7.已知向量a =(1,2) ,b =(x ,-1) 若a ⊥b , 则实数x 旳值为 ( )A. 2B. -2C. -21D.218.已知函数x x f cos )(=,则下列等式对旳旳是 A.)()(x f x f =-π B.)()(x f x f =+π俯视C.)()(x f x f =-D.)()2(x f x f -=-π9.下列函数中,在区间(0,∞+)上为增函数旳是 ( )A.xy ⎪⎭⎫⎝⎛=31 B.x y 3log = C.x y 1= D.1+-=x y10.已知实数x ,y 满足约束条件 ⎪⎩⎪⎨⎧≥≥=+001y x y x ,则x y z -=旳最大值是A.1B. 0C. -1D.211.甲、乙两支曲棍球队在去年旳国际比赛中,甲队旳平均每场进球数为3.2,整年比赛进球个数旳原则差为3;乙队旳平均每场进球数为1.8,整年比赛进球个数旳原则差为0.3.下列说法对旳旳个数为 ①甲队旳技术比乙队好 ②乙队发挥比甲队稳定 ③甲队旳体现时好时坏 A.0 B.3 C.2 D.112.某人从一鱼池中捕得120条鱼,做了记号后再放回池中,通过一段时间后,再从该鱼池中捕得100条鱼,通过发既有记号旳鱼有10条(假定该鱼池中鱼旳数量既不减少也不增长)则池中大鱼约有A.120条B.1000条C.130条D.1200条13.已知tan <x 且cos sin >-x x ,那么x是( )A.第一象限旳角B.第二象限旳角C.第三象限旳角D.第四象限旳角14.设等差数列{}n a 旳前n 项和为n s ,若58215a a a -=+,则9s =( )A.18B.36C.45D.6015.小王从装有2双不一样手套旳抽屉里,随机地取出2只,取出旳手套都是左手旳概率是 ( ) A.61B.52C.51 D.3116.已知函数)221cos(2)(π+=x x f 则)(x f 是( )A.最小正周期为π4旳奇函数B.最小正周期为π4旳偶函数C.最小正周期为2π旳奇函数D.最小正周期为2π旳偶函数17.定义:对于函数)(x f ,在使M x f ≥)(成立旳所有常数M 中,我们把M 旳最大值叫做函数)(x f 旳下确界,例如函数x x x f 4)(2+= 旳下确界是4-,则函数()0||2)(2≠+=x x x x g 旳下确界是( ) A.-2B. 22C.2D.23- 非选择题(共49分)二、 填空题:本大题共5个小题,每题4分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
7
33. 为了得到函数 y sin 1 x 的图象,只需把函数 y sin x 图象上所有的点( ) 3
( A) 横坐标伸长到原来的 3 倍,纵坐标不变
( B) 横坐标缩小到原来的 1 倍,纵坐标不变 3
( C) 纵坐标伸长到原来的 3 倍,横坐标不变
( D) 纵坐标缩小到原来的 1 倍,横坐标不变 3
结束
开始
a1
a a2 1
否
a 20 ?
是
开始 1
a 2
(第 41 题)
43. 已知一个算 法,其流程图如 图,则输出的结果
a 4a 1
是(
)( A)3
( B) 11
否
a 40 ? ( C )43
是
输出 a
(D ) 171
输出 a
结束 (第 42 题)
结束 (第 43 题)
第 7 页 共 34 页
7
44. 一个算法的程序框图如图, 当输入的 x 的值为 2 时,输出的 y 值为( )
输入 x
x 3?
是
y 2x 1
否
yx
输出 y
结束 (第 44 题)
结束 (第 46 题)
考点 6:直线的方程、直线与直线的位置关系 47. 过点 P( 1,3) ,且平行于直线 2x 4y 1 0 的直线方程为(
(A) 2 x y 5 0
( B) 2x 4 y 1 0
(C) x 2y 7 0
(D) x 2y 5 0
.
考点 8:直线与圆的位置关系 58. 已知直线 l 过点点 P(4,3) ,圆 C : x 2 y 2 25 ,则直线 l 与圆的位置关系是
( A) 棱台 正视图
( B) 棱椎
俯视图
( C) 棱柱
)
侧视图
( D) 圆台
11. 有一个几何体的三视图如下图所示,这个几何体是一个(
)
( A) 棱台
( B) 棱椎 ( C) 棱柱
正视图
侧视图
( D) 圆椎
12. 如图所示,一个空间几何体的正视图和侧视图都 俯视图
是全等的等腰三角形, 俯视图是一个圆, 那么这个几
.
40. 运行如图的程序, x 输出值是
.
x6
x x 10
PRINTx
END
(第 40 题)
41. 已知一个算法,其流程图如图, ,则输出的
结果是( )
开始
x0 x x1
( A) 10
( B) 11
(C) 8
(D ) 9
42. 已知一个算法,其流程图如图,则输出的 结果是( )
否
x 9?
是
输出 x
( A) 2 ( B) 5 ( C ) 25 ( D ) 26
)
(A) 2
( B) 2 2
(C) 2
(D) 1 2
27. 已知向量 a (1,2), b (x,1) ,若 a b ,则 x
.
28. 已知向量 a (sin , 2), b (1,cos ), 且a b,则 tan 的值为(
)
(A) 2
( B) 2
(C) 1 2
( D) 1 2
29. 已知 AD 是 ABC 的一条中线,记向量 AB a, AC b ,则向量 AD 等于
)
(A). 1 ( B). 1,2
( C). 1,3
( D). 2,3
3. 已知集合 M 1,3,5 , N 1 , 则下列关系中正确的是
(
)
( A).N M ( B).N M
( C ).N M
(D)N M
4. 已知全集 U 1,2,3,4,5 , 集合 M 4,5 , 则 CU M
(
)
(A). 5 (B). 4,5
(A) 2
(B) 1
(C) 5
(D) 3
45. 运行右图的程序框图,则输出 .
46. 对于如图所示的程序框 图,若输入的 x 的值是 5 ,
则输出 y 的值
a 的值是
开始
a1
是
.
i1
开始
a 3a 1
输入 x x 3?
是
y 0.2x
输出y
ii2
是
否
i 5?
否
y 0.1x
输出 x
结束 (第 45 题)
开始
)
(A) 2 x y 3 0
( B) 2x y 3 0
(C) 2x y - 3 0
(D) 2x y 3 0
51. 直线 2x y 1 0 与直线 y 1 2( x 1) 的位置关系是(
)
( A) 平行 ( B) 垂直 ( C) 相交但不垂直 ( D ) 重合
52. 直线 l 过点 (3,2) 且斜率为 4 ,则直线 l 的方程是(
何体是(
)
正视图
侧视图
( A) 正方体 ( B) 圆椎
( C) 圆柱 ( D) 半球
俯视图
13. 某几何体的正视图与侧视图都是边长为 1 的正方形,且体积为 1,则该几何
体的俯视图可以是(
)
1
1
1
1
1
1
1
A
B
C
D
14. 已知某几何体的直观图如下图,则该几何体的俯视图为(
)
第 2 页 共 34 页
2
A
34. 要得到函数 y sin( x ) 的图象,只需将函数 y sin x 的图象(
)
3
( A) 向左平移
( B) 向右平移 (C) 向左平移
( D) 向右平移
6
6
3
3
35. 为了得到函数 y sin(3x )的图象,只需把函数 y sin( x )图象上所
6
6
有的点(
)
( A) 横坐标伸长为原来的 3 倍,纵坐标不变
(A) ( 4, 2 )
( B) (8,4)
(C ) ( 2,4)
(D ) ( 8, 4)
25. 在矩形 ABCD 中, | AB | 3,| BC | 1, 则 | BA BC | (
)
(A) 2
(B) 3
(C) 2 3
(D) 4
26. 已知向量 a 与 b 的夹角为 600 ,且 | a | 2,| b | 2, 则 a b =(
(
)
1
1
(A) ( a b) ( B) (a b)
2
2
1 ( C) ( a b)
2
1 (D) (b a)
2
30. 已知向量 a (1,2), b (x,-1) ,若 a b ,则实数 x 的值为(
第 4 页 共 34 页
)
4
(A) 2
( B)1
(C) 1
(D) 2
C
31 如图,在 ABC 中, M 是 BC 边上的中点,若
(C ). 1,2,3
(D). 1,2,3,4,5
5. 已知集合 A 1,3,4 , B 1,4,6 , ,那么 A B =
(
)
(A). 2,5 (B). 1,3,4,6
( C ). 1,4
(D ). 2,3,5
6. 已知全集 U R ,集合 A x | x 2 ,则 CU A
(
)
(A). x | x 1 ( B). x | x 1 (C). x | x 2
第 8 页 共 34 页
)
8
48. 已知直线的点斜式方程是 y 1 x 2 ,那么此直线的斜率为(
)
1 ( A)
4
( B) 1 3
( C) 1 2
49. 直线 x y 1 0 的倾斜角是(
)
(D) 1
(A) 1
(B) 4
(C) 4
50. 斜率为 2, 在 y 轴的截距为 3 的直线方程是(
( D) 3 4
俯视图
( D) 圆椎
Hale Waihona Puke 考点 3:平面向量(向量的加法、减法、数乘运算与坐标表示)
17. 在平行四边形 ABCD 中, AB AC CD (
)
( A) AC
( B) BD
( C) DB
( D) AD
18. 已知向量 a 、 b , | a | 4,| b | 3, a与b 的夹角等 60 0 ,则 ( a 2b) (a b) 等于
)
1 ( A) AM
( B) AM
2
( C) 2AM
(D ) MA
23. 在平行四边形 ABCD 中, AC 与 BD 交于点 M ,则 AB CM =( )
( A) MB ( B) MB (C) DB ( D) BD
24. . 已知向量 AC (6,1),CD ( 2, 3) ,则向量 AD (
)
( D). x | x 2
7. 已知集合 M 0,1,2,3 , N 1,3,4 , 那么 M N
(
)
(A). 0 (B). 0,1
(C). 1,3
(D). 0,1,2,3,4
8. 设集合 M 1,,2,3,4,5,6 , 集合 N 2,4,6 , 则 M N
(
)
(A). 2,4,5,6(B). 4,5,6(C ). 1,2,3,4,5,6
M
AB AC = AM ,则实数 =
.
A
B
考点 4:三角函数的图象变换
32. 已知函数 y
1 cos(x
) 的图象为 C ,为了得到函数 y
3
7
只需把 C 上的所有的点(
)
1 cos( x
3
) 的图象 7
( A) 向右平行移动 个单位长度 ( B) 向左平行移动 个单位长度( C) 向右平