详细版2018高中数学学业水平考试知识点
2018年高中数学高考知识点(史上最全)
自变量的实际意义确定其取值范围。 二、函数的解析式的常用求法: 1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法 三、函数的值域的常用求法: 1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接 法 四、函数的最值的常用求法: 1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法 五、函数单调性的常用结论: 1、若 f ( x), g ( x) 均为某区间上的增(减)函数,则 f ( x) g ( x) 在这个区间上也为增(减) 函数 2、若 f ( x) 为增(减)函数,则 f ( x) 为减(增)函数 3、若 f ( x) 与 g ( x) 的单调性相同,则 y f [ g ( x)] 是增函数;若 f ( x) 与 g ( x) 的单调性不 同,则 y f [ g ( x)] 是减函数。 4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。 5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图 象。 六、函数奇偶性的常用结论: 1、如果一个奇函数在 x 0 处有定义,则 f (0) 0 ,如果一个函数 y f ( x) 既是奇函数又 是偶函数,则 f ( x) 0 (反之不成立) 2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。 3、一个奇函数与一个偶函数的积(商)为奇函数。 4、两个函数 y f (u) 和 u g ( x) 复合而成的函数,只要其中有一个是偶函数,那么该复合 函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。 5 、 若 函 数 f ( x) 的 定 义 域 关 于 原 点 对 称 , 则 f ( x) 可 以 表 示 为
(详细版)2018年高中数学学业水平考试知识点
2018年高中数学学业水平测试知识点【必修一】一、 集合与函数概念并集:由集合A 和集合B 的元素合并在一起组成的集合,如果遇到重复的只取一次。
记作:A ∪B 交集:由集合A 和集合B 的公共元素所组成的集合,如果遇到重复的只取一次记作:A ∩B 补集:就是作差。
1、集合{}n a a a ,...,,21的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子有2n–2个.2、求)(x f y =的反函数:解出)(1y f x -=,y x ,互换,写出)(1x f y -=的定义域;函数图象关于y=x 对称。
3、(1)函数定义域:①分母不为0;②开偶次方被开方数0≥;③指数的真数属于R 、对数的真数0>.4、函数的单调性:如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<(>)f(x 2),那么就说f(x)在区间D 上是增(减)函数,函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质。
5、奇函数:是()()f x f x ,函数图象关于原点对称(若0x =在其定义域内,则(0)0f =); 偶函数:是()()f x f x ,函数图象关于y 轴对称。
6、指数幂的含义及其运算性质:(1)函数)10(≠>=a a a y x且叫做指数函数。
(2)指数函数(0,1)x y a a a =>≠当 01a <<为减函数,当 1a >为增函数;①r s r sa a a +⋅=;②()r srsa a =;③()(0,0,,)rr rab a b a b r s Q =>>∈。
(3)指数函数的图象和性质7、对数函数的含义及其运算性质:(1)函数log (0,1)a y x a a =>≠叫对数函数。
(2)对数函数log (0,1)a y x a a =>≠当 01a <<为减函数,当 1a >为增函数;①负数和零没有对数;②1的对数等于0 :01log =a ;③底真相同的对数等于1:1log =a a , (3)对数的运算性质:如果a > 0 , a ≠ 1 , M > 0 , N > 0,那么:①N M MN a a a log log log +=; ②N M NMa a alog log log -=; ③)(log log R n M n M a n a ∈=。
高中数学学业水平考知识点总结
高中数学学业水平考知识点总结
高中数学学业水平考试涵盖了广泛的数学知识点,以下是一些需要重点复习的知识点总结:
1. 函数与方程:
- 一次函数、二次函数、指数函数、对数函数、三角函数等的性质和图像
- 方程与不等式的解法:一元一次方程、一元二次方程、一元高次方程等的解法
- 常见函数的运算与复合
2. 空间几何:
- 点、直线、平面的性质与相互关系
- 三角形、四边形、圆的性质与相互关系
- 空间立体图形的性质与计算
3. 概率与统计:
- 事件的概率与计算
- 随机变量与概率分布
- 统计分析与推断:样本调查、参数估计、假设检验等
4. 导数与微分:
- 函数的导数与求导法则
- 函数的极值与最值
- 函数的微分与近似计算
5. 积分与微分方程:
- 不定积分与定积分
- 积分的性质与计算方法
- 常微分方程的解法和应用
6. 数列与数学归纳法:
- 等差数列、等比数列、递推数列的性质与求和公式
- 数列极限与收敛性
这些只是其中的一部分重要知识点,考试还可能涉及其他知识,建议整体复习并进行大量的练习,以提高自己的数学水平。
高中数学学业水平考知识点考点总结
高中数学学业水平考知识点考点总结引言高中数学学业水平考试是检验学生数学知识掌握程度的重要方式。
为了帮助学生系统地复习和准备考试,本文将对高中数学的主要知识点和考点进行总结。
第一部分:数学基础知识点1.1 数与式实数、复数的概念和性质代数式的运算,包括加减乘除和因式分解1.2 方程与不等式一元一次方程和不等式的解法一元二次方程的解法和判别式的应用1.3 函数函数的概念,包括定义域、值域和对应关系常见函数的性质,如一次函数、二次函数、指数函数和对数函数第二部分:几何基础知识点2.1 平面几何三角形的性质,包括等边三角形、等腰三角形和直角三角形四边形的性质,如平行四边形、矩形、正方形和梯形2.2 解析几何坐标系的引入和点在平面直角坐标系中的表示直线方程和圆的方程,以及它们的综合应用2.3 空间几何空间图形的基本概念,如点、线、面的位置关系棱柱、棱锥和球体的表面积和体积计算第三部分:统计与概率3.1 统计基础数据的收集、整理和描述均值、中位数和众数的计算3.2 概率论基础事件的概率,包括古典概型和几何概型条件概率和独立事件的概念第四部分:微积分初步4.1 极限与导数极限的概念和运算法则导数的定义和基本导数公式4.2 积分不定积分和定积分的概念积分的基本技巧和应用第五部分:考试技巧与策略5.1 考试时间管理如何合理分配考试时间先易后难的答题策略5.2 解题技巧快速识别题型和对应的解题方法检查和验证答案的方法第六部分:复习方法与建议6.1 系统复习制定复习计划,均衡各个知识点的复习重点复习易错题和难题6.2 模拟练习通过模拟考试熟悉考试流程和题型分析模拟考试中的错误,查漏补缺6.3 知识点串联将不同知识点进行关联,形成知识网络通过知识点串联加深理解和记忆结语高中数学学业水平考试是对高中数学知识掌握程度的全面检验。
通过系统复习,掌握考试技巧,以及合理的时间管理,学生可以有效地提升考试成绩。
希望本文档的总结能够为学生的复习提供帮助,祝愿每位学生都能在考试中取得优异的成绩。
(最新)2018年高中数学知识点(史上最全)
高一数学必修1知识网络集合123∈∉⎧⎪⎪⎨⎪⎪()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集集合(2-1)n个。
()()U U B A B A B A B A B A B B C A C B ⊆⊆⇔⋂=⊇⊆⇔⋃=⋃,,,⎧⎪⎪⎪⎪函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
那么就是的函数。
记作函数及其表示函数{[][][][][]().,,()()(),,1212()()(),,12f x a b a x x b f x f x f x a b a b f x f x f x a b a b a =≤<≤<>⎧⎪⎪⎧⎪⎨⎨⎩⎪⎧⎪⎨⎪⎩⎩近代定义:函数是从一个数集到另一个数集的映射。
定义域函数的三要素值域对应法则解析法函数的表示方法列表法图象法单调性函数的基本性质传统定义:在区间上,若如,则在上递增,是 递增区间;如,则在上递减,是的递减区间。
导数定义:在区间[][][][][]()1()2()()00,()0(),,()0(),,y f x I M x I f x M x I f x M M y f x b f x f x a b a b f x f x a b a b =∈≤∈==⎧⎪⎪⎨><⎪⎪⎩最大值:设函数的定义域为,如果存在实数满足:()对于任意的,都有; ()存在,使得。
则称是函数的最大值最值最上,若,则在上递增,是递增区间;如 则在上递减,是的递减区间。
高中数学学业水平考知识点大全
高中数学学业水平考知识点大全高中数学学业水平主要考察以下知识点:
1. 数与代数:
- 实数和有理数的性质与运算
- 数的次方与根式
- 四则运算与基本代数式的运算
- 一元一次方程和不等式
- 一元二次方程和不等式
- 二次根式和无理方程
- 平面直角坐标系与图形的性质
- 函数与方程
- 等差数列与等比数列
2. 几何与空间:
- 几何图形的性质与运动
- 三角形与三角函数
- 平面向量和空间向量
- 直线与平面的位置关系
- 空间中的几何体与轨迹
- 空间解析几何
3. 解析几何:
- 向量与坐标
- 直线的方程与性质
- 圆的方程与性质
- 圆锥曲线的方程与性质
4. 概率与统计:
- 随机试验与事件
- 概率及其性质
- 离散型随机变量
- 连续型随机变量
- 统计与统计图表
5. 数学思维与证明:
- 数学思维方法
- 证明与推理
- 逻辑与推理
- 数学问题的解答方法
以上是高中数学学业水平考试中需要掌握的主要知识点,希望对你有帮助。
高中数学学业水平考知识点考点总结
高中数学学业水平考知识点考点总结高中数学的考试知识点和考点主要包括以下内容:
1. 数与式
- 整式的加减乘除运算
- 整式化简
- 分式的加减乘除运算
- 分式的化简
- 均等式
2. 带字母的式子
- 一元一次方程
- 一元一次不等式
- 分离变量法解微分方程
- 二元一次方程组
- 幂及其运算
- 指数函数与对数函数
3. 几何图形的认识和运用
- 长方形、正方形、三角形等几何图形的面积与周长计算
- 圆的面积与周长计算
- 三角形的性质和判定条件
- 相似三角形和比例
- 三角函数和三角恒等式
4. 函数的性质与运算
- 函数的定义域和值域
- 函数的图像与性态
- 初等函数的运算
- 反函数和复合函数
- 一次函数、二次函数和指数函数的图像与性质
5. 空间几何与立体几何
- 空间直角坐标系
- 空间中点和向量的运算
- 空间直线的方程
- 空间平面的方程
- 空间几何体的体积和表面积计算
- 空间几何体的相交关系和判定条件
6. 统计与概率
- 数据的收集、整理和描述
- 统计指标的计算
- 概率的计算和应用
- 排列与组合的计算
- 随机变量和概率分布
以上是高中数学学业水平考试的主要知识点和考点总结,希望可以帮到你。
(详细版)2018高中数学学业水平考试知识点
2018年高中数学学业水平测试知识点【必修一】一、 集合与函数概念并集:由集合A 与集合B 得元素合并在一起组成得集合,如果遇到重复得只取一次。
记作:A ∪B 交集:由集合A 与集合B 得公共元素所组成得集合,如果遇到重复得只取一次记作:A ∩B 补集:就就是作差。
1、集合得子集个数共有个;真子集有–1个;非空子集有–1个;非空得真子有–2个、2、求得反函数:解出,互换,写出得定义域;函数图象关于y=x 对称。
3、(1)函数定义域:①分母不为0;②开偶次方被开方数;③指数得真数属于R 、对数得真数、4、函数得单调性:如果对于定义域I 内得某个区间D 内得任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<()f(x 2),那么就说f(x)在区间D 上就是增(减)函数,函数得单调性就是在定义域内得某个区间上得性质,就是函数得局部性质。
5、奇函数:就是,函数图象关于原点对称(若在其定义域内,则); 偶函数:就是,函数图象关于y 轴对称。
6、指数幂得含义及其运算性质: (1)函数叫做指数函数。
(2)指数函数当 为减函数,当 为增函数; ①;②;③。
(3)指数函数得图象与性质7、对数函数得含义及其运算性质: (1)函数叫对数函数。
(2)对数函数当 为减函数,当 为增函数;①负数与零没有对数;②1得对数等于0 :;③底真相同得对数等于1:,(3)对数得运算性质:如果a > 0 , a ≠ 1 , M > 0 , N > 0,那么:①; ②; ③。
(4)换底公式:(5)对数函数得图象与性质8、幂函数:函数叫做幂函数(只考虑得图象)。
9、方程得根与函数得零点:如果函数在区间[a , b ] 上得图象就是连续不断得一条曲线,并且有,那么,函数在区间 (a , b ) 内有零点,即存在,使得这个c 就就是方程得根。
【必修二】 一、直线 平面 简单得几何体1、长方体得对角线长;正方体得对角线长2、球得体积公式: ; 球得表面积公式:3、柱体、锥体、台体得体积公式:=h (为底面积,为柱体高); = (为底面积,为体高)=(’++) (’, 分别为上、下底面积,为台体高4、点、线、面得位置关系及相关公理及定理:(1)四公理三推论:公理1:若一条直线上有两个点在一个平面内,则该直线上所有得点都在这个平面内。
高中数学学业水平考试知识点
高中数学学业水平考试知识点(必修一)第一章集合与函数概念 1. 集合的含义(1)元素:。
(2)集合:。
2. 集合的表示方法 a.列举法: 。
b.描述法: 。
3. 集合之间的包含与相等的含义(1)子集:。
(2)A=B:。
4. 全集与空集的含义(1)空集:,记为:。
(2)全集:,记为:。
5. 两个集合的并集与交集的含义及计算(1)并集:,记为:。
(2)交集:,记为:。
6. 补集的含义及求法补集:,记为:。
7. 用Venn图表示集合的关系及运算运算交集并集补集类型韦AABB恩 S A 图2图1图示 18. 函数的概念函数:。
9.映射的概念映射:。
10. 求简单函数的定义域和值域(1)求函数的定义域时列不等式组的主要依据是: a.分式: ;b.偶次方根: ;c.对数式的真数: ;d.指数、对数式的底: .e.如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.f.零指数的底:;g.实际问题中的函数的定义域还要保证实际问题有意义. (2)求函数值域的方法:a.观察法; b.配凑法;c.分离常数法;d.判别法;e.换元法等。
11. 函数的表示法(1)解析法:;(2)图象法:; (3) 列表法: . 12. 简单的分段函数 (1) 定义:; (2) 定义域:;(3) 值域:; 13. 分段函数的简单应用(略) 214. 函数的单调性、最大(小)值及其几何意义(1)单调性设函数y=f(x)的定义域为I, a.如果对于定义域I内的某个区间D内的任意两个自变量x、x,当时,12都有,那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间; b.如果对于区间D上的任意两个自变量的值x、x,当,都12 有,那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间. 注意:函数的单调性是函数的局部性质!(2)单调性的几何意义如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间具有(严格的)单调性,在单调区间上增函数的图象从左到右是的,减函数的图象从左到右是的. (3). 函数最大(小)值 a. 最大值:。
高中数学学业水平考知识点大全
高中数学学业水平考知识点大全高中数学学业水平考知识点1定义域(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。
其中,x叫作自变量,x的取值范围A叫作函数的定义域;值域名称定义函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合常用的求值域的方法(1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方法;(5)换元法;(6)反函数法(逆求法);(7)判别式法;(8)复合函数法;(9)三角代换法;(10)基本不等式法等关于函数值域误区定义域、对应法则、值域是函数构造的三个基本“元件”。
平时数学中,实行“定义域优先”的原则,无可置疑。
然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。
如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。
才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。
“范围”与“值域”相同吗?“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。
“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。
高中学业水平考试知识点
高中学业水平考试知识点由于你没有明确高中学业水平考试具体是哪个学科的知识点,以下以高中数学学业水平考试知识点为例:一、集合与函数概念。
1. 集合。
- 集合的定义:把一些元素组成的总体叫做集合。
- 元素与集合的关系:属于(∈)和不属于(∉)。
- 集合的表示方法:列举法、描述法、Venn图法。
- 集合间的基本关系:- 子集:如果集合A的任意一个元素都是集合B的元素,称集合A是集合B的子集,记作A⊆B。
- 真子集:如果A⊆B,且存在元素x∈B,x∉A,则称A是B的真子集,记作A⫋B。
- 集合相等:A = B当且仅当A⊆B且B⊆A。
- 集合的基本运算:- 交集:A∩B = {xx∈A且x∈B}。
- 并集:A∪B = {xx∈A或x∈B}。
- 补集:设U是全集,A⊆U,∁UA={xx∈U且x∉A}。
2. 函数及其表示。
- 函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A →B为从集合A到集合B的一个函数,记作y = f(x),x∈A。
- 函数的三要素:定义域、值域、对应关系。
- 函数的表示方法:解析法、图象法、列表法。
3. 函数的基本性质。
- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数y = f(x)在区间D上是增函数。
- 减函数:当x1<x2时,都有f(x1)>f(x2),则函数y = f(x)在区间D上是减函数。
- 奇偶性:- 奇函数:对于函数f(x)的定义域内的任意一个x,都有f(-x)= - f(x)。
- 偶函数:对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x)。
二、基本初等函数(Ⅰ)1. 指数函数。
- 指数与指数幂的运算:- 根式:如果x^n=a,那么x叫做a的n次方根,其中n>1,n∈N*。
2018年高中数学知识点归纳总结+(定稿)
高中数学必修+选修知识点归纳引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
选修课程:选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
,,,,,,为奇数为奇数为奇数为偶数为偶数为奇数第三章:函数的应用§3.1.1、方程的根与函数的零点 1、方程()0=x f 有实根⇔函数()x f y =的图象与x 轴有交点 ⇔函数()x f y =有零点.2、零点存在性定理:如果函数()x f y =在区间[]b a ,上的图象是连续不断的一条曲线,并且有()()0<⋅b f a f ,那么函数()x f y =在区间()b a ,内有零点,即存在()b a c ,∈,使得()0=c f ,这个c 也就是方程()0=x f 的根. §3.1.2、用二分法求方程的近似解 1、掌握二分法.§3.2.1、几类不同增长的函数模型 §3.2.2、函数模型的应用举例必修2数学第一章:空间几何体1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
⑵柱、锥、台、球的结构特征有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱'''''EDCBAABCDE-或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2018版浙江《学业水平考试》数学-知识清单与冲A训练:2 函数及其基本性质 全国通用
知识点一函数的有关概念知识点二两个函数相等的条件1.定义域________.2.________完全一致.知识点三区间的概念及表示1.一般区间的表示设a,b∈R,且a<b,规定如下:2.特殊区间的表示知识点四函数的表示方法函数的三种表示法:解析法、图象法、列表法.知识点五分段函数如果函数y=f(x),x∈A,根据自变量x在A中不同的取值范围,有着不同的________,那么称这样的函数为分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的________,值域是各段值域的________.知识点六映射的概念设A,B是两个________________,如果按某一个确定的对应关系f,使对于集合A 中的________________,在集合B中都有________确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.知识点七函数的单调性1.增函数、减函数:设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.2.函数的单调性:若函数f(x)在区间D上是增(减)函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间.3.单调性的常见结论:若函数f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数;若函数f(x)为增(减)函数,则-f(x)为减(增)函数;若函数f(x)为增(减)函数,且f(x)>0,则1f(x)为减(增)函数.知识点八函数的最大值、最小值性质:定义在闭区间上的单调函数,必有最大(小)值. 知识点九 函数的奇偶性 1.函数奇偶性的概念2.性质(1)偶函数的图象关于y 轴对称,奇函数的图象关于原点对称.(2)奇函数在对称的区间上单调性相同,偶函数在对称的区间上单调性相反. (3)在定义域的公共部分内,两个奇函数之积与商(分母不零)为偶函数;两个奇函数之和为奇函数;两个偶函数的和、积与商为偶函数;一奇一偶函数之积与商(分母不为零)为奇函数.例1 (2016年10月学考)函数f (x )=ln(x -3)的定义域为( ) A .{x |x >-3} B .{x |x >0} C .{x |x >3}D .{x |x ≥3}例2 (2016年4月学考)下列图象中,不可能成为函数y =f (x )图象的是( )例3 已知函数f (x )=⎩⎪⎨⎪⎧log 13x ,x >1,-x 2-2x +4,x ≤1,则f (f (3))=________,f (x )的单调递减区间是________.例4 (2015年10月学考)已知函数f (x )=x +a +|x -a |2,g (x )=ax +1,其中a >0,若f (x )与g (x )的图象有两个不同的交点,则a 的取值范围是________.例5 已知函数f (x )=⎩⎨⎧a x(x <0),(a -3)x +4a (x ≥0)满足对任意的x 1<x 2都有f (x 1)>f (x 2),求a的取值范围.例6 (2016年4月学考改编)已知函数f (x )=1x -1-1x -3.(1)设g (x )=f (x +2),判断函数g (x )的奇偶性,并说明理由; (2)求证:函数f (x )在2,3)上是增函数.例7 (2015年10月学考)已知函数f (x )=ax +1x +1+1x -1,a ∈R .(1)判断函数f (x )的奇偶性,并说明理由; (2)当a <2时,证明:函数f (x )在(0,1)上单调递减.例8 (2016年10月学考)设函数f (x )=1(|x -1|-a )2的定义域为D ,其中a <1.(1)当a =-3时,写出函数f (x )的单调区间(不要求证明);(2)若对于任意的x ∈0,2]∩D ,均有f (x )≥kx 2成立,求实数k 的取值范围.一、选择题1.函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]2.下列四组函数中,表示同一个函数的是( ) A .y =-2x 3与y =x -2x B .y =(x )2与y =|x |C .y =x +1·x -1与y =(x +1)(x -1)D .f (x )=x 2-2x -1与g (t )=t 2-2t -13.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )4.已知f (x )是一次函数,且ff (x )]=x +2,则f (x )等于( ) A .x +1 B .2x -1 C .-x +1D .x +1或-x -15.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( )A .f :x →y =12x B .f :x →y =13x C .f :x →y =14xD .f :x →y =16x6.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( )A .4B .3C .2D .17.若函数y =ax +1在1,2]上的最大值与最小值的差为2,则实数a 的值为( ) A .2B .-2C .2或-2D .08.偶函数f (x )(x ∈R )满足:f (4)=f (1)=0,且在区间0,3]与3,+∞)上分别递减和递增,则不等式x ·f (x )<0的解集为( ) A .(-∞,-4)∪(4,+∞) B .(-∞,-4)∪(-1,0) C .(-4,-1)∪(1,4)D .(-∞,-4)∪(-1,0)∪(1,4) 二、填空题9.已知函数f (x )=⎩⎪⎨⎪⎧1-12x ,x ≥0,1x ,x <0,若f (a )=a ,则实数a =________.10.设f(x)=ax2+bx+2是定义在1+a,1]上的偶函数,则f(x)>0的解集为________.11.若关于x的不等式x2-4x-a≥0在1,3]上恒成立,则实数a的取值范围为________.三、解答题12.已知函数f(x)=1+ax2x+b的图象经过点(1,3),并且g(x)=xf(x)是偶函数.(1)求函数中a、b的值;(2)判断函数g(x)在区间(1,+∞)上的单调性,并用单调性定义证明.13.已知二次函数f(x)=ax2-2ax+2+b在区间2,3]上有最大值5,最小值2.(1)求f(x)的解析式;(2)若b>1,g(x)=f(x)+mx在2,4]上为单调函数,求实数m的取值范围.答案精析知识条目排查 知识点一非空数集 唯一确定 从集合A 到集合B {f (x )|x ∈A } 知识点二 1.相同 2.对应关系 知识点三1.a ,b ] (a ,b ) a ,b ) (a ,b ] 知识点五对应关系 并集 并集 知识点六非空的集合 任意一个元素x 唯一 知识点八f (x )≤M f (x 0)=M f (x )≥M f (x 0)=M 题型分类示例 例1 C例2 A 当x =0时,有两个y 值对应,故A 不可能是函数y =f (x )的图象.] 例3 5 -1,+∞) 解析 f (3)=log 133=-1, ∴f (f (3))=f (-1)=-1+2+4=5, 当x ≤1时,f (x )=-x 2-2x +4 =-(x +1)2+5, 对称轴x =-1,f (x )在-1,1]上递减,当x >1时,f (x )递减, ∴f (x )在-1,+∞)上递减. 例4 (0,1)解析 由题意得f (x )=⎩⎨⎧x ,x >a ,a ,x ≤a ,在平面直角坐标系内分别画出0<a <1,a =1,a >1时,函数f (x ),g (x )的图象,由图易得当f (x ),g (x )的图象有两个交点时, 有⎩⎨⎧0<a <1,g (a )>a ,解得0<a <1, a 的取值范围为0<a <1.例5 解 由题意知,f (x )为减函数, ∴0<a <1且a -3<0且a 0≥(a -3)×0+4a , ∴0<a ≤14.例6 (1)解 ∵f (x )=1x -1-1x -3, ∴g (x )=f (x +2)=1x +1-1x -1,∵g (-x )=1-x +1-1-x -1=1x +1-1x -1=g (x ), 又∵g (x )的定义域为{x |x ≠-1且x ≠1}, ∴y =g (x )是偶函数.(2)证明 设x 1,x 2∈2,3)且x 1<x 2, f (x 1)-f (x 2)=(1x 1-1-1x 1-3)-(1x 2-1-1x 2-3)=2(x1-x2)(x1+x2-4)(x1-1)(x1-3)(x2-1)(x2-3),∵x1,x2∈2,3)且x1<x2,∴x1-x2<0,x1+x2-4>0,(x1-1)(x1-3)(x2-1)(x2-3)>0,综上得f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数f(x)在2,3)上是增函数.例7(1)解因为f(-x)=-ax+1-x+1+1-x-1=-(ax+1x-1+1x+1)=-f(x),又因为f(x)的定义域为{x∈R|x≠-1且x≠1},所以函数f(x)为奇函数.(2)证明任取x1,x2∈(0,1),设x1<x2,则f(x1)-f(x2)=a(x1-x2)+x2-x1(x1-1)(x2-1)+x2-x1 (x1+1)(x2+1)=(x1-x2)a-1(x1-1)(x2-1)-1(x1+1)(x2+1)]=(x1-x2)a-2(x1x2+1)(x21-1)(x22-1)].因为0<x1<x2<1,所以2(x1x2+1)>2,0<(x21-1)(x22-1)<1,所以2(x1x2+1)(x21-1)(x22-1)>2>a,所以a-2(x1x2+1)(x21-1)(x22-1)<0.又因为x1-x2<0,所以f(x1)>f(x2),所以函数f(x)在(0,1)上单调递减.例8解(1)单调递增区间是(-∞,1],单调递减区间是1,+∞).(2)当x=0时,不等式f(x)≥kx2成立;当x≠0时,f(x)≥kx2等价于k≤1[x(|x-1|-a)]2.设h (x )=x (|x -1|-a )=⎩⎨⎧-x [x -(1-a )],0<x ≤1,x [x -(1+a )],1<x ≤2.①当a ≤-1时,h (x )在(0,2]上单调递增,所以0<h (x )≤h (2),即0<h (x )≤2(1-a ).故k ≤14(1-a )2. ②当-1<a <0时,h (x )在(0,1-a 2]上单调递增,在1-a 2,1]上单调递减,在1,2]上单调递增,因为h (2)=2-2a ≥(1-a )24=h (1-a 2).即0<h (x )≤2(1-a ).故k ≤14(1-a )2. ③当0≤a <1时,h (x )在(0,1-a 2]上单调递增,在1-a 2,1-a )上单调递减,在(1-a,1]上单调递减, 在1,1+a )上单调递增,在(1+a,2]上单调递增,所以h (1)≤h (x )≤max{h (2),h (1-a 2)}且h (x )≠0.因为h (2)=2-2a >(1-a )24=h (1-a 2),所以-a ≤h (x )≤2-2a 且h (x )≠0.当0≤a <23时,因为|2-2a |>|-a |,所以k ≤14(1-a )2; 当23≤a <1时,因为|2-2a |≤|-a |,所以k ≤1a 2,综上所述,当a <23时,k ≤14(1-a )2;当23≤a <1时,k ≤1a 2.考点专项训练1.A 要使函数有意义,则⎩⎨⎧ 1-2x ≥0,x +3>0,即⎩⎨⎧x ≤0,x >-3. 故-3<x ≤0.即函数的定义域为(-3,0],故选A.]2.D 在A 选项中,前者的y 属于非负数,后者的y ≤0,两个函数的值域不同; 在B 选项中,前者的定义域x ≥0,后者的x ∈R ,定义域不同;在C 选项中,前者定义域为x >1,后者为x >1或x <-1,定义域不同; 在D 选项中,两个函数是同一个函数,故选D.]3.B4.A f (x )是一次函数,设f (x )=kx +b ,ff (x )]=x +2,可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,k 2=1,kb +b =2,解得k =1,b =1.则f (x )=x +1,故选A.]5.A 6.B 7.C8.D 求x ·f (x )<0即等价于求函数在第二、四象限图象x 的取值范围.∵偶函数f (x )(x ∈R )满足f (4)=f (1)=0,∴f (4)=f (-1)=f (-4)=f (1)=0,且f (x )在区间0,3]与3,+∞)上分别递减与递增,如图可知:即x ∈(1,4)时,函数图象位于第四象限,x ∈(-∞,-4)∪(-1,0)时,函数图象位于第二象限,综上所述,x ·f (x )<0的解集为(-∞,-4)∪(-1,0)∪(1,4),故选D.]9.-1或23解析当a≥0时,f(a)=1-12a=a,得a=2 3;当a<0时,1a=a,解得a=-1或1(舍去).∴a=-1或2 3.10.(-1,1)解析∵f(x)为定义在1+a,1]上的偶函数,∴1+a=-1,∴a=-2,又f(-x)=f(x),即ax2-bx+2=ax2+bx+2,∴2bx=0,∴b=0,∴f(x)=-2x2+2.∴由f(x)>0得,-2x2+2>0,解得-1<x<1,∴f(x)>0的解集为(-1,1).11.(-∞,-4]解析若关于x的不等式x2-4x-a≥0在1,3]上恒成立,则a≤x2-4x在1,3]上恒成立,令f(x)=x2-4x=(x-2)2-4,x∈1,3],对称轴x=2,开口向上,f(x)在1,2)递减,在(2,3]递增,∴f(x)min=f(2)=-4,∴a≤-4.12.解(1)∵函数g(x)=xf(x)=x+ax3x+b是偶函数,则g(-x)=g(x).∴-x-ax3-x+b=x+ax3x+b恒成立,即x-b=x+b恒成立,∴b=0. 又函数f(x)的图象经过点(1,3),∴f(1)=3,即1+a=3,∴a=2.(2)由(1)知g(x)=xf(x)=2x2+1,g(x)在(1,+∞)上单调递增,设x2>x1>1,则g (x 2)-g (x 1)=2x 22+1-2x 21-1=2(x 2-x 1)(x 2+x 1).∵x 2>x 1>1,∴(x 2-x 1)(x 2+x 1)>0,∴g (x 2)>g (x 1),∴函数g (x )在区间(1,+∞)上是增函数.13.解 (1)f (x )=a (x -1)2+2+b -a .①当a >0时,f (x )在2,3]上单调递增,故⎩⎨⎧ f (2)=2,f (3)=5,即⎩⎨⎧ 2+b =2,3a +2+b =5,所以⎩⎨⎧ a =1,b =0.②当a <0时,f (x )在2,3]上单调递减,故⎩⎨⎧ f (2)=5,f (3)=2,即⎩⎨⎧ 2+b =5,3a +2+b =2,所以⎩⎨⎧ a =-1,b =3. 所以f (x )=x 2-2x +2或f (x )=-x 2+2x +5.(2)因为b >1,所以f (x )=-x 2+2x +5,所以g (x )=-x 2+(m +2)x +5在2,4]上为单调函数, 故m +22≤2或m +22≥4,所以m ≤2或m ≥6.。
2018高三数学必考知识点
2018高三数学必考知识点【一】不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
新一轮中考复习备考周期正式开始,*小编为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《2018中考数学知识点:不等式的判定》,仅供参考!不等式的判定:①常见的不等号有“>”“<”“≤”“≥”及“≠”。
分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;②在不等式“a>b”或“a③不等号的开口所对的数较大,不等号的尖头所对的数较小;④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。
【二】不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)“≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
【三】变化前的点坐标(x,y)坐标变化变化后的点坐标图形变化平移横坐标不变,纵坐标加上(或减去)n(n>0)个单位长度(x,y+n)或(x,y-n)图形向上(或向下)平移了n个单位长度纵坐标不变,横坐标加上(或减去)n(n>0)个单位长度(x+n,y)或(x-n,y)图形向右(或向左)平移了n个单位长度伸长横坐标不变,纵坐标扩大n(n>1)倍(x,ny)图形被纵向拉长为原来的n倍纵坐标不变,横坐标扩大n(n>1)倍(nx,y)图形被横向拉长为原来的n倍压缩横坐标不变,纵坐标缩小n(n>1)倍(x,)图形被纵向缩短为原来的纵坐标不变,横坐标缩小n(n>1)倍(,y)图形被横向缩短为原来的放大横纵坐标同时扩大n(n>1)倍(nx,ny)图形变为原来的n2倍缩小横纵坐标同时缩小n(n>1)倍(,)图形变为原来的78、求与几何图形联系的特殊点的坐标,往往是向x轴或y轴引垂线,转化为求线段的长,再根据点所在的象限,醒上相应的符号。
_高中数学水平考知识点归纳
_高中数学水平考知识点归纳高中数学学业水平考知识点11、圆的定义平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。
(3)求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(某-a)2+(y-b)2=r2,圆上一点为(某0,y0),则过此点的切线方程为(某0-a)(某-a)+(y0-b)(y-b)=r24、圆与圆的位置关系通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线圆的辅助线一般为连圆心与切线或者连圆心与弦中点高中数学学业水平考知识点21、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(某0)表示过曲线y=f(某)上P(某0,f(某0))切线斜率。
V=/(t)表示即时速度。
a=v/(t)表示加速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高中数学学业水平测试知识点【必修一】一、 集合与函数概念并集:由集合A 和集合B 的元素合并在一起组成的集合,如果遇到重复的只取一次。
记作:A ∪B 交集:由集合A 和集合B 的公共元素所组成的集合,如果遇到重复的只取一次记作:A ∩B 补集:就是作差。
1、集合{}n a a a ,...,,21的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子有2n–2个.2、求)(x f y =的反函数:解出)(1y f x -=,y x ,互换,写出)(1x f y -=的定义域;函数图象关于y=x 对称。
3、(1)函数定义域:①分母不为0;②开偶次方被开方数0≥;③指数的真数属于R 、对数的真数0>.4、函数的单调性:如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<(>)f(x 2),那么就说f(x)在区间D 上是增(减)函数,函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质。
5、奇函数:是()()f x f x ,函数图象关于原点对称(若0x =在其定义域内,则(0)0f =); 偶函数:是()()f x f x ,函数图象关于y 轴对称。
6、指数幂的含义及其运算性质:(1)函数)10(≠>=a a a y x且叫做指数函数。
(2)指数函数(0,1)x y a a a =>≠当 01a <<为减函数,当 1a >为增函数;①r s r sa a a +⋅=;②()r srsa a =;③()(0,0,,)rr rab a b a b r s Q =>>∈。
(3)指数函数的图象和性质7、对数函数的含义及其运算性质:(1)函数log (0,1)a y x a a =>≠叫对数函数。
(2)对数函数log (0,1)a y x a a =>≠当 01a <<为减函数,当 1a >为增函数;①负数和零没有对数;②1的对数等于0 :01log =a ;③底真相同的对数等于1:1log =a a , (3)对数的运算性质:如果a > 0 , a ≠ 1 , M > 0 , N > 0,那么:①N M MN a a a log log log +=; ②N M NMa a alog log log -=; ③)(log log R n M n M a n a ∈=。
(4)换底公式:)0,10,10(log log log >≠>≠>=b c c a a abb c c a 且且(5)对数函数的图象和性质8、幂函数:函数αx y =叫做幂函数(只考虑21,1,3,2,1-=α的图象)。
9、方程的根与函数的零点:如果函数)(x f y =在区间 [a , b ] 上的图象是连续不断的一条曲线,并且有0)()(<⋅b f a f ,那么,函数)(x f y =在区间 (a , b ) 内有零点,即存在),(b a c ∈,使得0)(=c f 这个c 就是方程0)(=x f 的根。
【必修二】一、直线 平面 简单的几何体1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=2、球的体积公式: 334 R v π=; 球的表面积公式:24 R S π= 3、柱体、锥体、台体的体积公式:柱体V =S h (S 为底面积,h 为柱体高); 锥体V =Sh 31(S 为底面积,h 为柱体高)台体V =31(S ’+S S'+S )h (S ’, S 分别为上、下底面积,h 为台体高)4、点、线、面的位置关系及相关公理及定理: (1)四公理三推论:公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内。
公理2:经过不在同一直线上的三点,有且只有一个平面。
公理3:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
推论一:经过一条直线和这条直线外的一点,有且只有一个平面。
推论二:经过两条相交直线,有且只有一个平面。
推论三:经过两条平行直线,有且只有一个平面。
公理4:平行于同一条直线的两条直线平行. (2)空间线线,线面,面面的位置关系:空间两条直线的位置关系:相交直线——有且仅有一个公共点; 平行直线——在同一平面内,没有公共点;异面直线——不同在任何一个平面内,没有公共点。
相交直线和平行直线也称为共面直线。
空间直线和平面的位置关系:(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)它们的图形分别可表示为如下,符号分别可表示为a α⊂,a A α=,//a α。
空间平面和平面的位置关系:(1)两个平面平行——没有公共点; (2)两个平面相交——有一条公共直线。
5、直线与平面平行的判定定理:如果平面外一条直线与平面内一条直线平行,那么该直线与这个平面平行。
符号表示:////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭。
图形表示:6、两个平面平行的判定定理:如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行。
符号表示://////a b a b P a b βββααα⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭。
图形表示:7、. 直线与平面平行的性质定理:如果一条直线与一个平面平行,经过这条直线的平面与已知平面相交,那么交线与这条直线平行。
符号表示:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭。
图形表示:8、两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们交线的平行。
符号表示: 9、直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
符号表示: 10、.两个平面垂直的判定定理:一个平面经过另一个平面的垂线,则这两个平面垂直。
符号表示: 11、直线与平面垂直的性质:如果两条直线同垂直于一个平面,那么这两条直线平行。
符号表示://a a b b αα⊥⎫⇒⎬⊥⎭。
12、平面与平面垂直的性质:如果两个平面互相垂直,那么在其中一个平面内垂直于交线的直线垂直于另一个平面。
符号表示: 13、异面直线所成角:平移到一起求平移后的夹角。
直线与平面所成角:直线和它在平面内的射影所成的角。
(如右图) 14、异面直线所成角的取值范围是(]︒︒90,0; 直线与平面所成角的取值范围是[]︒︒90,0; 二面角的取值范围是[)︒︒180,0;两个向量所成角的取值范围是[]︒︒180,0 二、直线和圆的方程1、斜率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为2、直线的五种方程 :(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--( (111(,)P x y 、222(,)P x y ; (12x x ≠)、(12y y ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).3、两条直线的平行、重合和垂直: (1)若111:l y k x b =+,222:l y k x b =+①1l ‖1212b k k l 且=⇔≠;2b ②22121b b k k l l ==⇔且重合时与; ③12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+= 2121y y k x x -=-//,,//a b a bαβαγβγ==⇒,,,,a b a b P l a l b l ααα⊂⊂=⊥⊥⇒⊥,l l αβαβ⊥⊂⇒⊥,,.l m l m l ααββ⊂=⊥⇒⊥θαP Hlax 2+bx+c=0(a ≠0)4、两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式 │P 1P 2│=212212)()(y y x x -+-5、两点P 1(x 1,y 1)、P 2(x 2,y 2)的中点坐标公式 M (221x x +,221y y +) 6、点P (x 0,y 0)到直线(直线方程必须化为一般式)Ax+By+C=0的距离公式d=2200BA CBy Ax +++7、平行直线Ax+By+C 1=0、Ax+By+C 2=0的距离公式d=2212BA C C +-8、圆的方程:标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;一般方程220x y Dx Ey F ++++=,(配方:44)2()2(2222F E D E y D x -+=+++) 0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;9、点与圆的位置关系:点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种: 若2200()()d a x b y =-+-d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.10、直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.11、弦长公式:若直线y=kx+b 与二次曲线(圆、椭圆、双曲线、抛物线)相交于A(x 1,y 1),B (x 2,y 2)两点,则由 二次曲线方程y=kx+m 则知直线与二次曲线相交所截得弦长为:AB =212212)()(y y x x -+- =21k +21x x - =[]21221241x x x x k -++)()(=[]2122122124)()11(11y y y y ky y k -++=-+aacb k4122-+ 13、 空间直角坐标系,两点之间的距离公式: ⑴ xoy 平面上的点的坐标的特征A (x ,y ,0):竖坐标z=0 xoz 平面上的点的坐标的特征B (x ,0,z ):纵坐标y=0 yoz 平面上的点的坐标的特征C (0,y ,z ):横坐标x=0 x 轴上的点的坐标的特征D (x ,0,0):纵、竖坐标y=z=0 y 轴上的点的坐标的特征E (0,y ,0):横、竖坐标x=z=0 z 轴上的点的坐标的特征E (0,0,z ):横、纵坐标x=y=0 ⑵│P 1P 2│=212212212-z z -y y -x x )()()(++ 【必修三】算法初步与统计:图形符号 名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框 表示一个算法输入输出的信息处理框(执行框)赋值、计算(语句、结果的传送)z yx F E DC BAXYZO二、算法基本语句:1、输入语句:输入语句的格式:INPUT “提示内容”; 变量。