高中数学学业水平考试知识点

合集下载

高中数学学业水平考知识点总结

高中数学学业水平考知识点总结

高中数学学业水平考知识点总结
高中数学学业水平考试涵盖了广泛的数学知识点,以下是一些需要重点复习的知识点总结:
1. 函数与方程:
- 一次函数、二次函数、指数函数、对数函数、三角函数等的性质和图像
- 方程与不等式的解法:一元一次方程、一元二次方程、一元高次方程等的解法
- 常见函数的运算与复合
2. 空间几何:
- 点、直线、平面的性质与相互关系
- 三角形、四边形、圆的性质与相互关系
- 空间立体图形的性质与计算
3. 概率与统计:
- 事件的概率与计算
- 随机变量与概率分布
- 统计分析与推断:样本调查、参数估计、假设检验等
4. 导数与微分:
- 函数的导数与求导法则
- 函数的极值与最值
- 函数的微分与近似计算
5. 积分与微分方程:
- 不定积分与定积分
- 积分的性质与计算方法
- 常微分方程的解法和应用
6. 数列与数学归纳法:
- 等差数列、等比数列、递推数列的性质与求和公式
- 数列极限与收敛性
这些只是其中的一部分重要知识点,考试还可能涉及其他知识,建议整体复习并进行大量的练习,以提高自己的数学水平。

普通高中学业水平测试(数学复习提纲)

普通高中学业水平测试(数学复习提纲)

普通高中学业水平测试(数学复习提纲)普通高中学业水平测试(数学复习提纲)为了帮助同学们更好地复习普通高中学业水平测试的数学内容,我们特制定了一份详细的复习提纲,涵盖高中数学的主要知识点。

以下是本次复习的主要内容:一、代数部分1.1 实数- 实数的分类及性质- 实数的运算规则1.2 函数- 函数的定义及性质- 常见函数的图像与性质(如一次函数、二次函数、指数函数、对数函数等)1.3 方程与不等式- 线性方程组的解法- 一元二次方程的解法- 不等式的性质与解法1.4 幂函数与二次函数- 幂函数的定义与性质- 二次函数的定义与性质1.5 指数函数与对数函数- 指数函数的定义与性质- 对数函数的定义与性质1.6 三角函数- 三角函数的定义与性质(正弦、余弦、正切等)二、几何部分2.1 平面几何- 点、线、面的基本性质- 直线方程与曲线方程- 几何图形的面积与体积计算2.2 立体几何- 空间几何体的性质与结构- 空间向量及其运算- 立体几何中的面积与体积计算2.3 解析几何- 坐标系与坐标变换- 直线、圆的方程及其应用- 解析几何中的图形分析与计算三、概率与统计3.1 随机事件- 随机事件的定义与性质- 事件的运算(并、交、补等)3.2 概率分布- 离散型随机变量的概率分布- 连续型随机变量的概率分布3.3 统计量与推断- 描述性统计量(如均值、方差、标准差等)- 概率推断(如假设检验、置信区间等)四、数学应用4.1 数学建模- 数学建模的基本方法与技巧- 数学模型在实际问题中的应用4.2 数学竞赛- 数学竞赛题型及解题策略- 数学竞赛中的常用技巧与方法五、数学思想与方法5.1 函数与方程思想- 利用函数与方程解决实际问题- 函数与方程在高中数学中的应用5.2 数形结合思想- 数形结合在高中数学中的应用- 利用数形结合解决实际问题5.3 分类与整合思想- 分类与整合在高中数学中的应用- 利用分类与整合解决实际问题5.4 归纳与猜想- 数学归纳法的基本原理与应用- 利用归纳与猜想解决实际问题附录- 常见数学符号与公式- 解题策略与技巧- 模拟试题与解答希望这份复习提纲能帮助同学们系统地复习高中数学知识,为普通高中学业水平测试做好充分准备。

高中数学学业水平考试知识点

高中数学学业水平考试知识点

高中数学学业水平考试知识点(必修一)第一章集合与函数概念1. 集合的含义(1)元素:。

(2)集合:。

2. 集合的表示方法a.列举法: 。

b.描述法: 。

3. 集合之间的包含与相等的含义(1)子集:。

(2)A=B:。

4. 全集与空集的含义(1)空集:,记为:。

(2)全集:,记为:。

5. 两个集合的并集与交集的含义及计算(1)并集:,记为:。

(2)交集:,记为:。

6. 补集的含义及求法补集:,记为:。

7.用Venn图表示集合的关系及运算8. 函数的概念函数:。

9.映射的概念映射:。

10. 求简单函数的定义域和值域(1)求函数的定义域时列不等式组的主要依据是:a.分式: ;b.偶次方根: ;c.对数式的真数: ;d.指数、对数式的底: .e.如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.f.零指数的底:;g.实际问题中的函数的定义域还要保证实际问题有意义.(2)求函数值域的方法:a.观察法; b.配凑法;c.分离常数法;d.判别法;e.换元法等。

11. 函数的表示法(1)解析法:;(2)图象法:;(3) 列表法:.12. 简单的分段函数(1) 定义:;(2) 定义域:;(3) 值域:;13. 分段函数的简单应用(略)14. 函数的单调性、最大(小)值及其几何意义(1)单调性设函数y=f(x)的定义域为I,a.如果对于定义域I内的某个区间D内的任意两个自变量x1、x2,当时,都有,那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间;b.如果对于区间D上的任意两个自变量的值x1、x2,当,都有,那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质!(2)单调性的几何意义如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间具有(严格的)单调性,在单调区间上增函数的图象从左到右是的,减函数的图象从左到右是的.(3). 函数最大(小)值a. 最大值:。

高中数学水平考知识点归纳

高中数学水平考知识点归纳

高中数学水平考知识点归纳高中数学学业水平考知识点11、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。

V=s/(t)表示即时速度。

a=v/(t)表示加速度。

3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。

4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

高中数学学业水平考知识点2函数的表示方法1.函数的三种表示方法列表法图象法解析法2.分段函数:定义域的不同部分,有不同的对应法则的函数。

注意两点:①分段函数是一个函数,不要误认为是几个函数。

②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。

考点四、求定义域的几种情况①若f(x)是整式,则函数的定义域是实数集R;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是对数函数,真数应大于零。

⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。

⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑦若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题高中数学水平考知识点归纳高中数学学业水平考知识点31、圆的定义平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。

高三数学学业水平知识点

高三数学学业水平知识点

高三数学学业水平知识点一、数与代数高三数学学业水平考察的第一个知识点是数与代数。

这一部分主要包括实数的性质与运算、数的性质与运算、代数式的等式与不等式、函数概念与性质等内容。

实数的性质与运算部分涉及有理数与无理数的性质、实数之间的大小关系、实数的运算规律等;数的性质与运算部分包括整式、分式的性质与运算、实数的根式化简等;代数式的等式与不等式部分主要考察代数式的等式与不等式的性质与解法;函数概念与性质部分则关注函数的定义、性质、图像与应用等方面。

二、平面与立体几何平面与立体几何是高三数学学业水平考试中的第二个重要知识点。

主要内容包括平面几何、向量与平面、空间几何等。

其中,平面几何部分包括平面上的点、直线与角的性质与判定,平面图形的性质与应用等;向量与平面部分考察向量的定义、运算与应用,以及向量与平面的位置关系等内容;空间几何部分则关注空间中的点、直线与面的性质与判定,空间图形的性质与应用。

三、函数与方程函数与方程是高三数学学业水平考试中的第三个知识点。

这一部分主要包括函数与方程的性质与解法、二次函数、指数与对数函数等内容。

函数与方程的性质与解法考察函数的奇偶性、周期性、单调性等性质,以及方程的解法与应用;二次函数部分主要关注二次函数的性质与图像,二次函数的最值与应用等;指数与对数函数部分考察指数函数与对数函数的基本性质,指数方程与对数方程的解法与应用等内容。

四、概率与统计概率与统计是高三数学学业水平考试的第四个重要考点。

这部分主要包括概率的基本概念与计算、统计的基本概念与分析等内容。

其中,概率的基本概念与计算包括样本空间、事件、概率的计算等;统计的基本概念与分析部分主要考察统计数据的收集与整理、统计图表的应用与分析等。

五、数学思想方法与解决问题能力数学思想方法与解决问题能力是高三数学学业水平考试的最后一个考察点。

这部分考察学生的数学思维能力、创新能力与解决问题的方法与策略。

题目种类多样,涉及证明、计算、应用等不同领域的数学问题,要求学生运用所学的数学知识与方法,独立思考并给出合理解答。

高中数学学业水平考知识点大全

高中数学学业水平考知识点大全

高中数学学业水平考知识点大全高中数学学业水平主要考察以下知识点:
1. 数与代数:
- 实数和有理数的性质与运算
- 数的次方与根式
- 四则运算与基本代数式的运算
- 一元一次方程和不等式
- 一元二次方程和不等式
- 二次根式和无理方程
- 平面直角坐标系与图形的性质
- 函数与方程
- 等差数列与等比数列
2. 几何与空间:
- 几何图形的性质与运动
- 三角形与三角函数
- 平面向量和空间向量
- 直线与平面的位置关系
- 空间中的几何体与轨迹
- 空间解析几何
3. 解析几何:
- 向量与坐标
- 直线的方程与性质
- 圆的方程与性质
- 圆锥曲线的方程与性质
4. 概率与统计:
- 随机试验与事件
- 概率及其性质
- 离散型随机变量
- 连续型随机变量
- 统计与统计图表
5. 数学思维与证明:
- 数学思维方法
- 证明与推理
- 逻辑与推理
- 数学问题的解答方法
以上是高中数学学业水平考试中需要掌握的主要知识点,希望对你有帮助。

高中数学学业水平考试(合格考)知识点总结(最新最全)

高中数学学业水平考试(合格考)知识点总结(最新最全)

高中数学学业水平考试(合格考)知识点总结2020.12.1第一章 集合与常用逻辑1. 常用数集N :自然数集或非负整数集; N * 或N +:正整数集; Z :整数集; Q :有理数集; R :实数集; C :复数集 2. 集合间的运算 并集:{,AB x x A =∈或}x B ∈;交集:{,A B x x A =∈且}x B ∈;补集:{,U C A x x U =∈且}x A ∉. 3. 包含关系A B A A B =⇔⊆; A B A B A =⇔⊆4. 空集()∅是任何集合的子集,是任何非空集合的真子集 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有(2n –1)个;非空子集有(2n –1)个;非空的真子集有(2n –2)个. 6. 充分、必要条件若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件;若p q ⇒,q p ⇒,则p 是q 的充分必要条件,简称充要条件; (1)若p q ⇒,q p ≠>,则p 是q 的充分不必要条件; (2)若p q ≠>,q p ⇒,则p 是q 的必要不充分条件; (3)若p q ⇒,q p ⇒,则p 是q 的充要条件;(4)若p q ≠>,q p ≠>,则p 是q 的既不充分又不必要条件; 7. 含有一个量词的命题的否定全称命题p :(),x M q x ∀∈;p ⌝:()00,x M q x ∃∈⌝; 特称命题p :()00,x M q x ∃∈;p ⌝:(),x M q x ∀∈⌝.第二章 一元二次函数、方程和不等式1. 不等式的基本性质性质1:a b b a >⇔<; 性质2:,a b b c a c >>⇒>;性质3:a b a c b c >⇔+>+; 性质4:,0;,0a b c ac bc a b c ac bc >>⇒>><⇒<; 性质5:,a b c d a c b d >>⇒+>+; 性质6:0,0a b c d ac bd >>>>⇒>;性质7:()*0n n a b a b n >>⇒>∈N ; 性质8:)02a b n >>>≥. 2. 基本不等式:设0,0a b >>,则(1)a b +≥;(2)22a b ab +⎛⎫≤ ⎪⎝⎭;当且仅当a b =时,等号成立. 注:应用基本不等式的条件:一正,二定,三相等3. 二次函数()20y ax bx c a =++≠的性质(1)开口方向:a >0,开口向上;a <0,开口向下;(2)对称轴:2bx a=-; (3)顶点坐标:24,24b ac b a a ⎛⎫-- ⎪⎝⎭;(4)单调性: ①当a >0时,在,2b a ⎛⎤-∞- ⎥⎝⎦上递减,在,2b a ⎛⎤-+∞ ⎥⎝⎦上递增;②当a >0时,在,2b a ⎛⎤-∞- ⎥⎝⎦上递增,在,2b a ⎛⎤-+∞ ⎥⎝⎦上递减.4. 二次函数与一元二次方程、不等式的解的对应关系第三章 函数概念与性质1. 求函数定义域函数表达式()y f x =:①含分式:要求分母不为0; ②偶次方根:要求被开方数≥0;③含对数式:要求真数>0. 2. 函数()y f x =的单调性增函数:当12x x <时,()()12f x f x <;反映在图像上,从左往右图像上升; 减函数:当12x x <时,()()12f x f x >;反映在图像上,从左往右图像下降. 3. 证明函数()f x 在区间D 上单调递增或单调递减,基本步骤如下: ①设值:设12,x x D ∈,且 12x x <; ②作差:12()()f x f x - ;③变形:对12()()f x f x -变形,一般是通分, 分解因式, 配方等,要注意变形到底; ④判断符号,得出函数的单调性.4. 函数()y f x =的奇偶性奇函数:()()f x f x -=-,图像关于原点对称; 偶函数:()()f x f x -=,图像关于y 轴对称; 5. 奇、偶函数的性质(1)奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反; (2)若奇函数()y f x =在原点有定义,则()00f =; (3)奇、偶函数的运算①奇函数±奇函数=奇函数;②偶函数±偶函数=偶函数; ③奇函数×奇函数=偶函数;④偶函数×偶函数=偶函数; ⑤奇函数×偶函数=奇函数. 6. 幂函数(1)定义:形如()y x αα=∈R 的函数叫幂函数,其中x 是自变量; (2)五个幂函数的性质第四章 指数函数与对数函数1. 分数指数幂 (1)m na =(2)1m nm na a-=(0,,a m n N *>∈,且1n >).2.根式的性质(1na =. (2)当n a =; 当n ,0||,0a a a a a ≥⎧==⎨-<⎩.3.有理指数幂的运算性质(1)(0,,)r s r sa a a a r s Q +⋅=>∈;(2) r r s s a a a-=(0,,)a r s Q >∈;(3)()(0,,)r s rs a a a r s Q =>∈; (4)()(0,0,)r r r ab a b a b r Q =>>∈. 4. 指数式与对数式的互化:log b a N b a N =⇔= 5. 对数的换底公式(1)log lg ln log log lg ln m a m N N N N a a a === (0a >,且1a ≠,0m >,且1m ≠, 0N >);(2)log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >);(3) log log 1a b b a ⋅=; (4) log a ba b = 6.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则:(1)log ()log log a a a MN M N =+;(2) log log log a a a MM N N=-; (3)log log ()n a a M n M n R =∈.7. 指数函数0,1x y a a a =>≠的图像与性质8. 对数函数log 0,1a y x a a =>≠的图像与性质9.指数函数()0,1x y a a a =>≠与对数函数()log 0,1a y x a a =>≠互为反函数,它们的图像关于y =x 对称 10. 函数零点(1)定义:把使()0f x =成立的实数x 叫做函数y =f (x )的零点.(2)函数零点与方程根的关系:方程f (x )=0有实根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.(3)零点存在定理:如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数y =f (x )在区间(a ,b )内有零点.第五章 三角函数1. 角度制与弧度制的互化:360°=2π 180°=π1 rad=π180°≈57.30°=57°18′ 1°=180πrad≈0.0174rad2. 特殊角的弧度与角度互化如下:3. 弧长及扇形面积公式弧长:l r α=,扇形面积:211=22S lr r α= (α是圆心角弧度数,r 是扇形半径)4. 任意角的三角函数设α是一个任意角,它的终边上一点(,)P x y ,22r x y =+.(1) 正弦 sinα=r y , 余弦cos x r α=, 正切tanα=xy.(2) 各象限的符号:一全正,二正弦,三正切,四余弦. 5. 同角三角函数的基本关系:平方关系:1cos sin 22=+αα; 商数关系:αααtan cos sin =(ππαk +≠2,Z k ∈)6. 诱导公式(1)sin(2k π+α)=sin α , cos(2k π+α)=cos α, tan(2k π+α)=tan α (Z k ∈) (2)sin(π+α)=-sin α , cos(π+α)=-cos α, tan(π+α)=tan α(3)sin(-α)=-sin α , cos(-α )=cos α , tan (-α )=-tan α (4)sin(π-α)=sin α, cos(π-α)=-cos α, tan(π-α)=-tan α (5)sin(2π-α)=cos α , cos(2π-α)=sin α (6)sin(2π+α)=cos α cos(2π+α)=-sin α口诀:奇变偶不变,符号看象限 7. 特殊角的三角函数值8. 正弦函数、余弦函数和正切函数的图像与性质 三角函数sin y α=cos y α=tan y α=图像定义域 (-∞,+∞)(-∞,+∞)(k π-2π,k π+2π)值域[]11-,[]11-,(-∞,+∞)最大(小)值(Z k ∈) 当x =2k π+2π时,max y =1;当x =2k π-2π时,m in y = -1当x =2k π时,max y =1;当x =2k π+π时,m in y = -1无奇偶性 奇函数 偶函数 奇函数 周期性T =2πT =2πT =π单调性(k ∈z )在⎥⎦⎤⎢⎣⎡+-22,22ππππk k 上增在⎥⎦⎤⎢⎣⎡++232,22ππππk k 上减在[2π-π,2π]k k 上增 在[2π,2ππ]k k +上减在⎪⎭⎫ ⎝⎛+-2,2ππππk k内增对称性 (k ∈z )对称中心:)0,(πk 对称轴:2ππ+=k x 对称中心:)0,2(ππ+k ,对称轴:πk x =对称中心:)0,(πk注:()sin y A x ωϕ=+或()cos y A x ωϕ=+的最小正周期为T πω=;()tan y A x ωϕ=+的最小正周期为T πω=. 9. 两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+;)(βα-S :βαβαβαsin cos cos sin )sin(-=- )(βα+C :βαβαβsin sin cos cos )cos(-=+a ; )(βα-C : βαβαβsin sin cos cos )cos(+=-a )(βα+T :βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=-10. 辅助角公式:()22sin cos a x b x a b x ϕ+=++,其中:tan baϕ=11. 二倍角公式: α2S :αααcos sin 22sin =α2C :ααα22sin cos 2cos -=1cos 2sin 2122-=-=αα;α2T :ααα2tan 1tan 22tan -=12. 降幂公式: ααα2sin 21cos sin =,21cos 2sin 2αα-=,21cos 2cos 2αα+= 13.函数()ϕω+=x A y sin 的图象变换由函数y x =sin 的图象通过变换得到y A x =+sin()ωϕ的图象,有两种途径:法一:先平移后伸缩y x y x =−→−−−−−−−=+><sin sin()()()||向左或向右平移个单位ϕϕϕϕ00,1sin y x ωωϕ−−−−−−−−→=+横坐标变为原来的倍纵坐标不变()法二:先伸缩后平移y x =−→−−−−−−−sin 横坐标变为原来的倍纵坐标不变1ω纵坐标变为原来的倍横坐标不变A y A x −→−−−−−−−=+sin()ωϕ14. 函数()ϕω+=x A y sin 的物理意义当函数()[)()sin 0,0,0,y A x A x ωϕω=+>>∈+∞表示一个振动量时, 振幅A :表示这个量振动时离开平衡位置的最大距离; 周期ωπ2=T :往复振动一次所需要的时间;频率ωπ21==T f :单位时间内往复振动的次数; 相位:ωϕx +;初相:ϕ(即当x =0时的相位).第六章 平面向量及其应用1. 平面向量的相关概念:(1)平面向量:在平面内,具有大小和方向的量称为平面向量.向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量a 的大小称为向量的模(或长度),记作a .(2)模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. (3)与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. (4)方向相同且模相等的向量称为相等向量.y x y x =−→−−−−−−−=+><sin sin()()()||ωωϕϕϕϕω向左或向右平移个单位00纵坐标变为原来的倍横坐标不变A y A x −→−−−−−−−=+sin()ωϕ(5)平行向量(或共线向量):方向相同或相反的两个向量,规定:零向量与任意向量平行2. 向量的加法运算:(1)三角形法则:首尾相连,连首尾,如AB BC AC +=; (2)平行四边形法则:公共起点,对角线3. 向量的减法运算:三角形法则,要求共起点,指向被减向量,如AB AC CB -=4. 数乘向量:实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘向量. 当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反; 当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.5. 实数与向量的积的运算律:设λ、μ为实数,那么(1) λ(μa )=(λμ)a ; (2) (λ+μ)a =λa +μa ; (3) λ(b a +)=λa+λb . 6. 共线向量定理:向量a ,()0b b ≠,//a b ⇔存在实数λ,使a b λ=. 7. 两向量的夹角:已知两个非零向量a 和b ,在平面任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉,[],0,a b π〈〉∈.8. 向量垂直:对于两个非零向量a 和b ,若,2a b π〈〉=,则a ,b 垂直,记作a b ⊥.9. 数量积:已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.规定:零向量与任何向量的数量积为0. 10. 投影向量: 在上的投影向量等于cos θ (其中为与同向的单位向量)11. 数量积的性质:(1)22a a a a a a a =⋅=⇔=⋅;(2)0a b a b ⊥⇔⋅=;(3)cos ,a b a b a b⋅=12. 向量的数量积的运算律:(1) a ·b=b ·a (交换律);(2)(λa )·b =λ(a ·b )=λa ·b =a·(λb ); (3)(b a +)·c =a ·c +b ·c ; (4)()2222+a ba ab b ±=±⋅,()()22+a b a b a b ⋅-=-.13. 平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ11e +λ22e . 不共线的向量1e 、2e叫做表示这一平面内所有向量的一组基底.14. 坐标运算:(1)设()()2211,,,y x b y x a ==→→,则:()2121,y y x x b a ±±=±→→,λ()()1111,,y x y x a λλλ==→;2121y y x x b a +=⋅→→(2)设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终 点减起点),||AB AB AB =⋅222121()()x x y y =-+- (3)向量a 的模|a |:2||a a a =⋅2222x y a x y =+⇔=+ (4)向量()()2211,,,y x b y x a ==→→的夹角θ,则121222221122cos x x y y x yx y θ+=++.15. 向量平行与垂直的坐标表示:(1)两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x (2)两个非零向量垂直:02121=+⇔⊥→→y y x x b a 16.向量中一些常用的结论:(1)在ABC ∆中,①若()()()112233,,,,,A x y B x y C x y ,则其重心坐标为123123,33x x x y y y G ++++⎛⎫ ⎪⎝⎭; ②1()3PG PA PB PC =++⇔G 为ABC ∆重心;特别地,0PA PB PC P ++=⇔为ABC ∆的重心; ③PA PB PB PC PC PA P ⋅=⋅=⋅⇔为ABC ∆的垂心;④向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);(2)A 、B 、C 共线⇔存在实数、μ使得且+μ=1.17.三角形的四心垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点外心——三角形三边垂直平分线相交于一点 内心——三角形三内角的平分线相交于一点 18.三角形中的重要结论(1) 在三角形中,大边对大角,小边对小角()B A B A b a sin sin >⇔>⇔> (2) 三角形内角的正弦值一定大于0,锐角的余弦值大于0,直角的余弦值等于0,钝角的余弦值小于0. 19.三角形中的诱导公式()()()C B A B C A AC B sin sin sin sin sin sin =+=+=+ ()()()B C A C B A AC B cos cos cos cos cos cos -=+-=+-=+ ()()()BC A C B A AC B tan tan tan tan tan tan -=+-=+-=+20.正弦定理和余弦定理定理 正弦定理 余弦定理内容2R( R 是△ABC 外接圆半径)a 2=b 2+c 2﹣2bc cos A , b 2=a 2+c 2﹣2ac cos B , c 2=a 2+b 2﹣2ab cos C变形形式 ① a =2R sin A ,b =2R sin B ,c =2R sin C ; ② sin A,sin B,sin C;③ a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A④ a :b :c =sin A :sin B :sin Ccos A , cos B , cos CS =12ab sin C =12ac sin B =12bc sin A =4abc R =12(a +b +c )r (,R r 分别为△ABC 外接圆,内切圆半径)第七章 复数1. 复数的概念形如bi a +(a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,a 叫做实部,b 叫做虚部。

高中数学学业水平考知识点总结

高中数学学业水平考知识点总结

高中数学学业水平考知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、总结报告、演讲致辞、规章制度、自我鉴定、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as workplace documents, contract agreements, summary reports, speeches, rules and regulations, self-assessment, emergency plans, teaching materials, essay summaries, other sample essays, etc. If you want to learn about different sample essay formats and writing methods, please stay tuned!高中数学学业水平考知识点总结数学水平考是高中数学的一个重要组成部分。

高中数学会考知识点总结_(超级经典)

高中数学会考知识点总结_(超级经典)

数学学业水平复习知识点第一章 集合与简易逻辑1、 集合(1)、定义:某些指定的对象集在一起叫集合;集合中的每个对象叫集合的元素。

集合中的元素具有确定性、互异性和无序性;表示一个集合要用{ }。

(2)、集合的表示法:列举法()、描述法()、图示法();(3)、集合的分类:有限集、无限集和空集(记作φ,φ是任何集合的子集,是任何非空集合的真子集); (4)、元素a 和集合A 之间的关系:a ∈A ,或a ∉A ;(5)、常用数集:自然数集:N ;正整数集:N ;整数集:Z ;整数:Z ;有理数集:Q ;实数集:R 。

2、子集(1)、定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B , 注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ(2)、性质:①、A A A ⊆⊆φ,;②、若C B B A ⊆⊆,,则C A ⊆;③、若A B B A ⊆⊆,则A =B ; 3、真子集(1)、定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂; (2)、性质:①、A A ⊆≠φφ,;②、若C B B A ⊆⊆,,则C A ⊆4、补集①、定义:记作:},|{A x U x x A C U ∉∈=且;②、性质:A A C C U A C A A C A U U U U ===)(,, φ; 5、交集与并集(1)、交集:}|{B x A x x B A ∈∈=且性质:①、φφ== A A A A , ②、若B B A = ,则A B ⊆ (2)、并集:}|{B x A x x B A ∈∈=或性质:①、A A A A A ==φ , ②、若B B A = ,则B A ⊆ABBA6、一元二次不等式的解法:(二次函数、二次方程、二次不等式三者之间的关系)不等式解集的边界值是相应方程的解含参数的不等式ax 2+b x +c>0恒成立问题⇔含参不等式ax 2+b x +c>0的解集是R ; 其解答分a =0(验证bx +c>0是否恒成立)、a ≠0(a<0且△<0)两种情况。

高中数学学业水平考知识点考点总结

高中数学学业水平考知识点考点总结

高中数学学业水平考知识点考点总结高中数学的考试知识点和考点主要包括以下内容:
1. 数与式
- 整式的加减乘除运算
- 整式化简
- 分式的加减乘除运算
- 分式的化简
- 均等式
2. 带字母的式子
- 一元一次方程
- 一元一次不等式
- 分离变量法解微分方程
- 二元一次方程组
- 幂及其运算
- 指数函数与对数函数
3. 几何图形的认识和运用
- 长方形、正方形、三角形等几何图形的面积与周长计算
- 圆的面积与周长计算
- 三角形的性质和判定条件
- 相似三角形和比例
- 三角函数和三角恒等式
4. 函数的性质与运算
- 函数的定义域和值域
- 函数的图像与性态
- 初等函数的运算
- 反函数和复合函数
- 一次函数、二次函数和指数函数的图像与性质
5. 空间几何与立体几何
- 空间直角坐标系
- 空间中点和向量的运算
- 空间直线的方程
- 空间平面的方程
- 空间几何体的体积和表面积计算
- 空间几何体的相交关系和判定条件
6. 统计与概率
- 数据的收集、整理和描述
- 统计指标的计算
- 概率的计算和应用
- 排列与组合的计算
- 随机变量和概率分布
以上是高中数学学业水平考试的主要知识点和考点总结,希望可以帮到你。

高中数学学业水平考试知识点总结

高中数学学业水平考试知识点总结

高中数学学业水平考试知识点总结一. 代数与函数1.1 一次函数- 基本概念:函数的一种,表达式为 $y = kx + b$- 相关概念:斜率、截距- 线性关系:关系图像是一条直线- 相关题型:求斜率、截距、函数值等1.2 二次函数- 基本概念:函数的一种,表达式为 $y = ax^2 + bx + c$ - 相关概念:抛物线、顶点、对称轴、判别式- 相关题型:求顶点、对称轴、判别式值、求解方程等1.3 指数与对数- 基本概念:指数和对数是互为逆运算的概念- 相关概念:指数函数、对数函数、指数规律、对数规律- 相关题型:变底数相同求值、指数与对数的运算等二. 几何与三角学2.1 平面几何- 基本概念:平面内的形状、位置等属性- 相关概念:直线、线段、角等- 相关题型:直线与角的性质、线段的相交关系等2.2 空间几何- 基本概念:三维空间内的形状、位置等属性- 相关概念:平面、直线、线段等- 相关题型:平面与直线的相交关系、线段的长度等2.3 三角学- 基本概念:研究三角形及其性质的学科- 相关概念:正弦、余弦、正切等三角函数- 相关题型:三角函数的计算、三角形的性质等三. 概率与统计3.1 概率- 基本概念:研究事物发生可能性的学科- 相关概念:随机事件、样本空间、概率等- 相关题型:概率的计算、事件的关系等3.2 统计- 基本概念:收集、整理、分析和解释数据的学科- 相关概念:样本、频数、频率等- 相关题型:收集数据、绘制统计图表等以上是高中数学学业水平考试的基本知识点总结,包括代数与函数、几何与三角学、概率与统计等内容。

通过了解这些知识点,你将更好地准备考试,并取得好成绩。

河北学业水平考试数学知识点2024

河北学业水平考试数学知识点2024

河北学业水平考试数学知识点2024河北学业水平考试数学知识点2024河北学业水平考试(简称河北学考)是河北省教育厅组织的一项省级考试,旨在全面衡量高中毕业生的学业水平。

其中,数学是该考试的一门必考科目,对考生的数学基础和解题能力进行考核。

以下是河北学考数学2024的重点知识点。

1.函数与方程-函数的概念和性质:定义域、值域、单调性、奇偶性等。

-常用函数:线性函数、二次函数、指数函数、对数函数、幂函数、三角函数等。

-函数的图像与性质:合并、平移、伸缩等变换。

-二次函数的图像与性质:顶点、轴、对称性、零点、最值等。

-指数与对数的基本概念:幂运算、对数运算、常用性质与公式。

-三角函数的基本概念:正弦、余弦、正切的定义与性质。

2.三角函数的运用-三角函数的周期性、奇偶性、单调性等。

-三角函数的图像与性质:振幅、周期、相位、零点、最值等。

-三角函数的运算:和差化积、积化和差、倍角、半角等公式。

-三角函数的应用:解三角方程、三角恒等式的证明、计算三角函数的值等。

3.空间几何与立体几何-点、线、面的表示与性质:点的坐标、直线的方程、平面的方程等。

-空间直线与平面的位置关系:平行、垂直、相交等。

-空间几何体的表示与性质:球、锥、柱、棱柱、棱锥、棱台、圆台、圆柱等。

-空间几何体的计算:面积、体积、侧面积、全面积等。

4.概率与统计-随机事件的概念与性质:样本空间、事件、概率等。

-统计描述与统计推断:平均数、中位数、众数、方差、相关性等。

-概率计算:加法原理、乘法原理、条件概率、事件独立性等。

-统计图表的制作与分析:直方图、折线图、散点图等。

普通高中学业水平测试(数学复习提纲)

普通高中学业水平测试(数学复习提纲)

普通高中学业水平测试(数学复习提纲)一、知识点概述- 数的性质和运算- 代数基本概念与基本公式- 几何初步知识与直线、曲线的基本性质- 数据处理与统计- 概率初步二、具体内容1. 数的性质和运算- 自然数、整数、有理数、实数的定义和性质- 整式的定义、加减乘除运算和基本性质- 分式的定义、加减乘除运算和基本性质- 方程、不等式的解集和解集的判断方法2. 代数基本概念与基本公式- 代数式的定义和基本性质- 幂的定义、运算和基本性质- 根式的定义和基本性质- 二次根式和分式根式的化简- 代数等式与方程的基本概念和解的性质- 一元一次方程的解集及解集的判断方法- 一元二次方程的解及解的性质3. 几何初步知识与直线、曲线的基本性质- 角的概念和性质- 同位角、对顶角及其性质- 相交线与平行线的性质- 三角形的定义及分类- 三角形的内角和外角和性质- 圆的基本概念和性质4. 数据处理与统计- 数据的收集、整理、描述和分析的基本方法- 统计图表的读取和分析- 平均数、中位数和众数的含义和计算方法- 随机事件和概率的概念- 事件间的关系和计算方法5. 概率初步- 随机事件的概念和计算- 独立事件和互斥事件的概念和计算- 与事件的并、交、差的概念和计算方法三、复方法建议- 阅读教材,将知识点和公式复总结- 多做相关题和练题,加强巩固- 制定研究计划,合理安排复时间- 找到研究方法,如归纳总结、拓展思维、思维导图等- 与同学互助研究,相互答疑解惑以上是普通高中学业水平测试数学复习的提纲,希望能帮助你进行有针对性的复习和准备。

祝你考试顺利!。

高中数学学业水平考知识点大全

高中数学学业水平考知识点大全

高中数学学业水平考知识点大全高中数学学业水平考知识点1定义域(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。

其中,x叫作自变量,x的取值范围A叫作函数的定义域;值域名称定义函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合常用的求值域的方法(1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方法;(5)换元法;(6)反函数法(逆求法);(7)判别式法;(8)复合函数法;(9)三角代换法;(10)基本不等式法等关于函数值域误区定义域、对应法则、值域是函数构造的三个基本“元件”。

平时数学中,实行“定义域优先”的原则,无可置疑。

然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。

如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。

才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。

“范围”与“值域”相同吗?“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。

“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。

高中学业水平考试知识点

高中学业水平考试知识点

高中学业水平考试知识点由于你没有明确高中学业水平考试具体是哪个学科的知识点,以下以高中数学学业水平考试知识点为例:一、集合与函数概念。

1. 集合。

- 集合的定义:把一些元素组成的总体叫做集合。

- 元素与集合的关系:属于(∈)和不属于(∉)。

- 集合的表示方法:列举法、描述法、Venn图法。

- 集合间的基本关系:- 子集:如果集合A的任意一个元素都是集合B的元素,称集合A是集合B的子集,记作A⊆B。

- 真子集:如果A⊆B,且存在元素x∈B,x∉A,则称A是B的真子集,记作A⫋B。

- 集合相等:A = B当且仅当A⊆B且B⊆A。

- 集合的基本运算:- 交集:A∩B = {xx∈A且x∈B}。

- 并集:A∪B = {xx∈A或x∈B}。

- 补集:设U是全集,A⊆U,∁UA={xx∈U且x∉A}。

2. 函数及其表示。

- 函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A →B为从集合A到集合B的一个函数,记作y = f(x),x∈A。

- 函数的三要素:定义域、值域、对应关系。

- 函数的表示方法:解析法、图象法、列表法。

3. 函数的基本性质。

- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数y = f(x)在区间D上是增函数。

- 减函数:当x1<x2时,都有f(x1)>f(x2),则函数y = f(x)在区间D上是减函数。

- 奇偶性:- 奇函数:对于函数f(x)的定义域内的任意一个x,都有f(-x)= - f(x)。

- 偶函数:对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x)。

二、基本初等函数(Ⅰ)1. 指数函数。

- 指数与指数幂的运算:- 根式:如果x^n=a,那么x叫做a的n次方根,其中n>1,n∈N*。

高中学业水平考试数学知识点总结

高中学业水平考试数学知识点总结

高中学业水平考试数学知识点总结1.集合与常用逻辑用语
2.复数
3.平面向量
4.算法、推理与证明
5.不等式、线性规划
6.计数原理与二项式定理
7.函数、基本初等函数1的图像与性质
8.二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:
有两个相异实数根
9. 函数与方程、函数模型及其应用
10. 导数及其应用
11. 三角函数的图像与性质
12.三角函数的图象与性质:
{x|x≠π/2+kπ,k∈
R R
13. 三角恒等变换与解三角形
14.等差数列、等比数列
15. 数列求和及其数列的简单应用
注:表中n,k均为正整数
16.空间几何体(其中r为半径、h为高、l为母线等)
↑S=S'
V∉=∉/∉(S'+∉∉'s+S)h
17.空间点、直线、平面位置关系(大写字母表点、小写字母表直线、希腊字母表平面):
18. 空间向量与立体几何
19.直线与圆的方程
【注:标准d根据上下文理解为圆心到直线的距离与两圆的圆心距】
20.圆锥曲线的定义、方程与性质
注:1.表中两种形式的双曲线方程对应的渐近线方程分别为y=±b
a x,y=±a
b
x。

2.表中四种形式的抛物线方程对应的准线方程分别是x=−p
2,x=p
2
,y=−p
2
,y=p
2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年高中数学学业水平测试知识点【必修一】一、 集合与函数概念并集:由集合A 和集合B 的元素合并在一起组成的集合,如果遇到重复的只取一次。

记作:A ∪B 交集:由集合A 和集合B 的公共元素所组成的集合,如果遇到重复的只取一次记作:A ∩B 补集:就是作差。

1、集合{}n a a a ,...,,21的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子有2n–2个.2、求)(x f y =的反函数:解出)(1y f x -=,y x ,互换,写出)(1x f y -=的定义域;函数图象关于y=x 对称。

3、(1)函数定义域:①分母不为0;②开偶次方被开方数0≥;③指数的真数属于R 、对数的真数0>.4、函数的单调性:如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<(>)f(x 2),那么就说f(x)在区间D 上是增(减)函数,函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质。

5、奇函数:是()()f x f x ,函数图象关于原点对称(若0x =在其定义域内,则(0)0f =); 偶函数:是()()f x f x ,函数图象关于y 轴对称。

6、指数幂的含义及其运算性质:(1)函数)10(≠>=a a a y x且叫做指数函数。

(2)指数函数(0,1)x y a a a =>≠当 01a <<为减函数,当 1a >为增函数;①r s r sa a a +⋅=;②()r s rs a a =;③()(0,0,,)rr rab a b a b r s Q =>>∈。

(3)指数函数的图象和性质7、对数函数的含义及其运算性质:(1)函数log (0,1)a y x a a =>≠叫对数函数。

(2)对数函数log (0,1)a y x a a =>≠当 01a <<为减函数,当 1a >为增函数;①负数和零没有对数;②1的对数等于0 :01log =a ;③底真相同的对数等于1:1log =a a , (3)对数的运算性质:如果a > 0 , a ≠ 1 , M > 0 , N > 0,那么:①N M MN a a a log log log +=; ②N M NMa a alog log log -=; ③)(log log R n M n M a n a ∈=。

(4)换底公式:)0,10,10(log log log >≠>≠>=b c c a a abb c c a 且且(5)对数函数的图象和性质8、幂函数:函数αx y =叫做幂函数(只考虑21,1,3,2,1-=α的图象)。

9、方程的根与函数的零点:如果函数)(x f y =在区间 [a , b ] 上的图象是连续不断的一条曲线,并且有0)()(<⋅b f a f ,那么,函数)(x f y =在区间 (a , b ) 内有零点,即存在),(b a c ∈,使得0)(=c f 这个c 就是方程0)(=x f 的根。

【必修二】一、直线 平面 简单的几何体1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=2、球的体积公式: 334 R v π=; 球的表面积公式:24 R S π= 3、柱体、锥体、台体的体积公式:柱体V =S h (S 为底面积,h 为柱体高); 锥体V =Sh 31(S 为底面积,h 为柱体高)台体V =31(S ’+S S'+S )h (S ’, S 分别为上、下底面积,h 为台体高)4、点、线、面的位置关系及相关公理及定理: (1)四公理三推论:公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内。

公理2:经过不在同一直线上的三点,有且只有一个平面。

公理3:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

推论一:经过一条直线和这条直线外的一点,有且只有一个平面。

推论二:经过两条相交直线,有且只有一个平面。

推论三:经过两条平行直线,有且只有一个平面。

公理4:平行于同一条直线的两条直线平行. (2)空间线线,线面,面面的位置关系:空间两条直线的位置关系:相交直线——有且仅有一个公共点; 平行直线——在同一平面内,没有公共点;异面直线——不同在任何一个平面内,没有公共点。

相交直线和平行直线也称为共面直线。

空间直线和平面的位置关系:(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)它们的图形分别可表示为如下,符号分别可表示为a α⊂,a A α=,//a α。

空间平面和平面的位置关系:(1)两个平面平行——没有公共点; (2)两个平面相交——有一条公共直线。

5、直线与平面平行的判定定理:如果平面外一条直线与平面内一条直线平行,那么该直线与这个平面平行。

符号表示:////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭。

图形表示:6、两个平面平行的判定定理:如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行。

符号表示://////a b a b P a b βββααα⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭。

图形表示:7、. 直线与平面平行的性质定理:如果一条直线与一个平面平行,经过这条直线的平面与已知平面相交,那么交线与这条直线平行。

符号表示:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭。

图形表示:8、两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们交线的平行。

符号表示: 9、直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

符号表示: 10、.两个平面垂直的判定定理:一个平面经过另一个平面的垂线,则这两个平面垂直。

符号表示: 11、直线与平面垂直的性质:如果两条直线同垂直于一个平面,那么这两条直线平行。

符号表示://a a b b αα⊥⎫⇒⎬⊥⎭。

12、平面与平面垂直的性质:如果两个平面互相垂直,那么在其中一个平面内垂直于交线的直线垂直于另一个平面。

符号表示: 13、异面直线所成角:平移到一起求平移后的夹角。

直线与平面所成角:直线和它在平面内的射影所成的角。

(如右图) 14、异面直线所成角的取值范围是(]︒︒90,0; 直线与平面所成角的取值范围是[]︒︒90,0; 二面角的取值范围是[)︒︒180,0;两个向量所成角的取值范围是[]︒︒180,0 二、直线和圆的方程1、斜率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为2、直线的五种方程 :(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--( (111(,)P x y 、222(,)P x y ; (12x x ≠)、(12y y ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).3、两条直线的平行、重合和垂直: (1)若111:l y k x b =+,222:l y k x b =+①1l ‖1212b k k l 且=⇔≠;2b ②22121b b k k l l ==⇔且重合时与; ③12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+= 2121y y k x x -=-//,,//a b a bαβαγβγ==⇒,,,,a b a b P l a l b l ααα⊂⊂=⊥⊥⇒⊥,l l αβαβ⊥⊂⇒⊥,,.l m l m l ααββ⊂=⊥⇒⊥θαP Hl4、两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式 │P 1P 2│=212212)()(y y x x -+-5、两点P 1(x 1,y 1)、P 2(x 2,y 2)的中点坐标公式 M (221x x +,221y y +) 6、点P (x 0,y 0)到直线(直线方程必须化为一般式)Ax+By+C=0的距离公式d=2200BA CBy Ax +++7、平行直线Ax+By+C 1=0、Ax+By+C 2=0的距离公式d=2212BA C C +-8、圆的方程:标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;一般方程220x y Dx Ey F ++++=,(配方:44)2()2(2222F E D E y D x -+=+++) 0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;9、点与圆的位置关系:点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种:若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.10、直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.11、弦长公式:为圆心到直线的距离)为圆的半径,d r d r AB (222-=13、 空间直角坐标系,两点之间的距离公式:⑴ xoy 平面上的点的坐标的特征A (x ,y ,0):竖坐标z=0 xoz 平面上的点的坐标的特征B (x ,0,z ):纵坐标y=0 yoz 平面上的点的坐标的特征C (0,y ,z ):横坐标x=0 x 轴上的点的坐标的特征D (x ,0,0):纵、竖坐标y=z=0 y 轴上的点的坐标的特征E (0,y ,0):横、竖坐标x=z=0 z 轴上的点的坐标的特征E (0,0,z ):横、纵坐标x=y=0 ⑵│P 1P 2│=212212212-z z -y y -x x )()()(++【必修三】算法初步与统计:二、算法基本语句:1、输入语句:输入语句的格式:INPUT “提示内容”; 变量。

相关文档
最新文档